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Abstract. Many applications in science and engineering require the solution of large linear
discrete ill-posed problems that are obtained by the discretization of a Fredholm integral equation
of the first kind in several space-dimensions. The matrix that defines these problems is very ill-
conditioned and generally numerically singular, and the right-hand side, which represents measured
data, typically is contaminated by measurement error. Straightforward solution of these problems
generally is not meaningful due to severe error propagation. Tikhonov regularization seeks to alleviate
this difficulty by replacing the given linear discrete ill-posed problem by a penalized least-squares
problem, whose solution is less sensitive to the error in the right-hand side and to round-off errors
introduced during the computations. This paper discusses the construction of penalty terms that are
determined by solving a matrix-nearness problem. These penalty terms allow partial transformation
to standard form of Tikhonov regularization problems that stem from the discretization of integral
equations on a cube in several space-dimensions.
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1. Introduction. We consider the solution of linear discrete ill-posed problems
that arise from the discretization of a Fredholm integral equation of the first kind on
a cube in two or more space-dimensions. Discretization of the integral operator yields
a matrix K ∈ RM×N , which we assume to be large. A vector b ∈ RM that represents
measured data, and therefore is error-contaminated, is available and we would like to
compute an approximate solution of the least-square problem

min
x∈RN

∥Kx− b∥. (1.1)

The matrix K has many “tiny” singular values of different orders of magnitude. This
makes K severely ill-conditioned; in fact, K may be numerically singular. Least-
squares problems (1.1) with a matrix of this kind are commonly referred to as linear
discrete ill-posed problems.

Let e ∈ RM denote the (unknown) error in b. Thus,

b = b̂+ e,

where b̂ ∈ RM stands for the unknown error-free vector associated with b. We will
assume the unavailable linear system of equations

Kx = b̂ (1.2)

to be consistent.
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Let K† denote the Moore–Penrose pseudoinverse of the matrix K. We are inter-
ested in determining the solution x̂ of (1.2) of minimal Euclidean norm; it is given by

K†b̂. We note that the solution of minimal Euclidean norm of (1.1),

K†b = K†b̂+K†e = x̂+K†e,

generally is not a meaningful approximation of x̂ due to a large propagated error
K†e. This difficulty stems from the fact that ∥K†∥ is large. Throughout this paper
∥ · ∥ denotes the Euclidean vector norm or spectral matrix norm. We also will use
the Frobenius norm of a matrix A and the associated inner product between two
commensurate matrices A1 and A2, defined by

∥A∥F =
√
trace(ATA), ⟨A1, A2⟩ = trace(AT

1 A2),

respectively. The superscript T stands for transposition.
To avoid severe error propagation, one replaces the least-squares problem (1.1) by

a nearby problem, whose solution is less sensitive to the error e in b. This replacement
is known as regularization. Tikhonov regularization, which is one of the most popular
regularization methods, replaces (1.1) by a penalized least-squares problem of the
form

min
x∈RN

{
∥Kx− b∥2 + µ∥Lx∥2

}
, (1.3)

where L ∈ RJ×N is referred to as the regularization matrix and the scalar µ > 0
as the regularization parameter; see, e.g., [2, 8, 10]. We assume the matrix L to be
chosen so that

N (K) ∩N (L) = {0},

where N (M) denotes the null space of the matrix M . Then the minimization problem
(1.3) has a unique solution

xµ = (KTK + µLTL)−1KT b

for any µ > 0.
Common choices of L include the identity matrix and discretizations of differential

operators. The Tikhonov minimization problem (1.3) is said to be in standard form
when L = I; otherwise it is in general form. Numerous computed examples in the
literature, see, e.g., [4, 5, 9, 26], illustrate that the choice of L may be important for
the quality of the computed approximation xµ of x̂. The regularization matrix L
should be chosen so that known important features of the desired solution x̂ of (1.2)
are not damped. This can be achieved by choosing L so that N (L) contains vectors
that represent these features, because vectors in N (L) are not damped by L.

Several approaches to construct regularization matrices with desirable properties
are described in the literature; see, e.g., [1, 4, 5, 6, 12, 19, 23, 24, 26, 28]. Huang
et al. [16] proposed the construction of square regularization matrices with a user-
specified null space by solving a matrix nearness problem in the Frobenius norm. The
regularization matrices so obtained are designed for linear discrete ill-posed problems
in one space-dimension. This paper extends this approach to problems in higher
space-dimensions. The regularization matrices of this paper generalize those applied
by Bouhamidi and Jbilou [1] by allowing a user-specified null space.
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Consider the special case of d = 2 space-dimensions and let the matrix K be
determined by discretizing an integral equation on a square n×n grid (i.e., N = n2).
The regularization matrix

L1,⊗ =

[
I ⊗ L1

L1 ⊗ I

]
, (1.4)

where I ∈ Rn×n is the identity matrix, L1 is the bidiagonal matrix

L1 =
1

2

⎡

⎢⎢⎢⎢⎢⎣

1 −1 0
1 −1

1 −1
. . .

. . .

0 1 −1

⎤

⎥⎥⎥⎥⎥⎦
∈ R

(n−1)×n, (1.5)

and ⊗ denotes the Kronecker product, has frequently been used for this kind of
problem; see e.g., [3, 14, 19, 21, 27]. Various properties of the Kronecker product are
described in, e.g., [15]. We note for future reference thatN (L1) = span{[1, 1, . . . , 1]T }.

It may be attractive to replace the matrix (1.5) in (1.4) by the tridiagonal matrix

L2 =
1

4

⎡

⎢⎢⎢⎣

−1 2 −1 0
−1 2 −1

. . .
. . .

. . .

0 −1 2 −1

⎤

⎥⎥⎥⎦
∈ R

(n−2)×n (1.6)

with null space N (L2) = span{[1, 1, . . . , 1]T , [1, 2, . . . , n]T }. This yields the regular-
ization matrix

L2,⊗ =

[
I ⊗ L2

L2 ⊗ I

]
. (1.7)

Both the regularization matrices (1.4) and (1.7) are rectangular with almost twice
as many rows as columns when n is large.

Bouhamidi and Jbilou [1] proposed the use of the smaller invertible regularization
matrix

L2,⊗ = L̃2 ⊗ L̃2, (1.8)

where

L̃2 =
1

4

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
0 −1 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n (1.9)

is a square nonsingular regularization matrix. The regularization matrix (1.8) is
square and nonsingular, which makes it easy to transform the Tikhonov minimization
problem (1.3) so obtained to standard form; see below.
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Following Bouhamidi and Jbilou [1], we consider square matrices K with a tensor
product structure, i.e.,

K = K(2) ⊗K(1). (1.10)

We assume for simplicity that K(1),K(2) ∈ Rn×n with N = n2. However, we note
that the regularization matrices described in this paper can be applied also when the
matrix K in (1.1) does not have a tensor product structure.

Bouhamidi and Jbilou [1] are concerned with applications to image restoration and
achieve restorations of high quality. However, for linear discrete ill-posed problems
in one space-dimension, analysis presented in [4, 12] indicates that the regularization
matrix (1.6), with a non-trivial null space, may give approximate solutions of higher
quality than the matrix (1.9), which has a trivial null space. This depends on that
the latter matrix may introduce artifacts close to the boundary; see also [5, 6, 26] for
related discussions and illustrations. It is the aim of the present paper to develop a
generalization of the regularization matrix (1.8) that has a non-trivial null space. The
null spaces in the regularization matrices described in this paper allow an additive
constant or linear growth in some or all space-dimensions without damping. It is
also easy to construct regularization matrices with null spaces that are chosen not to
damp certain shapes in specified positions by choosing a null space that contains a
representation of these shapes.

Our approach to define regularization matrices generalizes the technique proposed
in [16] from one to several space-dimensions. Specifically, the regularization matrix is
defined by solving a matrix nearness problem in the Frobenius norm. The regulariza-
tion matrix so obtained allows a partial transformation of the Tikhonov regularization
problem (1.3) to standard form. When the matrix K is square, Arnoldi-type iterative
solution methods can be used. Arnoldi-type iterative solution methods often require
fewer matrix-vector product evaluations than iterative solution methods based on
Golub–Kahan bidiagonalization, because they do not require matrix-vector product
evaluations with KT ; see, e.g., [22] for illustrations. A nice recent survey of iterative
solution methods for linear discrete ill-posed problems is provided by Gazzola et al.
[9].

This paper is organized as follows. Section 2 describes our construction of new reg-
ularization matrices for problems in two space-dimensions. The section also discusses
iterative methods for the solution of the Tikhonov minimization problems obtained.
We consider both the situation when K is a general matrix and when K has ten-
sor product structure. Section 3 generalizes the results of Section 2 to more than
two space-dimensions. Computed examples can be found in Section 4, and Section 5
contains concluding remarks.

We conclude this section by noting that while this paper focuses on iterative
solution methods for large-scale Tikhonov minimization problems (1.3), the regular-
ization matrices described also can be applied in direct solution methods for small to
medium-sized problems that are based on the generalized singular value decomposi-
tion (GSVD); see, e.g., [7, 10] for discussions.

2. Regularization matrices for problems in two space-dimensions. Many
image restoration problems as well as problems from certain other applications (1.1)
have a matrix K ∈ RN×N that is the Kronecker product of two matrices K(1),K(2) ∈
Rn×n with N = n2, cf. (1.10). We will consider this situation in most of this section;
the case when K is a general square matrix without Kronecker product structure is
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commented on at the end of the section. Extension to rectangular matrices K, K(1),
and K(2) is straightforward.

We will use regularization matrices with a Kronecker product structure,

L = L(2) ⊗ L(1) (2.1)

and will discuss the choice of square regularization matrices L(1), L(2) ∈ Rn×n. The
following result is an extension of [16, Proposition 2.1] to problems with a Kronecker
product structure. Let R(M) denote the range of the matrix M . Throughout this
section N = n2.

Proposition 2.1. Let the matrices V (1) ∈ Rn×ℓ1 and V (2) ∈ Rn×ℓ2 have or-
thonormal columns, and let B denote the subspace of matrices of the form B =
B(2) ⊗ B(1), where the null space of B(i) ∈ Rn×n contains R(V (i)) for i = 1, 2.
Introduce for i = 1, 2 the orthogonal projectors P (i) = I − V (i)V (i)T with null space
R(V (i)), and define P = P (2) ⊗P (1). Let A = A(2) ⊗A(1) with A(i) ∈ Rn×n, i = 1, 2.
Then Â = AP is a closest matrix to A = A(2) ⊗A(1) in B in the Frobenius norm.

Proof. The matrix Â satisfies the following conditions:
1. Â ∈ B;
2. if A ∈ B, then Â ≡ A;
3. if B ∈ B, then ⟨B,A− Â⟩ = 0.

In fact,

Â(V (2) ⊗ V (1)) = A(P (2)V (2) ⊗ P (1)V (1)) = 0,

which shows the first property. The fact that A ∈ B implies that

A(2)V (2) = 0, A(1)V (1) = 0,

from which it follows that

Â = (A(2) −A(2)V (2)V (2)T )⊗ (A(1) −A(1)V (1)V (1)T ) = A(2) ⊗A(1) = A.

Finally, for any B ∈ B of the form B = B(2) ⊗B(1), one has that

B(2)V (2) = V (2)TB(2)T = 0, B(1)V (1) = V (1)TB(1)T = 0,

so that

⟨B,A− Â⟩ = trace(BTA−BT Â)

= trace(B(2)TA(2)) trace(B(1)TA(1)V (1)V (1)T )

+trace(B(2)TA(2)V (2)V (2)T ) trace(B(1)TA(1))

−trace(B(2)TA(2)V (2)V (2)T ) trace(B(1)TA(1)V (1)V (1)T ) = 0,

where the last equality follows from the cyclic property of the trace.
Example 2.1. Let L2 and L̃2 be defined by (1.6) and (1.9), respectively. Proposi-

tion 2.1 shows that a closest matrix to L̃ = L̃2 ⊗ L̃2 in the Frobenius norm with null
space N (L2 ⊗ L2) is

L = L̃2P2 ⊗ L̃2P2,

where P2 is the orthogonal projector onto N (L2)⊥. ✷
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Example 2.2. Define the nonsingular square bidiagonal regularization matrix

L̃1 =
1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0
1 −1

1 −1
. . .

. . .
−1

0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n. (2.2)

A closest matrix to L̃ = L̃1 ⊗ L̃1 in the Frobenius norm with null space N (L1 ⊗ L1)
is given by

L = L̃1P1 ⊗ L̃1P1,

where P1 is the orthogonal projector onto N (L1)⊥; see, e.g., [16]. ✷

The following result is concerned with the situation when the order of the non-
singular matrices L̃i and projectors Pi in Examples 2.1 and 2.2 is reversed. We first
consider the case when L̃ is a square matrix without Kronecker product structure,
since this situation is of independent interest.

Proposition 2.2. Let L̃ ∈ Rn×n and let V be a subspace of Rn. Define the
orthogonal projector PV⊥ onto V⊥. Then the closest matrix L̂ ∈ Rn×n to L̃ in the
Frobenius norm, such that R(L̂) ⊂ V⊥, is given by L̂ = PV⊥L̃.

Proof. Consider the problem of determining a closest matrix L̂T ∈ Rn×n to L̃T

in the Frobenius norm whose null space contains V. It is shown in [16, Proposition
2.3] that L̂T = L̃TPV⊥ is such a matrix. The Frobenius norm is invariant under
transposition and orthogonal projectors are symmetric. Therefore,

∥L̃TPV⊥ − L̃T ∥F = ∥PV⊥L̃− L̃∥F .

Moreover, R(PV⊥) = V⊥. It follows that a closest matrix to L̃ in the Frobenius norm
whose range is a subset of V⊥ is given by PV⊥L̃.

The following result extends Proposition 2.2 to matrices with a tensor product
structure. We formulate the result similarly as Proposition 2.1.

Corollary 2.3. Let the matrices V (1) ∈ Rn×ℓ1 and V (2) ∈ Rn×ℓ2 have orthonor-
mal columns, and let B denote the subspace of matrices of the form B = B(2) ⊗B(1),
where the range of B(i) ∈ Rn×n is orthogonal to R(V (i)) for i = 1, 2. Introduce for
i = 1, 2 the orthogonal projectors P (i) = I − V (i)V (i)T and define P = P (2) ⊗ P (1).
Let A = A(2) ⊗ A(1) with A(i) ∈ Rn×n, i = 1, 2. Then Â = PA is a closest matrix to
A in B in the Frobenius norm.

Proof. The result can be shown by applying Propositions 2.1 or 2.2.
Example 2.3. Let L2 be defined by (1.6) and L̃2 by (1.9). Corollary 2.3 shows

that a closest matrix to L̃ = L̃2 ⊗ L̃2 with range in R(L2 ⊗ L2) is

L = P2L̃2 ⊗ P2L̃2,

where P2 = diag[0, 1, 1, . . . , 1, 0] ∈ Rn×n. ✷

Example 2.4. Let the matrices L1 and L̃1 be given by (1.5) and (2.2). It follows
from Corollary 2.3 that a closest matrix to L̃ = L̃1 ⊗ L̃1 with range in R(L1 ⊗ L1) is
given by

L = P1L̃1 ⊗ P1L̃1,
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where P1 = diag[1, 1, . . . , 1, 0] ∈ Rn×n. ✷

Using (1.10) and (2.1), the Tikhonov regularization problem (1.3) can be ex-
pressed as

min
x∈RN

{
∥(K(2) ⊗K(1))x− b∥2 + µ∥(L(2) ⊗ L(1))x∥2

}
. (2.3)

It is convenient to introduce the operator vec, which transforms a matrix Y ∈
Rn×n to a vector of size n2 by stacking the columns of Y . Let A, B, and Y , be
matrices of commensurate sizes. Then

vec(AY B) = (BT ⊗A)vec(Y );

see, e.g., [15] for operations on matrices with Kronecker product structure. We can
apply this identity to express (2.3) in the form

min
X∈Rn×n

{
∥K(1)XK(2)T −B∥2F + µ∥L(1)XL(2)T ∥2F

}
, (2.4)

where the matrix B ∈ Rn×n satisfies b = vec(B).
Let the regularization matrices in (2.4) be of the forms

L(1) = P (1)L̃(1), L(2) = P (2)L̃(2),

where the matrices L̃(i) ∈ Rn×n are nonsingular and the P (i) are orthogonal projec-
tors. We easily can transform (2.4) to a form with an orthogonal projector regular-
ization matrix,

min
Y ∈Rn×s

{
∥K(1)

1 Y K(2)T
1 −B∥2F + µ∥P (1)Y P (2)∥2F

}
, (2.5)

where

K(i)
1 = K(i)(L̃(i))−1, i = 1, 2.

We will solve (2.5) by an iterative method. The structure of the minimization
problem makes it convenient to apply an iterative method based on the global Arnoldi
process, which was introduced and first analyzed by Jbilou et al. [17, 18]. We refer to
matrices with many more rows than columns as “block vectors”. The block vectors
U,W ∈ RN×n are said to be F -orthogonal if ⟨U,W ⟩ = 0; they are F -orthonormal if
in addition ∥U∥F = ∥W∥F = 1.

The application of k steps of the global Arnoldi method to the solution of (2.5)
yields an F -orthonormal basis {V1, V2, . . . , Vk} of block vectors Vj for the block Krylov
subspace

Kk = span{B,K(1)
1 BK(2)T

1 , . . . , (K(1)
1 )k−1B(K(2)T

1 )k−1}. (2.6)

In particular V1 = B/∥B∥F . The use of the global Arnoldi method to the solution of
(2.5) is mathematically equivalent to applying a standard Arnoldi method to (2.3).
An advantage of the global Arnoldi method is that it can be implemented by using
matrix-matrix operations, while the standard Arnoldi method applies matrix-vector
and vector-vector operations. This can lead to faster execution of the global Arnoldi
method on many modern computers. Algorithm 1 outlines the global Arnoldi method;
see [17, 18] for further discussions of this and other block methods.
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Algorithm 1: Global Arnoldi for computing an F -orthonormal basis for (2.6)

1 compute V1 = B/∥B∥F
2 for j = 1, 2, . . . , k compute

3 V = K(1)
1 Vj

4 V = V K(2)T
1

5 for i = 1, 2, . . . , j
6 hi,j = ⟨V, Vi⟩
7 V = V − hi,jVi

8 end
9 hj+1,j = ∥V ∥F

10 if hj+1,j = 0 stop
11 Vj+1 = V/hj+1,j

12 end

13 construct the n× kn matrix V̂k = [V1, . . . , Vk] with F -orthonormal block
columns Vj . The block columns span the space (2.6)

14 construct the (k + 1)× k Hessenberg matrix H̃k = [hi,j ]i=1,2,...,k+1,j=1,2,...,k

We determine an approximate solution of (2.5) in the global Arnoldi subspace
(2.6). This is described by Algorithm 2 for a given µ > 0. The solution subspace (2.6)
is independent of the orthogonal projectors that determine the regularization term
in (2.5). This approach to generate a solution subspace for the solution of Tikhonov
minimization problems in general form was first discussed in [13]; see also [9] for
examples.

Algorithm 2: Tikhonov regularization based on the global Arnoldi process

1 construct V̂k = [V1, V2, . . . , Vk] and H̃k using Algorithm 1
2 solve for a given µ > 0,

min
y∈Rk

⎧
⎨

⎩

∥∥∥H̃ky − ∥B∥F e1

∥∥∥
2
+ µ

∥∥∥∥∥

k∑

i=1

yiP
(1)ViP

(2)

∥∥∥∥∥

2

F

⎫
⎬

⎭ , (2.7)

where e1 = [1, 0, . . . , 0]T ∈ Rk+1 and y = [y1, y2, . . . , yk]T

3 compute Yµ,k =
∑k

i=1 Viyi

We briefly comment on the evaluation of the penalty term in (2.7). Let Mi =
P (1)ViP (2), 1 ≤ i ≤ k. Then the penalty term can be expressed as

∥
k∑

i=1

yiMi∥
2
F = trace((

k∑

i=1

yiM
T
i )(

k∑

j=1

yjMi)) =
k∑

i,j=1

yiyj trace(M
T
i Mj).

Introduce the matrix N = [ni,j ] ∈ Rk×k with elements ni,j = trace(MT
i Mj). Then

(2.7) can be expressed as

min
y∈Rk

{∥∥∥H̃ky − ∥B∥F e1

∥∥∥
2
+ µyTNy

}
. (2.8)
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There are many techniques for determining a suitable value of the regularization
parameter µ in (2.8) including the discrepancy principle and the generalized cross
validation (GCV) criterion; see, e.g., [10, 20, 25]. The discrepancy principle is a
popular approach to determine the regularization parameter when a bound ε for the
norm of the error e in b is known, i.e., ∥e∥ ≤ ε. It prescribes that µ > 0 be chosen so
that the computed approximate solution Yµ,k of (2.5) satisfies

∥K(1)
2 Yµ,kK

(2)T
2 −B∥F = ηε, (2.9)

where η ≥ 1 is a user-chosen constant independent of ε. The nonlinear equation (2.9)
for µ can be solved by a variety of methods such as Newton’s method; see, e.g., [13]
for a discussion.

We note that the regularization matrices of this section also can be applied when
the matrix K in (1.3) does not have a Kronecker product structure (1.10). Let x =
vec(X). Then the matrix expression in the penalty term of (2.5) can be written as

vec(P (1)L̃(1)XL̃(2)TP (2)) = ((P (2)L̃(2))⊗ (P (1)L̃(1)))x = (P (2) ⊗ P (1))(L̃(2) ⊗ L̃(1))x.

The analogue of the minimization problem (2.5) therefore can be expressed as

min
x∈RN

{
∥Kx− b∥2 + µ∥(P (2) ⊗ P (1))(L̃(2) ⊗ L̃(1))x∥2

}
. (2.10)

The matrix L̃(2) ⊗ L̃(1) is invertible; we have (L̃(2) ⊗ L̃(1))−1 = (L̃(2))−1 ⊗ (L̃(1))−1.
It follows that the problem (2.10) can be transformed to

min
y∈RN

{
∥K((L̃(2))−1 ⊗ (L̃(1))−1)y − b∥2 + µ∥(P (2) ⊗ P (1))y∥2

}
. (2.11)

The matrix P (2) ⊗ P (1) is an orthogonal projector. It is described in [23] how
Tikhonov regularization problems with a regularization term that is determined by
an orthogonal projector with a low-dimensional null space easily can be transformed
to standard form. However, dim(N (P (2) ⊗ P (1))) ≥ n, which generally is quite large
in problems of interest to us. It is therefore impractical to transform the Tikhonov
minimization problem (2.11) to standard form. We can solve (2.11), e.g., by generating
a (standard) Krylov subspace determined by the matrix K̂ = K((L̃(2))−1 ⊗ (L̃(1))−1)
and vector b, similarly as described in [13]. When the matrix K is square, then also
the matrix K̂ is square, and the Arnoldi process can be applied to K̂ to generate a
solution subspace; when K is rectangular, partial Golub–Kahan bidiagonalization of
K̂ can be used. The latter approach requires matrix-vector product evaluations with
both K̂ and K̂T ; see [13] for further details. The matrices (L̃(i))−1, i = 1, 2, of course,
do not have to be explicitly formed.

3. Regularization matrices for problems in higher space-dimensions.
Proposition 2.1 can be extended to higher space-dimensions. In addition to allowing
d ≥ 2 space-dimensions, we remove the requirement that all blocks be square and of
equal size.

Proposition 3.1. Let V (i)
ℓi

∈ Rni×ℓi have 1 ≤ ℓi < ni orthonormal columns for
i = 1, 2, . . . , d, and let B denote the subspace of matrices of the form

B = B(d) ⊗B(d−1) ⊗ · · ·⊗B(1),
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where the null space of B(i) ∈ Rpi×ni contains R(V (i)
ℓi

) for all i. Let Ik denote the
identity matrix of order k and define the orthogonal projectors

P = P (d) ⊗ P (d−1) ⊗ · · ·⊗ P (1), P (i) = Ini
− V (i)

ℓi
V (i)T
ℓi

, i = 1, 2, . . . , d. (3.1)

Let A = A(d)⊗A(d−1)⊗ · · ·⊗A(1), where A(i) ∈ Rpi×ni , i = 1, 2, . . . , d. Then Â = AP
is a closest matrix to A in B in the Frobenius norm.

Proof. The proof is a straightforward modification of the proof of Proposition 2.1.

Let L̃(1), L̃(2), . . . , L̃(d) be a sequence of square nonsingular matrices, and let
L(1), L(2), . . . , L(d) be regularization matrices with desirable null spaces. It follows
from Proposition 3.1 that a closest matrix to

L̃ = L̃(d) ⊗ L̃(d−1) ⊗ · · ·⊗ L̃(1)

with null space N (L(d) ⊗ L(d−1) ⊗ · · ·⊗ L(1)) is

L = L̃(d)P (d) ⊗ L̃(d−1)P (d−1) ⊗ · · ·⊗ L̃(1)P (1),

where the orthogonal projectors P (i) are defined by (3.1) and the matrix V (i)
ℓi

∈ Rni×ℓi

has 1 ≤ ℓi < ni orthonormal columns that span N (L(i)) for i = 1, 2, . . . , d.
The following result generalizes Corollary 2.3 to higher space-dimensions and to

rectangular blocks of different sizes.

Proposition 3.2. Let V (i)
ℓi

∈ Rni×ℓi have 1 ≤ ℓi < ni orthonormal columns for
i = 1, 2, . . . , d, and let B denote the subspace of matrices of the form

B = B(d) ⊗B(d−1) ⊗ · · ·⊗B(1),

where the range of B(i) ∈ Rpi×ni is orthogonal to R(V (i)
ℓi

) for all i. Let P be defined

by (3.1) and let A = A(d) ⊗ A(d−1) ⊗ · · ·⊗ A(1), where A(i) ∈ Rpi×ni , i = 1, 2, . . . , d.
Then Â = PA is a closest matrix to A in B in the Frobenius norm.

Proof. The result can be shown by modifying the proof of Propositions 2.1 or 2.2.

Let L(1), L(2), . . . , L(d) be a sequence of regularization matrices with desirable
ranges, and let L̃(1), L̃(2), . . . , L̃(d) be full rank matrices. It follows from Proposition
3.2 that a closest matrix to

L̃ = L̃(d) ⊗ L̃(d−1) ⊗ · · ·⊗ L̃(1)

with range in R(L(d) ⊗ L(d−1) ⊗ · · ·⊗ L(1)) is

L = P (d)L̃(d) ⊗ P (d−1)L̃(d−1) ⊗ · · ·⊗ P (1)L̃(1),

where the orthogonal projectors P (i) are defined by (3.1) and the matrix V (i)
ℓi

∈ Rni×ℓi

has 1 ≤ ℓi < ni orthonormal columns that span N (L(i)) for i = 1, 2, . . . , d.
We conclude this section with an extension of (2.5) to higher space-dimensions

and assume that the problem has nested tensor structure, i.e.,

K(i) = K(i,2) ⊗K(i,1),

where K(1,i) ∈ Rni×ni , K(2,i) ∈ Rsi×si , i = 1, 2, and that

B = B(2) ⊗B(1),
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where B(i) ∈ Rni×si for i = 1, 2. The minimization problem (1.1) with

K = K(2,2) ⊗K(2,1) ⊗K(1,2) ⊗K(1,1)

and b = vec(B) reads

min
X∈Rn×s

{
∥(K(1,2) ⊗K(1,1))X(K(2,2)T ⊗K(2,1)T )−B(2) ⊗B(1)∥2F

}
.

Let the regularization matrices have a nested tensor structure

L(i) = L(i,2) ⊗ L(i,1), i = 1, 2.

The penalized least-squares problem to be solved is of the form

min
X∈Rn×s

{∥(K(1,2) ⊗K(1,1))X(K(2,2)T ⊗K(2,1)T )−B(2) ⊗B(1)∥2F+

µ∥(L(1,2) ⊗ L(1,1))X(L(2,2)T ⊗ L(2,1)T ∥2F }.
(3.2)

If, moreover, the solution is separable of the form X = X(2)⊗X(1), where X(i) ∈
Rni×si for i = 1, 2, then we obtain the minimization problem

min
X(1)∈R

n1×s1

X(2)∈R
n2×s2

{∥(K(1,2)X(2)K(2,2)T )⊗ (K(1,1)X(1)K(2,1)T )−B(2) ⊗B(1)∥2F+

µ∥(L(1,2)X(2)L(2,2)T )⊗ (L(1,1)X(1)L(2,1)T )∥2F }.

(3.3)

When the regularization matrices are of the form L(i,j) = P (i,j)L̃(i,j), 1 ≤ i, j ≤ 2,
where the P (i,j) are orthogonal projectors and the L̃(i,j) are square and invertible,
the minimization problems (3.2) and (3.3) can be transformed similarly as equation
(2.4) was transformed into (2.5).

4. Computed examples. We illustrate the performance of regularization ma-
trices of the form L = L(2) ⊗ L(1) with L(i) = P (i)L̃(i) or L(i) = L̃(i)P (i) for i = 1, 2,
and compare with the regularization matrices L(i) = L̃(i) for i = 1, 2. The noise level
is given by

ν :=
∥E∥F

∥B̂∥F
.

Here E = B − B̂ is the error matrix, B is the available error-contaminated matrix in
(2.4), and B̂ is the associated unknown error-free matrix, i.e., b̂ = vec(B̂) in (1.2).
In all examples, the entries of the matrix E are normally distributed with zero mean
and are scaled to correspond to a specified noise level. We let η = 1.01 in (2.9) in all
examples. The quality of computed approximate solutions Xµ.k of (2.4) is measured
with the relative error norm

ek :=
∥Xµ,k − X̂∥F

∥X̂∥F
,

where X̂ is the desired solution of the unknown error-free problem, i.e., x̂ = vec(X̂).
The number of (outer) iterations, k, in Algorithm 2 is determined by the following

stopping criteria:
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1. The relative change of the computed approximate solution Yµk,k drops below
a user-specified threshold τ > 0, i.e., we terminate the iterations as soon as

∥Yµk,k − Yµk−1,k−1∥F /∥Yµk−1,k−1∥F < τ.

2. The number of (outer) iterations, k, is bounded by kmax.
Thus, the computations are terminated as soon as one of these criteria is satisfied.

We set kmax = 24 and τ = 5·10−4 in Example 4.1, and kmax = 30 and τ = 1·10−4

for Examples 4.2-4.4. The choices of kmax and τ are such that the computed solution
does not change much with the iteration number when the iterations are terminated.
In particular, nearby choices of these parameters yield computed solutions of about
the same quality. All computations were carried out in MATLAB R2017a with about
15 significant decimal digits on a laptop computer with an Intel Core i7-6700HQ CPU
@ 2.60GHz processor and 16GB RAM.

regularization k relative
matrix error ek

L̃(1) ⊗ L̃(1) 24 8.30 · 10−2

P (1)L̃(1) ⊗ P (1)L̃(1) 24 8.23 · 10−2

L̃(1)P (1) ⊗ L̃(1)P (1) 24 8.23 · 10−2

L̃(2) ⊗ L̃(2) 24 9.34 · 10−2

P (2)L̃(2) ⊗ P (2)L̃(2) 24 8.15 · 10−2

L̃(2)P (2) ⊗ L̃(2)P (2) 19 9.13 · 10−2

Table 4.1

Example 4.1: Number of iterations k and relative error ek in computed approximate solutions
Xµk,k determined by Tikhonov regularization based on the global Arnoldi process and several regu-
larization matrices for noise level ν = 1 · 10−3.

Fig. 4.1. Example 4.1: Computed approximate solution Xµk
for noise level ν = 1 · 10−3 and

regularization matrix P (1)L̃(1) ⊗ P (1)L̃(1) using the discrepancy principle.

Example 4.1. Consider the Fredholm integral equation of the first kind in two
space-dimensions,

∫ ∫

Ω
κ(τ,σ;x, y)f(x, y)dxdy = g(τ,σ), (τ,σ) ∈ Ω, (4.1)
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where Ω = [−π/2,π/2]× [−π/2,π/2]. The kernel is given by

κ(τ,σ;x, y) = κ1(τ, x)κ1(σ, y), (τ,σ), (x, y) ∈ Ω,

where

κ1(τ,σ) = (cos(σ) + sin(τ))2
(
sin(ξ)

ξ

)2

, ξ = π(sin(σ) + cos(τ)).

The right-hand side function is of the form

g(τ,σ) = h(τ)h(σ),

where h(σ) is chosen so that the solution is the sum of two Gaussian functions and a
constant. We use the MATLAB code shaw from [11] to discretize (4.1) by a Galerkin
method with 1000× 1000 orthonormal box functions as test and trial functions. This
code produces the matrix K ∈ R1000×1000 that approximates the analogue of the
integral operator (4.1) in one space-dimension, and a discrete approximate solution
x1 in one space-dimension. Adding the vector n1 = [1, 1, . . . , 1]T yields the vector
x̂1 ∈ R1000, from which we construct the scaled discrete approximation X̂ = x̂1x̂

T
1 of

the solution of (4.1). The error-free right-hand side is computed by B̂ = KX̂KT . The
error matrix E ∈ R1000×1000 models white Gaussian noise with noise levels ν = 1·10−3.
The data matrix B in (2.4) is computed as B = B̂+E. The regularization matrices L
used are constructed like in Examples 2.1-2.4. We compare the performance of these
regularization matrices to the performance of the nonsingular regularization matrices
L = L̃(i) ⊗ L̃(i), i = 1, 2. We note that the regularization matrix for i = 1 does
not damp an additive constant in the computed solution, while the regularization
matrix for i = 2 allows linear growth of the computed solution in both the horizontal
and vertical directions without damping. We also apply the regularization matrix
L = L̃(2)⊗ L̃(1), which allows an arbitrary additive constant in the computed solution
without damping, as well as linear growth of the computed solution in the horizontal
direction.

The regularization parameter µ is essentially determined by the discrepancy prin-
ciple. More precicely, we first determine µ so that the discrepancy principle holds
and then multiply µ by 0.9. We observed “under regularization” in this manner to
improve the quality of the computed approximate solutions in all examples of this
section. We therefore applied this technique in all examples.

Table 4.1 displays results obtained for the different regularization matrices. The
table shows the regularization matrix P (2)L̃(2)⊗P (2)L̃(2) to yield the smallest relative
errors. Figure 4.1 shows the computed approximate solution for the noise level ν =
1 · 10−3 when the regularization matrix P (1)L̃(1) ⊗ P (1)L̃(1) is used. The computed
approximation cannot be visually distinguished from the desired exact solution X̂.
We therefore do not show the latter. ✷

Example 4.2. We consider the restoration of the test image satellite, which is
represented by an array of 256× 256 pixels. The available image, represented by the
matrix B ∈ R256×256, is corrupted by Gaussian blur and additive zero-mean white
Gaussian noise; it is shown in Figure 4.2(a). Figure 4.2(b) displays the desired blur-
and noise-free image. It is represented by the matrix X̂ ∈ R256×256, and is assumed
not to be known. The blurring matrices K(i) ∈ R256×256, i = 1, 2, are Toeplitz
matrices. We let K(1) = K(2) = K, where K is analogous to the matrix generated
by the MATLAB function blur from [11] using the parameter values band = 5 and
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regularization k µk relative
matrix error ek

noise level ν = 1 · 10−2

L̃(1) ⊗ L̃(1) 17 7.84 · 10−2 8.60 · 10−2

P (1)L̃(1) ⊗ P (1)L̃(1) 9 6.84 · 10−2 8.38 · 10−2

L̃(1)P (1) ⊗ L̃(1)P (1) 28 7.53 · 10−2 8.55 · 10−2

L̃(2) ⊗ L̃(1) 13 1.22 · 10−1 8.75 · 10−2

P (2)L̃(2) ⊗ P (1)L̃(1) 21 1.09 · 10−1 8.62 · 10−2

L̃(2)P (2) ⊗ L̃(1)P (1) 13 1.16 · 10−1 8.69 · 10−2

L̃(2) ⊗ L̃(2) 17 2.25 · 10−1 8.90 · 10−2

P (2)L̃(2) ⊗ P (2)L̃(2) 13 1.94 · 10−1 8.73 · 10−2

L̃(2)P (2) ⊗ L̃(2)P (2) 17 2.17 · 10−1 8.86 · 10−2

noise level ν = 1 · 10−3

L̃(1) ⊗ L̃(1) 11 1.29 · 10−3 1.95 · 10−2

P (1)L̃(1) ⊗ P (1)L̃(1) 12 1.11 · 10−3 1.81 · 10−2

L̃(1)P (1) ⊗ L̃(1)P (1) 11 1.26 · 10−3 1.92 · 10−2

L̃(2) ⊗ L̃(1) 20 1.42 · 10−3 2.08 · 10−2

P (2)L̃(2) ⊗ P (1)L̃(1) 20 1.23 · 10−3 1.93 · 10−2

L̃(2)P (2) ⊗ L̃(1)P (1) 11 1.41 · 10−3 1.94 · 10−2

L̃(2) ⊗ L̃(2) 20 1.64 · 10−3 2.16 · 10−2

P (2)L̃(2) ⊗ P (2)L̃(2) 20 1.42 · 10−3 2.00 · 10−2

L̃(2)P (2) ⊗ L̃(2)P (2) 20 1.57 · 10−3 2.11 · 10−2

noise level ν = 1 · 10−4

L̃(1) ⊗ L̃(1) 19 9.04 · 10−5 2.40 · 10−3

P (1)L̃(1) ⊗ P (1)L̃(1) 20 7.66 · 10−5 2.08 · 10−3

L̃(1)P (1) ⊗ L̃(1)P (1) 19 8.66 · 10−5 2.32 · 10−3

L̃(2) ⊗ L̃(1) 19 1.25 · 10−4 3.03 · 10−3

P (2)L̃(2) ⊗ P (1)L̃(1) 19 1.06 · 10−4 2.64 · 10−3

L̃(2)P (2) ⊗ L̃(1)P (1) 19 9.68 · 10−5 2.45 · 10−3

L̃(2) ⊗ L̃(2) 30 3.24 · 10−4 6.54 · 10−3

P (2)L̃(2) ⊗ P (2)L̃(2) 30 2.82 · 10−4 5.82 · 10−3

L̃(2)P (2) ⊗ L̃(2)P (2) 19 1.23 · 10−4 2.88 · 10−3

Table 4.2

Example 4.2: Number of iterations k, regularization parameter µk, and relative error ek in
computed approximate solutions Xµk,k determined by Tikhonov regularization based on the global
Arnoldi process for three noise levels and several regularization matrices.

sigma = 1.5. We show results for the noise levels ν = 1 · 10−j , j = 2, 3, 4. The data
matrix B in (2.4) is determined similarly as in Example 4.1.

Table 4.2 shows the regularization parameters µk and the relative errors ek in
the computed approximate solutions Xµk,k determined by the global Arnoldi pro-
cess with data matrices contaminated by noise of levels ν = 1 · 10−j , j = 2, 3, 4, for
several regularization matrices. The iterations are terminated as soon as the discrep-
ancy principle can be satisfied and the regularization parameter then is chosen so
that (2.9) holds. Table 4.2 shows the global Arnoldi process with the regularization
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Fig. 4.2. Example 4.2: (a) Available blur- and noise-contaminated satellite image repre-
sented by the matrix B, (b) desired image, (c) restored image for the noise level ν = 1 · 10−3 and

regularization matrix P (1)L̃(1) ⊗ P (1)L̃(1), and (d) restored image for the same noise level and

regularization matrix P (2)L̃(2) ⊗ P (2)L̃(2).

matrix P (1)L̃(1) ⊗ P (1)L̃(1) to determine the best approximations of X̂ for all noise
levels. Figures 4.2(c) and 4.2(d) show the computed approximate solutions deter-
mined by the global Arnoldi process with ν = 1 ·10−3 and the regularization matrices
P (1)L̃(1)⊗P (1)L̃(1) and P (2)L̃(2)⊗P (2)L̃(2), respectively. The quality of the computed
restorations is visually indistinguishable. ✷

Example 4.3. This example is similar to the previous one; only the image
to be restored differs. Here we consider the restoration of the test image QRcode,
which is represented by an array of 256× 256 pixels corrupted by Gaussian blur and
additive zero-mean white Gaussian noise. Figure 4.3(a) shows the corrupted image
that we would like to restore. It is represented by the matrix B ∈ R256×256. The
desired blur- and noise-free image is depicted in Figure 4.3(b). The blurring matrices
K(i) ∈ R256×256, i = 1, 2, are Toeplitz matrices. They are generated like in Example
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regularization k µk relative
matrix error ek

noise level ν = 1 · 10−2

L̃(1) ⊗ L̃(1) 30 4.86 · 10−1 4.96 · 10−2

P (1)L̃(1) ⊗ P (1)L̃(1) 20 4.13 · 10−1 4.76 · 10−2

L̃(1)P (1) ⊗ L̃(1)P (1) 30 4.30 · 10−1 4.82 · 10−2

L̃(2) ⊗ L̃(1) 30 9.42 · 10−1 5.05 · 10−2

P (2)L̃(2) ⊗ P (1)L̃(1) 30 8.12 · 10−1 4.84 · 10−2

L̃(2)P (2) ⊗ L̃(1)P (1) 30 8.42 · 10−1 4.90 · 10−2

L̃(2) ⊗ L̃(2) 27 2.77 · 100 5.06 · 10−2

P (2)L̃(2) ⊗ P (2)L̃(2) 27 2.45 · 100 4.90 · 10−2

L̃(2)P (2) ⊗ L̃(2)P (2) 30 2.50 · 100 4.95 · 10−2

noise level ν = 1 · 10−3

L̃(1) ⊗ L̃(1) 16 1.00 · 10−2 1.32 · 10−2

P (1)L̃(1) ⊗ P (1)L̃(1) 16 8.33 · 10−3 1.25 · 10−2

L̃(1)P (1) ⊗ L̃(1)P (1) 16 9.56 · 10−2 1.30 · 10−2

L̃(2) ⊗ L̃(1) 20 1.32 · 10−2 1.35 · 10−2

P (2)L̃(2) ⊗ P (1)L̃(1) 17 1.11 · 10−2 1.28 · 10−2

L̃(2)P (2) ⊗ L̃(1)P (1) 20 1.25 · 10−2 1.33 · 10−2

L̃(2) ⊗ L̃(2) 17 1.90 · 10−2 1.40 · 10−2

P (2)L̃(2) ⊗ P (2)L̃(2) 13 1.84 · 10−2 1.37 · 10−2

L̃(2)P (2) ⊗ L̃(2)P (2) 17 1.80 · 10−2 1.38 · 10−2

noise level ν = 1 · 10−4

L̃(1) ⊗ L̃(1) 15 4.11 · 10−4 2.10 · 10−3

P (1)L̃(1) ⊗ P (1)L̃(1) 16 3.40 · 10−4 1.83 · 10−3

L̃(1)P (1) ⊗ L̃(1)P (1) 16 3.89 · 10−4 2.00 · 10−3

L̃(2) ⊗ L̃(1) 15 5.21 · 10−4 2.34 · 10−3

P (2)L̃(2) ⊗ P (1)L̃(1) 15 4.27 · 10−4 2.06 · 10−3

L̃(2)P (2) ⊗ L̃(1)P (1) 15 4.35 · 10−4 2.09 · 10−3

L̃(2) ⊗ L̃(2) 13 8.27 · 10−4 2.98 · 10−3

P (2)L̃(2) ⊗ P (2)L̃(2) 13 6.78 · 10−4 2.68 · 10−3

L̃(2)P (2) ⊗ L̃(2)P (2) 14 4.88 · 10−4 2.18 · 10−3

Table 4.3

Example 4.3: Number of iterations k, regularization parameter µk, and relative error ek in
computed approximate solutions Xµk,k determined by Tikhonov regularization based on the global
Arnoldi process for three noise levels and several regularization matrices.

4.2. The regularization matrices L are the same as in Example 4.2.

Table 4.3 is analogous to Table 4.2. The table shows the regularization matrix
P (1)L̃(1) ⊗ P (1)L̃(1) to give the most accurate approximations of X̂. Figures 4.3(c)
and 4.3(d) show the restorations determined for ν = 1 · 10−3 with the regularization
matrices P (1)L̃(1)⊗P (1)L̃(1) and P (2)L̃(2)⊗P (2)L̃(2), respectively. One cannot visually
distinguish the quality of these restorations. ✷

Example 4.4. This example is similar to the previous one; only the image to
be restored is larger. Here we consider the restoration of the test image Barbara,
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Fig. 4.3. Example 4.3: (a) Available blur- and noise-contaminated QR code image represented
by the matrix B, (b) desired image, (c) restored image for the noise level ν = 1 ·10−3 and regulariza-

tion matrix P (1)L̃(1) ⊗P (1)L̃(1), and (d) restored image for the same noise level and regularization

matrix P (2)L̃(2) ⊗ P (2)L̃(2).

which is represented by an array of 510× 510 pixels corrupted by Gaussian blur and
additive zero-mean white Gaussian noise. Figure 4.4(a) shows the corrupted image
that we would like to restore. It is represented by the matrix B ∈ R510×510. The
desired blur- and noise-free image is depicted in Figure 4.4(b). The blurring matrices
K(i) ∈ R510×510, i = 1, 2, are Toeplitz matrices. They are generated like in Example
4.2. The regularization matrices L are the same as in Example 4.2.

Table 4.4 is analogous to Table 4.2. The table shows the regularization matrix
P (1)L̃(1) ⊗ P (1)L̃(1) to yield the most accurate approximations of X̂. Figures 4.3(c)
and 4.3(d) show the restorations determined for ν = 1 · 10−3 with the regularization
matrices P (1)L̃(1) ⊗ P (1)L̃(1) and P (2)L̃(2) ⊗ P (2)L̃(2), respectively. ✷

5. Concluding remarks. This paper presents a novel method to determine
regularization matrices for discrete ill-posed problems in several space-dimensions by
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regularization k µk relative
matrix error ek

noise level ν = 1 · 10−3

L̃(1) ⊗ L̃(1) 12 1.35 · 10−2 8.44 · 10−3

P (1)L̃(1) ⊗ P (1)L̃(1) 13 1.14 · 10−2 7.93 · 10−3

L̃(1)P (1) ⊗ L̃(1)P (1) 13 1.28 · 10−2 8.30 · 10−3

L̃(2) ⊗ L̃(1) 12 1.58 · 10−2 8.57 · 10−3

P (2)L̃(2) ⊗ P (1)L̃(1) 13 1.36 · 10−2 8.08 · 10−3

L̃(2)P (2) ⊗ L̃(1)P (1) 12 1.52 · 10−2 8.44 · 10−3

L̃(2) ⊗ L̃(2) 17 4.26 · 10−2 9.32 · 10−3

P (2)L̃(2) ⊗ P (2)L̃(2) 12 3.85 · 10−2 8.68 · 10−3

L̃(2)P (2) ⊗ L̃(2)P (2) 17 4.11 · 10−2 9.21 · 10−3

noise level ν = 1 · 10−4

L̃(1) ⊗ L̃(1) 12 9.20 · 10−4 1.52 · 10−3

P (1)L̃(1) ⊗ P (1)L̃(1) 12 7.76 · 10−4 1.41 · 10−3

L̃(1)P (1) ⊗ L̃(1)P (1) 12 8.70 · 10−4 1.49 · 10−3

L̃(2) ⊗ L̃(1) 12 1.16 · 10−3 1.61 · 10−3

P (2)L̃(2) ⊗ P (1)L̃(1) 12 9.88 · 10−4 1.50 · 10−3

L̃(2)P (2) ⊗ L̃(1)P (1) 12 9.96 · 10−3 1.51 · 10−3

L̃(2) ⊗ L̃(2) 11 2.68 · 10−3 2.02 · 10−3

P (2)L̃(2) ⊗ P (2)L̃(2) 11 2.33 · 10−3 1.87 · 10−3

L̃(2)P (2) ⊗ L̃(2)P (2) 11 1.72 · 10−3 1.66 · 10−3

Table 4.4

Example 4.4: Number of iterations k, regularization parameter µk, and relative error ek in
computed approximate solutions Xµk,k determined by Tikhonov regularization based on the global
Arnoldi process for two noise levels and several regularization matrices.

solving a matrix nearness problem. Numerical examples illustrate the effectiveness of
the regularization matrices determined in this manner. While all examples use the
discrepancy principle to determine a suitable value of the regularization parameter,
other parameter choice rules also can be applied; see, e.g., [10, 20, 25] for discussions
on alternate techniques.
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[19] M. E. Kilmer, P. C. Hansen, and M. I. Español, A projection-based approach to general-form
Tikhonov regularization, SIAM J. Sci. Comput., 29 (2007), pp. 315–330.

[20] S. Kindermann, Convergence analysis of minimization-based noise level-free parameter choice
rules for linear ill-posed problems, Electron. Trans. Numer. Anal., 38 (2011), pp. 233–257.

[21] A. Lanza, S. Morigi, L. Reichel, and F. Sgallari, A generalized Krylov subspace method for
ℓp-ℓq minimization, SIAM J. Sci. Comput., 37 (2015), pp. S30–S50.

[22] B. Lewis and L. Reichel, Arnoldi–Tikhonov regularization methods, J. Comput. Appl. Math.,
226 (2009), pp. 92–102.

[23] S. Morigi, L. Reichel, and F. Sgallari, Orthogonal projection regularization operators, Numer.
Algorithms, 44 (2007), pp. 99–114.

[24] S. Noschese and L. Reichel, Inverse problems for regularization matrices, Numer. Algorithms,
60 (2012), pp. 531–544.

[25] L. Reichel and G. Rodriguez, Old and new parameter choice rules for discrete ill-posed prob-
lems, Numer. Algorithms, 63 (2013), pp. 65–87.

[26] L. Reichel and Q. Ye, Simple square smoothing regularization operators, Electron. Trans. Nu-
mer. Anal., 33 (2009), pp. 63–83.

[27] L. Reichel and X. Yu, Matrix decompositions for Tikhonov regularization, Electron. Trans.
Numer. Anal., 43 (2015), pp. 223–243.

[28] L. Reichel and X. Yu, Tikhonov regularization via flexible Arnoldi reduction, BIT, 55 (2015),
pp. 1145–1168.


