The median of an exponential family and the normal law

Gérard Letac ${ }^{\text {a,* }}$, Lutz Mattner ${ }^{\text {b }}$, Mauro Piccioni ${ }^{\text {c }}$
${ }^{\text {a }}$ Laboratoire de Statistique et Probabilités, Université Paul Sabatier, Toulouse, France
${ }^{\text {b }}$ Universität Trier, Fachbereich IV - Mathematik, 54286 Trier, Deutschland, Germany
c Dipartimento di Matematica, Sapienza Università di Roma, 00185 Roma, Italy

ARTICLE INFO

Article history:

Received 9 June 2017
Received in revised form 3 October 2017
Accepted 4 October 2017
Available online 23 October 2017

MSC 2010:

62E10
60E05
45E10

Keywords:

Characterization of the normal laws
Real exponential families
Median of a distribution
Choquet-Deny equation

Abstract

Let P be a probability on the real line generating a natural exponential family $\left(P_{t}\right)_{t \in \mathbb{R}}$. We show that the property that t is a median of P_{t} for all t characterizes P as the standard Gaussian law $N(0,1)$.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let P be a probability on the real line and assume that

$$
\begin{equation*}
L(t)=\int_{-\infty}^{+\infty} \mathrm{e}^{t x} P(\mathrm{~d} x)<\infty \quad \text { for } t \in \mathbb{R} \tag{1}
\end{equation*}
$$

Such a probability generates the natural exponential family

$$
\mathcal{F}_{P}=\left\{P_{t}(\mathrm{~d} x)=\frac{\mathrm{e}^{t x}}{L(t)} P(\mathrm{~d} x), t \in \mathbb{R}\right\}
$$

Then it might happen that the natural parameter t of \mathcal{F}_{P} is always a median of P_{t}, in the sense of

$$
\begin{equation*}
P_{t}((-\infty, t)) \leq \frac{1}{2} \leq P_{t}((-\infty, t]) \quad \text { for } t \in \mathbb{R} \tag{2}
\end{equation*}
$$

In the sequel we denote by \mathcal{P} the set of probabilities P such that (1) and (2) are fulfilled. A noteworthy example of an element of \mathcal{P} is the standard normal distribution $N(0,1)$, for which $L(t)=\mathrm{e}^{t^{2} / 2}$ and $P_{t}=N(t, 1)$. It will turn out that it is the only one. The following preliminary lemmas simplify the study of \mathcal{P}.

[^0]Lemma 1. If $P \in \mathcal{P}$, then P is absolutely continuous with respect to Lebesgue measure. As a consequence, we have equality throughout in (2).

Lemma 2. If $P \in \mathcal{P}$, then its distribution function is strictly increasing.
If $P \in \mathcal{P}$, then Lemma 1 allows us to write

$$
\begin{equation*}
P(\mathrm{~d} x)=g(x) \varphi(x) \mathrm{d} x \tag{3}
\end{equation*}
$$

where g is some measurable non-negative function and $\varphi(x)=\mathrm{e}^{-x^{2} / 2} / \sqrt{2 \pi}$ denotes the standard normal density, and we will show that then $g(x)=1$ a.e. to get:

Theorem 1. $\mathcal{P}=\{N(0,1)\}$.
The proofs of the above results are contained in Section 2, followed by a conjecture and a further theorem.

2. Proofs

Proof of Lemma 1. The next paragraph shows that the distribution function of P is locally Lipschitz, and this implies the claimed absolute continuity, even with a locally bounded density, compare for example Royden and Fitzpatrick (2010, pp. 120-124).

For $t \in \mathbb{R}$, multiplying in assumption (2) by $L(t)$ yields

$$
\begin{equation*}
h(t):=\int_{(-\infty, t]} \mathrm{e}^{t x} P(\mathrm{~d} x) \geq \frac{1}{2} L(t) \geq \int_{(-\infty, t)} \mathrm{e}^{t x} P(\mathrm{~d} x)=h(t-) \tag{4}
\end{equation*}
$$

Hence, if $A>0$ is given, then for s, t with $-A \leq s<t \leq A$, we get

$$
\begin{aligned}
P((s, t)) & =\int_{(s, t)} \mathrm{e}^{-t x} \mathrm{e}^{t x} P(\mathrm{~d} x) \leq \mathrm{e}^{A^{2}} \int_{(s, t)} \mathrm{e}^{t x} P(\mathrm{~d} x) \\
& =\mathrm{e}^{A^{2}}\left(h(t-)-h(s)+\int_{(-\infty, s]}\left(\mathrm{e}^{s x}-\mathrm{e}^{t x}\right) P(\mathrm{~d} x)\right) \\
& \leq \mathrm{e}^{A^{2}}\left(\frac{1}{2}(L(t)-L(s))+(t-s) \int_{\mathbb{R}}|x| \mathrm{e}^{A|x|} P(\mathrm{~d} x)\right) \\
& \leq c_{A} \cdot(t-s)
\end{aligned}
$$

for some finite constant c_{A}. We have been using (4) and $\left|\mathrm{e}^{u}-\mathrm{e}^{v}\right| \leq|u-v| \mathrm{e}^{w}$ for $|u|,|v| \leq w$ at the penultimate step. Using assumption (1), we rely at the ultimate step on local Lipschitzness of L, due to its analyticity, and on finiteness of $\int_{\mathbb{R}}|x| \mathrm{e}^{A|x|} P(\mathrm{~d} x)$.

Proof of Lemma 2. Assume to the contrary that there exist $a, b \in \mathbb{R}$ with $a<b$ and $P((a, b))=0$. Then, for $t \in(a, b)$, Lemma 1 and (2) yield

$$
\int_{-\infty}^{a} \mathrm{e}^{t x} P(\mathrm{~d} x)=\int_{-\infty}^{t} \mathrm{e}^{t x} P(\mathrm{~d} x)=\int_{t}^{+\infty} \mathrm{e}^{t x} P(\mathrm{~d} x)=\int_{b}^{\infty} \mathrm{e}^{t x} P(\mathrm{~d} x)
$$

Thus the two measures $\mathbf{1}_{(-\infty, a]}(x) P(\mathrm{~d} x)$ and $\mathbf{1}_{[b,+\infty)}(x) P(\mathrm{~d} x)$ have finite and identical Laplace transforms on some non-empty interval. Hence the two measures coincide, and hence P must be the zero measure, which is absurd.

Proof of Theorem 1. With the representation (3) for $P \in \mathcal{P}$, assumption (2) is rewritten as

$$
\begin{equation*}
\int_{-\infty}^{t} \mathrm{e}^{t x-\frac{x^{2}}{2}} \frac{1}{\sqrt{2 \pi}} g(x) \mathrm{d} x=\frac{1}{2} \int_{-\infty}^{+\infty} \mathrm{e}^{t x-\frac{x^{2}}{2}} \frac{1}{\sqrt{2 \pi}} g(x) \mathrm{d} x . \tag{5}
\end{equation*}
$$

We multiply both sides by $\mathrm{e}^{-t^{2} / 2}$:

$$
\begin{equation*}
\int_{-\infty}^{t} \mathrm{e}^{-\frac{(t-x)^{2}}{2}} \frac{1}{\sqrt{2 \pi}} g(x) \mathrm{d} x=\frac{1}{2} \int_{-\infty}^{+\infty} \mathrm{e}^{-\frac{(t-x)^{2}}{2}} \frac{1}{\sqrt{2 \pi}} g(x) \mathrm{d} x . \tag{6}
\end{equation*}
$$

In other terms the unknown function g satisfies

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \operatorname{sign}(t-x) \varphi(t-x) g(x) \mathrm{d} x=0 \tag{7}
\end{equation*}
$$

for all $t \in \mathbb{R}$. A formal derivation of (7) in t, using the product rule under the integral, and with one derivative being twice a delta function, leads to the equation

$$
\begin{equation*}
g(t)=\int_{-\infty}^{+\infty} q(t-x) g(x) \mathrm{d} x \tag{8}
\end{equation*}
$$

a.e. in t, where $q(y):=\frac{1}{2}|y| \mathrm{e}^{-\frac{y^{2}}{2}}$ is a probability density, but instead of justifying this formal differentiation, it seems easier to start by computing the derivative of

$$
h(t):=\int_{-\infty}^{t} \mathrm{e}^{t x} P(\mathrm{~d} x)
$$

By Lemma 2 the distribution function F of P has a continuous inverse F^{-1}. Using the quantile transform we have

$$
h(t)=\int_{0}^{1} \mathbf{1}_{\left\{F^{-1} \leq t\right\}}(u) \mathrm{e}^{t F^{-1}(u)} \mathrm{d} u=\int_{0}^{F(t)} \mathrm{e}^{t F^{-1}(u)} \mathrm{d} u=H(F(t), t)
$$

with $H(s, t):=\int_{0}^{s} \mathrm{e}^{t F^{-1}(u)} \mathrm{d} u$ for $s \in(0,1)$ and $t \in \mathbb{R}$. Now H has continuous partial derivatives $H_{1}(s, t)=\mathrm{e}^{t F^{-1}(s)}$ and $H_{2}(s, t)=\int_{0}^{s} F^{-1}(u) e^{t F^{-1}(u)}$ d u, due to the continuity of F^{-1}, and hence H is differentiable. Let f be a Lebesgue density of P. Then, at every t where $F^{\prime}(t)=f(t)$, and hence at Lebesgue-a.e. t, the chain rule yields

$$
\begin{aligned}
h^{\prime}(t) & =H_{1}(F(t), t) f(t)+H_{2}(F(t), t)=\mathrm{e}^{t^{2}} f(t)+\int_{0}^{F(t)} F^{-1}(u) \mathrm{e}^{t F^{-1}(u)} \mathrm{d} u \\
& =\mathrm{e}^{t^{2}} f(t)+\int_{-\infty}^{t} x \mathrm{e}^{t x} f(x) \mathrm{d} x
\end{aligned}
$$

Thus differentiating the identity (5) and observing that $f(x)=g(x) \varphi(x)$ we obtain the following a.e.-identity

$$
\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{\mathrm{t}^{2} / 2} g(t)+\int_{-\infty}^{t} x \mathrm{e}^{t x-\frac{x^{2}}{2}} \frac{1}{\sqrt{2 \pi}} g(x) \mathrm{d} x=\frac{1}{2} \int_{-\infty}^{+\infty} x \mathrm{e}^{t x-\frac{x^{2}}{2}} \frac{1}{\sqrt{2 \pi}} g(x) \mathrm{d} x
$$

and multiplying the latter by $\sqrt{2 \pi} \mathrm{e}^{-t^{2} / 2}$ gives

$$
g(t)=\frac{1}{2}\left(\int_{t}^{+\infty} x \mathrm{e}^{-(t-x)^{2} / 2} g(x) \mathrm{d} x-\int_{-\infty}^{t} x \mathrm{e}^{-(t-x)^{2} / 2} g(x) \mathrm{d} x\right)
$$

Adding to the right hand side above the quantity

$$
0=\frac{t}{2}\left(\int_{-\infty}^{t} \mathrm{e}^{-(t-x)^{2} / 2} g(x) \mathrm{d} x-\int_{t}^{+\infty} \mathrm{e}^{-(t-x)^{2} / 2} g(x) \mathrm{d} x\right)
$$

(recall (6)) yields the desired (8).
Next, with the (positive) Radon measures $\mu(\mathrm{d} x):=g(x) \mathrm{d} x$ and $\sigma(\mathrm{d} x):=q(x) \mathrm{d} x$, Eq. (8) can be rewritten as the so-called Choquet-Deny equation $\mu=\mu * \sigma$. Observe that $t \mapsto \int_{-\infty}^{+\infty} \mathrm{e}^{t x} \sigma(\mathrm{~d} x)$ is even and strictly convex, and is therefore equal to 1 only at $t=0$. We can now use the results in section 6 of Deny (1960), where " $n>1$ " is evidently a misprint for " $n \geq 1$ ", to conclude that μ has to be a positive scalar multiple of the Lebesgue measure. Since g is a probability density with respect to a probability measure, we have $g=1$ a.e., and the theorem is proved.

A trivial characterization of the standard normal exponential family is to say that the mean is equal to the parameter t. But it is worthwhile to mention a natural conjecture about exponential families which seems harder to establish:

Conjecture. Suppose that the probability P satisfies (1), and denote $m(t):=\int_{\mathbb{R}} x P_{t}(\mathrm{~d} x)$. If for all t real $m(t)$ is a median of P_{t}, then $P=N\left(m, \sigma^{2}\right)$ for some m and σ.

This conjecture, which is probably more meaningful from a methodological point of view than the result established in the paper, does not translate in a neat harmonic analysis statement as (7) and (8) and as such it seems harder to establish. The next simple result offers some support to the conjecture. A probability Q on \mathbb{R}^{n} is said to be symmetric if there exists some $m \in \mathbb{R}^{n}$ such that $X-m \sim m-X$ when $X \sim Q$.

Theorem 2. Let P be a probability on \mathbb{R}^{n} such that

$$
L(t)=\int_{\mathbb{R}^{n}} \mathrm{e}^{\langle t, x\rangle} P(\mathrm{~d} x)
$$

is finite for all $t \in \mathbb{R}^{n}$. Assume that for all $t \in \mathbb{R}^{n}$ the probability $P_{t}(\mathrm{~d} x)=\mathrm{e}^{\langle t, x\rangle} P(\mathrm{~d} x) / L(t)$ is symmetric. Then P is normal.
Proof. Clearly $m(t)=\int_{\mathbb{R}^{n}} x P_{t}(\mathrm{~d} x)=L^{\prime}(t) / L(t)$ exists and, since P_{t} is symmetric, $X_{t}-m(t) \sim m(t)-X_{t}$ when $X_{t} \sim P_{t}$. Therefore its Laplace transform

$$
s \mapsto \mathbb{E}\left(\mathrm{e}^{\left\langle s, X_{t}-m(t)\right\rangle}\right)=\mathrm{e}^{-\langle s, m(t)\rangle} \frac{L(t+s)}{L(t)}
$$

does not change when we replace s by $-s$. Considering the logarithm and taking the derivative in s we get $2 m(t)=$ $m(t+s)+m(t-s)$. Taking again the derivative in s we get $m^{\prime}(t+s)=m^{\prime}(t-s)$ for all $t, s \in \mathbb{R}^{n}$, which means that m^{\prime} is constant, hence $\log L$ is polynomial of degree at most 2 , and hence P is normal.

References

Deny, J., 1960. Sur l'équation de convolution $\mu=\mu * \sigma$. Séminaire Brelot-Choquet-Deny (Théorie du Potentiel) 4e année, 1959-60, Exposé numéro 5. http://www.numdam.org/article/SBCD_1959-1960__4_A5_0.pdf.
Royden, H.L., Fitzpatrick, P.M., 2010. Real Analysis, fourth ed. Prentice-Hall.

[^0]: * Corresponding author.

 E-mail addresses: gerard.letac@math.univ-toulouse.fr (G. Letac), mattner@uni-trier.de (L. Mattner), piccioni@mat.uniroma1.it (M. Piccioni).

