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Abstract

We use incremental homogeneity, gain adaptation and incremental observability for proving new results on robust observer

design for systems with noisy measurement and bounded trajectories. A state observer is designed by dominating the incre-

mentally homogeneous nonlinearities of the observation error system with its linear approximation, while gain adaptation

and incremental observability guarantee an asymptotic upper bound for the estimation error depending on the limsup of the

norm of the measurement noise. A characteristic and innovative feature of this observer is the mixed low/high-gain structure

in combination with saturated state estimates and dynamically tuned gains and saturation levels. The gain adaptation is im-

plemented as the output of a stable filter using the squared norm of the measured output estimation error and the mismatch

between each estimate and its saturated value.
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1 Introduction

Homogeneity and homogeneous approximations have
been investigated by many authors for the stability anal-
ysis of an equilibrium point: see e.g. the first contribu-
tions Massera (1956) and, more recently, Kawski (1989)
and Rosier (1998). The homogeneity property has been
exploited in the design of global state observers (Qian
(2005), Qian & Lin (2006), Yang & Lin (2003), Andrieu
et al. (2008)): the idea is to design a state observer for
the homogeneous approximation of the system and con-
vergence to zero of the estimation error is preserved un-
der any perturbation which does not change the homo-
geneous approximation. The class of systems for which
an observer can be designed by domination techniques
has been enlarged by adding dynamic gain adaptation
(Khalil & Saberi (1987), Bullinger & Allgower (1997),
Lei et al. (2005), Astolfi & Praly (2006), Andrieu et
al. (2009)). The class of homogeneous systems has been
enlarged by introducing (incremental) homogeneity in
the upper bound in Battilotti (2014) and used to-
gether with gain adaptation and self-tuned saturations
for designing global observers in Battilotti (2015a)
for systems with bounded trajectories. Homogeneity in
the upper bound gives enough a general framework for
including triangular structures (feedback and feedfor-
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ward systems), homogeneous and interlaced structures.
Self-tuned saturations were previously used in Lei et al.
(2005) in the observer design for feedback-linearizable
systems with bounded trajectories. However, the gain
adaptation is such that the dynamically adapted gain
is non-decreasing along solutions. As known, this may
lead to serious growth problems in the presence of mea-
surement disturbance (Egardt (1979, Example 4.2),
Peterson & Narendra (1982), Mareels (1984), Khalil
& Saberi (1987)). This problem has been addressed
by several authors (Egardt (1979), Mareels (1984),
Peterson & Narendra (1982), Ioannou & Kokotovic
(1984)), trying to reduce the adapted gain instead to let
it grow with no bound, for example when the measured
output estimation error is decreasing. In Vasilijevic &
Khalil (2006) it is shown that measurement disturbance
introduces an upper bound on the gain when good esti-
mation performances are required. In this direction, we
find the works of Ahrens & Khalil (2006), which relies
on the knowledge of a bound for the nonlinearities of
the system, and Boizot et al. (2010), which relies on
the knowledge of a bound for the dynamic gain and the
Lipschitz constant of the nonlinearities of the system.
The e↵ect of measurement disturbance on observer de-
sign has been studied, following Boizot et al. (2010), for
a class of lower triangular systems with bounded tra-
jectories and for a given class of observers in Sanfelice
& Praly (2011), satisfying additional properties on the
mismatch between the vector fields of the system and of
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the observer, by proving an upper bound (depending on
the measurement noise) for the estimation error in the
mean and an upper bound on the limsup of the estima-
tion error in the mean. In the absence of measurement
noise, this last bound can be made arbitrarily small by
setting properly the parameters of the class of observers.
This, however, does not discard a potential oscillatory
behavior of the estimates (Mareels et al. (1999)).

In this paper, we prove new results on robust observer
design in the presence of measurement disturbance for
systems with bounded trajectories by using incremen-
tal homogeneity in the upper bound (Battilotti (2014))
and gain adaptation (Andrieu et al. (2008), Bullinger
& Allgower (1997), Khalil & Saberi (1987), Lei et al.
(2005)) with saturated estimates and dynamically tuned
saturation levels (Lei et al. (2005))). A state observer
is designed by dominating the incrementally homoge-
neous (in the upper bound) nonlinearities of the obser-
vation error system with its linear approximation. The
gain adaptation and updating of the saturation levels is
implemented through a stable filter which regulates its
output by using a suitable function of the squared norm
of the measured output estimation error. Our observer
guarantees an upper bound on the limsup of the norm
of the estimation error depending on the limsup of the
norm of the measurement noise. As a particular case,
if the measurement disturbance tends asymptotically to
zero the estimation error itself tends to zero.

The paper is organized as follows. In section 2 some no-
tation is introduced. In section 3 the class of system is
described and the problem is formulated. In section 4 an
observer is presented together with the main result and
the parameter observer design is discussed in section 4.1.
In section 4.2 example and simulation are given and in
section 4.3 the main result is proved. In the appendix the
notion of incremental generalized homogeneity is shortly
recalled together with some of its properties and related
results.

2 Notation

(N1) Rn (resp. Rnˆn) is the set of n-dimensional real
column vectors (resp. n ˆ n matrices). R• (resp. Rn

•,
Rnˆn

• ) denotes the set of real non-negative numbers
(resp. vectors in Rn, matrices in Rnˆn, with real non-
negative entries). R° (resp. Rn

°) denotes the set of
real positive numbers (resp. vectors in Rn with real
positive entries). �

min

pAq (resp. �
max

pAq) denotes the
minimum (resp. maximum) eigenvalue of A P Rnˆn.
(N2) For any matrix V P Rpˆn we denote by V

ij

the
pi, jq-th entry of V and for any vector v P Rn we de-
note by v

i

the i-th element of v. We retain a similar
notation for functions. For any v P Rn we denote by
diagtvu the diagonal n ˆ n matrix with diagonal ele-
ments v

1

, . . . , v
n

. Also, |a| denotes the absolute value
of a P R, }a} (resp. }a}

P

) denotes the euclidean (resp.

weighted by P ) norm of a P Rn, }A} denotes the norm
of A P Rnˆn induced from the euclidean norm } ¨} and
xxayy the column vector of the absolute values of the
elements of a P Rn, i.e. xxayy :“ p|a

1

| ¨ ¨ ¨ |a
n

|q

T .
(N3) We denote by Cj

pX ,Y q, with j • 0, X Ä Rn

and Y Ä Rp, the set of j-times continuously di↵er-
entiable functions f : X Ñ Y , C0

0

pX ,Y q the set
of uniformly continuous functions f : X Ñ Y , by
L8

pR•,Y q the set of functions f P C0

pR•,Y q such
that sup

✓•0

}fp✓q} † `8 and byLj

pR•,Y q, with j •

1, the set of f P C0

pR•,Y q such that
≥8
0

}fp✓q}

jd✓ †

`8. For each d P L8
pR•,Y q, we have the sup norm

of d defined as }d}8 :“ sup
t•0

}dptq}. Moreover, K
0

denotes the set of functions f P C0

pR•,R•q, strictly
increasing with fp0q • 0 and K denotes the set of
functions f P K

0

such that fp0q “ 0.
(N4) A saturation function sat

h

p¨q with levels h P Rn

°
is a function sat

h

pxq :“ psat
h1px

1

q, . . . , sat
hnpx

n

qq

T

such that for each i “ 1, . . . , n and x
i

P R:

sat
hipxi

q

#
x
i

|x
i

| § h
i

signpx
i

qh
i

otherwise.
(1)

(N5) For any vectors x P Rn, r P Rn

° and ✏ P R°, we
define

✏r – p✏r1 , ¨ ¨ ¨ , ✏rnq

T , ✏r ˛ x – p✏r1x
1

, ¨ ¨ ¨ , ✏rnx
n

q

T (2)

viz. ✏r ˛ x is the dilation of a vector x with weights r.
Note that for any x, y P Rn, r

1

, r
2

P Rn

° and ✏ P R°

✏r1 ˛ ✏r2 ˛ x “ ✏r2 ˛ ✏r1 ˛ x “ ✏r1`r2
˛ x, (3)

p✏r1 ˛ xq

T

p✏r2 ˛ yq “ p✏r2 ˛ xq

T

p✏r1 ˛ yq

“ p✏r1`r2
˛ xq

T y “ xT

p✏r1`r2
˛ yq (4)

(N6) for any vectors x, y P Rn we write x ® y if and
only if x

i

§ y
i

for all i “ 1, . . . , n. We retain the same
notation for matrices A,B P Rnˆn: A ® B if and only
if A

ij

§ B
ij

for all i, j “ 1, . . . , n. On the other hand
A • B (resp. A ° B) for matrices A,B P Rnˆn if and
only if A ´ B is positive semidefinite (resp. positive
definite).

3 Main assumptions and problem statement

Consider the system

9x “ fpxq – rA ` BF ` HCsx ` �pxq, (5)
y “ hpx, dq – Cx `  pxq ` d (6)
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with state x P Rn, measurement y P R and disturbance
d P R. The triple pA,B,Cq is in prime form:

A “

¨

˚̊
˚̊
˝

0 1 0 ¨ ¨ ¨ 0
0 0 1 ¨ ¨ ¨ 0
...

...
... ¨ ¨ ¨

...
0 0 0 ¨ ¨ ¨ 1
0 0 0 ¨ ¨ ¨ 0

˛

‹‹‹‹‚
, B “

¨

˚̊
˚̊
˝

0
0
...
0
1

˛

‹‹‹‹‚
, (7)

C “ p 1 0 ¨ ¨ ¨ 0 0 q (8)

with F P R1ˆn and H P Rnˆ1. Moreover, � and  are
locally Lipschitz continuous with �p0q “ 0,  p0q “ 0,
B�
Bx p0q “ 0 and B 

Bx p0q “ 0 so that 9x “ rA`BF `HCsx,
y “ Cx ` d, represents the linear approximation of
(5)-(6) around the origin. Motivations for considering
9x “ rA`BF `HCsx, y “ Cx` d as the linear approx-
imation of (5)-(6) around the origin rely in the fact that
any linear single-output system is equivalent under co-
ordinate transformations to 9x

1

“ pA`BF
1

`H
1

Cqx
1

`

BF
2

x
2

, 9x
2

“ H
2

Cx
1

` Gx
2

, y “ Cx
1

where pA,B,Cq

is in prime form and 9x
2

“ Gx
2

is the zero-dynamics.
Therefore, for simplicity and to focus on main results we
are neglecting in (5)-(6) the zero dynamics of its linear
approximation around the origin. We can also assume
without loss of generality that BTH “ 0.

We consider in (5)-(6) the class Dp�q of disturbances
d P L8

pR•,Rq such that }d}8 § � and uniformly con-
tinuous on their domain. The problem is to give an esti-
mate of the state of (5) using only the noisymeasurement
(6). Our assumptions on the class of systems (5)-(6) are
the following ones (see the appendix for few recalls on
incremental homogeneity in the upper bound which we
will abbreviate as i.h.u.b. throughout the paper):

(H0) (incremental homogeneity)
(i) CT and AT

p� ` HCq are incrementally ho-
mogeneous in the upper bound (i.h.u.b.) with
quadruples pr, r ´ g, g, CT 

U

q and, respectively,
pr, r ´ g, g, AT

p�
U

` H
U

Cqq, with �
U

p0, 0q “ 0 and
 
U

p0, 0q “ 0 for some H
U

P Rnˆ1,
(ii) pI ´ AAT

qp� ` BF q is i.h.u.b. with quadruple
pr, pI ´ AAT

qpr ` gq, g, pI ´ AAT

qp�
U

` BF
U

q for
some F

U

P R1ˆn,
(iii) the degrees g and weights r satisfy for each j “

2, . . . , n

2pg
j

´g
j´1

q`g
j´1

` r
j´1

§ r
j

´ g
j

§g
j´1

` r
j´1

,

(H1) (state boundedness) xp¨, x
0

q P L8
pR•,Rq for each

x
0

P Rn, where xpt, x
0

q is the solution of (5) with
initial condition x

0

.

Remark 1 Assumption (H0) captures a large class of
nonlinear systems (5)-(6) and it is suitable for charac-
terizing at the same time triangular and interlaced struc-
tures, in particular:

(i) lower triangular vector fields �:

�pxq – p�
1

px
1

q, ¨ ¨ ¨ ,�
n

px
1

, x
2

, . . . , x
n

qq

T

with  pxq “ 0, where each �
j

, j “ 1, . . . , n, is a sum

of terms having the form x
tj1
j1

¨ ¨ ¨x
tjl
jl

for some reals

t
ji • 0 such that

∞
i

t
ji ° 1. For example, in the case

of �pxq – pax
3
2
1

, bx2

1

x3

2

q

T , a, b P R, (H0) is met with
r “ p1, 1q

T , g “ p6, 2q

T ;
(ii) strict upper triangular vector fields �:

�pxq–p�
1

px
3

, . . . , x
n

q, ¨ ¨ ¨ ,�
n´2

px
n

q, 0, 0q

T

with  pxq “  
0

px
2

, . . . , x
n

q, where each �
j

, j “

1, . . . , n´ 2, and  
0

is a sum of terms having the form

x
tj1
j1

¨ ¨ ¨x
tjl
jl

for some reals t
ji • 0 such that

∞
i

t
ji ° 1.

For example in the case of �pxq – pax
3

x
4

, bx2

4

, 0, 0q

T

and  pxq – cx
2

x
4

, a, b, c P R, (H0) is met with
r “ p8, 6, 4, 1q

T , g “ p´1,´1,´1,´2q

T ;
(iii) homogeneous (in the classical sense: Rosier
(1998)) vector fields � , resp. functions  , with weights
r such that r

j`1

´ r
j

“ 2g
0

for all j “ 1, . . . , n´ 1 and
homogeneity degree 2g

0

, resp. 0. For example in the

case of �pxq – px
3{2
1

, ax
4{3
2

q

T and  pxq – 0, a P R,
(H0) is met with r “ p1, 3{2q

T , g “ p1{4, 1{4q

T .
(iv) non-triangular vector fields �, for example �pxq –

p0, x2

1

x
4

` x
3

, 0, 0q

T .

It is not di�cult to check for assumption (H0). In general,
it amounts to solve a set of algebraic inequalities in the
unknowns r P Rn

° and g P Rn. For example, if �pxq –
pax

3
2
1

, bx2

1

x3

2

q

T , a, b P R,  pxq – 0, F “ 0 and H “ 0 we
must have with r

1

, r
2

° 0

(a) 3

2

r
1

§ r
2

´ g
2

` g
1

for (i) of (H0), which

amounts to satisfy |p✏r1w1
1

q

3
2

´ p✏r1w2
1

q

3
2

| § |pw1
1

q

3
2

´

pw2
1

q

3
2

|✏r2´g2`g1 for all w1
1

, w2
1

P R and ✏ • 1;
(b) 2r

1

`3r
2

§ r
2

`g
2

`g
1

and 2r
1

`3r
2

§ r
2

`2g
2

for (ii)
of (H0), which amounts to satisfy |p✏r1w1

1

q

2

p✏r2w1
2

q

3

´

p✏r1w2
1

q

2

p✏r2w2
2

q

3

| § ✏r2`g2`g1
|pw1

1

q

2

´ pw2
1

q

2

||w1
2

|

3

`✏r2`2g2
|w2

1

|

2

|pw1
2

q

3

´pw2
2

q

3

| for allw1
1

, w2
1

, w1
2

, w2
2

P R
and ✏ • 1;

(c) 3g
2

´ g
1

§ r
2

´ r
1

§ g
2

` g
1

for (iii) of (H0).

Also, we should notice that if pr, gq is a solution of the
above set of inequalities, then pkr, kgq is another solution
for any k ° 0. Moreover, (iii) of (H0) implies that the
degrees tg

j

u

j“1,...,n

are non-increasing.

A technical motivation for (H0) is the following: under
(H0), for each fixed compact set ⌦ Ä Rn, containing
the origin, there exist L P Rn, symmetric and positive
definite P P Rnˆn and ↵ ° 0 such that the characteristic
polynomial of A ` BF ` HC ´ LC is Hurwitz and

px ´ ⇠q

TP rfpxq ´ fp⇠q ´ Lphpx, 0q ´ hp⇠, 0qqs

3



§ ´↵}x ´ ⇠}

2

P

(9)

for all x, ⇠ P ⌦. This means that, for each fixed compact

set ⌦ Ä Rn , 9⇠ “ fp⇠q ` Lpy ´ hp⇠, 0qq is an observer
for any state trajectory xptq of (5)-(6) with dptq ” 0 as
long as xptq and ⇠ptq remain in ⌦ for all times, i.e. a
semiglobal observer for (5)-(6) in the absence of mea-
surement disturbance. Condition (H0) is very close to be
necessary for solving an inequality of the form (9).

Remark 2 We want to stress the fact that globally con-
vergent observers designed in the absence of measurement
noise may show instability when used in the presence of
measurement noise. This implies that standard observer
design tools cannot be used for designing observers in the
presence of measurement noise. For example, consider
the system with two outputs and one input

9x
1

“ ´x
1

` 2, y
1

“ x
1

` d
1

9x
2

“ x
1

x
3

, y
1

“ x
2

` d
2

(10)
9x
3

“ ´x
1

x
2

` u, u “ sin t. (11)

If x
1

is constant, (10)-(11) is an harmonic oscillator with
a periodic input. Any solution xptq is bounded and the
input u does not cause resonance. An observer of the form

9⇠
1

“ ´⇠
1

` 2 ` py
1

´ ⇠
1

q

9⇠
2

“ ⇠
1

⇠
3

` py
2

´ ⇠
2

q (12)
9⇠
3

“ ´⇠
1

⇠
2

` u ` py
2

´ ⇠
2

q (13)

is globally convergent to xptq with d
1

ptq “ d
2

ptq ” 0.
However, if d

1

ptq ” ´x
1

ptq and d
2

ptq ” 0, with
⇠
1

p0q “ 1 (the same result is obtained for any ⇠
1

p0q with
lim

tÑ`8 d
1

ptq “ ´2 and lim
tÑ`8 d

2

ptq “ 0), we get
that ⇠

1

ptq ” 1 and }p⇠
2

ptq, ⇠
3

ptqq} Ñ `8 as t Ñ `8 (we
have a resonance condition for (12)-(13) at the frequency
of 1 rad/sec with the input at the same frequency).

Therefore, tools for observer design in the absence of
(measurement) disturbances cannot be directly extended
to a noisy measurement environment. To our knowledge,
only Ahrens & Khalil (2006) and, more recently, Prasov
& Khalil (2013) has considered the problem of semiglobal
observer design (i.e. state trajectories in a fixed compact
set) in the presence of measurement disturbances for sys-
tems (5)-(6) with �pxq “ Bppxq and  pxq “ 0. Follow-
ing Boizot et al. (2010), the e↵ect of measurement dis-
turbance on global observer design has been studied for
a class of lower triangular systems with bounded trajec-
tories and for a given class of observers in Sanfelice &
Praly (2011).

Remark 3 Homogeneity in the upper bound, while im-
plied by homogeneity (Rosier (1998)) as pointed out in
(iii) of remark 2, is conceptually di↵erent from homo-
geneity in the 8-limit (Andrieu et al. (2009)). Indeed,

this last notion characterizes homogeneous approxima-
tions (when x is large) while homogeneity in the upper
bound (Battilotti (2014)) characterizes homogeneous up-
per bounds (for large x). Moreover, homogeneity in the
upper bound allows for more flexibility in the choice of
the degrees (we have two vector degrees pd, hq instead of
the same degree d8 for each coordinate function). For
this specific reason triangular vector fields are homoge-
neous in the upper bound while not all triangular vec-
tor fields are homogeneous in the 8-limit. For example,
�pxq “ px

2

,´x
1

`x
2

p1´x2

1

x2

2

qq

T is not homogeneous in
the 8-limit but it is homogeneous in the upper bound with
weights r “ p1, 2q

T and degrees pd, hq “ pp9, 5q

T , p8, 3q

T

q.
Similar remarks can be repeated for local homogeneity
(Efimov & Perruquetti (2016)), which characterizes lo-
cal homogeneous approximations.‚

Remark 4 Assumption (H1) is somewhat restrictive.
However, many physical systems have this property (Van
Der Pol and Fitzhugh-Nagumo oscillators, Lorentz sys-
tems, . . .). A very simple relaxation of (H1) is obtained
for example by assuming additionally that � and  are
globally Lipschitz. Significant relaxations of (H1) will
be more naturally considered when the estimate of the
state is used for global stabilization of the system via out-
put feedback. In other words, for a system with input u
which is globally stabilizable by state feedback u “ ↵pxq

and after applying a feedback law u “ ↵p⇠q, where ⇠ptq
is an estimate of the state trajectory xptq, the closed-
loop system is expected to satisfy assumption (H1) when
}xptq ´ ⇠ptq} is bounded by some K8-class function � of
}xptq}, i.e. }xptq ´ ⇠ptq} § �p}xptq}q. The upper bound
}xptq} † ↵p}x

0

}q `�´1

p}xptq ´ ⇠ptq}q, for some K
0

-class
function ↵ and for t • 0, characterizes how the state
grows unbounded when we apply a feedback law u “ ↵p⇠q

instead of u “ ↵pxq: we relax (H1) exactly in this sense. ‚

4 The structure of the observer and main result

The observer we propose for (5)-(6) has the following
interconnected structure. The first part of the filter is
devoted to the estimation of x

9⇠ “ A⇠ ` pBF ` HCqsat
cz

r
p⇠q ` �psat

cz

r
p⇠qq

` L
z

ry ´ C⇠ ´  psat
cz

r
p⇠qqs, ⇠p0q :“ ⇠

0

, (14)

where

L
z

– kz2g1
pI ´ ATG

z

q

´1CT , G
z

– diagt�z2Ag
u (15)

with c, k ° 0 and diagonal positive definite � P Rnˆn

(specified in section 4.1), while the second part of the
filter is devoted to the gain adaptation and tuning of the
saturation levels

9z “ z´2|gn|�
´
z2pg1´r1q max

!
q
z

p⇠, yq (16)

´ hp�qz2pr1`g1´gnq`1

¯
, 0

)¯
, zp0q :“ z

0

• 1,
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where

�psq – s{

a
1 ` s2,

q
z

p⇠, yq – |y ´ C⇠ ´  psat
cz

r
p⇠qq|

2

´ 2�2 (17)

` z2pr1´g1q
}zg´r

˛ p⇠ ´ sat
cz

r
p⇠qq}

2.

and h P K (specified in section 4.1).

The estimator (14) is a copy of the system equations
(5), except for saturating estimates inside the terms
BF`HC`� and  , plus an innovation termL

z

ry´C⇠´

 psat
cz

r
p⇠qqs. Note also that the gain matrix L

z

and the
saturation levels are adapted according to the values of
z. The dynamics of z is implemented as a stable filter
forced by the term q

z

, which depends on the squared
norm of the output estimation error y´C⇠´ psat

cz

r
p⇠qq

and the mismatch between ⇠ and its saturated value
sat

cz

r
p⇠q, dynamically weighted by adaptation of z. As

we will see using the incremental properties in the up-
per bound of � ` BF ` HC and  , the trajectories of
(5)-(6)-(14)-(16) are shown to be defined and bounded
(the state x is bounded by (H1)) for all times, in particu-
lar the behavior of z is bounded in time from above and
away from zero (actually, it has a finite limit). Due to the
uniform continuity of the solutions and boundedness of
their time derivatives, the right-hand side of (16) tends
asymptotically to zero (by Barbalat’s lemma), which im-
plies that the limsup of q

z

p⇠, yq, as time tends to infin-
ity, is bounded by some K-class function of�, the upper
bound for }d}8, possibly depending on the limit value
of z. This leads to establish that also the limsup of the
norm of the estimation error is bounded by some K-class
function of �, possibly depending on the limit value of
z. More precisely, the main result of this paper is the
following. Let �

0

denote the vector of initial conditions
x
0

, ⇠
0

and z
0

• 1. Also, let d
t

denote the measurement
disturbance and let x

t

px
0

q, resp. ⇠
t

p�
0

, dq, z
t

p�
0

, dq, de-
note the solution of (5), resp. (14)-(16), ensuing from
initial condition x

0

, resp. �
0

with measurement distur-
bance d P Dp�q.

Theorem 5 Assume (H0) and (H1). There exist c, k °

0, h P K and diagonal positive definite � P Rnˆn such
that the solution x

t

px
0

q, ⇠
t

p�
0

, dq, z
t

p�
0

, dq of (5)-(6)-
(14)-(16) is defined and bounded for all t • 0, initial
conditions �

0

and measurement disturbance d P Dp�q.
In addition,

lim
tÑ`8

z
t

p�
0

, dq “ z8, (18)

lim sup
tÑ`8

}x
t

px
0

q´⇠
t

p�
0

, dq}

2

§

�
max

pP q�2

z8 p�q

↵2�
min

pP q

(19)

with

�
z8 p�q :“

´
}BF ` HC}

` sup
}w1}§2nc}zr8}

}w2}§2np
?
⌫z8 p�q`c}zr8}q

}�
U

pw
1

, w
2

q}

`L
z8 sup

}w1}§2nc}zr8}
}w2}§2np

?
⌫z8 p�q`c}zr8}q

} 
U

pw
1

, w
2

q}

¯a
⌫
z8 p�q

`

a
µ
z8 p�q}L

z8 ´ L} ` }L}�

µ
z8 p�q :“ hp�qz

2pr1`g1´gnq`1

8 ` 2�2,

⌫
z8 p�q :“ µ

z8 p�qz
2pmaxi ri´r1`g1´gnq
8 (20)

and L P Rn, symmetric and positive definite P P Rnˆn

and ↵ ° 0 such that

px ´ ⇠q

TP rfpxq ´ fp⇠q ´ Lphpx, 0q ´ hp⇠, 0qqs

§ ´↵}x ´ ⇠}

2

P

(21)

for all x, ⇠ P ⌦, where ⌦ Ä Rn is any compact set for
which x

t

px
0

q, ⇠
t

p�
0

, dq P ⌦ for all t • 0.˝

Remark 6 The inequality (21), which is exactly (9), is
instrumental only to obtain the bound (19) on the esti-
mation error and it is not needed in the observer design
(see next section). Under assumption (H0) and accord-
ing to Battilotti (2014), theorem V.1, there indeed exist
L P Rn, symmetric and positive definite P P Rnˆn and
↵ ° 0 (all depending on ⌦) such that (21) holds for all
x, ⇠ P ⌦.

Remark 7 As it results from (19) the limsup of the norm
of the estimation error is bounded by a K-class function
of �, which is an upper bound for the supremum norm
of d. The limsup of the norm of the estimation error can
be further reduced by replacing, in the equations of (16),
� with some �8 such that lim sup

tÑ`8 |d
t

| † �8: it
can be shown, following the same lines of the proof of
theorem 5, that the conclusions of theorem 5 remain true
with � replaced by �8. In other words, the sup norm
of the disturbance may be large, but the limsup of its
norm may be smaller, so that the limsup of the norm of
the estimation error is also smaller. Since we can take
�8 :“ lim sup

tÑ`8 |d
t

|`" for arbitrary ✏ ° 0, it follows
by letting ✏ Ñ 0 that lim sup

tÑ`8 }x
t

px
0

q´⇠
t

p�
0

, dq} “ 0
when lim sup

tÑ`8 |d
t

| “ 0.

4.1 Choice of the observer parameters

The observer (14)-(16) is characterized by the pa-
rameters c, k ° 0, h P K and diagonal positive def-
inite �. These quantities are chosen as follows. Let
�
U

, 
U

, F
U

, H
U

, r and g be as in assumption (H0) and
let � be the upper bound for the sup norm of the mea-
surement disturbance d. Towards the filter definition,
the following calculations should be accomplished:

(i) find k and � such that for some a ° 0

2aI § X pk,�q – 2pkCTC ` AT�Aq (22)
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´

”
2pI ` AT�qpBF

U

` H
U

Cq ` A ` AT�2

`2max
i•2

|g
i

|AT�
ı
pI ´ AT�q

´1

´pI ´ AT�q

´T

”
2pI ` AT�qpBF

U

` H
U

Cq ` A ` AT�2

`2max
i•2

|g
i

|AT�s

T

´ 2diagtr
1

, . . . , r
n

u.

Inequality (22) is alway solvable in the unknowns c, k and
�, on account of the fact that X pk,�q can be obtained
recursively as follows (recall that �

i,i

denotes the i-th
diagonal entry of �)

X pn´1q – 2�
n´1,n´1

,

X pn´jq–

»

– 2�
n´j,n´j

` Zpn´jq
1

pZpn´jq
2

q

T

Zpn´jq
2

X pn´j`1q

fi

fl,“ 2, . . . , n,

X p0q
“ X pk,�q (23)

with �
00

– k and Zpn´jq
2

,Zpn´jq
1

, j “ 2, . . . , n, are suit-
able functions of �

n´j`1,n´j`1

, . . . ,�
n´1,n´1

. There-
fore, it is su�cient to pick any �

n´1,n´1

° 0 and for
each increasing j “ 2, . . . , n select �

n´j,n´j

° 0 such

that X pn´jq
° 0. Finally, set a :“ �minpX p0qq

2

.

(ii) define c ° 0 as follows: if � P C0

pR•,Rnˆn

• q and
 P C0

pR•,R1ˆn

• q are matrices for which �p0q “ 0,
 p0q “ 0 and for all s • 0

�
U

pw, zq ® �psq,@w, z P Rn : }z} § ns, }w} § ns, (24)
 
U

pw, zq ®  psq,@w, z P Rn : }z} § ns, }w} § ns (25)

(we recall that ® for matrices means § for each entry),
calculate c ° 0 such that

aI §⌥pc, k,�q – X pk,�q

´ 2rpI ` AT�q�pcq ` kCT pcqspI ´ AT�q

´1

´ 2pI ´ AT�q

´T

rpI ` AT�q�pcq ` kCT pcqs

T . (26)

The number c always exists on account of (26) and conti-
nuity of �

U

and  
U

with �
U

p0, 0q “ 0 and  
U

p0, 0q “ 0.

(iii) define h P K as follows:

⇥ :“ 9}pI ´ AT�q

´1

}

2

` 2
›››CT

pC ` 2 pcqqpI ´ AT�q

´1

¯›››
2

(27)

hp�q :“ 10k2�2⇥{a2. (28)

4.2 Example and simulations

The system

9x
1

“ x
2

9x
2

“ ´x
1

` p1 ´ x2

1

x2

2

qx
2

, y “ x
1

` d (29)

with measurement disturbance d
t

P r´4, 4s satisfies as-
sumptions (H0) and (H1) of theorem 5 with r

1

“ 1, r
2

“

2, g
1

“ 8 and g
2

“ 3. Notice that �pxq :“ px
2

,´x
1

`p1´

x2

1

x2

2

qx
2

q

T is neither homogeneous nor homogeneous in
the 8-limit.

Fig. 1. State x1ptq (continuous line) and its estimate (dotted

line) versus time with dt “ e

´t
sinp10tq.

Fig. 2. State x2ptq (continuous line) and its estimate (dotted

line) versus time with dt “ e

´t
sinp10tq (tail).

An observer has been designed according to our proce-
dure and a simulation has been worked out with initial
conditions xp0q “ p5,´5q

T , ⇠p0q “ p0, 0q

T , zp0q “ 1 and
� “ 4. The saturation levels of the estimates are set
with c “ 0.1, the diagonal elements of � are respectively
8 and 30 and k “ 100. The states x

1,t

, x
2,t

together with
their estimates are shown versus time in Figs. 1,2 with
vanishing disturbance d

t

“ e´p1{2qtsinp10tq, in Figs. 3,4
with persistent disturbance d

t

“ sinp10tq and in Figs.
5,6 with d

t

“ sinp10tq ` 3sinp2tq ´ sinp4tq ` sinp20tq.
The last disturbance configuration has a structure which
tends to that of a general periodic disturbance as the
number of harmonics tends to infinity. Moreover, Figs.
1,2 refer to the case in which lim sup

tÑ`8 |d
t

| “ 0.

In Figs. 7 and 8 we have shown the e↵ect on the estima-
tion errors of a disturbance d

t

“ p0.1` 3.9e´2t

qsinp10tq
with }d}8 “ 4 but lim sup

tÑ`8 |d
t

| “ 0.1 †† 4. In
our observer we replaced � “ 4 with �8 “ 0.2, which
is a tighter upper bound for lim sup

tÑ`8 |d
t

|. The sim-
ulations show that the estimation error is significantly

6



Fig. 3. State x1ptq (continuous line) and its estimate (dotted

line) versus time with dt “ sinp10tq.

Fig. 4. State x2ptq (continuous line) and its estimate (dotted

line) with dt “ sinp10tq.

Fig. 5. State x1ptq (continuous line) and

its estimate (dotted line) versus time with

dt “ sinp10tq ` 3cosp2tq ´ sinp4tq ` cosp20tq (tail).

improved with respect to the case of Figs. 3,4 in which
}d}8 “ lim sup

tÑ`8 |d
t

| “ 1: the estimation error for
x
1

is reduced by a factor 2 while the estimation error for
x
2

is reduced by a factor 20.

Fig. 6. State x2ptq (continuous line) and its estimate (dotted

line) with dt “ sinp10tq`3cosp2tq´sinp4tq`cosp20tq (tail).

Fig. 7. State x1ptq (continuous line) and its estimate (dotted

line) versus time with dt “ p0.1 ` 3.9e

´2tqsinp10tq (tail).

Fig. 8. State x2ptq (continuous line) and its estimate (dotted

line) with dt “ p0.1 ` 3.9e

´2tqsinp10tq (tail).

4.3 Proof of the theorem 5

For simplifying the main passages of the proof, we will
consider  ” 0 in (6) (this term can be treated in the
same way as �) which requires to set  ” 0 in (26).
Let c, k, hp�q, �pcq and � be selected as in section 4.1.
Consider the following coordinate transformation

px, ⇠, zq fiÑ px, ⌘, zq : ⌘ – X´1

z

px ´ ⇠q, (30)

7



with X
z

– pI ´ATG
z

q

´1 (the identity matrix is nˆn).
Recalling thatL

z

:“ kz2g1X
z

CT and using the identities

CCT

“ 1, ATG
z

ACT

“ 0, CX
z

“ C,

ATG
z

AAT

“ ATG
z

, X
z

´ I “ ATG
z

X
z

and d

dz

pATG
z

q “

2

z

diagtATAguATG
z

, after few pas-
sages (5)-(6)-(14)-(16) reads out in ⌘-coordinates as

9x
t

“ pA ` BF ` HCqx
t

` �px
t

q,

9⌘
t

“ ´⌃
zt⌘t

` ⇡
zt

´
X´1

z

x
t

¯
´ ⇡

zt

´
´ ⌘

t

` X´1

z

x
t

¯

´ 2
9z
t

z
t

diagtATAguATG
ztXzt⌘t ` ⇢

ztpx
t

, d
t

q (31)

9z
t

“ z
´2|gn|
t

�
´
z
2pg1´r1q
t

max
!
q
ztp´X

zt⌘t ` x
t

, y
t

q

´ hp�qz
2pr1`g1´gnq`1

t

, 0
)¯

,

with

⌃
z

– kz2g1CTC ` ATG
z

A (32)

⇡
z

pw
1

q – rI ´ ATG
z

s

”
pBF ` HCqpsatpczr, X

z

w
1

qq

` �psatpczr, X
z

w
1

qq

ı
` pA ´ ATG2

z

qX
z

w
1

, (33)

⇢
z

pw
1

, w
2

q – rI´ATG
z

s

”
pBF `HCqpw

1

´satpczr, w
1

qq

`�pw
1

q´�
´
satpczr, w

1

q

¯ı
`kz2g1CTw

2

(34)

We split up the proof into five steps.

(A) The solutions ⌘
t

and z
t

have infinite escape time.

The solutions ⌘
t

and z
t

of (31) are defined over some
maximal extension intervals r0, T

⌘

q and, respectively,
r0, T

z

q, where T
⌘

, T
z

§ `8. Notice that 9z
t

• 0 at each
t P r0, T

z

q. From z
0

• 1 it follows that

z
t

• 1 (35)

for all t P r0, T
z

q.

Since �psq § 1 for all s • 0, we have 0 § 9z
t

§ z
´2|gn|
t

for each t P r0, T
z

q. It follows that for each t P r0, T
z

q

1 § z
t

§

´
p2|g

n

| ` 1qt ` z
2|gn|`1

0

¯ 1
2|gn|`1

(36)

0 § 9z
t

§ z
´2|gn|
t

§ 1. (37)

By letting t Ñ T´
z

in (36), it follows that T
z

“ `8 and
(35) and (36)-(37) hold for all t • 0.

Also, by integration over r0, ts and subsequent majoriza-
tion of the second equation in (31) we can see that also
T
⌘

“ `8, with r0, T
⌘

q being the maximal extension in-
terval of ⌘

t

. Indeed, as a consequence of (i) and (ii) of
lemma 12 and the definition of incremental homogeneity
in the upper bound,

⌃
z

pzr ˛ wq “ zr`g
˛

´
⌃pzg ˛ wq

¯
, @w P Rn, z • 1, (38)

AA
⇡
z

´
zr ˛ w1

¯
´ ⇡

z

´
zr ˛ w2

¯EE
(39)

®zr`g
˛

´
⇧

U

AA
zg ˛ pw1

´w2
q

EE¯
,@w1, w2

P Rn, z • 1,

(recall that ® means § componentwise and xx¨yy means
| ¨ | componentwise: see notation section) where

⌃– kCTC ` AT�A, (40)

⇧
U

–
”
2pI ` AT�qpBF

U

`H
U

C`�pcqq`A`AT�2
ı
X

U

X
U

“: pI ´ AT�q

´1. (41)

Since x P L8
pR•,Rn

q (consequence of (H1)) and
}d}8 † `8 with (36)-(39) and on account of lemma 10,
by integrating the second equation of (31) over r0, ts for
each t P r0, T

⌘

q we have

}⌘
t

} § }⌘
0

} `

´
sup

0§s§t

}⌃
zs}

¯ ª
t

0

}⌘
s

}ds

`

´
sup

0§s§t

}zr`g
s

}

¯´
sup

0§s§t

}zg
s

}

¯
}⇧

U

}

ª
t

0

}⌘
s

}ds

`}⇢
z

px, dq}8t ` 2}ATAg}

´
sup

0§s§t

}ATG
zsXzs}

¯ ª
t

0

}⌘
s

}ds

:“ �
1

ptq ` �
2

ptq

ª
t

0

}⌘
s

}ds (42)

with �
1

, �
2

P K
0

. It follows by a generalized Gronwall
inequality (Beesack (1975)) that

}⌘
t

} § �
1

ptq ` �
2

ptq

ª
t

0

�
1

psqe
≥t
s �2prqdrds

for all t P r0, T
⌘

q. By letting t Ñ T´
⌘

above, we conclude
that T

⌘

“ `8.

(B) A Lyapunov function for the estimation error sys-
tem.

Let V
z

p⌘q – }z´r
˛ ⌘}

2. We evaluate the time derivative
of V

z

along the trajectories of (31):

9V
zt

ˇ̌
ˇ
p31q

“

p1qhkkkkkkkkkikkkkkkkkkj

´

BV
z

B⌘

ˇ̌
ˇ
⌘“⌘t
z“zt

⌃
zt⌘t

8



`

p2qhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj
BV

z

B⌘

ˇ̌
ˇ
⌘“⌘t
z“zt

!
⇡
zt

´
pX

ztq

´1x
t

¯
´ ⇡

zt

´
´ ⌘

t

` pX
ztq

´1x
t

¯)

´

p3qhkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkj

2
9z
t

z
t

BV
z

B⌘

ˇ̌
ˇ
⌘“⌘t
z“zt

diagtATAguATG
ztXzt⌘t

`

p4qhkkkkkkkkkkikkkkkkkkkkj
BV

z

B⌘

ˇ̌
ˇ
⌘“⌘t
z“zt

⇢
z

px
t

, d
t

q `

p5qhkkkkkkkkikkkkkkkkj
BV

z

Bz

ˇ̌
ˇ
⌘“⌘t
z“zt

p⌘
t

q 9z
t

(43)

In many occasions, we will exploit the monotonicity
of the degrees tg

j

u

j“1,...,n

, i.e. g
i`1

§ g
i

for all i “

1, . . . , n ´ 1, which is a consequence of (iii) in (H0). We
begin with majorizing the term (1) in (43). On account
of (38) with w – z´r

˛ ⌘, for all t • 0

´

BV
z

B⌘

ˇ̌
ˇ
⌘“⌘t
z“zt

⌃
zt⌘t

“ ´2pz´r
t

˛ z´r
t

˛ ⌘
t

q

T⌃
ztpzr

t

˛ z´r
t

˛ ⌘
t

q (44)

“ ´2pz´r
t

˛ ⌘
t

q

T

´
z´r
t

˛ ⌃
ztpzr

t

˛ z´r
t

˛ ⌘
t

q

¯

§ ´2xxzg´r
t

˛ ⌘
t

yy

T⌃xxz´r`g
t

˛ ⌘
t

yy “ ´2}zg´r
t

˛ ⌘
t

}

2

⌃

(in the second and third passages we used properties
(3)-(4)). Next, we majorize the term (2) in (43). On

account of (39) with w1 – z´r
˛

´
pX

z

q

´1x
¯
and w2 –

z´r
˛

´
´ ⌘ ` pX

z

q

´1x
¯
, for all t • 0

BV
z

B⌘

ˇ̌
ˇ
⌘“⌘t
z“zt

!
⇡
zt

´
pX

ztq

´1x
t

¯
´ ⇡

zt

´
´ ⌘

t

` pX
ztq

´1x
t

¯)

“ 2pz´r
t

˛ z´r
t

˛ ⌘
t

q

T

!
⇡
zt

´
zr
t

˛ z´r
t

˛

´
pX

ztq

´1x
t

¯¯

´⇡
zt

´
zr
t

˛ z´r
t

˛

´
´ ⌘

t

` pX
ztq

´1x
t

¯¯)
(45)

§ 2xxz´r
t

˛ ⌘
t

yy

T

!
z´r
t

˛

AA
⇡
zt

´
zr
t

˛ z´r
t

˛

´
pX

ztq

´1x
t

¯¯

´⇡
zt

´
zr
t

˛ z´r
t

˛

´
´ ⌘

t

` pX
ztq

´1x
t

¯¯EE)

§ 2xxzg´r
t

˛ ⌘
t

yy

T⇧
U

xxzg´r
t

˛ ⌘
t

yy “ }zg´r
t

˛ ⌘
t

}

2

⇧U`⇧

T
U

(in the second and third passages we used properties (3)-
(4)). Next, we majorize the term (3) in (43). Notice that
by monotonicity of the degrees tg

j

u

j“1,...,n

xxz´r´g
˛ ⌘yy®z´2gn

xxzg´r
˛ ⌘yy®z2|gn|

xxzg´r
˛ ⌘yy (46)

z´2|gn|
xxz´r

˛ ⌘yy ® xxzg´r
˛ ⌘yy (47)

for all ⌘ P Rn and z • 1 and, moreover, by (v) of
lemma 12, ATG

z

X
z

is i.h.u.b. with quadruple pr, r ´

g, g, AT�X
U

q:

AA
ATG

z

X
z

´
zr ˛ w1

´ zr ˛ w2
¯EE

®zr´g
˛

´
AT�X

U

AA
zg ˛ pw1

´w2
q

EE¯
,

@w1, w2
P Rn, z • 1.

Using these facts, for all t • 0

2
ˇ̌
ˇ

9z
t

z
t

ˇ̌
ˇ
ˇ̌
ˇ
BV

zt

B⌘

ˇ̌
ˇ
⌘“⌘t
z“zt

diagtATAguATG
ztXzt⌘t

ˇ̌
ˇ

§ 4max
i•2

|g
i

|

ˇ̌
ˇ

9z
t

z
t

ˇ̌
ˇ
ˇ̌
ˇpz´r

t

˛z´r
t

˛⌘
t

q

TATG
ztXztpzr

t

˛z´r
˛⌘

t

q

ˇ̌
ˇ

§ 4
ˇ̌
ˇ

9z
t

z
t

ˇ̌
ˇmax

i•2

|g
i

|xxz´r´g
t

˛ ⌘yy

TAT�X
U

xxz´r`g
t

˛ ⌘
t

yy

§ 2
ˇ̌
ˇ

9z
t

z
t

ˇ̌
ˇmax

i•2

|g
i

|z
2|gn|
t

}zg´r
t

˛⌘}

2

A

T
�XU`X

T
U�A

§ 2max
i•2

|g
i

|}z´r`g
t

˛⌘}

2

A

T
�XU`X

T
U�A

(48)

(in the second and third passages we used properties (3)-
(4), in the third we used (46) while (37) in the fourth
passage). Next, we majorize the term (4) in (43). By
Young’s inequality and using properties (3)-(4) together
with }d}8 § �

ˇ̌
ˇ
BV

zt

B⌘

ˇ̌
ˇ
⌘“⌘t
z“zt

⇢
ztpx

t

, d
t

q

ˇ̌
ˇ (49)

§

a

2
}zg´r

t

˛⌘
t

}

2

`

4

a
}z´g´r

t

˛�
ztpx

t

q}

2

`

4k2�2

a
z
2pg1´r1q
t

with

�
z

pxq – rI ´ ATG
z

s

”
pBF `HCqpx´satpczr, xqq

`�pxq´�
´
satpczr, xq

¯ı
.

Finally, we majorize the term (5) in (43). On account of
(37) and (47) we also have

ˇ̌
ˇ
BV

z

Bz

ˇ̌
ˇ
⌘“⌘t
z“zt

9z
t

ˇ̌
ˇ “ 2

ˇ̌
ˇ

9z
t

z
t

ˇ̌
ˇ}z´r

t

˛ ⌘
t

}

2

diagtr1,...,rnu

§ 2}zg´r
t

˛ ⌘
t

}

2

diagtr1,...,rnu. (50)

Collecting (44)-(45) and (48)-(50), upon noting that
with ⌃, ⇧

U

in (40) and ⌥ in (26) (with  ” 0 by our
simplifying assumption  ” 0)

aI § ⌥ “ 2⌃´ 2max
i•2

|g
i

|rAT�X
U

` XT

U

�As

´r⇧
U

`⇧T

U

s ´ 2diagtr
1

, . . . , r
n

u,

we obtain for all t • 0

9V
zt

ˇ̌
ˇ
p31q

§ ´

a

2
}zg´r

t

˛ ⌘
t

}

2

`

4

a
}z´g´r

t

˛ �
ztpx

t

q}

2

`

4k2�2

a
z
2pg1´r1q
t

(51)
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and using the monotonicity of the degrees tg
j

u

j“1,...,n

,

9V
zt

ˇ̌
ˇ
p31q

§ ´

a

2
z2gn
t

V
zt `

4

a
}z´g´r

t

˛ �
ztpx

t

q}

2

`

4k2�2

a
z
2pg1´r1q
t

(52)

(C) We claim z P L8
pR•,R•q. Since z

t

is non-
decreasing for t • 0, we have either lim

tÑ`8 z
t

† `8

or lim
tÑ`8 z

t

“ `8. Assume by absurd that

lim
tÑ`8

z
t

“ `8 (53)

Pick z̄ ° 1 and T̄ ° 0 such that z
t

• z̄ for all t • T̄ and

satpczr
t

, x
t

q “ x
t

, @t • T̄ (54)

and, consequently,

�
ztpx

t

q “ 0, @t • T̄ . (55)

Directly from (i) and (iii) of lemma 12, for all x, ⌘ P Rn

and z • 1

AA

z

´
pX

z

q

´1x
¯

´ 
z

´
´ ⌘ ` pX

z

q

´1x
¯EE

® zr´g
˛

AA
3X

U

pzg´r
˛ ⌘q

EE
, (56)

where


z

pwq – ´X
z

w ` satpczr, X
z

wq.

Throughout the remaining proof we will denote
q
z

p´X
z

⌘ ` x, yq simply by q
z

. Recalling the definition
of q

z

in (17) and ⇥ in (27) (with  ” 0 by our simpli-
fying assumption  ” 0 and taking into account that
CX

U

“ C), we have for all t • T̄

z
2pg1´r1q
t

q
zt

§

›››zg´r
t

˛

”
´ X

zt⌘t ` x
t

´ sat
´
czr

t

,´X
zt⌘t ` x

t

¯ı›››
2

`z
2pg1´r1q
t

´
}C⌘

t

` d
t

}

2

´ 2�2

¯

“

›››zg´r
t

˛

”
´ X

zt⌘t ` sat
´
czr

t

, x
t

¯

´sat
´
czr

t

,´X
zt⌘t ` x

t

¯ı›››
2

`z
2pg1´r1q
t

´
}C⌘

t

` d
t

}

2

´ 2�2

¯

§

›››zg´r
t

˛

AA

z

´
pX

ztq

´1x
t

¯

´
z

´
´ ⌘

t

` pX
ztq

´1x
t

¯EE›››
2

`2z2pg1´r1q
t

}C⌘
t

}

2

§ p9}X
U

}

2

` 2}CTC}

2

q}zg´r
t

˛ ⌘
t

}

2

:“ ⇥}zg´r
t

˛ ⌘
t

}

2 (57)

(in the second passage we used (54), in the third (56)
and properties (3)-(4)). From here, on account of the
monotonicity of the degrees tg

j

u

j“1,...,n

z
2pg1´r1q
t

q
zt § ⇥z2g1

t

V
zt (58)

Now, let

W
z

:“ z2pg1´gnq`1,

R :“
!

pz, ⌘q P r1,`8q ˆ Rn : V
z

†

hp�qW
z

⇥

)
. (59)

Also, let s • T̄ any time at which pz
s

, ⌘
s

q P R and
t
s

:“ inftt • s : pz
t

, ⌘
t

q R Ru (i.e. the first exit time of
pz

t

, ⌘
t

q fromR). We claim that t
s

“ `8. Indeed, assume

that t
s

† `8. Since V
zt †

hp�qWzt
⇥

for all t P rs, t
s

q (by
definition of t

s

) and using (58), for all t P rs, t
s

q we have

z´2r1
t

q
zt

⇥
§ V

zt †

hp�qW
zt

⇥

and, consequently, q
ztz

´2pg1´gn`r1q´1

t

† hp�q. From
this with pz

t

, ⌘
t

q P R for all t P rs, t
s

q, it follows 9z
t

“ 0
and, therefore, 9W

zt “ 0 for all t P rs, t
s

q. Moreover, di-
rectly from (52) with (55) and by definition of hp�q in
(28),

hp�q

⇥
W

zt ° V
zt •

4hp�q

5⇥
W

zt ñ

9V
zt |p31q § 0. (60)

It follows from (60) that V
zt § maxtV

zs ,
4hp�q
5⇥

W
zsu for

all t P rs, t
s

q. This implies that

V
zt § maxtV

zs ,
4hp�q

5⇥
W

zsu †

hp�qW
zs

⇥
“

hp�qW
zt

⇥

for all t P rs, t
s

q. By letting t Ñ t´
s

and by continuity, we

obtain V
zts

§ maxtV
zs ,

4hp�q
5⇥

W
zsu †

hp�qWzts
⇥

which
contradicts the definition of t

s

.

We conclude that the set R is forward invariant for (31)
and that z

t

remains constant when pz
t

, ⌘
t

q enters the set
R. If pz

t0 , ⌘t0q R R at some t
0

• T̄ , either pz
t1 , ⌘t1q P R

for some t
1

° t
0

(and therefore for all t • t
1

by forward
invariance ofR) or pz

t

, ⌘
t

q R R for all t • t
0

. If pz
t1 , ⌘t1q P

R for some t
1

° t
0

then we get a contradiction with
(53) since z

t

“ z
t1 † `8 for all t • t

1

. We remain with
discussing the case pz

t

, ⌘
t

q R R for all t • t
0

. In this case,

V
zt •

hWzt
⇥

for all t • t
0

and directly from (51) with (55)

9V
zt

ˇ̌
ˇ
p31q

§ ´

a

2
}zg´r

t

˛ ⌘
t

}

2

`

2zgn
t

5
hp�qW

zt

§ ´

a

10
}zg´r

t

˛ ⌘
t

}

2

`

2zgn
t

5

´
´ V

zt `

hp�qW
zt

⇥

¯

§ ´

a

10
}zg´r

t

˛ ⌘
t

}

2. (61)
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which by integration over rt
0

,`8q gives for all t • t
0

ª
t

t0

}zg´r
⌧

˛ ⌘
⌧

}

2d⌧ §

10

a
V
zt0

(62)

On the other hand, since � is monotone increasing, with
�psq § s for all s • 0, and on account of (57),

9z
t

§⇥}zg´r
t

˛ ⌘
t

}

2 (63)

which, together with (62), gives for all t • t
0

z
t

§ z
t0 `

10⇥

a
V
zt0

(64)

which contradicts (53). Therefore, lim
tÑ`8 z

t

:“ z8 †

`8 which proves claim (C).

(D) We claim lim sup
tÑ`8q

ztp⇠t, ytq§�p�qz
2pr1̀ g1́ gnq̀ 1

8 .

From (52) and z P L8
pR•,R•q and x P L8

pR•,Rn

q

(claim (C) and assumption (H1)), we have

9V
zt |p31q § ´

a}z}

´2|gn|
8
4

V
zt ` N}x}8,}z}8,�

for all t • 0 and for some N}x}8,}z}8,�

° 0 which de-
pends only on the sup norms }x}8, }z}8 and �. This
implies that

V
zt § maxtV

z0 ,
4}z}

2|gn|
8
a

N}x}8,}z}8,�

u (65)

for all t • 0 and, therefore, V
z

p⌘q P L8
pR•,R•q. Since

z P L8
pR•,R•q (claim (C)), we conclude that ⌘ P

L8
pR•,Rn

q and, therefore, ⇠ P L8
pR•,Rn

q (see the
change of coordinates (30)).

Set

↵
z

p⇠, yq :“ max
!
q
z

p⇠, yq ´ hp�qz
2pr1`g1´gnq`1

t

, 0
)
.

On account of the fact that ⇠, x P L8
pR•,Rn

q

and z P L8
pR•,R•q, also 9x, 9⇠ P L8

pR•,Rn

q with
9z P L8

pR•,Rq so that x, ⇠ P C0

0

pR•,Rn

q and
z P C0

0

pR•,R•q. Since z P L8
pR•,R•q, by integra-

tion of the 9z
t

equation we get ↵
z

p⇠, yq P L8
pR•,R•q X

L1

pR•,R•q. If we prove that also ↵
z

p⇠, yq P C0

0

pR•,R•q

it follows

lim
tÑ`8

↵
ztp⇠

t

, y
t

q “ 0 (66)

by virtue of Barbalat’s lemma. In order to prove that
↵
z

p⇠, yq P C0

0

pR•,R•q it is su�cient to prove that
q
z

p⇠, yq P C0

0

pR•,Rq (z� , � P R, is uniformly continuous

since z is uniformly continuous and bounded from above
and below with bounded derivative and maxt¨, 0u is uni-
formly continuous since it is globally Lipschitz). First of
all, satpczr, ⇠q P C0

0

pR•,Rn

q: indeed, using (i) of lemma
10, lemma 11 and the triangle inequality with the uni-
form continuity of ⇠ and zr, for each " ° 0 we always
find �, ⌘

1

, ⌘
2

° 0 such that for all t
2

, t
1

• 0 : |t
2

´ t
1

| § �
we have

}satpczr
t2
, ⇠

t2q ´ satpczr
t1
, ⇠

t1q}

§ }satpczr
t2
, ⇠

t2q ´ satpczr
t2
, ⇠

t1q}

`}satpczr
t2
, ⇠

t1q ´ satpczr
t1
, ⇠

t1q}

§ 2}⇠
t2 ´ ⇠

t1} ` c}zr
t2

´ zr
t1

} § 2⌘
1

` c⌘
2

† "

which proves that satpczr, ⇠q P C0

0

pR•,Rn

q and also
zg´r

˛ satpczr, ⇠q P C0

0

pR•,Rn

q. Finally, y P C0

0

pR•,Rq

since d P C0

0

pR•,Rq and ⇠, x P L8
pR•,Rn

q. This proves
that q

z

p⇠, yq P C0

0

pR•,Rq being q
z

p⇠, yq the product of
uniformly continuous functions.

From (66) (recall that lim sup
tÑ`8 a

t

§ lim sup
tÑ`8pa

t

´b
t

q ` lim sup
tÑ`8 b

t

when lim sup
tÑ`8pa

t

´ b
t

q,
lim sup

tÑ`8 b
t

† `8) it follows

0 • lim sup
tÑ`8

!
q
ztp⇠

t

, y
t

q ´ �p�qz
2pr1`g1´gnq`1

t

)

• lim sup
tÑ`8

q
ztp⇠

t

, y
t

q ´ �p�q lim sup
tÑ`8

z
2pr1`g1´gnq`1

t

(67)

This gives (recall that z
t

is nondecreasing with
lim

tÑ`8 z
t

† `8 by claim (C))

0 • lim sup
tÑ`8

q
ztp⇠

t

, y
t

q ´ �p�qz
2pr1`g1´gnq`1

8 (68)

which finally implies (D).

(E) An upper bound for the limsup of }x
t

´ ⇠
t

}

2. As
a consequence of claim (D) and definition of q

z

, since
lim

tÑ`8 z
t

“ z8 P r1,`8q and using the monotonicity
of the degrees tg

j

u

j“1,...,n

hp�qz
2pr1`g1´gnq`1

8 • lim sup
tÑ`8

q
z

p⇠, yq

“ ´2�2

` lim sup
tÑ`8

|y ´ C⇠|

2

` lim sup
tÑ`8

z2pr1´g1q
}zg´r

˛ p⇠ ´ sat
cz

r
p⇠qq}

2

• ´2�2

` lim sup
tÑ`8

|y ´ C⇠|

2

`z
2pr1´maxi ri´g1`gnq
8 lim sup

tÑ`8
}⇠ ´ sat

cz

r
p⇠q}

2

so that

lim sup
tÑ`8

|y ´ C⇠|

2
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§ hp�qz
2pr1`g1´gnq`1

8 ` 2�2

“ µ
z8 p�q,

lim sup
tÑ`8

}⇠ ´ sat
cz

r
p⇠q}

2

§ µ
z8 p�qz

2pmaxi ri´r1`g1´gnq
8 “ ⌫

z8 p�q (69)

Let be ⌦ Ä Rn be a compact set including the origin
such that x

t

, ⇠
t

P ⌦ for all t • 0. Under assumption (ii)
and according to Battilotti (2014), theorem V.1, there
exist L P Rn, symmetric and positive definite P P Rnˆn

and ↵ ° 0 (all depending on ⌦) such that (21) (with
 ” 0) holds for all x, ⇠ P ⌦. On the other hand, (5)-(6)
can be rewritten as follows

9x
t

“ pA ` BF ` HCqx
t

` �px
t

q, (70)
9⇠
t

“ pA ` BF ` HCq⇠
t

` �p⇠
t

q ` LCpx
t

´ ⇠
t

q ` W
t

,

where

W :“ pBF ` HCqpsat
cz

r
p⇠q ´ ⇠q

`�psat
cz

r
p⇠qq ´ �p⇠q ` pL

z

´ Lqpy ´ C⇠q ` Ld.

Using (69) and the incremental properties of � (as-
sumption (i) of (H0)), recalling that lim sup

tÑ`8 a
t

b
t

§

lim sup
tÑ`8 a

t

lim sup
tÑ`8 b

t

and lim sup
tÑ`8 fpb

t

q

§ sup}b}§2n lim suptÑ`8 }ct} fpbq if }b
t

} § n}c
t

} for all

t • 0 with b
t

, c
t

P Rn),

lim sup
tÑ`8

}W
t

} §

´
}BF ` HC}

` sup
}w1}§2nc}zr8}

}w2}§2np
?
⌫z8 p�q`c}zr8}q

}�
U

pw
1

, w
2

q}

¯a
⌫
z8 p�q

`

a
µ
z8 p�q}L

z8 ´ L} ` }L}� “ �
z8 p�q (71)

Pick ✏ ° 0 and let T
✏

° 0 be such that

}W
t`T✏} § �

z8 p�q ` ✏, @t • 0 (72)

(which always exists by (71)). With V
t

“ }x
t

´ ⇠
t

}

2

P

we
have from (21) and (70) and for all t • 0

9V
t`T✏ |p70q § ´↵V

t`T✏ `

�
max

pP q

↵
}W

t`T✏}
2,

so that, on account of (72),

�
min

pP q}x
t`T✏ ´ ⇠

t`T✏}
2

§ V
t`T✏

§ V
T✏e

´↵t
`

�
max

pP qp�
z8 p�q`✏q2

↵

ª
t`T✏

T✏

e´↵pt`T✏´sqds

“ V
T✏e

´↵t
`

�
max

pP qp�
z8 p�q`✏q2

↵2

r1 ´ e´↵t
s

Passing to the limsup on both sides of the above inequal-
ity, we get

lim sup
tÑ`8

}x
t

´ ⇠
t

}

2

“ lim sup
tÑ`8

}x
t`T✏ ´ ⇠

t`T✏}
2

§

�
max

pP qp�
z8 p�q`✏q2

↵2�
min

pP q

(73)

which, on account of ✏ being arbitrary, gives the conclu-
sions of theorem 5.

5 Conclusions

We have presented a class of nonlinear observers for sys-
tems with noisy measurements and bounded trajecto-
ries. The main ingredients are: domination techniques
of the incrementally homogeneous (in the upper bound)
nonlinearities of the observation error system with its
linear approximation, gain adaptation and estimate sat-
urations with dynamically tuned saturation levels. The
adaptation of the gains and saturation levels is imple-
mented through a stable filter which regulates its out-
put according to a suitable function of the squared norm
of the measured output estimation error. Our observer
guarantees an upper bound for the limsup of the norm
of the estimation error depending on the limsup of the
norm of the measurement noise. In future research we
will consider disturbances a↵ecting also the state equa-
tions and unbounded state trajectories.

A Incremental homogeneity in the generalized
sense: a review

The notion of (incremental) homogeneity has been intro-
duced in Battilotti (2014) in the context of semi-global
stabilization and observer design problems. Here we re-
call this notion in a slightly more general form.

A.1 Definitions

Definition 8 Aparametrized function �
z

P C0

pRn,Rl

q,
z P R°, is said to be incrementally homogeneous (i.h.)
with quadruple pr, d, h,�q if there exist d P Rl, h P Rn,
r P Rn

° and � P C0

pRn

ˆRn,Rlˆn

q such that for all ✏ ° 0
and w1, w2

P Rn

�
✏

p✏r ˛ w1
q ´ �

✏

p✏r ˛ w2
q

“ ✏d ˛

´
�pw1, w2

q

´
✏h ˛ pw1

´ w2
q

¯¯

In few words, the increment of �
✏

between two dilated
points ✏r ˛ w1 and ✏r ˛ w2 behaves “homogeneously” in
the sense that it is equal to the image of a linear oper-
ator �pw1, w2

q P Rlˆn under the increment between the
two dilated points ✏h ˛w1 and ✏h ˛w2, followed by a com-
ponentwise dilation by ✏d. The vector d P Rl describes
the “vertical” degrees and the vector h P Rn describes
the “horizontal” degrees. The notion of incremental ho-
mogeneity incapsulates as a particular case the notion of
homogeneity (see for example Rosier (1998)). When w2
is set to 0 in definition 8 we say that �

z

is homogeneous
with quadruple pr, d, h,�q.
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Note that the function �
z

may be parametrized by the
dilating parameter itself. The function �

z

pxq – x
1

` x3

2

(in this case �
z

does not depend on the dilating parame-
ter) is i.h. with quadruple pr, 0, h,�q, where r – p1, 2q

T ,
h – p1, 6q

T and �pw1, w2
q – p1, pw1

2

q

2

` pw2
2

q

2

`w2
2

w1
2

q.
The function �

z

pxq – zpx
1

`x3

2

q (here � does depend on
the dilating parameter) is i.h. with quadruple pr, 1, h,�q

and the same � above.

There are functions, like sinx, which are not i.h. but be-
haves in the upper bound as an i.h. function. This moti-
vates the following definition (xxayy denotes the column
vector of the absolute values of the elements of a P Rn).

Definition 9 A parametrized function � P C0

pRn,Rl

q,
z P R°, is said to be incrementally homogeneous in the
upper bound (i.h.u.b.) with quadruple pr, d, h,�

U

q if there

exist d P Rl, h P Rn, r P Rn

°, �U P C0

pRn

ˆ Rn,Rlˆn

• q

such that for all ✏ • 1 and w1, w2
P Rn

xx�
✏

p✏r ˛ w1
q ´ �

✏

p✏r ˛ w2
qyy

® ✏d ˛

´
�
U

pw1, w2
q

AA
✏h ˛ pw1

´ w2
q

EE¯

Whenw2 is set to 0 in definition 9 we will simply say that
�
z

is homogeneous in the upper bound with quadruple
pr, d, h,�

U

q.

The function �
z

pxq – z px
2

x3

2

gpx
1

q q

T , g P C0

pR,Rq

any bounded and globally Lipschitz function, is i.h.u.b.
with triple pr, d, h,�

U

q, where r – p1, 2q

T , d – p3, 7q

T ,
h – p1, 0q

T and the matrix �
U

pw1, w2
q defined as

r�
U

pw1, w2
qs

11

– 0, r�
U

pw1, w2
qs

12

– 1,

r�
U

pw1, w2
qs

21

– pw2
2

q

3

~gpw1
1

q ´ gpw2
1

q~
~w1

1

´ w2
1

~ ,

r�
U

pw1, w2
qs

22

– ~pw1
2

q

2

` pw2
2

q

2

` w1
2

w2
2

~~gpw1
1

q~.

A.2 Properties of incrementally homogeneous func-
tions

The proof of the following properties can be found in
Battilotti (2014).

(P0) For any i.h.u.b. (resp. i.h.) functions �
z

P

C0

pRn,Rl

q with quadruple pr, d, h,�
U

q and  
z

P

C0

pRn,Rl

q with quadruple pr, d, h, 
U

q, the func-
tion �

z

`  
z

is i.h.u.b. (resp. i.h.) with quadruple
pr, d, h,�

U

`  
U

q .

(P1) Any i.h.u.b. (resp. i.h.) function �
z

P C0

pRn,Rl

q

with quadruple pr, d, h,�
U

q and diagonal �
U

is also
i.h.u.b. (resp. i.h.) with quadruple pr, d1, h1,�

U

q for all
pairs pd1, h1

q such that d`h ® d1
`h1 (resp. d`h “ d1

`h1).

In particular, we can replace the degrees pd, hq with some
upper bounds pd1, h1

q or swap them: pd1, h1
q “ ph, dq.

(P2) For any i.h.u.b. functions �
z

P C0

pRs,Rl

q

with quadruple pr, d, h,�
U

q and  
z

P C0

pRn,Rs

q

with quadruple pr,´h ` r, p, 
U

q if there exists

⇡
U

P C0

pRs

ˆ Rs,Rlˆs

• q such that for all ✏ • 1 and
w, z P Rn

�
U

pw1, z1
q

ˇ̌
ˇw1“✏´r˛ ✏p✏r˛wq

z1“✏´r˛ ✏p✏r˛zq
® ⇡

U

pw, zq (A.1)

then �
z

˝  
z

is i.h.u.b. with quadruple pr, d, p,⇡
U

 
U

q.

In particular, for � with constant �
U

(A.1) is trivially
satisfied with ⇧ “ �

U

.

Let ImtW u denote the vector space generated by the
columns of the matrix W .

(P3.1) given any i.h.u.b. (resp.i.h.) �
z

P C0

pRn,Rl

q

with quadruple pr, d, h,�
U

q, A�
z

(resp. AT�
z

) is i.h.u.b.
(resp.i.h.) with quadruple pr, Ad ` z, h, A�

U

q (resp.
pr, AT d ` z, h, AT�

U

q), for any z P ImtI ´ AAT

u (resp.
z P ImtI ´ ATAu).

(P3.2) given any i.h.u.b. (resp.i.h.) �
z

P C0

pRn,Rl

q,
pz, xq fiÑ �

z

pxq, with quadruple pr, d, h,�
U

q and constant
�
U

, �
z

˝ A (resp. �
z

˝ AT ) is i.h.u.b. (resp.i.h.) with
quadruple pr, d, AT

ph´rq`r`z,�
U

Aq (resp. pr, d, Aph´

rq ` r ` z,�
U

AT

q), for any z P ImtI ´ ATAu (resp.
z P ImtI ´ AAT

u).

B Auxiliary results

Lemma 10 If sat
h

is a saturation function with levels
h P Rn

°, for all w, z P Rn

(i) xxsat
h

pwq ´ sat
h

pzqyy ® 2xxw ´ zyy

(ii) xxsat
h

pwqyy ® xxwyy, (iii) xxsat
h

pwqyy ® xxhyy. ˝

Lemma 11 If sat
h

and sat
k

are saturation functions
with levels h P Rn

° and, respectively, k P Rn

°, xxsat
h

pxq ´

sat
k

pxqyy ® xxk ´ hyy for all x P Rn. ˝

For the proof of lemmas 10 and 11 see lemmas 9 and 10
of Battilotti (2015b).

We usually identify matrices A with linear applications
A : ⌘ fiÑ A⌘. In this sense we mean that A is i.h.u.b. (or
i.h.) with some quadruple.

Lemma 12 With assumption (H0) and for each c, k ° 0
and diagonal positive definite �,

(i) ⌃
z

, defined in (32), is i.h. with quadruple pr, r `

g, g,⌃q, where ⌃ is defined in (40),
(ii) ⇡

z

, defined in (33), is i.h.u.b. with quadruple pr, r`

g, g,⇧
U

q, where⇧
U

is defined in (41) and�pcq P Rnˆn

is a matrix satisfying (24),

13



(iii) 
z

, defined in (56), is i.h.u.b. with quadruple pr, r´

g, g, 3X
U

q,
(iv) � is i.h.u.b. with quadruple pr, r ` g, g,�

U

q,
(v) ATG

z

X
z

is i.h.u.b. with quadruple pr, r ´

g, g, AT�X
U

q.˝

PROOF. Proof of part (iv). Notice that � “ AAT� `

pI ´ AAT

q� and that Apr ´ gq ® AAT

pr ` gq (by (B.3)
since AATA “ A) and AAT

pr`gq ` pI ´AAT

qpr`gq “

r ` g. From (H0) and (P0), (P1) and (P3.1) we get the
desired result.

Proof of parts (i), (ii) and (v). We break up the proof in
several claims. Condition (iii) of assumption (H0) reads
out as

2Ag ` AAT

pr ´ gq ® Apr ´ gq ® AAT

pr ` gq (B.1)

and notice the following ensuing inequalities

AT

pr ` 2Ag ´ gq ® ATApr ´ gq (B.2)

AAT

pAr ´ rq ® AAT

pAg ` gq (B.3)

(the first by multiplying the first inequality of (B.1) by
AT and using ATAAT

“ AT , the second by multiply-
ing the second inequality of (B.1) by AAT and using
AATAAT

“ AAT ).

Claim I. ATG
z

(resp. ATG2

z

) is i.h.u.b. with quadruple
pr, r ´ g, g, AT�q (resp. pr, r ` g, g, AT�2q). Since by its
definition G

z

is i.h.u.b. with quadruple pr, r, 2Ag,�q and
� is diagonal, by property (P1) with d1 – r`2Ag´g and
h1 – g,G

z

is i.h.u.b. with quadruple pr, r`2Ag´g, g,�q.
By (P3.1) with z – pI ´ ATAqpr ´ gq, ATG

z

is i.h.u.b.
with quadruple pr, AT

pr ` 2Ag ´ gq ` pI ´ ATAqpr ´

gq, g, AT�q. On account of (B.2) and (P1) we get that
ATG

z

is i.h.u.b. with quadruple pr, r ´ g, g, AT�q, i.e.
the first part of the claim. On the other hand, since by
its definition G2

z

is i.h.u.b. with quadruple pr, r, 4Ag,�2q

and � is diagonal, by (P1) with d1 – r ` 4Ag ´ g and
h1 – g,G

z

is i.h.u.b. with quadruple pr, r`4Ag´g, g,�q.
By (P3.1) with z – pI ´ ATAqpr ` gq, ATG

z

is i.h.u.b.
with quadruple pr, AT

pr ` 4Ag ´ gq ` pI ´ ATAqpr `

gq, g, AT�2q. On account of (B.2) and (P1) we get that
ATG2

z

is i.h.u.b. with quadruple pr, r ` g, g, AT�2q, i.e.
the second part of the claim.

Claim II. X
z

– pI ´ ATG
z

q

´1, is i.h.u.b. with quadru-
ple pr, r´g, g, X

U

q, X
U

– pI ´AT�q

´1. Notice that the
identity function ◆ is i.h.u.b. with quadruple pr, r, 0, Iq.
Therefore, since I is diagonal and invoking (P1) with
d1 – r ` g and h1 – ´g, ◆ is is i.h.u.b. with quadru-
ple pr, r ´ g, g, Iq. On the other hand, notice that
X

z

– pI ´ ATG
z

q

´1

“

∞
n´1

j“0

pATG
z

q

j (notice that

pI ´ ATG
z

q

∞
n´1

j“0

pATG
z

q

j

“ I since pATG
z

q

n

“ 0).

As already established, pATG
z

q

0

“ I is i.h.u.b. with

quadruple pr, r ´ g, g, Iq. We proceed by induction.
Assume that pATG

z

q

j for some j “ 1, . . . , n ´ 1,
is i.h.u.b. with quadruple pr, r ´ g, g, pAT�q

j

q. Since
pATG

z

q

j`1

“ pATG
z

q

jATG
z

and both pATG
z

q

j (induc-
tion step) andATG

z

(claim I) are i.h.u.b. with quadruple
pr, r´g, g, pAT�q

j

q and, respectively, pr, r´g, g, AT�q, by
property (P2) it follows that pATG

z

q

j`1 is i.h.u.b. with
quadruple pr, r´g, g, pAT�q

j`1

q. By induction and prop-
erty (P0), since X

U

– pI ´ AT�q

´1

“

∞
n´1

j“0

pAT�q

j , it
follows thatX

z

is i.h.u.b. with quadruple pr, r´g, g, X
U

q.

Claim III.H
z

is i.h. with quadruple pr, r`g, g, Hq. Since
by its definition G

z

is i.h. with quadruple pr, r, 2Ag,�q,
by using property (P3.1) with z – 0 and (P3.2) with z –
pI´ATAq2g,ATG

z

A is i.h. with quadruple pr, AT r, 2g´

AT r` r, AT�Aq. Since ATG
z

A is diagonal, by (P1) with
d1 – r ` g and h1 – g, ATG

z

A is i.h. with quadru-
ple pr, r ` g, g, AT�Aq. Similarly, kz2CgCTC is i.h. with
quadruple pr, r`g, g, kCTCq. By (P0) the claim follows.

Claim IV. sat
cz

r (resp. sat
cz

r
˝X

z

) are i.h.u.b. with
quadruple pr, r´g, g, 2Iq (resp. (r, r´g, g, 2X q). On ac-
count of (i) of lemma 10 with h – czr, pz, ⌘q fiÑ sat

cz

r
p⌘q

is i.h.u.b. with quadruple pr, r, 0, 2Iq. By (P1) with d1 –
r ´ g and h1 – g, sat

cz

r is also i.h.u.b. with quadruple
pr, r´ g, g, 2Iq, i.e. the first part of the claim. Finally, by
virtue of (P2) and claim II we obtain the second part of
the claim.

Claim V. AX
z

(resp. ATG
z

X
z

q) is i.h.u.b. with quadru-
ple pr, r ` g, g, Aq (resp. pr, r ´ g, g, AT�X

U

q). Note
that the identity function ◆ is i.h.u.b. with quadruple
pr, r, 0, Iq, therefore by (P1) with d1 – r ´ g and h1 – g,
pz, ⌘q fiÑ z is also i.h.u.b. with quadruple pr, r ´ g, g, Iq.
Using (P3.1) with z – pI ´ AAT

qpg ` rq, A is i.h.u.b.
with quadruple pr, Apr ´ gq ` pI ´ AAT

qpg ` rq, g, Aq.
Upon noticing that Ar ´ AAT r ® Ag ` AAT g (from
(B.3) since AATA “ A) and on account of (B.3), we get
by (P1) that A is i.h.u.b. with quadruple pr, r ` g, g, Aq.
From claim II and (P2) it follows that AX

z

is i.h.u.b.
with quadruple pr, r ` g, g, Aq. The second part of the
claim follows directly from claims I and II and (P2).

Claims III and V prove (i) and (v) of the lemma. Let
us prove part (ii). Since }z´r

˛ sat
cz

r
pwq} § cn for

all w P Rn and z • 1, we find out that any matrix
�pcq P Rnˆn for which (24) holds true is such that
AT�pz´r

˛ sat
cz

r
pX

z

wq, z´r
˛ sat

cz

r
pX

z

⌘qq ® AT�pcq
for all w, ⌘ P Rn and z • 1. By virtue of (H0), claim IV
and property (P2), it follows thatAT

ppBF`HCqsat
cz

r
˝

X
z

` � ˝ sat
cz

r
˝ X

z

q is i.h.u.b. with quadruple pr, r ´

g, g, 2AT

rBF
U

` H
U

C ` �pcqsX
U

q. Finally, from claim
III, (P2) and (P0) and on account of part (iv) of the
lemma it follows that pI ´ H

z

AT

qppBF ` HCqsat
cz

r
˝

X
z

` � ˝ sat
cz

r
˝ X

z

q is i.h.u.b. with quadruple pr, r `

g, g, 2pI ` HAT

qrBF
U

` H
U

C ` �pcqsX
U

q.

On the other hand, by claims I, V and (P2) and (P0),

14



rA´ATG2

z

sX
z

is i.h.u.b. with quadruple pr, r`g, g, rA`

AT�2sX
U

q. Using (P0) we obtain part (ii) of our lemma.

Proof of part (iii). As part (ii) using (H0), claims II and
IV and (P0), (P2). ‚

References

Ahrens, J.H., & Khalil, H. (2006). High gain observers
in the presence of measurement noise: a switched-gain
approach, Autom., 45, 936-943.

Angeli, D., & Sontag, E.D. (1999). Forward complete-
ness, unboundedness observability and their Lya-
punov characterization, Syst. Contr. Lett., 38, 209-
217.

Astolfi, A., & Praly, L. (2006). Global complete observ-
ability and output-to-state stability imply the exis-
tence of a globally convergent observer, Math. Contr.
Sign. & Syst., 18, pp. 32-65.

Andrieu, V., Praly, L., &, Astolfi, A. (2008). Homoge-
neous approximation, recursive observer design and
output feedback, SIAM Journ. Contr. & Optim., 47,
pp. 1814-1850.

Andrieu, V., Praly, L., &, Astolfi, A. (2009). High gain
observers with updated high-gain and homogeneous
correction term, Autom., 45, pp. 422-428.

Andrieu, V., Praly, L. (2009). On the existence of
a Kazantzis-Kravaris/Luenberger observer, SIAM
Journ. Contr. & Optim., 45, pp. 432-456.

Battilotti, S. (2014). Incremental generalized homo-
geneity, observer design and semiglobal stabilization,
Asian Journ. of Contr. vol. 16, 2, pp. 498508.

Battilotti, S. (2015). Generalized incremental homo-
geneity, incremental observability and global observer
design, Proc. 54th IEEE Conf. Dec. & Contr., pp. 211-
229.

Battilotti, S. (2015). Nonlinear predictors for systems
with bounded trajectories and delayed measurements,
Automatica, vol. 59, pp. 127-138, 2015.

Beesack, P.R. (1975). Gronwall inequalities, Carleton
Univ. Math. Notes, 1975.

Boizot, J.N., Busvelle, E., & Gauthier, J.-P. (2010).
An adaptive high-gain observer for nonlinear systems,
Autom., 46, pp. 1483-1488.

Bullinger, E., & Allgower, F. (1997). An adaptive high-
gain observer for nonlinear systems, Proc. 36th IEEE
Conf. Dec. & Contr., pp. 4348-488.

Efimov, D.., & Perruquetti, W. (2016). On conditions
of oscillations and multi-homogeneity, Math. Contr.
Sign. Syst., vol. 28, 3.

Egardt, B. (1979). Stability of adaptive controllers,
Springer Berlin.

Ilchmann, A., & Owens, D.H. (2005). Threshold switch-
ing functions in high-gain adaptive control, IMA
Journ. Mathem. Contr. & Inform., pp. 1911-1916.

Ioannou, P., & Kokotovic, P.V. (1984). Instability anal-

ysis and improvement by robustness of adaptive con-
trol, Autom., 20, pp. 583-594.

Kawski, M. (1989). Stabilization of nonlinear systems in
the plane, Syst. & Contr. Lett., 12, pp. 169-175.

Khalil, H., & Saberi, A. (1987). Adaptive stabilization of
a class of nonlinear system using high-gain feedback,
IEEE Trans. on Automat. Contr., 32, pp. 1031-1035.

Lei, H., Wei, J., & Lin, W. (2005). A Global observer
for observable autonomous systems with bounded so-
lution trajectories, Proc. of the 44th IEEE Conf. Dec.
& Contr., Seville, Spain, pp. 1911-1916.

Massera, J.-L. (1956) Contributions to stability theory,
Ann. Math., 64, pp. 182-206.

Mareels, I.M. (1984). A simple self-tuning controller for
stably invertible systems, Syst. & Contr. Lett., 4, pp.
5-16.

Mareels, I.M., Van Gils, S., Polderman, J.W., & Ilch-
mann, A. (1999). Asymptotic dynamics in adaptive
gain control,ADvance in Contr., highlights of ECC’99,
pp. 29-63.

Qian, C. (2005). Semi-global stabilization of a class of
uncertain nonlinear systems by linear output feed-
back, IEEE Trans. Circ. & Syst.-II, 52, pp. 218-222.

Qian, C., & Lin, W. (2006) Recursive observer design,
homogeneous approximation and nonsmooth output
feedback controllers, IEEE Trans. Autom. Contr., 51,
pp. 1457-1471.

Peterson, B.B.., & Narendra, K. (1982). Bounded error
adaptive control, IEEE Trans. Autom. Contr., 27, pp.
1161-1168.

Prasov, A.A.., & Khalil, H.K. (2013). A Nonlinear High-
Gain Observer for Systems With Measurement Noise
in a Feedback Control Framework, IEEE Trans. Au-
tom. Contr., 58, pp. 569-580.

Rosier, L. (1998). Homogeneous Lyapunov function for
homogeneous continuous vector field, Syst. Contr. &
Lett., 19, pp. 467-473.

Sanfelice, R.G., & Praly, L. (2011). On the performance
of high-gain observers with gain adaptation under
measurement noise, Autom., 47, pp. 2165-2176.

Vasilijevic, L.K., & Khalil, H. (2006). Di↵erentiation
with high-gain observers in the presence of measure-
ment noise, Proc. 45th IEEE Conf. Dec. & Contr., pp.
4717-4722.

Yang, B., & Lin, W. (2003) Homogeneous observers, it-
erative design and global stabilization of high-order
nonlinear systems by smooth output feedback, IEEE
Trans. Autom. Contr., 49, pp. 1069-1080.

15


