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SUMMARY

Cytoplasmic longnon-codingRNAshavebeenshown
to act at many different levels to control post-tran-
scriptional gene expression, although their role in
translational control is poorly understood. Here, we
show that lnc-31, a non-coding RNA required for
myoblast proliferation, promotes ROCK1 protein syn-
thesis by stabilizing its translational activator, YB-1.
We find that lnc-31 binds to the Rock1 mRNA as well
as to the YB-1 protein and that translational activation
requires physical interaction between the two RNA
species. These results suggest a localized effect of
YB-1 stabilization on the Rock1mRNA. ROCK1 upre-
gulation by lnc-31, in proliferative conditions, corre-
lates well with the differentiation-repressing activity
of ROCK1. We also show that, upon induction of dif-
ferentiation, the downregulation of lnc-31, in conjunc-
tion with miR-152 targeting of Rock1, establishes a
regulatory loop that reinforces ROCK1 repression
and promotes myogenesis.

INTRODUCTION

Cytoplasmic long non-coding RNAs (lncRNAs) have been shown

to play many roles, ranging from protein and microRNA (miRNA)

sponges to antisense regulators of target transcripts. LncRNAs

also can function as protein remodelers or regulators of protein

modification (Rashid et al., 2016; Ballarino et al., 2016). Most

of these activities rely on the ability of lncRNAs to act as scaffolds

where both RNA and protein components can be assembled in a

composite and combinatorial fashion, thus allowing the tethering

of different molecules and their concerted and localized action.

In this study, we have examined the interactors and mode of

action of lnc-31, which was identified initially as amurine lncRNA

expressed in proliferating myoblasts and downregulated upon

muscle differentiation. Notably, lnc-31 was shown to play a sig-

nificant role in sustaining cell proliferation and in counteracting

differentiation (Ballarino et al., 2015), even though the molecular

mechanism at the basis of this control was not clarified. An

interesting feature of lnc-31 is that it harbors in its third exon
C
This is an open access article under the CC BY-N
the precursor sequence of miR-31. Several experiments have

indicated that while the primary lnc-31 transcript is exclusively

nuclear and, if processed by Drosha, can give rise to miR-31,

the mature lnc-31 has cytoplasmic localization and does not

contribute to the miR-31 pool. Therefore, lnc-31 and miR-31

originate from the same nuclear precursor through two mutually

exclusive pathways (Ballarino et al., 2015). Because miR-31

activity also has been linked to cell proliferation (Laurila and

Kallioniemi, 2013; Zhang et al., 2011; Liu et al., 2010; Cacchiarelli

et al., 2011), it can be inferred that the activities of both the long

and small RNAs, deriving from the same primary transcript,

converge on common regulatory pathways.

In this study, we show that lnc-31 modulates the expression

of important key factors regulating the maintenance of the

myoblast proliferation state. By investigating the molecular

mechanism of lnc-31 action, we discovered that it associates

with several mRNAs and specific proteins, among them, the

Rock1 mRNA, a known inhibitor of myogenesis (Zhang et al.,

2012; Charrasse et al., 2006), and the translational regulator

YB-1, which we demonstrate is necessary for the activation

of Rock1 translation. We show that lnc-31 stabilizes the YB-1

factor, thus allowing its positive effect on Rock1 mRNA

translation.
RESULTS AND DISCUSSION

lnc-31 Knockdown Affects the Expression of Genes
Coordinating Cell-Cycle Exit and Differentiation
To address the molecular mechanism of lnc-31 action in the

cytoplasmic compartment, we performed transcriptome anal-

ysis on total RNA of C2C12 murine myoblasts treated either

with scramble small interfering RNA (siRNA) (SCR) or with siRNA

against lnc-31 (si1-lnc-31). Under these conditions, efficient

downregulation of the mature lnc-31 was obtained, and no

change in miR-31 levels was detected (Figure 1A), ensuring

that the effects observed are not caused bymiR-31. Next-gener-

ation RNA sequencing (NGS) was applied to control (SCR) and

si1-lnc-31-treated samples (Table S1). Hierarchical clustering

of the samples based on their gene expression profile proved

that the transcriptome of C2C12 cells depleted of lnc-31 is altered

significantly in comparison with that of SCR-treated cells (Fig-

ure S1A). Differential expression analysis led to the identification
ell Reports 23, 733–740, April 17, 2018 ª 2018 The Author(s). 733
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Figure 1. lnc-31 Knockdown Affects Gene Expression of Proliferating Murine Myoblasts

(A) Graphs showing the level of lnc-31 and miR-31 in C2C12 cells treated with SCR or si1-lnc-31. lnc-31 and miR-31 levels were normalized against Gapdh and

Sca17, respectively, and expressed as relative quantity with respect to the SCR sample set to a value of 1.

(B) Heatmap showing the hierarchical clustering of differentially expressed genes in C2C12 cells treated as they were in (A).

(C) Graphs showing the level of the selected mRNAs in C2C12 cells treated with SCR or si1- and si2-lnc-31. The expression levels were normalized against Hprt

and expressed as relative quantity with respect to the SCR sample set to a value of 1 (red dashed line).

(D) Graphs showing the levels of lnc-31 (left) and 5 selected transcripts (right) recovered upon lnc-31 RNA pull-down. Values are expressed as ‘‘fold enrichment’’

with respect to the LacZ sample set to a value of 1.

(E)Western blot analysis using ROCK1 antibodies on protein extracts fromC2C12 cells treated as in (C) or transfectedwith either pcDNA3.1 (CTRL) or with plnc-31

plasmid. ACTININ (ACT) was used as loading control. The results of the densitometric analyses are shown below.

(F) Graph showing the levels of Id3 mRNA in samples treated as in (E). The expression levels were normalized against Hprt mRNA and expressed as relative

quantity with respect to SCR or CTRL samples set to a value of 1.

Error bars represent SDs of at least 3 independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, and ns (not significant; p > 0.05) correspond to paired two-tailed

Student’s t tests.
of a set of 353 genes (Table S2) affected by lnc-31 depletion

(adjusted p value < 0.05) (Figure 1B).

A Gene Ontology term enrichment analysis showed that the

downregulated genes are related to cell-cycle processes, while

the upregulated ones mostly cluster in the muscle system

process and muscle contraction categories (Figure S1B). This

correlates well with a previous study that showed that lnc-31

plays an important role in sustainingmyoblast proliferation coun-

teracting differentiation (Ballarino et al., 2015). Validation of 14

selected genes was performed by quantitative real-time PCR

(qRT-PCR) on samples treated with siRNAs targeting two

different lnc-31 regions (Figures 1C and S1C). Figure 1C shows

that Nupr1 appears in the list of genes that are upregulated

upon lnc-31 knockdown. This gene is induced in the G1 phase

and acts as a brake on the cell cycle, regulating the transition
734 Cell Reports 23, 733–740, April 17, 2018
to differentiation. In particular, NUPR1 is able to interact and

positively modulate MYOD function, favoring its acetylation by

p300 (Sambasivan et al., 2009). Indeed, upregulation of Nupr1

upon lnc-31 knockdown correlated with the activation of several

MYOD target genes, such as the muscle-specific transcription

factor Myogenin, the Ca2+ pump Serca1 (Atp2a1; Jin et al.,

2014), and the cell-cycle inhibitors p21CIP1 and p57KIP2 (Cdkn1a

and Cdkn1c; Figure 1C). Among the downregulated genes, we

found Cyclin D (Ccnd1) and Cyclin E (Ccne1) (Ballarino et al.,

2015), which prevent differentiation by phosphorylation of

MYOD and MEF2, respectively (Figure 1C; Lazaro et al., 2002;

Tintignac et al., 2000). Notably, these targets were altered in

an opposite manner when lnc-31 was overexpressed by using

a plasmid (plnc-31) carrying the lnc-31 sequence depleted of

the Drosha processing region to prevent miR-31 production



(Figure S1D). On the contrary, the rescue of lnc-31 expression

upon its depletion recovered the levels of only some of these

genes (data not shown). This likely can be explained by the

fact that in the absence of lnc-31, the upregulation of genes,

such as Myogenin and Atp2a1, causes an anticipation of

myogenic differentiation that is difficult to retrieve.

Taken together, these data suggest that the activity of lnc-31

in proliferating myoblasts is to sustain the expression of cell-

cycle-promoting genes while repressing pro-myogenic ones,

therefore indicating a potential important role in controlling the

switch between cell-cycle exit and progression into terminal

differentiation.

lnc-31 Interacts with Specific mRNAs
To identify the mechanism of lnc-31 action, we started with the

identification of its RNA interactors. A set of five biotinylated

antisense DNA oligonucleotides (Odd) was used to pull down

lnc-31 using cytoplasmic extracts from proliferating murine

C2C12 myoblasts. A set of probes against LacZ mRNA (LacZ)

was used as a negative control. Samples retrieved upon RNA

pull-down through Odd and LacZ oligonucleotides were

analyzed by NGS to identify mRNAs associated with lnc-31

(Table S1). The NGS analysis resulted in a list of 92 transcripts

that may be considered lnc-31 interactors (Table S3).

The NGS data were validated by RNA pull-down experiments

using an additional set (Even) of five biotinylated antisense DNA

oligonucleotides. qRT-PCR analysis revealed that both sets of

oligonucleotides allowed specific pull-down of lnc-31, whereas

the LacZ oligonucleotides did not show any enrichment

(Figure 1D).

From the list obtained from the NGS analysis (Table S3), we

selected five mRNAs for further validation. Only two of them,

Rho-associated coiled-coil containing protein kinase 1 (Rock1)

and Pinin (Pnn), were significantly enriched with both sets of

oligonucleotides (Figure 1D). To test the effect of lnc-31 on these

targets, wemeasured the Pnn and Rock1RNA and protein levels

upon lnc-31 knockdown. In these conditions neither the protein

nor the mRNA of Pnn showed any significant variation (Fig-

ure S1E); instead, in the case of Rock1, while the mRNA was

unaffected (Figure S1F), the protein was significantly downregu-

lated (Figure 1E). Moreover, with respect to lnc-31 knockdown,

the ectopic expression of lnc-31 caused an increase in the

ROCK1protein (Figure 1E) without affecting itsmRNA levels (Fig-

ure S1F). All of these data indicated a possible positive effect of

lnc-31 on Rock1 mRNA translation. Notably, the expression of

Id3, known to be an indirect target of ROCK1 (Iwasaki et al.,

2008), also decreased as a consequence of ROCK1 downregu-

lation and increased upon lnc-31 overexpression (Figure 1F). All

of these data led us to select ROCK1 for further investigation.

A computational prediction (see Experimental Procedures)

indicated the presence of a 22nt-long region of potential pairing

between the third exon of lnc-31 and the 50 UTR of Rock1 (Fig-

ure 2A). To test the relevance of this interaction in translational

control, we measured the luciferase activity of a construct

carrying the Rock1 50 UTR fused to the Renilla luciferase cDNA

(Luc/50Rock) in conditions of lnc-31 downregulation or overex-

pression. Downregulation of lnc-31 was performed in prolifer-

ating myoblasts, while the overexpression was tested in HeLa
cells (Figure S2A) to enable the dissection of the specific activity

of lnc-31/YB-1 on the Rock1mRNA independently of the effects

on myogenic differentiation. Figure 2B shows that lnc-31 down-

regulation reduced RENILLA activity (upper panels), whereas its

overexpression had the opposite effect (lower panels). Notably,

Renilla mRNA and miR-31 levels were the same in both condi-

tions (Figure S2A), suggesting that lnc-31 acts at the translational

level and miR-31 does not contribute to the observed

phenotype.

To understand whether the predicted pairing region in the

50 UTR of Rock1 is relevant for lnc-31-mediated regulation, we

derived luciferase constructs with progressive deletions of the

50 UTR (Figure 2A). Figure 2B shows that the Luc/50-200
construct, depleted of 200nt but still containing the predicted

pairing region, responds to lnc-31 depletion and overexpression;

instead, the Luc/50-100 construct, lacking the pairing region, fails

to respond to lnc-31 modulation.

A mutant version of lnc-31 with nucleotide substitutions in the

pairing region also was derived (plnc-31mut; Figure 2C) and

tested for the ability to regulate Luc/50Rock expression.

Compared to the wild-type lnc-31, the mutant shows a lesser

ability to upregulate the Renilla luciferase, even if with a subtle,

but significant, effect (Figure 2C). This could be because the

identified pairing region may act in conjunction with other neigh-

boring sequence elements. Also, in this case, the levels of the

Renilla mRNA were the same in both conditions (Figure S2B).

These data indicated that the pairing region is involved in the

regulation operated by lnc-31 on the 50 UTR of Rock1.

The positive control exerted by lnc-31 on Rock1 translation

has important implications for the control of myogenesis. In

proliferating myoblasts, elevated levels of ROCK1 are required

to sustain the phosphorylation of the transcription factor FKHR

and its cytoplasmic retention (Nishiyama et al., 2004), thus deter-

mining the lack of activation of pro-myogenic genes (Bois and

Grosveld, 2003) and the induction of Id3, a potent inhibitor of

myogenic differentiation (Iwasaki et al., 2008). On the contrary,

after the induction of differentiation, the decrease of lnc-31,

and therefore of ROCK1 levels, allows the nuclear translocation

of FKHR and the activation of the myogenic program.

Notably, the decrease of ROCK1 upon differentiation, caused

by reduced levels of lnc-31, is further reinforced by the parallel

upregulation of miR-152 (Figure S2C), which we demonstrated

as targeting the 30 UTR of Rock1 (Figure S2D).

lnc-31 Interacts with YB-1 and Regulates Rock1

Translation
The pull-down experiment described above also was used to

recover protein factors associated with lnc-31. The protein

composition of the pull-down samples was analyzed by mass

spectrometry. From a list of proteins with a probability score

>70, identified by at least three peptides and with a low back-

ground in the LacZ control, a few candidates were selected for

further validation (Table S4). The interactions were confirmed

by western blot analysis of RNA pull-down samples obtained

by using both Odd and Even oligonucleotides and the LacZ

pool. Among the selected protein factors, Y-box protein 1

(YB-1) showed a specific interaction with lnc-31 in both Odd

and Even samples, while EEF2, TUBA6, and HNRPM did not
Cell Reports 23, 733–740, April 17, 2018 735
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Figure 2. A Specific Pairing Region Is Required for Rock1 Regulation Mediated by lnc-31

(A) Schematic representation of lnc-31 and Rock1 transcripts. The sequence and the nucleotide position of the pairing region are indicated together with the

different constructs used for the luciferase assays (Luc/50Rock; Luc/50-200, and Luc/50-100). The stem loop depicts the pre-miR-31, while the triangle represents

the deletion of the Drosha processing site.

(B) Luciferase activities derived from cells transfected with the constructs described in (A) and with SCR/si1-lnc-31 (C2C12, upper panels) and pcDNA/plnc-31

(HeLa, lower panels). Values are expressed as ratio of RENILLA (RLuc) versus FIREFLY (FLuc) activities. The values are expressed as relative quantity with respect

to the SCR or pcDNA samples set to a value of 1.

(C) Left: sequence of the pairing region of lnc-31 (plnc-31) and of its mutant derivative (plnc-31mut). Right: Luciferase activities derived from HeLa cells trans-

fected with Luc/50Rock construct together with pcDNA, plnc-31, or plnc-31mut. Values are expressed as the ratio of RLuc versus FLuc activities. The values are

expressed as relative quantity with respect to the pcDNA sample set to a value of 1.

Error bars represent SDs of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, and ns (not significant; p > 0.05) correspond to paired two-tailed

Student’s t tests.
confirm the mass spectrometry data (Figure 3A). The interaction

between lnc-31 and YB-1 also was proved by UV-crosslinking

immunoprecipitation (CLIP) assay using YB-1 antibodies (Fig-

ure 3B). The 30 UTR region of Yb-1 mRNA and Akt1 mRNA

were used as positive controls because they already have

been shown to interact with YB-1 (Dong et al., 2009; Skabkina

et al., 2005). Snhg12, an lncRNA expressed at comparable levels

to those of lnc-31, was instead used as a control reference.

Because of the intrinsic high affinity of YB-1 for RNA molecules,

some binding also was detected for the control reference; how-

ever, lnc-31 interaction with YB-1 had much higher results.

Indeed, it has been shown that YB-1 has a slight but reliable

preference for certain sequences and that other RNA-binding

proteins can compete with YB-1 for RNA binding, thus directing

YB-1 toward more specific sequences (Dong et al., 2009; Skab-

kina et al., 2005; Evdokimova et al., 2006). Notably, CLIP exper-

iments using human myoblasts indicated that the YB-1/lnc-31

interaction also is conserved in humans (Figure S3A).
736 Cell Reports 23, 733–740, April 17, 2018
YB-1 has been shown to control many DNA- and RNA-depen-

dent processes (Lyabin et al., 2014), amongwhich are the control

of stability and translation of several classes of mRNAs (El-Nag-

gar et al., 2015; Ohashi et al., 2011; Tanaka et al., 2012; Evdoki-

mova et al., 2009). In particular, it has been suggested that the

activity of YB-1 in regulating translation resides in its ability to

induce mRNA structural arrangements by promoting non-spe-

cific strand displacement and annealing (Nekrasov et al., 2003;

Skabkin et al., 2001).

Indeed, the knockdown of Yb-1 in proliferating myoblasts

resulted in an approximately 2-fold decrease in ROCK1 protein

(Figure 3C). It is worth noting that in the same conditions, the

amounts of lnc-31 and Rock1 mRNA were unaffected (Fig-

ure S3B), indicating that the effect of YB-1 onRock1was exerted

at the translational level.

The UV-CLIP experiment shown in Figure 3B indicates that

Rock1 mRNA also is found in association with YB-1. Because

after UV-crosslinking the samples were treated with high salt
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Figure 3. lnc-31 Interacts and Stabilizes YB-1 Protein that Controls Rock1 Translation

(A) Western blot analysis of proteins retrieved from lnc-31 RNA pull-down.

(B) Upper: western blot with YB-1 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (negative control) antibodies of protein extracts from YB-1 CLIP

experiment. Input sample (IN) accounts for 2%of the extract. Lower: graph showing the results of twoCLIP experiments using YB-1 antibodies. The graph shows

the enrichment (%IN) in IP and IgG samples for Yb-1, Akt1, lnc-31, and Rock1 transcripts and for the control reference Sngh12 RNA.

(C) Western blot of proteins from C2C12 cells treated with SCR and si-YB-1 using YB-1 and ROCK1 antibodies. ACT is used as loading control. Quantification of

ROCK1 protein levels from three independent experiments is shown below. ROCK1 levels were normalized against ACT levels and expressed with respect to the

SCR sample set to a value of 1.

(D) Graph showing the results of two CLIP experiments using YB-1 antibodies and C2C12 cells treated with SCR and si1-lnc-31. The graph shows the enrichment

(%IN) in IP and IgG samples for the Yb-1 and Rock1 mRNAs.

(E) Western blot analysis using YB-1 antibodies on proteins from C2C12 cells treated with SCR or si1-/si2-lnc-31 or transfected with either pcDNA3.1 (CTRL) or

plnc-31. ACT was used as loading control. Densitometric analyses of three independent experiments are shown below.

(F) Upper: western blot of proteins fromC2C12 cells treatedwith CHX in the presence of SCR or si1-lnc-31 for the indicated time. Lower: densitrometric analyses of

YB-1 protein levels from three independent experiments. YB-1 protein levels were normalized against ACTIN levels and expressed with respect to the SCR and

si-lnc-31 time ‘‘0’’ set to a value of 1.

(G) Western blot analysis, using YB-1 and CDKN1B antibodies, of proteins from C2C12 cells treated as in (D) (left) or with si1-lnc-31 in the presence of DMSO or

MG132 (right). ACT was used as loading control. Densitometric analyses of three independent experiments are shown below.

Error bars represent SD of three independent experiments (unless differently specified). *p < 0.05 and **p < 0.01 correspond to paired two-tailed Student’s t tests.
buffers, we suggest that YB-1 is able to bind lnc-31 and Rock1

mRNA independently. In contrast to YB-1/lnc-31 interaction,

the binding between YB-1 and the Rock1 mRNA was not

conserved in humans because the levels of this mRNA, recov-

ered upon immunoprecipitation, were comparable to those of

the RPS6KB1 RNA, which was used as control reference (Fig-

ure S3A; Dong et al., 2009). In addition, the control exerted by

hsa-lnc-31 on ROCK1 expression is not conserved because

the hsa-lnc-31 depletion did not have any effect on ROCK1

protein and mRNA levels (Figure S3C)

To test whether lnc-31, through its interaction with Rock1

mRNA, was able to promote the formation of the YB-1/Rock1

mRNA complex, we performed UV-CLIP assays with YB-1 anti-

bodies in myoblasts treated with siRNAs against lnc-31. Fig-
ure 3D shows that in the absence of lnc-31, YB-1 was still able

to bind Rock1 mRNA, indicating that lnc-31 was not required

for the download of YB-1 onto the Rock1 mRNA. However, the

absence of lnc-31 affected greatly the overall levels of the

YB-1 protein, despite the unaltered accumulation of its mRNA

levels (Figures 3E and S3D). The YB-1 protein but not the

mRNA became upregulated upon lnc-31 overexpression (Fig-

ures 3E and S3D). These data suggested that lnc-31may control

Yb-1 translation, protein stability, or both. To address this point,

we treated C2C12 cells with the protein synthesis inhibitor cyclo-

heximide (CHX) in the presence of SCR or si1-lnc-31 siRNAs.

Figure 3F shows that, in si1-lnc-31-treated cells, the half-life of

YB-1 is markedly reduced, suggesting that lnc-31 affects mainly

YB-1 stability.
Cell Reports 23, 733–740, April 17, 2018 737



Figure 4. lnc-31 Interacts withRock1mRNA

and Mediates Its YB-1-Dependent Transla-

tion

Schematic representation of lnc-31 mode of ac-

tion. In proliferating myoblasts (left), lnc-31 pro-

motes the translation of Rock1 through the binding

of its mRNA and the inhibition of proteasome-

mediated YB-1 degradation. In myotubes (right),

the poor levels of lnc-31 are not sufficient to sustain

such activities leading to the downregulation of

Rock1 expression. This loop would be further re-

inforced by the upregulation during myogenesis of

miR-152, making it possible to establish robust

negative control of Rock1 expression.
Because it has been reported that the 20S proteasome is able

to degrade YB-1 in a ubiquitin- and an ATP-independent manner

and that this event is inhibited by the association of YB-1 with

target RNAs (Sorokin et al., 2005; Wei et al., 2016), we tested

whether the decrease in the YB-1 protein, upon lnc-31 depletion,

was caused by protein degradation. The treatment of C2C12 cells

with the proteasome inhibitor MG132, in association with the

depletion of lnc-31, gave rise to the consistent stabilization of

YB-1 (Figure 3G). As control, the levels of the CDKN1B protein,

a known target of the 20S proteasome, increased upon MG132

treatment (Besson et al., 2006). Moreover, the knock down of

lnc-31 in the presence of MG132 did not cause any increase in

YB-1 ubiquitination (data not shown). In conclusion, all of these

experiments indicate that lnc-31 controls the stability of YB-1

protein by limiting its degradation in a ubiquitin-independent/

proteasome-dependent manner.

Notably, the lnc-31-dependent stabilization of YB-1 did not

have any effect on the translation of c-Myc mRNA, known to

be controlled by YB-1 but not to be bound by lnc-31 (Figures

S4A and 4B; Cobbold et al., 2010). Moreover, lnc-31 depletion

caused the increase in cMYC-nick (Figure S4B), the product of

calpain-mediated cleavage of the full-length protein, previously

described as occurring in differentiating myoblasts (Conacci-

Sorrell et al., 2010), which indicates again the pro-differentiation

effects of lnc-31 depletion.

Linking this effect to the specificity of lnc-31/Rock1 mRNA

interaction and to the requirement of lnc-31 for efficient Rock1

translation, we suggest that in proliferating myoblasts, lnc-31,

when bound to Rock1 mRNA, can locally control the stability of

YB-1 on Rock1 mRNA (Figure 4). Upon differentiation, the low

levels of lnc-31 would contribute to ROCK1 downregulation

through the reduced stabilization of YB-1. This loop would be

reinforced further by the upregulation during myogenesis of

miR-152, making it possible to establish robust negative control

of Rock1 expression (Figure 4).

Because Rock1 mRNA has a highly structured GC-rich

(z70%) 50 UTR (Figure S3C), which also has the potential to

form a G-quadruplex (Figure S3D; Kikin et al., 2006), and in

consideration of the ability of YB-1 to melt secondary struc-

tures, induce structural rearrangements, or both (Evdokimova

et al., 2006, 2009; El-Naggar et al., 2015; Skabkin et al.,

2001), the hypothesis that YB-1 could positively affect Rock1

translation by favoring the structural remodeling of its 50 UTR
is attractive.
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EXPERIMENTAL PROCEDURES

Cell Culture and Treatments

Mouse myoblasts (C2C12, American Type Culture Collection [ATCC]) were

cultured in growth medium (GM; DMEM with 20% fetal bovine serum [FBS],

2 mM L-glutamine, and penicillin/streptomycin) and differentiated using a dif-

ferentiation medium (DM) containing 0.5% FBS. HeLa cells were cultured in

DMEM with 10% FBS, 2 mM L-glutamine, and penicillin/streptomycin. Human

myoblasts were cultured in GM (DMEM with 10% FBS, 2 mM L-glutamine,

50 mg/mL insulin, 25 ng/mL basic fibroblast growth factor (FGFb), 1 ng/mL

epidermal growth factor (EGF), and penicillin/streptomycin.

C2C12, human myoblasts, and HeLa cells were transfected using Lipofect-

amine 2000 (Thermo Fisher Scientific), according to the manufacturer’s

instructions. For plasmid transfection, 2 mg DNA was used for plnc-31 and

plnc-31mut constructs, while 40 ng DNA was used for all of the psiCHECK-

constructs; for siRNA transfection, a final concentration of 80 nM was used

for SCR (AllStars Negative Control siRNA, QIAGEN) and si-lnc31, and a final

concentration of 50 nM was used for SCR (siGENOME Non-Targeting siRNA,

Dharmacon) and si-YB-1 (siGENOMEMouse Ybx1 [22608]SMARTpool, Dhar-

macon). Luciferase assays were performed using the Dual Glo luciferase assay

(Promega), according to the manufacturer’s protocol.

For all of the treatments, cells were harvested for protein and RNA analyses

after 48 hr. For the CHX chase, CHX at a final concentration of 100 mg/mL was

added to themedium. To inhibit proteasome,MG132 at a final concentration of

50 mM, was used, while DMSO was added to the medium of the control

samples.

RNA Preparation and Analysis

Total RNA was extracted using the Direct-zol RNA MiniPrep kit (Zymo

Research) with on-column DNase treatment, according to the manufacturer’s

instructions. For the UV-CLIP and RNA pull-down experiments, the RNA was

extracted using QIAzol reagent and miRNEasy spin columns (QIAGEN),

according to the manufacturer’s specifications.

Reverse transcription was carried out with SuperScript VILO cDNA Synthe-

sis Kit (Life Technologies) and the cDNA samples were analyzed by qRT-PCR

using PowerUp SYBRGreenMasterMix (Thermo Fisher Scientific). FormiRNA

detection, the cDNA synthesis was carried out using miScript II RT Kit

(QIAGEN), and the qRT-PCR was performed using miScript SYBR Green

PCR Kit (QIAGEN).

Native Pull-Down

C2C12 myoblasts cultured in GM were washed twice with complete PBS and

collected in 1 mL of buffer A (Tris-HCl, pH 8, 20 mM; NaCl, 10 mM; MgCl2,

3mM; NP-40, 0.1%; glycerol, 10%; DTT, 1mM; protease and RNase inhibitor),

incubated on ice for 10 min, and then centrifuged at 2500 rpm for 5 min. The

supernatant representing cytoplasmic extracts was recovered while pellets

were discarded. The protein concentration of the cytoplasmic extracts was

assessed by Bradford assay. Cytoplasmic extract, 1 mg, was used for each

sample (Odd, Even, and LacZ) and was precleared with 50 mL Promega Strep-

tavidin MagneSphere Paramagnetic Particles, equilibrated in hybridization

buffer (Tris-HCl, pH 7.4, 50 mM; NaCl, 150 mM; MgCl2, 1 mM; NP-40,



0.05%; EDTA, 10 mM; DTT, 1 mM), and supplemented with protease and

RNase inhibitors, for 30 min on a rotating wheel at room temperature. A total

of 1 mL biotinylated oligonucleotides mix (20 mM each) was added to the pre-

cleared extracts and incubated for 2 hr at room temperature on a rotating

wheel. Streptavidin MagneSphere Paramagnetic Particles, 50 mL, were added

to each sample and incubated for 30 min at room temperature on a rotating

wheel. After the incubation, the paramagnetic particles were collected through

a magnetic support and washed three times with 1 mL hybridization buffer.

Finally, the paramagnetic particles were divided in two aliquots for RNA and

protein analyses.

The sequences of the biotinylated oligonucleotides belonging to Odd, Even,

and LacZ sets are listed in the Supplemental Experimental Procedures.

Protein Analysis

Cells were harvested with protein extraction buffer (Tris, pH 7.5, 100 mM;

EDTA, 1 mM; SDS, 2%; protease inhibitor cocktail [PIC] 1x (cOmplete,

EDTA-free, Roche), incubated for 10 min on ice, and centrifuged at

13,000 rpm for 10 min at 4�C. Proteins (15–30 mg) were loaded on 4%–12%

bis-Tris-acrylamide gel (Life Technologies) and transferred to a nitrocellulose

membrane. The membrane was blocked in 5% milk and hybridized with the

following antibodies: YB-1 (ab76149, Abcam), PNN (A301-022A-M, Bethyl),

ROCK1 (c8f7, Cell Signaling), eEF2 (2332S, Cell Signaling), TUBA6

(ab-191299, Abcam), HNRPM (FL-218 sc-20975, Santa Cruz Biotechnology),

anti-cMyc (D84C12, Cell Signaling), anti-CDKN1B (sc-1641, Santa Cruz

Biotechnology), anti-ACTIN (A3854, Sigma), and anti-ACTININ (H-300,

sc-15335, Santa Cruz Biotechnology); with VeriBlot for secondary antibody

(ab131366, Abcam). All of the images were captured using the Molecular

Imager ChemiDoc XRS+ (Bio-Rad), and the densitometric analyses were

performed using the associated Image Lab software (Bio-Rad).

UV-CLIP Assay

C2C12 and human myoblasts cultured in GM were UV-crosslinked at 4,000 3

100 mJ cm�2 energy. Cells were resuspended in buffer A (as described above),

incubated for 10 min on ice, and then centrifuged at 2500 rpm for 5 min. Cyto-

plasmic extracts (supernatant) were recovered while pellets were discarded.

The protein concentration was assessed by Bradford assay. A total of 1 mg

cytoplasmic extract was used for each sample (immunoprecipitation [IP] and

immunoglobulin G [IgG]) and precleared with 40 mL protein G agarose beads

(Millipore) for 1 hr on a rotating wheel in 1 mL NT2 buffer final volume (NT2:

Tris-HCl, pH7.5, 50mM;NaCl, 150mM;MgCl2, 1mM;NP-40, 0.25%;protease

and RNase inhibitor). A total of 10% of the final volume was recovered as input

(IN), while the remaining 900 mLwas incubated with 10 mg of YB-1 or IgG (rabbit

sc-2027) antibodies for 1 hr at 4�C. Protein G agarose beads, 50 mL, equili-

brated in NT2 buffer, were added to each sample and incubated for 2 hr at

4�C. The beads were then collected through centrifugation at 2000 rpm and

washed three times with 1 mL NT2 buffer and three times with NT2-HS buffer

(Tris-HCl, pH 7.5, 50 mM; NaCl, 500 mM; MgCl2, 1 mM; NP-40, 0.25%; prote-

ase and RNase inhibitor). The beads were finally resuspended in 200 mL radio-

immunoprecipitation assay (RIPA) buffer (Tris-HCl, pH 7, 10 mM; NaCl,

100mM; EDTA, 1mM; SDS, 0.5%), while 100 mL of the same buffer was added

to the IN samples. A total of 50 mL of each samplewas used for protein analysis.

For the RNA extraction, IP, IgG, and IN sampleswere incubated for 1 hr at 70�C
in the presence of 7.5 mL proteinase K (Ambion) and RNase inhibitor. Five

volumes of TRIzol were added to each sample, and the RNA extraction and

the cDNA generation were performed as described above.
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