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a b s t r a c t

Let P be a probability on the real line generating a natural exponential family (Pt )t∈R. We
show that the property that t is a median of Pt for all t characterizes P as the standard
Gaussian law N(0, 1).
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1. Introduction

Let P be a probability on the real line and assume that

L(t) =

∫
+∞

−∞

etxP(dx) < ∞ for t ∈ R. (1)

Such a probability generates the natural exponential family

FP = {Pt (dx) =
etx

L(t)
P(dx), t ∈ R}.

Then it might happen that the natural parameter t of FP is always a median of Pt , in the sense of

Pt ((−∞, t)) ≤
1
2

≤ Pt ((−∞, t]) for t ∈ R. (2)

In the sequel we denote byP the set of probabilities P such that (1) and (2) are fulfilled. A noteworthy example of an element
of P is the standard normal distribution N(0, 1), for which L(t) = et

2/2 and Pt = N(t, 1). It will turn out that it is the only
one. The following preliminary lemmas simplify the study of P.
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Lemma 1. If P ∈ P , then P is absolutely continuous with respect to Lebesgue measure. As a consequence, we have equality
throughout in (2).

Lemma 2. If P ∈ P , then its distribution function is strictly increasing.

If P ∈ P , then Lemma 1 allows us to write

P(dx) = g(x)ϕ(x)dx, (3)

where g is some measurable non-negative function and ϕ(x) = e−x2/2/
√
2π denotes the standard normal density, and we

will show that then g(x) = 1 a.e. to get:

Theorem 1. P = {N(0, 1)}.

The proofs of the above results are contained in Section 2, followed by a conjecture and a further theorem.

2. Proofs

Proof of Lemma 1. The next paragraph shows that the distribution function of P is locally Lipschitz, and this implies the
claimed absolute continuity, even with a locally bounded density, compare for example Royden and Fitzpatrick (2010, pp.
120–124).

For t ∈ R, multiplying in assumption (2) by L(t) yields

h(t) :=

∫
(−∞,t]

etxP(dx) ≥
1
2
L(t) ≥

∫
(−∞,t)

etxP(dx) = h(t−). (4)

Hence, if A > 0 is given, then for s, t with −A ≤ s < t ≤ A, we get

P
(
(s, t)

)
=

∫
(s,t)

e−txetxP(dx) ≤ eA
2
∫
(s,t)

etxP(dx)

= eA
2
(
h(t−) − h(s) +

∫
(−∞,s]

(esx − etx)P(dx)
)

≤ eA
2
(
1
2
(L(t) − L(s)) + (t − s)

∫
R
|x|eA|x|P(dx)

)
≤ cA · (t − s)

for some finite constant cA. We have been using (4) and |eu − ev
| ≤ |u − v|ew for |u|, |v| ≤ w at the penultimate step.

Using assumption (1), we rely at the ultimate step on local Lipschitzness of L, due to its analyticity, and on finiteness of∫
R|x|eA|x|P(dx). □

Proof of Lemma 2. Assume to the contrary that there exist a, b ∈ R with a < b and P((a, b)) = 0. Then, for t ∈ (a, b),
Lemma 1 and (2) yield∫ a

−∞

etxP(dx) =

∫ t

−∞

etxP(dx) =

∫
+∞

t
etxP(dx) =

∫
∞

b
etxP(dx).

Thus the twomeasures 1(−∞,a](x)P(dx) and 1[b,+∞)(x)P(dx) have finite and identical Laplace transforms on some non-empty
interval. Hence the two measures coincide, and hence P must be the zero measure, which is absurd. □

Proof of Theorem 1. With the representation (3) for P ∈ P , assumption (2) is rewritten as∫ t

−∞

etx−
x2
2

1
√
2π

g(x) dx =
1
2

∫
+∞

−∞

etx−
x2
2

1
√
2π

g(x) dx. (5)

We multiply both sides by e−t2/2:∫ t

−∞

e−
(t−x)2

2
1

√
2π

g(x) dx =
1
2

∫
+∞

−∞

e−
(t−x)2

2
1

√
2π

g(x) dx. (6)

In other terms the unknown function g satisfies∫
+∞

−∞

sign (t − x)ϕ(t − x)g(x) dx = 0 (7)

for all t ∈ R. A formal derivation of (7) in t , using the product rule under the integral, and with one derivative being twice a
delta function, leads to the equation

g(t) =

∫
+∞

−∞

q(t − x)g(x) dx (8)
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a.e. in t , where q(y) :=
1
2 |y|e

−
y2
2 is a probability density, but instead of justifying this formal differentiation, it seems easier

to start by computing the derivative of

h(t) :=

∫ t

−∞

etxP(dx).

By Lemma 2 the distribution function F of P has a continuous inverse F−1. Using the quantile transform we have

h(t) =

∫ 1

0
1

{F−1≤t}(u)e
tF−1(u) du =

∫ F (t)

0
etF

−1(u) du = H(F (t), t)

with H(s, t) :=
∫ s
0 etF

−1(u) du for s ∈ (0, 1) and t ∈ R. Now H has continuous partial derivatives H1(s, t) = etF
−1(s) and

H2(s, t) =
∫ s
0 F−1(u)etF

−1(u) du, due to the continuity of F−1, and hence H is differentiable. Let f be a Lebesgue density of P .
Then, at every t where F ′(t) = f (t), and hence at Lebesgue-a.e. t , the chain rule yields

h′(t) = H1(F (t), t)f (t) + H2(F (t), t) = et
2
f (t) +

∫ F (t)

0
F−1(u)etF

−1(u) du

= et
2
f (t) +

∫ t

−∞

xetxf (x) dx.

Thus differentiating the identity (5) and observing that f (x) = g(x)ϕ(x) we obtain the following a.e.-identity

1
√
2π

et
2/2g(t) +

∫ t

−∞

xetx−
x2
2

1
√
2π

g(x) dx =
1
2

∫
+∞

−∞

xetx−
x2
2

1
√
2π

g(x) dx,

and multiplying the latter by
√
2πe−t2/2 gives

g(t) =
1
2

(∫
+∞

t
xe−(t−x)2/2g(x) dx −

∫ t

−∞

xe−(t−x)2/2g(x) dx
)

.

Adding to the right hand side above the quantity

0 =
t
2

(∫ t

−∞

e−(t−x)2/2g(x) dx −

∫
+∞

t
e−(t−x)2/2g(x) dx

)
(recall (6)) yields the desired (8).

Next, with the (positive) Radon measures µ(dx) := g(x)dx and σ (dx) := q(x)dx, Eq. (8) can be rewritten as the so-called
Choquet–Deny equation µ = µ ∗ σ . Observe that t ↦→

∫
+∞

−∞
etxσ (dx) is even and strictly convex, and is therefore equal to 1

only at t = 0. We can now use the results in section 6 of Deny (1960), where ‘‘n > 1’’ is evidently a misprint for ‘‘n ≥ 1’’, to
conclude that µ has to be a positive scalar multiple of the Lebesgue measure. Since g is a probability density with respect to
a probability measure, we have g = 1 a.e., and the theorem is proved. □

A trivial characterization of the standard normal exponential family is to say that the mean is equal to the parameter t .
But it is worthwhile to mention a natural conjecture about exponential families which seems harder to establish:

Conjecture. Suppose that the probability P satisfies (1), and denote m(t) :=
∫
R xPt (dx). If for all t real m(t) is a median of Pt ,

then P = N(m, σ 2) for some m and σ .

This conjecture, which is probably more meaningful from a methodological point of view than the result established in
the paper, does not translate in a neat harmonic analysis statement as (7) and (8) and as such it seems harder to establish.
The next simple result offers some support to the conjecture. A probability Q on Rn is said to be symmetric if there exists
somem ∈ Rn such that X − m ∼ m − X when X ∼ Q .

Theorem 2. Let P be a probability on Rn such that

L(t) =

∫
Rn

e⟨t,x⟩P(dx)

is finite for all t ∈ Rn. Assume that for all t ∈ Rn the probability Pt (dx) = e⟨t,x⟩P(dx)/L(t) is symmetric. Then P is normal.

Proof. Clearly m(t) =
∫
Rn xPt (dx) = L′(t)/L(t) exists and, since Pt is symmetric, Xt − m(t) ∼ m(t) − Xt when Xt ∼ Pt .

Therefore its Laplace transform

s ↦→ E(e⟨s,Xt−m(t)⟩) = e−⟨s,m(t)⟩ L(t + s)
L(t)

does not change when we replace s by −s. Considering the logarithm and taking the derivative in s we get 2m(t) =

m(t + s) + m(t − s). Taking again the derivative in s we get m′(t + s) = m′(t − s) for all t, s ∈ Rn, which means that
m′ is constant, hence log L is polynomial of degree at most 2, and hence P is normal. □
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