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Abstract

We determine the asymptotics of the largest cardinality of a set of Hamilton
paths in the complete graph with vertex set [n] under the condition that for any
two of the paths in the family there is a subpath of length k entirely contained in
only one of them and edge–disjoint from the other one.
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1 Introduction

In recent years, in a series of papers we have studied the size of the largest family of
Hamilton paths in a fixed complete graph with vertex set [n] such that for any pair of
the Hamilton paths from the family their union contains a fixed small subgraph [5], [7],
[1]. The central question in the last mentioned paper is concerned with the case when the
union of the paths must contain a cycle of prescribed length. Subsequently, answering
a question left open in [1], I. Kovács and D. Soltész [3] have proved that the size of the
largest family of Hamiltonian paths the pairwise union of which contains an odd cycle
does not decrease if instead of an arbitrary odd cycle the union contains a triangle. (The
analogous statement for even cycles vs. cycles of length 4 is false, [1].) These problems are
rooted in zero-error information theory, especially in the graph capacity problem of Claude
Shannon [9]. In [2] we introduced far-reaching generalisations of Shannon’s problem with
the aim of answering well-known questions in extremal combinatorics, including Rényi’s
problem of the maximum size of a family of pairwise qualitatively independent partitions
of a finite set. The concept of capacity of permutations is a further natural extension of
graph capacity [4] and has led to similar questions about Hamilton paths.

The questions studied in the present paper are intimately connected to those raised
in [1], even though the conditions studied here are not in terms of subgraphs in the
pairwise union of Hamilton paths. Our main concern is to understand the rough order
of magnitude of the cardinality of the largest set of paths satisfying various conditions in
order to develop an intuition for their hierarchy.

Somewhat surprisingly, our present conditions allow for large sets of superexponential
size.

2 A simple problem

Let us start with the case k = 2 since already this exhibits the main features of what we
see in general.

Theorem 1 Let M(n, 2) be the largest cardinality of a family of Hamilton paths in the

complete graph Kn with vertex set [n] such that for any two of them there is a path of

3 vertices with both edges contained in the same path and missing in the other one. We

claim

⌊
n

2
⌋! ≤ M(n, 2) ≤ 2n/2n⌊

n

2
⌋!

Proof.

The lower bound on M(n, 2) is given by the construction in Theorem 1 from [1]. For
n even, let us consider the complete bipartite graph Kn/2,n/2. Let the two colour classes
be A and B. Let us fix an arbitrary order of the vertices in A. Then each order of the
vertices of B defines a Hamilton path starting in the first element of the order of A and
alternating between the two classes in the prescribed order. In other words, the path goes
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from the first vertex of A into the first vertex of B, then returns to the second vertex of
A, etc. In particular, for any two of these paths the order of the visit of the elements of
B is different. The first vertex in which the two orders of B differ, is clearly the middle
vertex of a path of length two both of whose edges belong only to one of the two paths.
In the case of an odd n let A have cardinality ⌈n/2⌉ and have the fixed order. The rest
is as before.

For the upper bound, consider first the case of n even. Fix a perfect matching in Kn

and consider all the Hamilton paths containing all its edges. These various paths are
defined by specifying an arbitrary order in which the edges of the matching appear in
the Hamilton path alongside with the order of appearance of the two vertices for any of
these edges. Then, clearly, we obtain 2n/2−1 n

2
! Hamilton path in this manner and these

are exactly those that contain the given matching. Every Hamilton path in Kn contains
exactly one perfect matching. Clearly, two paths containing the same perfect matching
cannot have a ”private” path on 3 vertices, since every second edge of a Hamilton path
is an edge from the fixed matching, and therefore is a common edge of both of the paths.
This implies that an optimal construction of M(n, 2) Hamilton paths cannot have more
paths than there are perfect matchings in Kn and this gives our upper bound in case of
even n. The case of odd n can be treated similarly. For the upper bound, we have to note
that even though every Hamilton path defines two edge–disjoint near–perfect matchings,
the number of these near–perfect matchings is

2⌊n/2⌋n⌊
n

2
⌋!

and it is still true that two paths containing a same near–perfect matching cannot satisfy
our condition, which gives the upper bound.

✷

We can adapt our previous reasoning to the case of k > 2. We start by k = 4 and will
see that the rest is immediate.

Theorem 2 Let M(n, 4) be the largest cardinality of a set of Hamilton paths in Kn with

vertex set [n] such that for any two of them there is a path of 5 vertices all the edges of

which belong to just one and the same of the two paths. Then, if n is a multiple of 4,

(n/4)! ≤ M(n, 4) ≤ 27n/4(n/4)!.

Proof.

We just have to adapt the previous proof. In order to prove the lower bound, we
consider the complete bipartite graph Kn/2.n/2 with its independent sets A and B of equal
size. We fix an order of the vertices in A while in B we first partition the vertices into
disjoint ordered couples. We will vary the order of the couples leaving the order fixed
within each of the n/4 couples. For each of the (n/4)! of the orders of the elements of B so
obtained, we define a Hamilton path in the whole bipartite graph as follows. Let all our
Hamilton paths start with the first vertex from A. From here the path goes to the first

2



vertex of the first couple from B. From the latter the path continues to the second vertex
of A, and then goes back to the second vertex of the first couple of B. In other words, after
having chosen our permutation of the vertices of B, the construction is defined precisely
as in the previous proof of Theorem 1. The number of the paths so obtained equals the
number of the considered permutations of B which is (n/4)!. Since the order of the couples
is different, therefore, wherever the two permutations differ, both of them will generate a
path of 4 edges, and all of which being adjacent to one of the vertices of the corresponding
couple from B. Furthermore, since the two couples are disjoint, the two paths of length 4
do not have common edges, and none of these edges appear elsewhere in the union of the
two paths.

In order to establish our upper bound, consider the set of edges {4i+1, 4i+2}for i =
0, 1, 2, . . . , n/4 − 1. To any set of edges such as this we associate all the Hamilton paths
that visit these edges in any order but with the order of the vertices fixed within each
edge and with the further restriction that between any pair of successively visited edges
the path traverses exactly two arbitrary new vertices not belonging to any of the edges. It
is then clear that no pair of Hamilton paths associated to a fixed edge set in this manner
satisfies our pairwise condition since each of them has every fourth of its edges in common
with all of the other ones. The number of such paths is clearly

(n/4)!(n/2)!

2n/4

and of all these at most one can belong to our set of Hamilton paths satisfying the pairwise
condition. Hence the total number of paths in our family is at most

2n/4n!

(n/4)!(n/2)!
=

2n/4(n/4)!n!

(n/4)!(n/4)!(n/2)!
≤ 27n/4(n/4)!

✷

As a matter of fact, a similar reasoning gives the correct order of magnitude forM(n, k)
if k is even. We just state this and leave the details of the proof to the reader.

Theorem 3 Let M(n, k) be the largest cardinality of a set of Hamilton paths in Kn with

vertex set [n] such that for any two of them there is a path of k + 1 vertices all the edges

of which belong to just one and the same of the two paths. Then, if n is a multiple of k,

(n/k)! ≤ M(n, k) ≤ 2n[h(2/k)+3/k](n/k)!,

where h(t) = −t log t− (1− t) log(1− t) is the binary entropy function with logarithm to

the base 2.

If k = 3, things change a little bit in the construction.

Theorem 4 Let M(n, 3) be the largest cardinality of a set of Hamilton paths in Kn with

vertex set [n] such that for any two of them there is a path of 4 vertices all the edges of

which belong to just one and the same of the two paths. Then, if n is a multiple of 3,

(n/3− 1)! ≤ M(n, 3) ≤ [3 · 2−1/3]n(n/3)!
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Proof.

We give a construction for the lower bound. Let n be a multiple of 3. We consider the
complete bipartite graph Kn/3,2n/3. Let the bipartition into independent sets of this graph
have the classes A and B with |A| = n/3. Let us partition the vertices of B into disjoint
couples. We will consider all the permutations of these couples among themselves, with
the order of the two vertices within each couple being fixed. For an arbitrary permutation
of the couples in B let us connect, for every i the i’th vertex in the fixed permutation of
the vertices of A with the two vertices of the i’th couple of the permutation of B. More
precisely, let us fix the first couple and consider all the permutations of the remaining ones.
Any of these permutations can be completed into a Hamilton path if we draw an edge
between the second vertex of each couple and the first vertex of the consecutive couple
of a permutation of the couples in B. We claim that for any pair of permutations of the
couples of B, the corresponding Hamilton paths satisfy our condition. To see this, let us
consider an arbitrary pair of these permutations. These will differ somewhere, and let us
look at the first couple for which this happens. Suppose that in one of these permutations
the couple in this position is formed by (a, b) while in the other one the corresponding
couple is (c, d). We will refer to the partition having the couple (a, b) in the given position
as the first of these two permutations. Then, by assumption, a, b, c and d are 4 different
vertices. In the preceding position we have the same couple in the two permutations and
we denote by x its last element. Also, let us denote by y the vertex adjacent to both
a and b. We claim that the path with vertices x, a, y, b defined by the first partition is
edge–disjoint from the Hamilton path defined by the other permutation. As a matter of
fact, in the path defined by the partition the vertex x has an incident edge appearing in
both paths, and this is the edge leading to x. By definition, the path continues in case of
the first permutation by the edge (x, a) while the outgoing edge from x is different for the
other permutation, namely, (x, c). But then the path defined by the second permutation
does not contain any other edge incident to x. Further, in the path defined by the first
permutation y is adjacent to both of a and b while in the path corresponding to the
second permutation it is adjacent to c and d. This means that the edges (a, y) and (y, b)
belong tho the first path but not to the second one, thereby establishing our claim that
the three consecutive edges (x, a), (a, y) and (y, b) all belong exclusively to the first of
our two Hamilton paths. On the other hand, the total number of our Hamilton paths is
(n/3− 1)! which proves the lower bound.

In order to establish the upper bound, let us consider the set of edges {3i + 1, 3i +
2}, for i = 0, 1, 2, . . . , n/3−1. Let us also consider all the Hamilton paths in Kn that visit
these edges in any order in such a manner that the path visits the adjacent vertices of
the edge set in the fixed order while between any subsequent pair of these edges in the
path there is exactly one extra vertex, not contained in any of them. It is clear that no
pair of these Hamilton paths satisfies our condition since for among any three consecutive
edges in any of these graphs there is one edge contained in all of our paths. For any fixed
set of edges and intermediate points the number of Hamilton paths visiting them in the
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described manner is
2n/3

n

3
!
n

3
!

This gives the upper bound

M(n, 3) ≤
n!

2n/3[n
3
!]2

≤
3n

2n/3
· (n/3)!

✷

Just as for the case of k even, we can use the ideas in the previous demonstration to
determine the asymptotics of M(n, k) for any fixed odd value of k. We will illustrate this
in the case of k = 5. The rest is similar.

Theorem 5 Let M(n, 5) be the largest cardinality of a set of Hamilton paths in Kn such

that for any two of them one contains a subpath of 5 edges belonging eclusively to one and

the same Hamilton path. Then, if n is a multiple of 5, we have

(n/5− 1)! ≤ M(n, 5) ≤ 2n[h(2/5)+1/5] · (n/5)!

Proof. In order to prove the lower bound, consider the bipartite complete graphK2n/5,3n/5

with vertex set [n]. Let the two independent sets be A and B with |A| = 2n/5. Let us fix
an order of the elements of A. Further, let us partition these elements into disjoint couples
of consecutive elements. In the set B let us partition the elements in an arbitrary manner
into disjoint triples and let us fix an arbitrary order of the three elements within each
of these groups. Let us permute the triples of B arbitrarily except for one that we will
keep fixed as the first triple, say. Each of these permutations will give rise to a different
Hamilton path in our bipartite complete graph as follows. Each of these paths will start
in the first element of the first triple of B and will alternate between the elements of the
first triple of B and the first couple of A. Once the path arrives to the last element of the
first triple of B it interrupts alternation to continue with the first vertex of the second
triple of B. From here the path goes to the first element of the second couple of A to
resume alternation. We keep repeating this procedure until all the vertices are covered.
The number of the corresponding Hamilton paths is clearly (n/5 − 1)! which give the
lower bound, once we realise that any pair of the Hamilton paths so obtained satisfies our
pairwise condition. To see that any pair of these paths satisfy our pairwise condition, let
us look at the corresponding permutations of the elements of B. We will refer to these as
the first and the second permutation. Let (a, b, c) be the first triple of elements in the first
permutation that differs, and in fact, is disjoint from the triple in the same positions in
the second permutation. Let further x be the last vertex of the triple preceding (a, b, c) in
the first permutation and let (y, z) be the corresponding couple in A. Then, as in the proof
for k = 3, we see that the consecutive edges (x, a), (a, y), (y, b), (b, z) and (z, c) define a
subpath in the Hamilton path corresponding to the first permutation and none of these
edges belongs to the Hamilton path corresponding to the second permutation.
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The proof of the upper bound is more straightforward. We consider the set of edges
E = {{5i+1, 5i+2}, for i = 0, 1, 2, . . . , n/5− 1}. We consider the set of all the Hamilton
paths that visit these edges in any order under the restriction that between any two edges
the path passes exactly 3 different vertices not contained in any of them. Each of these
vertices is visited just once. Since every fifth edge in each such path is from our set E
and thus belongs to all of the paths, it follows that no pair of paths from this set satisfies
our condition. On the other hand, the number of paths corresponding to a fixed set E in
this manner is

2n/5 · (n/5)!(3n/5)!.

This leads to the upper bound

M(n, 5) ≤
n!

2n/5 · (n/5)!(3n/5)!
≤

n!(n/5)|

2n/5 · (n/5)!(n/5)|(3n/5)!
≤ 2n[h(2/5)+1/5] · (n/5)!.

✷

In a similar manner, we can prove that M(n, k) has the order of magnitude (n/k)! for
all odd values of k.

3 Kernel and product structure

Interestingly enough, our near–optimal constructions in this paper are in terms of kernel
structures. One could even think, especially in the case of M(n, 2), that the construction
is optimal. The family of Hamilton paths we thus suspect to be optimal has a so–
called kernel structure. This means that all the paths in the construction have a fixed
projection while the rest varies arbitrarily. As a matter of fact, we fix a linearly ordered
set of n/2 vertices and consider all the Hamilton paths in Kn which have these vertices as
odd–indexed vertices in the order of transition through the vertices of Kn. All the other
constructions have a similar structure. In a sense, a kernel structure can be considered
as a Cartesian product. More generally, it is interesting to analyse when it is that in
a problem in extremal combinatorics, the extremal solutions have a Cartesian product
structure. In Shannon’s graph capacity problem, in all the solved basic cases, the optimal
construction has a product structure. (This is so even for the famous pentagon graph, as
it was proved by Lovász [8].)
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