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ABSTRACT 
 

Shaking table tests have been carried out to investigate the pounding phenomenon between a mass and 

two-sided shock absorbers, subject to sinusoidal excitations. In an effort to investigate the effectiveness of 

such an impact mitigation measure, preliminary tests were carried out: first, the dynamic response was 

recorded without pounding, and secondly the test structure was placed with gap separation and pounding 

was induced. Absolute acceleration, relative excursion, mean contact force, coefficient of restitution and 

1 Corresponding author. 
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dissipated energy were recorded at steady state and the excitation frequency range for pounding 

occurrences were determined. Numerical predictions were made by using a contact model for the 

simulation of impacts, able to appropriately describe the behavior of rubber under impact loading. Good 

agreement between the experimental and the numerical results was achieved. 

 

1 Introduction 

In recent years, there has been an increasing demand to minimize structural and non-structural 

damage, avoid functionality disruption and protect sensitive and expensive equipments and structures even 

under extreme excitations. Considering that clearances exist in many civil, mechanical and industrial 

structures, such as heat exchangers, gear trains, bearings, nuclear power plants, etc. and that often there are 

practical restrictions to the width of the available gap, a reasonable concern is the possibility of poundings 

of systems with adjacent bodies or structures during strong excitations, i.e. it is possible that the width of 

the gap may not be sufficient. Therefore, it is important to investigate that possibility and understand how 

the maximum accelerations, displacements and contact forces of vibrating structures are affected by the 

various design parameters and conditions during impacts with adjacent structures. 

In earthquake engineering there are some structural situations in which the clearances between 

adjacent structures can be limited due to practical constraints. Therefore, it is reasonable to expect that a 

pounding between adjacent structures occur during severe seismic excitations [1,2]. The class of block-type 

acceleration-sensitive equipment, whose dynamic behavior is essentially that one of rigid body, is often 

considered in the equipment isolation [3,4,5]; for instance, a significant portion of mechanical, electrical 

and electronic items is here comprised, like emergency power electric generators, Uninterruptible Power 

Supply (UPS) systems, transformers and computer cabinets, to mention only a few of them. In these cases, 

equipments can be considered as a single degree of freedom (SDOF) system [3,4,5]. 

Very limited experimental/numerical research studies have been conducted for impact/poundings 

of seismically isolated structures (beams [6,7], building, bridges, etc.). 

Several research studies focused on the numerical or experimental investigation of earthquake-

induced poundings of fixed-supported buildings [1,8,9]. Experimental studies [10] have shown that, in case 

of structural poundings, both floor accelerations and inter-story deflections are significantly amplified [11, 
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12]. In recent experiments, Masroor and Mosqueda [12] investigated the behavior of base isolated buildings 

impacting with different types of moat wall. 

Shock absorbers, sometimes also known as bumpers, are mechanical devices designed to smooth 

out shocks and to damp vibrations [13-18]. As one of the basic mechanical components, the shock absorber 

has been widely used in automobiles, motorcycles, wheeled or tracked vehicles, aircrafts, as well as some 

industrial machines [19]. Hysteresis of structural material [10, 20-22], elastically deformable and viscously 

dissipative obstacles [23,24], dry friction [25,26], fluid friction [27,28] and magnetic effects [29] have been 

used by the absorbers for damping shock impulses. 

The aim of this paper is to present a brief report which sinthetize some of the preliminary results 

obtained at the beginning of a series of experimental tests and numerical simulations, concerning nonlinear 

impact dynamics of a base-isolated SDOF oscillator excited by a harmonic base acceleration and 

symmetrically bounded by two unilateral deformable and dissipative constraints, say bumpers. The 

physical model consists of (i) a rigid body that can be treated as a lumped mass, M = 500 kg (to simulate 

the isolated object), (ii) an elastomeric (HDRB: High Damping Rubber Bearing) isolator, the so-called 

damper, (iii) a couple of elastomeric bumpers. The bumpers are symmetrically mounted on steel stands 

which are bolted onto the base plate. The mass is comprised of six plates of mild steel jointed by through 

bolts. The damper is centrally connected to the lower layer of the mass; the clearance between bumpers and 

mass, the so-called “gap”, can be varied by adjusting the screws at the fronts of the stands; the mass is 

supported by four wheeled legs, rotating within unidirectional guides. The whole system is excited by the 

shaking table. Static tests have been first performed to determine the static characteristics and the support 

conditions of the shock absorbers. For readers’ convenience meaning of symbols and acronyms used 

throughout the paper are reported in Table 1. 

 

2 Characterization of the bumper 

2.1 Experimental set-up 

The experimental investigation was preceded by a numerical investigation [30] which was used to 

design the experimental tests. The experiments were performed using a vibrating table Moog 1.50m×1.50m 

(Fig. 1). The bumper used in the experiments has width 65 mm and height 52 mm (Fig. 2) and is 
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constituted by an Ethylene-Propylene Diene Monomer (EPDM) having a hardness of 75 Shore A; the 

length of the sample is 400 mm. The mechanical characterization of the bumpers was carried out by using 

the machine MTS 810. 

2.2 Cyclic tests 

Experimental tests have been conducted concerning the static and dynamic behavior of the 

bumpers, in order to identify the mechanical characteristics useful to the numerical modeling of the whole 

system constituted by mass, damper and bumpers. These tests were performed subjecting the samples to 

programs of imposed displacement variable with sinusoidal law at different frequencies and reaching 

steady state after 20 cycles. The dynamic tests were carried out with a 3 mm / 200 N approach; in other 

words, to obtain the contact between the actuator and the sample before starting the tests, alternative initial 

conditions were imposed of approaching equal to 3 mm or of compressive force of 200 N. 

An initial compressive displacement of about 10 mm was assigned to the specimen (compatible 

with the performance of the machine at the frequencies used); an excursion in displacement amplitude of 

about ±10 mm was subsequently imposed, in a frequency range between 0.5 Hz to 2 Hz, with a step of 0.5 

Hz. The hysteresis loops shown in Fig. 3 were obtained, where also the quasi-static loop at 2 mm / min 

speed was reported for comparison. Limiting the comparison to the phase of initial load, dynamic stiffness 

appears larger than the static one. Furthermore, in the dynamical tests, cycles, around an average value of 

about 10 mm, are substantially superimposed, with only small differences at the extreme sides (about 2 mm 

and 18 mm). 

In particular, it can be noted that for high values of compression load, the stiffness undergoes a 

significant increase, due to an important change in the form of bumper, which leads to the almost total 

closure of the hole and even to self-contact between the inner contours. 

 
3 Results of impact tests 

3.1 Generalities 

The total gap between mass and bumpers has amplitude ∆ = 0.03 m. Sinusoidal accelerations with 

different peaks A t = 0.03, 0.05, 0.075, 0.1 g(=gravity’s acceleration) were imposed to the table; frequency f 

step-wisely varied in the range f = 0.5 - 5.0 Hz, with step ∆f = 0.1 Hz, applied for a time sufficient to reach 

4 
 



Journal of Computational and Nonlinear Dynamics 
 

the steady state; the maximum values of acceleration and excursion were evaluated, of course, in 

correspondence of the resonance. The experimental investigations considered two distinct configurations: 

(a) the absence of bumper, denoted by the acronym NBs, and (b) the presence of bumper, denoted by the 

acronym YBs, where the system has two possible states: a situation when the mass is not in contact with 

the bumper, denoted flight, and another situation when the mass is in contact with one of the bumpers, 

denoted contact. 

In both configurations, the measured parameters were the absolute acceleration of the mass and the 

(peak-to-peak) excursion of the relative displacement of the mass with respect to the vibrating table. The 

acceleration of the mass was measured by the two accelerometers positioned on the mass, in two opposite 

edges, as shown in Fig. 1. Maximum absolute acceleration values were recorded at steady state in each sub-

frequency range of the sine sweeps, and the values averaged on the two accelerometers were taken into 

account. The displacement of the mass was measured by the laser transducer, as shown in Fig. 1. 

The exciting action frequency was normalized with respect to the pseudo-resonance value relative 

to the configuration in the absence of bumpers for A t = 0.1g, that is fR ≅ 1.0 Hz; this case corresponds to a 

shear deformation of the damper equal to about 100%; the normalized frequency is indicated by the symbol 

ν. The maximum acceleration of the mass in absolute value Amax is normalized with respect to the peak 

value A t, and is denoted with the dimensionless parameter α = Amax / A t; the symbol aG = A t / g will denote 

the non-dimensional acceleration of the shaking table. The most important results of this first experimental 

campaign are summarized in Table 2. 

3.2 Configuration No-Bumpers (NBs) 

Three sinusoidal accelerations with peaks aG = 0.03, 0.05, 0.1 were imposed to the vibrating table. 

The maximum dimensionless acceleration α recorded at steady state of each sub-frequency range is shown 

in Fig. 4a. The resonance peak occurs in the neighborhood of νR = 1.2 for aG = 0.03, ν  R = 1.1 for aG = 

0.05 and ν  R = 1.0 for aG = 0.1. The decrease in frequency with increasing intensity of the external action is 

due to softening behavior of the damper. In addition, the maximum measured dimensionless accelerations 

have been α = 1.80 for aG = 0.03, α = 2.99 for aG = 0.05 and α = 3.89 for aG = 0.1. 

As regards the displacements, the excursion E = (Dmax - Dmin), i.e. the difference between the 

maximum positive displacement Dmax and the negative minimum displacement Dmin, was evaluated at 
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steady state of each sub-frequency range; the maximum excursions (in dimensional terms) are: 0.0356 m at 

aG = 0.03, 0.0593 m at aG = 0.05, 0.171 m at aG = 0.1. This excursion was then normalized with respect to 

the maximum value of the imposed displacement, D tmax = A t / (Ωmin)2, introducing the parameter e = E / 

D tmax. The plots of the normalized excursion are shown in Fig. 4b. The maximum measured excursions are 

e = 1.03 for aG = 0.03, e = 1.715 for aG = 0.05, e = 2.479 for aG = 0.1.  

3.3 Configuration Yes-Bumpers (YBs) 

Four sinusoidal accelerations with peaks aG = 0.03, 0.05, 0.075, 0.1 were imposed to the vibrating 

table. With regard to the relative displacements of the mass with respect to the table, the dimensionless 

excursion η = (Dmax - Dmin) / ∆, i.e. the difference between the maximum positive displacement Dmax and 

minimum negative displacement Dmin, normalized with respect to the total gap, was evaluated at steady 

state of each sub-frequency range. Having normalized the excursion with respect to the gap, a value less 

than 1 indicates that the mass does not touch the bumpers, the limit value 1 indicates that the mass grazes 

the bumpers but does not deform them, and finally η > 1 indicates that the mass has beaten and deformed 

the bumpers. 

Figure 5a shows the maximum dimensionless acceleration in terms of the dimensionless frequency 

of the external excitation. Observing the figure it can be seen that, with increasing amplitude of the 

acceleration imposed to the table, the acceleration peak moves to the right and the acceleration value 

decreases: indeed resonance frequencies νR = 2.2, 2.5, 2.9 are observed for table accelerations aG = 0.05, 

0.075, 0.1, and corresponding peak values α = 16.80, 16.18, 15.04. An acceleration jump is also notable, 

switching from high values (17-15, due to impacts) to small values (lower than one, i.e.impacts do not 

occur) in which the acceleration is independent of the amplitude of the action A t. In the same figure the 

case aG = 0.03 is also reported which exhibits much smaller values of acceleration in comparison to the 

cases which have been previously commented. In addition, the appearance of ridgelets in some cases at low 

frequencies and of jumps from large amplitude solutions to small amplitude solutions have already been 

observed in numerical simulations reported in [30]. 

Figure 5b shows the maximum dimensionless η excursion in terms of excitation frequency ν. With 

reference to the three largest amplitudes of the considered excitation (aG = 0.05, 0.075, 0.1), the existence 

of a zone where the excursion peaks slightly grow with the action amplitude (varying from η = 1.1 to η = 
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1.3) is observable. Also the excursion, as already noticed for acceleration, exhibits a jump after which it 

attains a value less than one and independent of the table acceleration amplitude. In the same figure it is 

also shown the case aG = 0.03. From the figure it is observed that only in correspondence of the resonance 

peak, νR = 1.3, a value of η slightly larger than unity is reached; therefore the collision between the mass 

and the bumpers occurs only at the resonance of the system. 

Figures 5a and b display the envelopes of the response maxima, so as to simultaneously show the 

dependence of mass acceleration and displacement on amplitude aG and frequency ν of the external 

loading. From the above mentioned figures it can be evinced that a strong increase of acceleration occurs 

when the excitation amplitude grows from aG = 0.03 to aG = 0.05 , whereas the acceleration decreases in 

the further increment from aG = 0.075 to aG = 0.1. The value of the excursion peak, however, increases 

with the increase of A t and remain within the range 1.1 - 1.3, and simultaneously the frequency range ∆νC 

widens when the impact is experienced, ∆νC = 0.7-1.3, 0.7- 2.3, 0.7-3.1. 

Furthermore, the possibility of obtaining a relationship between the acceleration α of the mass and 

the acceleration aG of the table appears from Fig. 5a. This relation is manifested in Fig. 6a, where it is 

observed a bell-shaped curve exhibiting a sort of resonance that identifies a maximum (critical) value of the 

peak acceleration. Representing the relation η vs aG reveals that, unlike the acceleration, excursion curve is 

not bell-shaped but has a growing trend with aG, Fig. 6b. 

Considering the stationary response in correspondence with the νR resonance frequency in 

presence of bumpers, that is νR = 2.2 for aG = 0.05, νR = 2.5 for aG = 0.075, νR = 2.9 for aG = 0.1, the 

dimensionless force of inertia r = FI / (Mg) is diagrammed in terms of the dimensionless displacement d = 

D/∆ of the mass relative to the table. The first feature that is evident from Fig. 7 is constituted by the effects 

of mass-bumpers impact, i.e. the typical protrusions at the ends of the force-displacement cycles. From Fig. 

7 it is observed that in the central region of the cycles (-1 < d < +1), when the mass is in the flight (no 

contact) phase, the stiffness of the system is due only to the damper, while in the two zones at the end of 

the cycles (d < -1 and d > +1), where the mass is in the impact phase, the stiffness of the system is due both 

to damper and (contacted) bumper. The cycles of Fig. 7 indicate that the stiffness of the bumper is larger 

than that of the damper. It is worth to be noticed, finally, that with increasing table acceleration aG, a 
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modest increase of maximum displacement occurs with respect to a considerable increase of the maximum 

force. 

. 

3.4. Comparison between the two configurations YBs vs. NBs 

The dynamic responses obtained in configurations without (NBs) and with (YBs) bumpers, are 

compared in this subsection. Figure 8 allows to compare, in terms of the excitation frequency ν, 

accelerations α (Fig. 8a) and excursions η (Fig. 8b), for three different peak values of acceleration, aG = 

0.03, 0.05, 0.1. 

First of all it is noted that the acceleration peak in the case YBs moves to the right compared to the 

case NBs and that the acceleration peak value is always higher in the case YBs with respect to that obtained 

in the case NBs. The peak shift to the right can be justified by the contribution in stiffness of bumpers, 

which adds at the impact time. It also noticed that, as aG increases, the acceleration peak is increasingly 

moving to the right. This is due to the fact that, with the increasing of aG, also the penetration of the mass 

in the obstacle increases and consequently also the stiffness due to the bumpers increases, as can be seen 

looking at the plot of the dynamic response, measured by MTS (see Fig. 3). Also the excursion η obeys to 

the same trend. 

Figures 8a and 8b suggest also the possibility of comparing the envelope curves of the 

accelerations and of the excursions in the two NBs and YBS configurations. For the acceleration, Fig. 8a, it 

is observed, as already said, that, in the case YBs, the peaks shift to the right (the system becomes stiffer 

due to the presence of the bumpers), whereas in the case NBs the peaks move to the left (for the softening 

behavior of the damper). In both cases the envelope curves are bell-shaped, the maximum values of which 

can be interpreted as critical ones. As for excursions (Fig. 8b), however, while in the case NBs the peaks 

move to the left and the envelope curve still has the form of a bell, in the case YBs the peaks move towards 

the right and the envelope curve of the maxima turns out to be a straight line with modest positive slope. 

From Fig. 8 also the possibility emerges of obtaining the relationships of the acceleration α and of 

the excursion η in terms of the table acceleration aG for the cases YBs and NBs, Fig. 9. In this figure the 

resonance frequencies νR for the two compared situations are also indicated for each considered values of 

aG. From Fig. 9a it is observed that the acceleration is higher in the case YBs if compared to the case NBs, 
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while the opposite occurs for the excursion. The quantitative comparison in terms of acceleration between 

the cases YBs and NBs is provided by the ratio Amax (YBs) / Amax (NBs); it amounts to 1.9, 5.62, 3.87 for 

the three considered values of aG. While a considerable increase of acceleration occurs for higher values of 

aG, differently there is only a small increase of the acceleration in the case of YBs compared to the case 

NBs for aG = 0.03. 

The explanation may be sought in the fact that in this situation the mass grazes the bumpers and 

the penetration in the obstacle is so modest that only a small stiffness of the bumpers is mobilized in the 

first soft path of the dynamic response, see Fig. 3. The comparison in terms of excursion, Fig. 9b, between 

the cases YBs and NBs is quantified by the ratio Emax (YBs) / Emax (NBs) and is equal to 0.88, 0.62, 0.23, 

significantly decreasing as aG increases. 

3.5 Experimental estimation of impact parameters 

By screening the time-histories of acceleration, velocity and displacement it was possible to identify the 

time instants of the mass contact and detachment from bumpers in steady-state resonance conditions and 

the velocity values in output vo and input v i, and to estimate experimentally the values of coefficients of 

restitution 

s = - vo / v i     (1) 

mean contact force in terms of the impulse momentum I [31] during the contact time ∆tc 

Fm = I / ∆tc     (2) 

and dissipated energy Ed [20] 

Ed = ½ M (v i)2 - ½ M (vo)2     (3) 

The results of this processing are presented in Tables 3 and 4, and are also shown in the Figs. 10 and 11. 

In Fig. 10a, obtained by Table 3, the mean contact force Fm is shown which acts on the mass 

during the collision between the mass and the bumpers in terms of the table acceleration aG. The mean 

contact force Fm exhibits a trend similar to that of the dimensionless acceleration α (see Fig. 6a and Fig. 

9a): the mean contact force has a bell-shaped form; in fact, first it has an approximately zero value of force 

at aG = 0.03, then a rapid increase and finally a slow decrease with increasing of aG. 

The contact time ∆tc, Fig. 10b, grows approximately linearly with the acceleration aG. This result 

is justified by the fact that an increase of aG causes a deeper penetration of the mass in the bumpers. 

9 
 



Journal of Computational and Nonlinear Dynamics 
 

Figure 11a, obtained by Table 4, shows the dissipated energy Ed in terms of aG. Energy exhibits a 

bell-shaped form, with a zero initial value at aG = 0.03, probably due to a negligible amount of energy 

dissipated by the damper and by substantially elastic impact between mass and bumper; then a peak value 

is attained at aG = 0.075. The value of the coefficient of restitution s identified in terms of aG is shown in 

Fig. 11b. The coefficient is about 1 for aG = 0.03 (due to a substantially elastic behavior of the bumper) and 

decreases with the increase of aG, attaining a minimum value s = 0.75 for aG = 0.1; therefore, it remains 

confined in between the range s = 1 - 0.75. 

 

4 Physical model and equations of motion 

4.1 Physical model 

The dynamic response of the system shown in Fig. 1 is analysed as a Single-Degree-Of-Freedom 

(SDOF) oscillator possibly contacting double-side end stops made by means of Bumpers (Bs), Fig. 12. A 

mass M and a non-linear isolation damper compose the SDOF oscillator. D≡Dd denotes the relative 

displacement of the mass M respect to the table. The rheological model of the damper, depicted in Fig. 13 

and in the following text denoted by the subscript “d”, is made of a tri-linear element (elastic stiffness, Ked, 

yielding forces, Ryd1, Ryd2 and hardening stiffnesses, Khd1, Khd2) and a linear viscous damper (damping 

coefficient Cd) arranged in parallel. The piecewise-linear element, i = d, has the following constitutive law 

in the (D i≥0, R i≥0)-region: 

 

𝑅𝑅i = 𝐾𝐾ei𝐷𝐷i      0 ≤ 𝑅𝑅i ≤ 𝑅𝑅yi1   elastic phase    (4a) 

𝑅𝑅i = 𝑅𝑅yi1 + 𝐾𝐾hi1�𝐷𝐷i − 𝐷𝐷yi1�       𝑅𝑅yi1 ≤ 𝑅𝑅i≤ 𝑅𝑅yi2 1st hardening phase   (4b) 

𝑅𝑅i = 𝑅𝑅yi2 + 𝐾𝐾hi2�𝐷𝐷i − 𝐷𝐷yi2�       𝑅𝑅yi2 ≤ 𝑅𝑅i   2nd hardening phase   (4c) 

 

where D i, R i are the current values of displacement and force; Dyi1 and Dyi2 are the yielding displacements 

corresponding to Ryi1 and Ryi2, Fig. 13. Analogous laws hold in the (D i≤0, R i≤0)-region. 

Each bumper, sketched in Fig. 12 and in the following text denoted by the subscript “b”, is massless, 

and his rheological model is composed by a linear viscous damper (damping coefficient Cb) and, by a 
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linearly elastic element (elastic stiffness, Keb) arranged in parallel. The relative displacement of each 

bumper respect to the table is denoted by Db. For each bumper, the subscripts “L” and “R” are employed to 

respectively identify the Left and Right bumper. The element, i=b, obeys to the constitutive law of Eq. (4a). 

The distance, say “gap”, between the mass M and the bumper is denoted by ∆j(t), j = R, L. 

The system model of Fig. 12 has two bumpers located at initial distances ∆0j, therefore the gap 

function is defined as: 
 

∆j(𝑡𝑡) = ∆0j(𝑡𝑡) + ∆𝐷𝐷j(𝑡𝑡)         (5) 

 

in which ∆DR(t) = DbR(t) – Dd(t) and ∆DL(t) = Dd(t) – DbL(t). 

This system has two possible states, represented by a situation where the mass M is: 1) not 

in contact with the bumpers, denoted flight (∆j(t) > 0), and 2) in contact with at most a bumper, 

denoted contact (∆j(t) = 0). 

Moreover, it is assumed that the system is subjected to a base acceleration A(t) . In this paper, the 

ground acceleration is assumed to be harmonic, A(t)=A tSinΩt, characterized by amplitude A t and circular 

frequency Ω = 2 π f. 

4.2 Equations of motion 

The equations of motion, in which ( . ) denoted derivative with respect to time, are expressed in 

terms of the relative displacement Dd and Db. For the system sketched in Fig. 12, when the mass M is 

oscillating, three situations exist and they can be described as follows:  

1) the mass is not in contact with any of the bumpers 

�
𝑀𝑀𝐷̈𝐷d + 𝐶𝐶d𝐷̇𝐷𝑑𝑑 + 𝑅𝑅d = −𝑀𝑀𝐴𝐴t𝑠𝑠𝑠𝑠𝑠𝑠(Ω𝑡𝑡)
𝐶𝐶bj𝐷̇𝐷bj + 𝑅𝑅bj = 0                                  

       (6a) 

with ∆j(t) > 0, j=R, L. 

2) the mass is in contact with the Right Bumper (RB) 

�𝑀𝑀𝐷̈𝐷d + 𝐶𝐶d𝐷̇𝐷d + 𝑅𝑅d + 𝐶𝐶bR𝐷̇𝐷bR + 𝑅𝑅bR = −𝑀𝑀𝐴𝐴t𝑠𝑠𝑠𝑠𝑠𝑠(Ω𝑡𝑡)
𝐶𝐶bL𝐷̇𝐷bL + 𝑅𝑅bL = 0                                  

     (6b) 

with  ∆R =0 and DbR = Dd - ∆0R; 

3) the mass is in contact with the Left Bumper (LB) 
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� 𝑀𝑀𝐷̈𝐷d + 𝐶𝐶d𝐷̇𝐷d + 𝑅𝑅d + 𝐶𝐶bL𝐷̇𝐷bL + 𝑅𝑅bL = −𝑀𝑀𝐴𝐴t𝑠𝑠𝑠𝑠𝑠𝑠(Ω𝑡𝑡)
𝐶𝐶bR𝑄̇𝑄bR + 𝑅𝑅bR = 0                                                                 

     (6c) 

 

with ∆L = 0 and DbL = Dd - ∆0L.  

It is important to underline that dynamic response of the bumpers is governed by Eq. (6)2 

and hence each bumper relaxes to its original state, if there is not contact with the mass M. In 

general, the bumpers may not be at rest at the moment that a new contact phase takes place, 

depending on the ratio between the relaxation time of the bumper and the time interval between 

two contact events; therefore, influence of free motion of the bumpers is taken into account. 

 

5 Numerical simulations of impact tests 

The results of the experimental tests were used to identify the parameters of stiffness, strength and 

damping of the numerical model (see previous Sect. 4) which is able to simulate the behavior of the two-

sided constraint elementary oscillator, consisting of a mass, a damper and two bumpers, by using a general-

purpose computer code (Sap2000). The predictive model was implemented via an updating method. The 

tuning of the model parameters were performed in order to obtain a numerical model that could actually 

simulate the experimental dynamics in any different dynamic conditions: (i) pre-, post- and at pseudo-

resonance, and (ii) in contact and in flight. In more details, the bumpers’ elastic stiffness was identified by 

means of the dynamic tests shown in Fig. 3, with reference to the slope of the initial branch, corresponding 

to the partial closure of the hole; on the other hand, the damping coefficient was given by the factory (Cb = 

5 Ns / m). As far as damper’s characteristics are concerned, the well-known behavior of elastomeric 

isolators [32], which are characterized by decreasing stiffness as drift increases, was assumed and 

schematized by a tri-linear law Fig. 13.  The stiffnesses of the three branches and the damping coefficient 

were identified by using the three pseudo-resonance frequencies of the acceleration curves without bumpers 

of Fig. 4a, corresponding to the increasing table accelerations aG = 0.03, 0.05, 0.1; the yielding forces were 

identified by using the maximum displacements of Fig. 4b. 

Definitely, the behavior of the damper was modeled with stiffness Ked1 = 38 kN / m between Dd = 

0 and Dd = Dyd1=15 mm, Ked2 = 18 kN / m between Dd = Dyd1=15 and Dd = Dyd2=40 mm, Ked3 = 2 kN / m 

for Dd > Dyd2=40 mm; the linear elastic behavior of the bumpers was modelled with a stiffness Keb = 1460 
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kN / m. Moreover, the viscous behavior of damper was satisfactorily identified by linear damping 

coefficients Cd = 1 Ns / m. 

For brevity’s sake, the comparisons between numerical and experimental results are reported 

below only in relation to the value aG = 0.05. The comparison was made with respect to the resonance 

curves in terms of acceleration (Fig. 14a), and excursion (Fig. 14b), and of hysteresis in the plane inertia 

force-displacement (Fig. 15). The solid lines represent the experimental results and the dashed lines the 

numerical ones; the curves seem to indicate generally a good agreement between the experimentally found 

results and the solutions provided by the numerical simulations, from both a qualitative and quantitative 

points of view. 

 

6 Discussion and conclusions 

In this paper a preliminary experimental and numerical investigation is briefly presented about 

two-sided damping constrained oscillator, when the system is subjected to harmonic excitation at the base.  

The testing program was planned as follows: first, the bumpers were mechanically characterized through 

slow (static) tests and fast (dynamic) tests via universal MTS machine; then dynamic tests on shaking table 

of the entire mass-damper-bumpers system were carried out. Finally, a numerical model of the single 

degree of freedom system has also been proposed which is able to reproduce in a sufficiently accurate 

manner the results achieved with the experimental tests. 

The series of experimental tests on the vibrating table have considered two different 

configurations: the absence of bumpers (NBs) and the presence of bumpers (YBs). In both configurations 

tests were carried out with the same type of excitation to the base. Different values of the table acceleration 

peak were applied. 

Generally speaking, in YBs configuration, if there is a collision between the mass and the 

bumpers, it is observed an increase of α acceleration and a decrease of η excursion as compared to NBs 

configuration. It is observed, in the case YBs (see Fig. 16), that the acceleration α of the mass shows, with 

increasing aG, a bell-shaped form with a (critical) peak value, while the excursion exhibits a weakly 

increasing linear trend. In the case NBs, as aG grows, it is observed a reduction of the resonance frequency, 

due to the softening behavior of the damper, and an increase of both α, Fig. 16a, and η, Fig. 16b. It is 
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observed that, when the table acceleration has the amplitude aG = 0.03 (Fig. 16), the mass grazes the 

bumpers causing a slight increase of the resonance frequency compared to the case NBs, without an 

increase of acceleration and with a small reduction of excursion. It is interesting to note that, starting from 

the above described limit situation, with increasing aG, resonance frequencies (i) increase (to the right) 

when the bumpers are present (and therefore the impact occurs, red line with star indicators in Fig. 16), (ii) 

resonance frequencies decrease (to the left) when the bumpers are not present (and thus the collision is not 

possible, blue line with circle indicators in Fig. 16). It is also observed that the resonance frequency of the 

system without bumpers (NBs configuration, blue lines with circle indicators in Fig. 17) decreases with the 

increase of aG (softening behavior of the damper), while that of the system with bumpers (YBs 

configuration, red line with star indicators in Fig. 17) increases; in fact, the system stiffness increases for 

the significant contribution of the bumpers; also in the latter case it is observed that the acceleration of the 

mass exhibits a bell-shaped form with a (critical) peak value, Fig. 17a, while the excursion remains almost 

constant, Fig. 17b. The mean contact force Fm which acts on the mass during the phase of impact exhibits, 

as aG increases, Fig. 10a, a bell-shaped form. The contact time ∆tc linearly increases with the increase of 

aG, Fig. 10b. The dissipated energy Ed in terms of aG shows, like the acceleration α and the mean contact 

force Fm acting on the mass, a bell-shaped form with a well defined peak value, Fig. 11a, even if it is 

reached for a higher value of aG.The coefficient of restitution s shows a slightly decreasing trend with 

increasing acceleration aG, Fig. 11b.  
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Fig. 1 Experimental setup for impact testing 

 
 

 
 

Fig. 2 D-shaped bumper profile Fig. 3 Comparison of static and dynamic tests of the 
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Fig. 5 YBs - Pseudo FRFs 
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Fig. 6 YBs - α and η vs. aG 
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Fig. 9 NBs vs. YBs: α and η vs. aG 
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Fig.  10 Mean force and contact time in terms of table acceleration 
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Fig.  11 Dissipated energy and restitution coefficient in terms of table acceleration 
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Fig. 12 SDOF oscillator and double-side end stops  Fig. 13  Tri-linear constitutive law of damper 
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Fig. 14 YBs, aG=0.05 (solid line: experimental results, dashed line: numerical results) 
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a) Acceleration b) Excursion 

Fig. 16 NBs (blue line with circle indicators) and YBs (red line with star indicators) in terms of excitation frequency 
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Fig. 17 NBs (blue line with circle indicators) vs. YBs (red line with star indicators) in terms of table acceleration 
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Table 1 Symbols and acronyms 
M mass 
Ked damper’s elastic stiffness 
Khd1 damper’s 1st hardening stiffness 
Khd2 damper’s 2st hardening stiffness 
Ryd1 damper’s 1st yielding force 
Ryd2 damper’s 2st yielding force 
Keb bumpers’ elastic stiffness 
Cd damper’s damping coefficient 
Cb bumpers’ damping coefficient 
∆R = ∆L = ∆ gap’s amplitude 
D mass relative displacement 
Dd ≡ D damper relative displacement 
Db = D -  bumper relative displacement 
Dyd1 damper’s 1st yielding displacement 
Dyd2 damper’s 2st yielding displacement 
Rb current value of damper force 
Rb current value of bumper’s force 
∆0j(t) initial gap 
∆ j(t) = ∆ j0(t) + Dbj(t) – Dd(t) gap function 
g gravity’s acceleration 
A(t) acceleration time-history of the table 
A t table acceleration peak 
aG = A t / g nondimensional table acceleration peak 
f frequency 
∆f frequency increment 
Ω circular frequency of sinusoidal table acceleration 
Ωmin minimum circular frequency of sinusoidal table 

acceleration 
D tmax = A t / (Ωmin)2 maximum value of the imposed displacement 
νR pseudo-resonance frequency 
∆νC contact frequency range 
Amax maximum absolute acceleration 
α nondimensional maximum absolute acceleration 
D relative displacement 
Dmax maximum relative displacement 
Dmin minimum relative displacement 
D = D /  nondimensional relative displacement 
E relative excursion 
Emax maximum relative excursion 
η = (Dmax - Dmin) / ∆ nondimensional relative excursion 
e = E / D tmax nondimensional relative excursion without bumpers 
FI force of inertia  
R = FI / (Mg) dimensionless inertia force  
∆νC contact frequency range 
v i input velocity 
vo output velocity 
s coefficient of restitution 
I impulse momentum 
∆tc contact time 
Fm mean contact force 
Ed dissipated energy 
SDOF  Single-Degree-Of-Freedom 
EPDM Ethylene-Propylene Diene Monomer 
Bs bumpers 
YBs system configuration with bumpers 
NBs system configuration without bumpers 
 



  



Table 2 Maximum non-dimensional values of accelerations and excursions  
 aG 0.03 0.05 0.075 0.1 

   νR α η  νR α η  νR α η  νR α η 
NBs   1.2 1.8 1.03(*)   1.1 2.99 1.72(*)      1.0 3.89 2.48(*) 
  ∆[m] ∆νC    ∆νC    ∆νC    ∆νC    
YBs 0.03 1.3 1.3 1.96 1.04 0.7-

2.3 
2.2 16.80 1.23 0.7-

2.6 
2.5 16.18 1.25 0.7-

3.1 
2.9 15.04 1.29 

(*) The values of η NBs are normalized with respect to the maximum value of the applied displacement, D tmax = A t / 
(Ωmin)2: 0.02073, 0.03455, 0.0691 m, for aG= 0.03, 0.05, 0.1, respectively. 
 
Table 3 Impact characterization at resonance: contact forces and times  

 aG 0.03 0.05 0.075 0.1 
  Fm/mg x 10-3 Δtc [ms] Fm/mg x 10-3 Δtc [ms] Fm/mg x 10-3 Δtc [ms] Fm/mg x 10-3 Δtc [ms] 
  ∆[m]         
YBs 0.03 ≅ 0 9 14  15 12  23 7  31 
 
Table 4 Impact characterization at resonance: dissipated energies and coefficients of restitution  

 aG 0.03 0.05 0.075 0.1 
  Ed/m [(m/s)2] x 10-4 s Ed/m [(m/s)2] x 10-4 s Ed/m [(m/s)2] x 10-4 s Ed/m [(m/s)2] x 10-4 s 
  ∆[m]         
B1 0.03 ≅ 0 ≅ 1 3.81 0.89 17.6 0.80 15.52 0.75 
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