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In this work, we construct compositions of vector processes of the form S2β
n (c2Lν(t)), t >

0, ν ∈ (0, 1
2 ], β ∈ (0, 1], n ∈ N, whose distribution is related to space-time fractional

n-dimensional telegraph equations. We present within a unifying framework the pde
connections of n-dimensional isotropic stable processes S2β

n whose random time is
represented by the inverse Lν(t), t > 0, of the superposition of independent positively

skewed stable processes, Hν(t) = H 2ν
1 (t) + (2λ)

1
ν H ν

2 (t), t > 0, (H 2ν
1 ,Hν

2 , independent
stable subordinators). As special cases for n = 1, ν = 1

2 and β = 1, we examine the
telegraph process T at Brownian time B ([14]) and establish the equality in distribution

B(c2L 1
2 (t))

law= T (|B(t)|), t > 0. Furthermore the iterated Brownian motion ([2])
and the two-dimensional motion at finite velocity with a random time are investigated.
For all these processes, we present their counterparts as Brownian motion at delayed
stable-distributed time.

Keywords Riemann-Liouville fractional calculus; Telegraph processes; Stable pos-
itively skewed r.v.’s; Subordinators; Fractional Laplacian; Mittag-Leffler functions;
Time-changed processes; Airy functions.

Mathematics Subject Classification 60G51; 60G52; 35C05.

1. Introduction and Preliminaries

1.1. Introduction

The study of the interplay between fractional equations and stochastic processes has began
in the middle of the 1980s with the analysis of simple time-fractional diffusion equations
(see [10] for a rigorous work on this field, or more recently [1], where the compositions
of Brownian sheets with Brownian motions are considered, and for a non-Euclidean coun-
terpart see [7]). In some articles, the connection between fractional diffusion equations
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1010 D’Ovidio et al.

and stable processes is explored (see, e.g., [17, 21]). The iterated Brownian motion has
distribution satisfying the following fractional equation

∂
1
2

∂t
1
2

u(x, t) = 1

2
3
2

∂2

∂x2
u(x, t), x ∈ R, t > 0, (1.1)

(see, e.g., [2]) and also the fourth-order equation

∂

∂t
u(x, t) = 1

23

∂4

∂x4
u(x, t) + 1

2
√

2πt

d2

dx2
δ(x), x ∈ R, t > 0, (1.2)

see [6] (also for an interpretation of the iterated Brownian motion to model the motion of
a gas in a crack).

When the fractional equation has a telegraph structure, with more than one time-
fractional derivative involved, that is for ν ∈ (0, 1](

∂2ν

∂t2ν
+ 2λ

∂ν

∂tν

)
u(x, t) = c2 ∂

2

∂x2
u(x, t), x ∈ R, t > 0, λ > 0, c > 0, (1.3)

the relationship of its solution with the time-changed telegraph process is examined and
established in Orsingher and Beghin [14]. The space-fractional telegraph equation (with
M. Riesz space derivatives) has been considered in Orsingher and Zhao [15], while the
connection between space-fractional equations and asymmetric stable processes has been
established in Feller [8].

Fractional telegraph equations from the analytic point of view have been studied by
many authors (see [19] for equations with n time derivatives). For their solutions have
been worked out also numerical techniques (see, e.g., [13]). Telegraph equations have an
extraordinary importance in electrodynamics (the scalar Maxwell equations are of this
type), in the theory of damped vibrations and in probability because they are connected
with finite velocity random motions.

In this article, we consider various types of processes obtained by composing symmetric
stable processes S2β

n (t), t > 0, 0 < β ≤ 1, with the inverse of the sum of two independent
stable subordinators, say Lν(t), t > 0, 0 < ν ≤ 1

2 . These time-changed processes, Wn(t) =
S2β
n (c2Lν(t)), t > 0, have distributions, wβν (x, t), x ∈ R

n, t > 0, which satisfy telegraph-
type space-time fractional equations of the form(
C∂2ν

∂t2ν
+ 2λ

C∂ν

∂tν

)
wβν (x, t) = −c2 (−�)β wβν (x, t) , x ∈ R

n, t > 0, λ > 0, (1.4)

where 0 < β ≤ 1, 0 < ν ≤ 1
2 , subject to the initial condition

wβν (x, 0) = δ(x). (1.5)

The fractional Laplacian (−�)β , appearing in (1.4), is defined and analyzed in Section 3
below. The fractional derivatives appearing in (1.4) are meant in the Dzherbashyan-Caputo
sense, that is,

Cdν

dtν
f (t) = 1

	 (m− ν)

∫ t

0

dm

dsm
f (s)

(t − s)ν+1−m ds, m− 1 < ν < m,m ∈ N, (1.6)

for a function f ∈ ACm that is the space of functions with continuous derivatives up
to the (m − 1)-th order and having Lebesgue summable m-th order derivative (see
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[12, p. 90]). Equation (1.4) includes, as particular cases, all fractional equations stud-
ied so far (including diffusion equations) and also the main equations of mathematical
physics in the limit. Thus, the distribution of the composed process S2β

n (Lν(t)), t > 0, rep-
resents the fundamental solution of the most general n-dimensional time-space fractional
telegraph equation. We give the general Fourier transform of the solution to (1.4) with
initial condition (1.5) as

Eeiξ ·S2β
n (c2Lν (t))

= 1

2

⎡⎣⎛⎝1 + λ√
λ2 − c2 ‖ξ‖2β

⎞⎠Eν,1 (r1t
ν) +

⎛⎝1 − λ√
λ2 − c2 ‖ξ‖2β

⎞⎠Eν,1 (r2t
ν)

⎤⎦ ,
(1.7)

where

r1 = −λ+
√
λ2 − c2 ‖ξ‖2β, r2 = −λ−

√
λ2 − c2 ‖ξ‖2β (1.8)

and,

Eν,ψ (x) =
∞∑
k=0

xk

	 (νk + ψ)
, ν, ψ > 0, (1.9)

is the two-parameters Mittag-Leffler function (see, e.g., [11] for a general overview on the
Mittag-Leffler functions). Our analysis, therefore, includes all previous results in a unique
framework and sheds an additional insight into the literature in this field.

An important role in our analysis is played by the time change based on the process
Lν(t), t > 0. We consider first the sum of two independent positively skewed stable r.v.’s
H 2ν

1 (t) and Hν
2 (t), t > 0, 0 < ν ≤ 1

2 ,

Hν(t) = H 2ν
1 (t) + (2λ)

1
ν H ν

2 (t), t > 0, (1.10)

whose distribution hν(x, t) is governed by the space fractional equation

∂

∂t
hν(x, t) = −

(
∂2ν

∂x2ν
+ 2λ

∂ν

∂xν

)
hν(x, t), x ≥ 0, t > 0, 0 < ν ≤ 1

2
. (1.11)

In (1.11), the fractional derivatives must be meant in the Riemann-Liouville sense which,
for a function f ∈ ACm, is defined as

dν

dxν
f (x) = 1

	 (m− ν)

dm

dxm

∫ x

0

f (s)

(x − s)ν+1−m ds, m− 1 < ν < m,m ∈ N. (1.12)

We then take the inverse Lν(t), t > 0, to the process Hν(t), t > 0, defined as

Lν(t) = inf
{
s ≥ 0 : H 2ν

1 (s) + (2λ)
1
ν H ν

2 (s) ≥ t
}
, t > 0, (1.13)

whose distribution is related to that of Hν(t), t > 0, by means of the formula

Pr {Lν(t) < x} = Pr {Hν(x) > t} . (1.14)
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The distribution lν(x, t) of Lν(t), t > 0, satisfies the time-fractional telegraph-type equation(
∂2ν

∂t2ν
+ 2λ

∂ν

∂tν

)
lν(x, t) = − ∂

∂x
lν(x, t), x ≥ 0, t > 0, 0 < ν ≤ 1

2
, (1.15)

where the fractional derivatives appearing in (1.15) are again in the Riemann-Liouville
sense. We are able to give explicit forms of the Laplace transforms of hν(x, t) and lν(x, t)
in terms of Mittag-Leffler functions for all values of 0 < ν ≤ 1

2 . For example, for the
distribution lν(x, t) of Lν(t) we have that, for γ < λ2,∫ ∞

0
e−γ x lν(x, t) dx

= 1

2

[(
1 + λ√

λ2 − γ

)
Eν,1 (r1t

ν) +
(

1 − λ√
λ2 − γ

)
Eν,1 (r2t

ν)

]
, (1.16)

where

r1 = −λ+
√
λ2 − γ , r2 = −λ−

√
λ2 − γ . (1.17)

The distribution lν(x, t) of Lν(t), t > 0, has the general form

lν(x, t) =
∫ t

0
l2ν (x, s) hν(t − s, 2λx) ds + 2λ

∫ t

0
lν(2λx, s)h2ν (t − s, x) ds, (1.18)

where the distributions of H 2ν , Hν , and that of their inverse processes L2ν and Lν appear.
For our analysis it is relevant to obtain the distributions of H 1

2 (t), t > 0, and L 1
2 (t), t > 0.

We also obtain explicitely the distributions of H
1
3 (t) and H

2
3 (t), t > 0, and also of their

inverses L
1
3 (t) and L

2
3 (t), t > 0, in terms of Airy functions. By means of the convolutions

of these distributions we arrive at the following cumbersome density of the random time
L 1

3 (t), t > 0,

Pr
{L 1

3 (t) ∈ dx} = 2λ√
π

∫ t

0
ds

∫ ∞

0
dw e−ww− 1

6 Ai

⎛⎝−x 3

√
22w

3(t − s)2

⎞⎠ Ai

(
2λx
3
√

3s

)

× 3
3
√

3s
3

√
22

3(t − s)2

[
x

2s
+ s

t − s

]
dx. (1.19)

For n = 1, β = 1 and ν = 1 in (1.4), we get the telegraph equation, which is satisfied
by the distribution of the one-dimensional telegraph process

T (t) = V (0)
∫ t

0
(−1)N(s) ds, t > 0, (1.20)

whereN (t), t > 0 is an homogeneous Poisson process, with parameter λ > 0, independent
from the symmetric r.v. V (0) (with values ±c). Properties of this process (including first-
passage time distributions) are studied in Foong and Kanno [9] and a telegraph process
with random velocities has been recently considered by Stadje and Zacks [20].
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For n = 1, β = 1 and ν = 1
2 the special equation⎧⎨⎩

(
∂
∂t

+ 2λ ∂
1
2

∂t
1
2

)
w1

1
2
(x, t) = c2 ∂2

∂x2w
1
1
2
(x, t), x ∈ R, t > 0,

w1
1
2
(x, 0) = δ(x),

(1.21)

has solution coinciding with the distribution of T (|B(t)|), t > 0, where |B(t)|, t > 0, is a
reflecting Brownian motion independent from T (see [14]). For λ → ∞, c → ∞, in such
a way that c2

λ
→ 1 the fractional diffusion equation (1.1) is obtained from (1.21) and the

composition T (|B(t)|), t > 0, converges in distribution to the iterated Brownian motion.
Our result, specialized to this particular case gives the following unexpected equality in
distribution

T (|B(t)|) law= B
(
c2L 1

2 (t)
)
, t > 0, (1.22)

where

Pr
{
B

(
c2Lν(t)) ∈ dx} = λ dx

cπ

∫ t

0

1√
s(t − s)

e
− x2

4c2s
− λ2s2

t−s

(
s

2(t − s)
+ 1

)
ds, (1.23)

and

Pr {T (|B(t)|) ∈ dx} =
∫ ∞

0
Pr {T (s) ∈ dx} Pr {|B(t)| ∈ ds} . (1.24)

The absolutely continuous component of the distribution of the telegraph process T (t),
t > 0, reads

Pr {T (t) ∈ dx} = dx e−λt

2c

{
λ I0

(
λ

c

√
c2t2 − x2

)
+ ∂

∂t
I0

(
λ

c

√
c2t2 − x2

)}
, (1.25)

where |x| < ct , t > 0, c > 0, and

I0(x) =
∞∑
k=0

(x
2

)2k 1

(k!)2
. (1.26)

For n = 2, β = 1 and ν = 1, Equation (1.4) coincides with that of damped planar
vibrations (we call it planar telegraph equation) and governs the vertical oscillations of thin
deformable structures. The solution to⎧⎪⎪⎨⎪⎪⎩

(
∂2

∂t2
+ 2λ ∂

∂t

)
r(x, y, t) = c2

(
∂2

∂x2 + ∂2

∂y2

)
r(x, y, t), x2 + y2 < c2t2, t > 0,

r(x, y, 0) = δ(x, y),

rt (x, y, 0) = 0,

(1.27)

corresponds to the distribution r(x, y, t) of the vector T (t) = (X(t), Y (t)) related to a
planar motion described in Orsingher and De Gregorio [16]. This random motion T (t),
t > 0, is performed at finite velocity c, possesses sample paths composed by segments
whose orientation is uniform in [0, 2π ), and with changes of direction at Poisson times.
The distribution r(x, y, t) of T (t), t > 0, is concentrated inside a circle Cct of radius ct and
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has an absolutely continuous component which reads

r(x, y, t) = λ

2πc

e−λt+
λ
c

√
c2t2−(x2+y2)√

c2t2 − (
x2 + y2

) , (x, y) ∈ Cct , t > 0. (1.28)

If no Poisson event occurs, the moving particle reaches the boundary ∂Cct of Cct with
probability e−λt . The vector process T (t), t > 0, taken at a random time represented by a
reflecting Brownian motion, |B(t)|, has distribution

q(x, y, t)dx dy =
∫ ∞

0
Pr {X(s) ∈ dx, Y (s) ∈ dy} Pr {|B(t)| ∈ ds} (1.29)

which satisfies the fractional equation(
∂

∂t
+ 2λ

∂
1
2

∂t
1
2

)
q(x, y, t) = c2

(
∂2

∂x2
+ ∂2

∂y2

)
q(x, y, t), (x, y) ∈ R

2, t > 0. (1.30)

However, the distribution of B2(c2L 1
2 (t)), t > 0, does not coincide with (1.29) (B2 is a

two-dimensional Brownian motion). In this case the role of T (t), t > 0, in (1.22) is here
played by a process which is a slight modification of T (t), t > 0. We take the planar process
with law

r(x, y, t) = λ e−λt

2πc

⎡⎣e λc√c2t2−(x2+y2) + e−
λ
c

√
c2t2−(x2+y2)√

c2t2 − (
x2 + y2

)
⎤⎦ , x2 + y2 < c2t2, t > 0,

(1.31)
which also solves Equation (1.27). The process with distribution

q(x, y, t) =
∫ ∞

0
r(x, y, s)

[
Pr {|B(t)| ∈ ds} + 1

2λ

∂
1
2

∂t
1
2

Pr {|B(t)| ∈ ds}
]

=
∫ ∞

0

(
r(x, y, s) + ∂

∂s
r(x, y, s)

)
Pr {|B(t)| ∈ ds} , (1.32)

has the same law of a planar Brownian motion at the time L 1
2 (t), t > 0. The process

T(t), t > 0, possessing distribution (1.31) is obtained from T (t), t > 0, by disregarding
displacements started off by even-order Poisson events.

1.2. Notations

For the reader convenience we list below the main notations used throughout the article.

• S2β
n (t) = (S2β

1 (t), S2β
2 (t), . . . , S2β

n (t)), t > 0, 0 < β ≤ 1, n ∈ N is a isotropic stable
n-dimensional process with law vβ (x, t), x ∈ R

n, t > 0.
• Hν(t), t > 0, 0 < ν < 1, is a totally positively-skewed stable process (stable subordina-

tor), with law hν(x, t), x ≥ 0, t > 0.
• Lν(t), t > 0, is the inverse of Hν(t), t > 0, and has law lν(x, t), x ≥ 0, t > 0.
• Hν(t) = H 2ν

1 (t)+(2λ)
1
ν H ν

2 (t), t > 0, is the sum of two independent stable subordinators
and has law hν(x, t), x ≥ 0, t > 0.

• Lν(t), t > 0, is the inverse of Hν(t), t > 0 and possesses distribution lν(x, t), x ≥ 0,
t > 0.
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• T (t), t > 0, is a telegraph process with parameters c > 0 and λ > 0 and law pT (x, t),
−ct < x < ct , t > 0.

• Wn (t) = S2β
n (c2Lν(t)), t > 0, has law wβν (x, t), x ∈ R

n, t > 0.
• W (t) = T (|B(t)|), t > 0, has distribution w (x, t), x ∈ R, t > 0.
• T (t), t > 0, is the planar process with infinite directions, parameters c, λ > 0 and law
r(x, y, t), (x, y) ∈ Cct = {

(x, y) ∈ R
2 : x2 + y2 < c2t2

}
, t > 0.

• T(t), t > 0, is the planar process with infinite directions, parameters c, λ > 0 and law
r(x, y, t), (x, y) ∈ Cct = {

(x, y) ∈ R
2 : x2 + y2 < c2t2

}
, t > 0, constructed by disre-

gading displacements started off only by even-labelled Poisson events.
• Q(t) = T (|B(t)|), t > 0, has law q(x, y, t), (x, y) ∈ R

2, t > 0.
• By f̃ we denote the Laplace transform of the function f and by f̂ we denote its Fourier

transform.

1.3. Preliminaries

Let us consider a stable process Sν(t), t > 0, 0 < ν ≤ 2, ν 	= 1, with characteristic function

EeiξS
ν (t) = e−σ |ξ |ν t(1−iθ sign(ξ ) tan νπ

2 ) (1.33)

where θ ∈ [−1, 1] is the skewness parameter and

σ = cos
πν

2
. (1.34)

For θ = 1 the distribution corresponding to (1.33) is totally positively skewed and for
θ = −1 is totally negatively skewed. The stable process with stationary and independent
increments, totally positively skewed will be denoted as Hν(t), t > 0. We note that the
density hν(x, t), of Hν(t), is zero at x = 0 as the following calculation shows

hν(0, t) = 1

2π

∫ ∞

−∞
EeiξH

ν (t) dξ = 1

2π

∫ ∞

−∞
e−σ |ξ |ν t(1−i tan νπ

2 )dξ

= 1

2π

[∫ ∞

0
e−σ |ξ |ν t(1−i tan νπ

2 )dξ +
∫ 0

−∞
e−σ |ξ |ν t(1+i tan νπ

2 )dξ

]
= 1

2π

[∫ ∞

0
e−|ξ |ν te− iνπ

2
dξ +

∫ ∞

0
e−|ξ |ν te iνπ2 dξ

]
= 1

2π

[∫ ∞

0
e−z

(z
t

) 1
ν
−1
e
iπ
2 dz+

∫ ∞

0
e−z

(z
t

) 1
ν
−1 1

t
e−

iπ
2 dz

]
= cos π2

π

∫ ∞

0
e−z

(z
t

) 1
ν
−1 1

t
dz = 0. (1.35)

The positively skewed stable r.v. Hν(t) has x-Laplace transform

h̃ν (μ, t) = Ee−μH
ν (t) = e−tμ

ν

, 0 < ν < 1, (1.36)

and, therefore, Fourier transform

ĥν (ξ, t) = EeiξH
ν (t) = E(e−(−iξ )Hν (t)) = e

−t
(
|ξ |e− iπ

2 sign(ξ )
)ν

= e−t |ξ |
ν cos πν

2 (1−i sign(ξ ) tan πν
2 ). (1.37)
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This shows once again that the skeweness parameter is θ = 1.
The probability law hν(x, t), of Hν(t), t > 0, solves the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
∂

∂t
+ ∂ν

∂xν

)
hν(x, t) = 0, x > 0, t > 0, 0 < ν < 1,

hν(0, t) = 0,

hν(x, 0) = δ(x).

(1.38)

By taking the x-Laplace transform of the Riemann-Liouville fractional derivative appearing
in (1.38) we have that

L
[
∂ν

∂xν
hν(x, t)

]
(μ) =

∫ ∞

0
e−μx

∂ν

∂xν
hν(x, t) dx

=
∫ ∞

0
e−μx

[
1

	 (1 − ν)

d

dx

∫ x

0

hν(z, t)

(x − z)ν
dz

]
dx

=
∫ ∞

0
e−μx

[
1

	 (1 − ν)

∫ x

0

d

dx

hν(x − z, t)

zν
dz+ hν(0, t)

	 (1 − ν) xν

]
dx

= hν(0, t)

	 (1 − ν)

∫ ∞

0
e−μxx1−ν−1 dx + 1

	 (1 − ν)

∫ ∞

0

dz

zν

∫ ∞

z

dx e−μx
d

dx
hν(x − z, t)

= hν(0, t)μ
ν−1 + 1

	 (1 − ν)

∫ ∞

0
e−μzz−νdz

∫ ∞

0
e−μx

d

dx
hν(x, t)dx

= hν(0, t)μ
ν−1 +

[∫ ∞

0
e−μxhν(x, t)dx

]
μ

1

μ1−ν − μν−1hν(0, t) = μνh̃ν (μ, t) . (1.39)

Therefore, ⎧⎨⎩
∂

∂t
h̃ν (μ, t) + μνh̃ν (μ, t) = 0, μ > 0, t > 0,

h̃ν (μ, 0) = 1,
(1.40)

so that

h̃ν (μ, t) = e−μ
νt . (1.41)

In other words the density of a positively skewed stable r.v. solves the space-fractional
problem (1.38).

We will also deal with the inverse process ofHν(t), t > 0, say Lν(t), t > 0, for which

Pr {Hν(x) > t} = Pr {Lν(t) < x} , x > 0, t > 0. (1.42)

Such a process has non-negative, nonstationary and nonindependent increments. Furthe-
more we recall that the law lν(x, t) of Lν(t), can be written as

lν(x, t) = 1

tν
W−ν,1−ν(− x

tν
), x ≥ 0, t > 0, (1.43)
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where

Wa,b(x) =
∞∑
k=0

xk

k!	 (ak + b)
, x ∈ R, a > −1, b ∈ C, (1.44)

is the Wright function, and has Laplace transform

l̃ν(x, μ) =
∫ ∞

0
e−μt lν(x, t)dt =

∫ ∞

0
e−μt

1

tν
W−ν,1−ν

(
− x

tν

)
dt = μν−1e−xμ

ν

. (1.45)

2. Sum of Stable Subordinators, Hν(t) = H2ν
1 (t) + (2λ)

1
ν Hν

2 (t)

For the construction of the vector process Wn(t) = S2β
n (c2Lν(t)), t > 0, whose distribution

is driven by the general space-time fractional telegraph equation (1.4), we need the sum
Hν(t), t > 0, of two independent positively skewed processes. The second step consists in
constructing the process Lν(t), t > 0, inverse to Hν(t), t > 0. We now start by considering
the following sum

Hν(t) = H 2ν
1 (t) + (2λ)

1
ν H ν

2 (t), t > 0, 0 < ν ≤ 1

2
, (2.1)

with H 2ν
1 , Hν

2 , independent, positively skewed, stable random variables, λ > 0. The distri-
bution of Hν(t) can be written as

hν (x, t) =
∫ x

0
h2ν(y, t)hν(x − y, 2λt) dy. (2.2)

Taking the double Laplace transform of (2.2), with respect to t and x, we get

˜̃hν (γ, μ) =
∫ ∞

0
e−μt

∫ ∞

0
e−γ xhν(x, t) dx dt =

∫ ∞

0
e−μt−tγ

2ν−2λtγ ν dt

= 1

γ 2ν + 2λγ ν + μ
=

[
1

γ ν − r2
− 1

γ ν − r1

]
1

r2 − r1
(2.3)

where, for 0 < μ < λ2, {
r1 = −λ−

√
λ2 − μ,

r2 = −λ+
√
λ2 − μ.

(2.4)

By means of formula ∫ ∞

0
e−γ x xα−1 Eα,α (ηxα) dx = 1

γ α − η
, (2.5)

where Eν,ν(z) is the Mittag-Leffler function defined in (1.9), we can invert the x-Laplace
transform in (2.3) obtaining, for μ < λ2,

h̃ν (x, μ) = xν−1

2
√
λ2 − μ

[
Eν,ν

((
−λ+

√
λ2 − μ

)
xν

)
− Eν,ν

((
−λ−

√
λ2 − μ

)
xν

)]



1018 D’Ovidio et al.

= 1

2
√
λ2 − μ

[
1

−λ+
√
λ2 − μ

∂

∂x
Eν,1

((
−λ+

√
λ2 − μ

)
xν

)

− 1

−λ−
√
λ2 − μ

∂

∂x
Eν,1

((
−λ−

√
λ2 − μ

)
xν

)]
. (2.6)

Formula (2.6) gives the explicit form of the t-Laplace transform of hν(x, t) in terms of
Mittag-Leffler functions. In view of formula

Eν,1 (−λtν) = sinπν

π

∫ ∞

0

e−λ
1
ν txxν−1

x2ν + 1 + 2xν cosπν
dx, 0 < ν < 1, (2.7)

we have that

h̃ν (x, μ) = 1

2
√
λ2 − μ

⎡⎢⎣ 1

−λ+
√
λ2 − μ

∂

∂x

∫ ∞

0

e
−xy

(
λ−

√
λ2−μ

) 1
ν

yν−1 sinπν dy

π
(
y2ν + 1 + 2yν cosπν

)

+ 1

λ+
√
λ2 − μ

∂

∂x

∫ ∞

0

e
−xy

(
λ+

√
λ2−μ

) 1
ν

yν−1 sinπν dy

π
(
y2ν + 1 + 2yν cosπν

)
⎤⎥⎦

=
∫ ∞

0

dy yν sinπν

π
(
y2ν + 1 + 2yν cosπν

) 1

2
√
λ2 − μ

[(
λ−

√
λ2 − μ

) 1
ν
−1

× e−xy
(
λ−

√
λ2−μ

) 1
ν

−
(
λ+

√
λ2 − μ

) 1
ν
−1
e
−xy

(
λ+

√
λ2−μ

) 1
ν

]

= E

{
Uν

2
√
λ2 − μ

[
(−r2)

1
ν
−1 e−xUν (−r2)

1
ν − (−r1)

1
ν
−1 e−xUν (−r1)

1
ν

]}

= 1

r2 − r1

∂

∂x
E

[
e−xUν (−r2)

1
ν

r2
− e−xUν (−r1)

1
ν

r1

]
, (2.8)

where Uν is the Lamperti distribution with density

Pr {Uν ∈ du}
du

= sinπν

π

uν−1

1 + u2ν + 2uν cosπν
, u > 0, (2.9)

and represents the law of the ratio of two independent stable r.v.’s of the same order ν.

Theorem 2.1. The law hν(x, t) of the process Hν(t) = H 2ν
1 (t) + (2λ)

1
ν H ν

2 (t) solves the
fractional problem⎧⎪⎪⎨⎪⎪⎩

∂

∂t
hν (x, t) = −

(
∂2ν

∂x2ν
+ 2λ

∂ν

∂xν

)
hν(x, t), x > 0, t > 0, 0 < ν <

1

2
,

hν(0, t) = 0,
hν(x, 0) = δ(x).

(2.10)
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The fractional derivatives appearing in (2.10) are intended in the Riemann-Liouville sense.

Proof. By considering (1.37), we have that the Fourier transform of hν(x, t) is written as

ĥν(ξ, t) = EeiξH
ν (t) = Ee

iξ
[
H 2ν (t)+(2λ)

1
ν Hν (t)

]
= EeiξH

2ν (t)eiξH
ν (2λt)

= e−t |ξ |
2ν cosπν(1−i sign(ξ ) tanπν)−2λt |ξ |ν cos πν

2 (1−i sign(ξ ) tan πν
2 )

= e
−t

(
|ξ |e− iπ

2 sign(ξ )
)2ν

−2λt
(
|ξ |e− iπ

2 sign(ξ )
)ν
, (2.11)

and, thus,

∂

∂t
ĥν (ξ, t) =

[
−

(
|ξ | e− iπ

2 sign(ξ )
)2ν

− 2λ
(
|ξ | e− iπ

2 sign(ξ )
)ν]

× e−t
(
|ξ |e− iπ

2 sign(ξ )
)2ν

−2λt
(
|ξ |e− iπ

2 sign(ξ )
)ν
. (2.12)

In view of the relationship

|ξ | e− iπ
2 sign(ξ ) = −iξ (2.13)

we have that formula (2.12) can be rewritten as

∂

∂t
ĥν (ξ, t) = [− (−iξ )2ν − 2λ (−iξ )ν

]
e−t(−iξ )2ν−2λt(−iξ )ν . (2.14)

In (1.39), we have shown that

L
[
∂ν

∂xν
hν (x, t)

]
(μ) =

∫ ∞

0
e−μx

∂ν

∂xν
hν(x, t) dx = μνh̃ν(μ, t) (2.15)

and, thus, for a sufficiently good function f we have the following Fourier transform

F
[
∂ν

∂xν
f (x)

]
(ξ ) =

∫ ∞

0
e−(−iξ )x ∂

ν

∂xν
f (x) dx = (−iξ )ν f̂ (ξ ). (2.16)

In view of (2.16), we have that the Fourier transform of the right-hand side of the equation
(2.10), equipped with the boundary conditions, is written as

−F
[
∂2ν

∂x2ν
hν (x, t) + 2λ

∂ν

∂xν
hν (x, t)

]
(ξ ) =

= −
∫ ∞

0
e−(−iξ )x ∂

2ν

∂x2ν
hν (x, t) dx − 2λ

∫ ∞

0
e−(−iξ )x ∂

ν

∂xν
hν (x, t) dx

= − (
(−iξ )2ν + 2λ (−iξ )ν

)
ĥν (ξ, t)

= − (
(−iξ )2ν + 2λ (−iξ )ν

)
e
−t

(
|ξ |e− iπ

2 sign(ξ )
)2ν

−2λt
(
|ξ |e− iπ

2 sign(ξ )
)ν

= − (
(−iξ )2ν + 2λ (−iξ )ν

)
e−t(−iξ )2ν−2λt(−iξ )ν , (2.17)



1020 D’Ovidio et al.

which coincides with formula (2.14). This is tantamount to saying that the Fourier transform
ĥν (ξ, t) is the solution to{ ∂

∂t
ĥν (ξ, t) = − (

(−iξ )2ν + 2λ (−iξ )ν
)

ĥν (ξ, t) , ξ ∈ R, t > 0,

ĥν (ξ, 0) = 1,
(2.18)

and this completes the proof. �

2.1. The Inverse Process Lν(t)

Let Lν(t), t > 0, be the inverse process of Hν(t), t > 0, as defined in (1.13) for which

Pr {Lν(t) < x} = Pr {Hν(x) > t} , x, t > 0, (2.19)

and let lν(x, t) be the law of Lν(t), t > 0. We have the following result.

Theorem 2.2. The law lν(x, t) of the process Lν(t), t > 0, solves the time-fractional
boundary-initial problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
∂2ν

∂t2ν
+ 2λ

∂ν

∂tν

)
lν(x, t) = − ∂

∂x
lν(x, t), x > 0, t > 0, 0 < ν < 1

2 ,

lν(x, 0) = δ(x),

lν(0, t) = t−2ν

	(1−2ν) + 2λ t−ν
	(1−ν) ,

(2.20)

and has x-Laplace transform which reads, for 0 < γ < λ2,

l̃ν (γ, t) = 1

2

[(
1 + λ√

λ2 − γ

)
Eν,1 (r1t

ν) +
(

1 − λ√
λ2 − γ

)
Eν,1 (r2t

ν)

]
, (2.21)

where

r1 = −λ+
√
λ2 − γ , r2 = −λ−

√
λ2 − γ . (2.22)

The fractional derivatives appearing in (2.20) are intended in the Riemann-Liouville sense.

Proof. We first show that the analytical solution to the problem (2.20) has double Laplace

transform ˜̃lν (γ, μ) written as

˜̃lν (γ, μ) = μ2ν−1 + 2λμν−1

μ2ν + 2λμν + γ
. (2.23)

By taking the t-Laplace transform of the equation in (2.20) we have that

μ2ν l̃ν (x, μ) + 2λμν l̃ν (x, μ) = − ∂

∂x
l̃ν (x, μ) . (2.24)

By taking into account the boundary condition and performing the x-Laplace transform of
(2.24) we have that (

μ2ν + 2λμν
) ˜̃lν (γ, μ) = l̃ν (0, μ) − γ ˜̃lν (γ, μ) . (2.25)
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Now, by considering the boundary condition, we get that

l̃ν (0, μ) =
∫ ∞

0
dt e−μt lν (0, t) =

∫ ∞

0
dt e−μt

[
t−2ν

	 (1 − 2ν)
+ 2λ

t−ν

	 (1 − ν)

]
= μ2ν−1 + 2λμν−1, (2.26)

and, thus,

˜̃lν (γ, μ) = μ2ν−1 + 2λμν−1

μ2ν + 2λμν + γ
. (2.27)

Now we show that the double Laplace transform of the law lν (x, t) coincides with (2.23).
We first recall that

h̃ν(μ, x) =
∫ ∞

0
dt e−μthν(t, x) = Ee−μH

ν (x) = Ee−μH
2ν (x)

Ee−μH
ν (2λx)

= h̃2ν (μ, x) h̃ν (μ, 2λx) = e−xμ
2ν−x2λμν , x > 0, (2.28)

where we used result (1.36). By considering the construction of the process Lν(t), t > 0,
as the inverse process of Hν(t), t > 0, as stated in (2.19), we get

lν(x, t) = Pr {Lν(t) ∈ dx}
dx

= − ∂

∂x
Pr {Hν(x) < t} = − ∂

∂x

∫ t

0
hν(s, x) ds. (2.29)

In view of (2.29), the double Laplace transform of lν(x, t) can be obtained observing that

˜̃lν (γ, μ) =
∫ ∞

0
dx e−γ x

∫ ∞

0
dt e−μt

[
− ∂

∂x

∫ t

0
hν(s, x) ds

]
= −

∫ ∞

0
dx e−γ x

∂

∂x

∫ ∞

0
dt e−μt

∫ t

0
hν(s, x) ds

= − 1

μ

∫ ∞

0
dx e−γ x

∂

∂x
h̃ν (x, μ) = − 1

μ

∫ ∞

0
dx e−γ x

[
∂

∂x
e−xμ

2ν−2λxμν
]

= (
μ2ν−1 + 2λμν−1

) ∫ ∞

0
dx e−γ x−xμ

2ν−2λxμν = μ2ν−1 + 2λμν−1

μ2ν + 2λμν + γ
, (2.30)

which coincides with (2.23). Now we pass to the derivation of the x-Laplace transform of
lν (x, t). We can write

˜̃lν (γ, μ) = μ2ν−1 + 2λμν−1

μ2ν + 2λμν + γ
= μν−1

μν − r1
+ μν−1

μν − r2
− μ2ν−1

(μν − r1) (μν − r2)

= μν−1

μν − r1
+ μν−1

μν − r2
−

[
μν−(1−ν)

μν − r1
− μν−(1−ν)

μν − r2

]
1

2
√
λ2 − γ

, (2.31)

where

r1 = −λ+
√
λ2 − γ , r2 = −λ−

√
λ2 − γ . (2.32)
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Now we need the following results∫ ∞

0
e−μtEν,1

(
rj t

ν
)
dt = μν−1

μν − rj
, j = 1, 2,

∫ ∞

0
e−μt t (1−ν)−1Eν,1−ν

(
rj t

ν
)
dt = μ2ν−1

μν − rj
. (2.33)

Therefore,

l̃ν (γ, t) = Eν,1 (r1t
ν) + Eν,1 (r2t

ν) − t−ν

2
√
λ2 − γ

[
Eν,1−ν (r1t

ν) − Eν,1−ν (r2t
ν)
]
. (2.34)

Since

Eν,1−ν (z) = zEν,1(z) + 1

	 (1 − ν)
(2.35)

we have that

l̃ν (γ, t) = Eν,1 (r1t
ν) + Eν,1 (r2t

ν) − t−ν

2
√
λ2 − γ

[
r1t

νEν,1 (r1t
ν) − r2t

νEν,1 (r2t
ν)
]

=
(

1 − −λ+
√
λ2 − γ

2
√
λ2 − γ

)
Eν,1 (r1t

ν) +
(

1 − λ+
√
λ2 − γ

2
√
λ2 − γ

)
Eν,1 (r2t

ν)

= 1

2

[(
1 + λ√

λ2 − γ

)
Eν,1 (r1t

ν) +
(

1 − λ√
λ2 − γ

)
Eν,1 (r2t

ν)

]
, (2.36)

which coincides with (2.21).
Now we check that the Laplace transform (2.36) solves the fractional equation(

∂2ν

∂t2ν
+ 2λ

∂ν

∂tν

)
l̃ν (γ, t) = −γ l̃ν (γ, t) + lν (0, t)

= −γ l̃ν (γ, t) + t−2ν

	(1 − 2ν)
+ 2λ

t−ν

	 (1 − ν)
(2.37)

which is the x-Laplace transform of the equation appearing in (2.20). Since

∂2ν

∂t2ν
l̃ν(γ, t) − t−2ν

	 (1 − 2ν)
=

C∂2ν

∂t2ν
l̃ν(γ, t) (2.38)

∂ν

∂tν
l̃ν(γ, t) − t−ν

	 (1 − ν)
=

C∂ν

∂tν
l̃ν(γ, t) (2.39)

we, therefore, need to show that(
C∂2ν

∂t2ν
+ 2λ

C∂ν

∂tν

)
l̃ν(γ, t) = −γ l̃ν(γ, t). (2.40)

In light of

C∂ν

∂tν
Eν,1

(
rj t

ν
) = rjEν,1

(
rj t

ν
)
, j = 1, 2, (2.41)
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C∂2ν

∂t2ν
Eν,1

(
rj t

ν
) = r2

j Eν,1
(
rj t

ν
) + t−νrj

	 (1 − ν)
, (2.42)

we are able to show that (2.21) solves (2.37). We first check result (2.42) as follows, for
0 < 2ν < 1

C∂2ν

∂t2ν
Eν,1

(
rj t

ν
) =

∞∑
k=0

rkj

	 (νk + 1)

C∂2ν

∂t2ν
tνk

=
∞∑
k=1

rkj

	 (νk + 1)

νk

	 (1 − 2ν)

∫ t

0
sνk−1 (t − s)−2ν ds

=
∞∑
k=1

rkj t
νk−2ν

	 (νk)

1

	 (1 − 2ν)

∫ 1

0
sνk−1 (1 − s)1−2ν−1 ds

=
∞∑
k=1

rkj t
νk−2ν

	 (νk − 2ν + 1)
=

∞∑
k=0

rk+1
j tνk−ν

	 (νk − ν + 1)

= rj t
−ν

[ ∞∑
k=1

(rj tν)k

	 (νk − ν + 1)
+ 1

	 (1 − ν)

]

= r2
j Eν,1

(
rj t

ν
) + t−νrj

	 (1 − ν)
. (2.43)

Therefore,(
C∂2ν

∂t2ν
+ 2λ

C∂ν

∂tν

)
l̃ν (γ, t)

= 1

2

[(
1 + λ√

λ2 − γ

)
C∂2ν

∂t2ν
Eν,1 (r1t

ν) +
(

1 − λ√
λ2 − γ

)
C∂2ν

∂t2ν
Eν,1 (r2t

ν)

]

+ 2λ
1

2

[(
1 + λ√

λ2 − γ

)
C∂ν

∂tν
Eν,1 (r1t

ν) +
(

1 − λ√
λ2 − γ

)
C∂ν

∂tν
Eν,1 (r2t

ν)

]

= 1

2

[(
1 + λ√

λ2 − γ

)(
r2

1 Eν,1 (r1t
ν) + t−νr1

	 (1 − ν)

)

+
(

1 − λ√
λ2 − γ

)(
r2

2 Eν,1 (r2t
ν) + t−νr2

	 (1 − ν)

)]

+ 2λ
1

2

[(
1 + λ√

λ2 − γ

) (
r1Eν,1 (r1t

ν)
) +

(
1 − λ√

λ2 − γ

)
r2Eν,1 (r2t

ν)

]

= 1

2

[
r1

(
1 + λ√

λ2 − γ

)
Eν,1 (r1t

ν) (r1 + 2λ) + r2

(
1 − λ√

λ2 − γ

)

×Eν,1 (r2t
ν) (r2 + 2λ)

]
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= −γ
2

λ+
√
λ2 − γ√

λ2 − γ
Eν,1 (r1t

ν) − γ

2

√
λ2 − γ − λ√
λ2 − γ

Eν,1 (r2t
ν)

= −γ
[

1

2

[(
1 + λ√

λ2 − γ

)
Eν,1 (r1t

ν) +
(

1 − λ√
λ2 − γ

)
Eν,1 (r2t

ν)

]]
= −γ l̃ν (γ, t) . (2.44)

In the last steps we used the fact that(
1 + λ√

λ2 − γ

)
r1 t

−ν

	 (1 − ν)
+

(
1 − λ√

λ2 − γ

)
r2 t

−ν

	 (1 − ν)
= 0, (2.45)

and

r1 + 2λ = −r2, r2 + 2λ = −r1, r1r2 = γ. (2.46)
�

Remark 2.1. The derivation of result (2.21) suggests an alternative proof for the Fourier
transform (Theorem 2.2 in [14]) of the law of the time-fractional telegraph process.

Remark 2.2. From (2.31), we get the time Laplace transform of lν(x, t), for x > 0,
μ > 0, 0 < ν < 1

2 , as

l̃ν (x, μ) = μ2ν−1e−xμ
2ν
e−2λxμν + 2λμν−1e−2λxμν e−xμ

2ν
. (2.47)

Since (see formulas (1.43) and (1.45))

l̃ν(x, μ) =
∫ ∞

0
e−μt

1

tν
W−ν,1−ν

(
− x

tν

)
dt = μν−1e−xμ

ν

(2.48)

and (see formula (1.41))

h̃ν(μ, t) =
∫ ∞

0
e−μxhν(x, t) dx = e−tμ

ν

, (2.49)

we are able to invert (2.47) and we obtain the explicit distribution of the process Lν(t),
t > 0, which reads

lν(x, t) = Pr {Lν(t) ∈ dx}
dx

=
∫ t

0
l2ν (x, s) hν(t − s, 2λx) ds + 2λ

∫ t

0
lν(2λx, s)h2ν (t − s, x) ds

=
∫ t

0

1

s2ν
W−2ν,1−2ν

(
− x

s2ν

)
hν(t − s, 2λx) ds

+2λ
∫ t

0

1

sν
W−ν,1−ν

(
−2λx

sν

)
h2ν (t − s, x) ds. (2.50)

The densities hν and h2ν can be written down in terms of series expansion of stable laws
(see, [17, p. 245]).
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3. n-Dimensional Stable Laws and Fractional Laplacian

Let

S2β
n (t) =

(
S

2β
1 (t), S2β

2 (t), · · · , S2β
n (t)

)
, t > 0, β ∈ (0, 1], (3.1)

be the isotropic stable n-dimensional process with joint characteristic function

v̂
2β
n (ξ , t) = v̂

2β
n (ξ1, ξ2, · · · , ξn, t) = Eeiξ ·S2β

n (t) = e
−t

(√
ξ 2

1 +ξ 2
2 +···+ξ 2

n

)2β

= e−t‖ξ‖2β
. (3.2)

The density corresponding to the characteristic function v̂2β
n (ξ , t) is given by

v2β
n (x, t) = v2β

n (x1, x2, · · · , xn, t) = 1

(2π )n

∫
Rn

e−iξ ·xe−t‖ξ‖2β

dξ . (3.3)

The equation governing the distribution v2β
n (x, t) of the vector process S2β

n (t), t > 0, is(
∂

∂t
+ (−�)β

)
v2β
n (x, t) = 0, x ∈ R

n, t > 0, (3.4)

where the fractional negative Laplacian is related to the classical Laplacian by means of
the following relationships (Bochner representation, see, e.g., [3, 5])

sinπβ

π

∫ ∞

0
dλ λβ−1 (λ−�)−1 � = sinπβ

π

∫ ∞

0
λβ−1

(∫ ∞

0
e−w(λ−�)dw

)
�dλ

= sinπβ

π
	(β)

∫ ∞

0
w1−β−1e−w(−�)�dw = 1

	 (1 − β)

∫ ∞

0
w1−β−1e−w(−�)�dw

= − (−�)β . (3.5)

A definition of the fractional negative Laplacian can be given in the space of the Fourier
transforms as follows

− (−�)β u(x) = − 1

(2π )n

∫
Rn

e−ix·ξ (
ξ 2

1 + ξ 2
2 + · · · + ξ 2

n

)β
û (ξ ) dξ , (3.6)

where

Dom (−�)β =
{
u ∈ L1

loc
(
R
n
)

:
∫

Rn

|̂u (ξ )|2 (
1 + ‖ξ‖2β) dξ < ∞

}
. (3.7)

An equivalent alternative definition of the n-dimensional fractional Laplacian is

(−�)β u(x) = c(β, n) P.V.
∫

Rn

u(x) − u( y)

‖x − y‖n+2β dy, (3.8)

where the multiplicative constant c(β, n) must be evaluated in such a way that∫
Rn

eiξ ·x (−�)β u(x) dx = ‖ξ‖2β
∫

Rn

eiξ ·xu(x) dx. (3.9)
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Let us focus our attention on the one-dimensional case of (3.8). In this case, we have that,
for 0 < 2β < 1,(

− ∂2

∂x2

)β
u(x) = c(β, 1) P.V.

∫
R

u(x) − u(y)

|x − y|1+2β dy

= c(β, 1) lim
ε→0

[∫ 0−ε

−∞

u(x) − u(x − z)

|z|1+2β
dz+

∫ ∞

0+ε

u(x) − u(x − z)

|z|1+2β
dz

]
= c(β, 1) lim

ε→0

[∫ ∞

0+ε

u(x) − u(x + z)

z1+2β
dz+

∫ ∞

0+ε

u(x) − u(x − z)

z1+2β
dz

]
= 	(1 − 2β)

2β
c(β, 1)

[
1

	 (1 − 2β)

d

dx

(∫ x

−∞

u(z) dz

(x − z)2β
−

∫ ∞

x

u(z) dz

(z− x)2β

)]
, (3.10)

where in the intermediate steps, we considered the relation between the Marchaud and the
Weyl fractional derivatives. By setting

c(β, 1) = β

	 (1 − 2β) cosβπ
, (3.11)

we have that, for 0 < 2β < 1,

−
(

− ∂2

∂x2

)β
u(x)

= − 1

2 cosβπ

[
1

	(1 − 2β)

d

dx

∫ x

−∞

u(z) dz

(x − z)2β
− 1

	(1 − 2β)

d

dx

∫ ∞

x

u(z) dz

(z− x)2β

]
= − 1

2 cosβπ

1

	(1 − 2β)

d

dx

∫ ∞

−∞

u(z)

|x − z|2β dz = ∂2β

∂|x|2β u(x), (3.12)

where ∂2β

∂|x|2β represents the Riesz operator.

Remark 3.1. We notice that, for 0 < 2β < 1,

F
[
∂2β

∂|x|2β u(x)

]
(ξ ) = −|ξ |2β û(ξ ). (3.13)

This is due to the calculation

F
[
∂2β

∂|x|2β u(x)

]
(ξ )

= − 1

2 cosβπ

1

	 (1 − 2β)

[∫ ∞

−∞
dx eiξx

(
d

dx

∫ x

−∞

u(z) dz

(x − z)2β − d

dx

∫ ∞

x

u(z) dz

(z− x)2β

)]
= iξ

2 cosβπ

1

	 (1 − 2β)

[∫ ∞

−∞
dx eiξx

(∫ x

−∞

u(z) dz

(x − z)2β −
∫ ∞

x

u(z) dz

(z− x)2β

)]
= iξ

2 cosβπ

1

	 (1 − 2β)

[∫ ∞

−∞
dz u(z)

(∫ ∞

z

eiξx dx

(x − z)2β −
∫ z

−∞

eiξx dx

(z− x)2β

)]
= iξ

2 cosβπ

1

	 (1 − 2β)

[∫ ∞

−∞
eiξzu(z) dz

(∫ ∞

0

eiξy

y2β
dy −

∫ ∞

0

e−iξy

y2β
dy

)]
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= − 2ξ

2 cosβπ

1

	 (1 − 2β)

∫ ∞

−∞
eiξzu(z) dz

∫ ∞

0

sin ξy

y2β
dy

= − ξ

cosβπ

1

	 (1 − 2β)

û(ξ )

	 (2β)

∫ ∞

0

∫ ∞

0
sin ξy e−wyw2β−1 dw dy

= − ξ

cosβπ

1

	 (1 − 2β)

û(ξ )

	 (2β)

∫ ∞

0
dww2β−1

∫ ∞

0
dy e−wy

(
eiξy − e−iξy

2i

)
= − ξ 2

cosβπ

1

	 (1 − 2β)

û(ξ )

	 (2β)

∫ ∞

0
dw

w2β−1

w2 + ξ 2

= − ξ 2

cosβπ

1

	 (1 − 2β)

û(ξ )

	 (2β)

∫ ∞

0
dww2β−1

∫ ∞

0
dy e−y(w

2+ξ 2)

= − ξ 2

2 cosβπ

1

	 (1 − 2β)

û(ξ )

	 (2β)

	 (β) 	 (1 − β)

|ξ |2−2β
= −|ξ |2β û(ξ ). (3.14)

This concludes the proof of (3.13).

4. Space-Time Fractional Telegraph Equation

We consider now the composition of an isotropic vector of stable processes S2β
n (t), t > 0,

defined in (3.1), with the positively-valued process, defined in (2.19),

Lν(t) = inf
{
s ≥ 0 : Hν(s) = H 2ν

1 (s) + (2λ)
1
ν H ν

2 (s) ≥ t
}
, t > 0, (4.1)

where H 2ν
1 , Hν

2 are independent positively skewed stable processes of order 2ν and ν,
respectively. The distribution wβν (x, t) of the process S2β

n

(
c2Lν(t)), t > 0, β ∈ (0, 1], is

the fundamental solution to the space-time fractional telegraph equation(
C∂2ν

∂t2ν
+ 2λ

C∂ν

∂tν

)
wβν (x, t) = −c2 (−�)β wβν (x, t) , x ∈ R

n, t > 0. (4.2)

In our view, the next theorem generalizes some previous results because we here have
fractionality in space and time and the equation (4.2) is defined in R

n.

Theorem 4.1. For ν ∈ (
0, 1

2

]
and β ∈ (0, 1] the solution to the Cauchy problem for the

space-time fractional n-dimensional telegraph equation{(
C∂2ν

∂t2ν
+ 2λ

C∂ν

∂tν

)
wβν (x, t) = −c2 (−�)β wβν (x, t) , x ∈ R

n, t > 0

wβν (x, 0) = δ (x) ,
(4.3)

coincides with the probability law of the vector process

Wn(t) = S2β
n

(
c2Lν(t)) , t > 0, (4.4)

and has Fourier transform which reads

ŵ
β
ν (ξ , t)
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= 1

2

⎡⎣⎛⎝1 + λ√
λ2 − c2 ‖ξ‖2β

⎞⎠Eν,1 (r1t
ν)

+
⎛⎝1 − λ√

λ2 − c2 ‖ξ‖2β

⎞⎠Eν,1 (r2t
ν)

⎤⎦ , (4.5)

where

r1 = −λ+
√
λ2 − c2 ‖ξ‖2β, r2 = −λ−

√
λ2 − c2 ‖ξ‖2β. (4.6)

The time derivatives appearing in (4.3) must be meant in the Dzherbashyan-Caputo sense.
The fractional Laplacian is defined in (3.6).

Proof. By taking the Laplace transform of (4.3) we have

μ2νw̃
β
ν (x, μ) −μ2ν−1δ(x) +2λ

[
μνw̃

β
ν (x, μ) −μν−1δ(x)

]
= −c2 (−�)β w̃βν (x, μ) ,(4.7)

where we used the fact that (see [12] page 98, Lemma 2.24)

L
[
C∂ν

∂tν
wβν (x, t)

]
= μνw̃

β
ν (x, μ) − μν−1wβν (x, 0). (4.8)

Now the Fourier transform of (4.7) yields(
μ2ν + 2λμν

) ̂̃
w
β
ν (ξ , μ) − (

μ2ν−1 + 2λμν−1
) = −c2 ‖ξ‖2β ̂̃

w
β
ν (ξ , μ) , (4.9)

and, thus,

̂̃
w
β
ν (ξ , μ) = μ2ν−1 + 2λμν−1

μ2ν + 2λμν + c2 ‖ξ‖2β , μ > 0, ξ ∈ R
n. (4.10)

The probability density of the process Wn(t), t > 0, defined in (4.4), can be written as

wβν (x, t) =
∫ ∞

0
vβ

(
x, c2s

)
lν (s, t) ds, (4.11)

and has Fourier transform equal to∫
Rn

eiξ ·x wβν (x, t) dx =
∫ ∞

0
e−c

2s‖ξ‖2β

lν(s, t) ds. (4.12)

In order to show that the Laplace transform of (4.12) concides with (4.10), we have to
derive the Laplace transform of lν(x, t), with respect to the time t. Since

Pr {Lν(t) < x} = Pr {Hν(x) > t} (4.13)

we have that

l̃ν (x, μ) =
∫ ∞

0
e−μt

∂

∂x

∫ ∞

t

Pr {Hν(x) ∈ ds} dt =
∫ ∞

0
e−μt

(
− ∂

∂x

∫ t

0
hν (s, x) ds

)
dt
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= − ∂

∂x

e−xμ
2ν−2λxμν

μ
= (

μ2ν−1 + 2λμν−1
)
e−xμ

2ν−2λxμν , (4.14)

where we used result (2.28). Now we can complete the proof by taking the Laplace transform
of (4.12) so that, in view of (4.14), we obtain∫ ∞

0
e−μtdt

∫ ∞

0
e−c

2s‖ξ‖2β

lν(s, t) ds

= (
μ2ν−1 + 2λμν−1) ∫ ∞

0
e−sc

2‖ξ‖2β−sμ2ν−2λsμν ds = μ2ν−1 + 2λμν−1

μ2ν + 2λμν + c2 ‖ξ‖2β , (4.15)

which coincides with (4.10). The unicity of Fourier-Laplace transform proves that the
claimed result holds. The proof that the Fourier transform of wβν (x, t) has the form (4.5)
can be carried out by means of the calculation performed in Theorem 2.2. We have that

̂̃
w
β
ν (ξ , μ) = μ2ν−1 + 2λμν−1

μ2ν + 2λμν + c2 ‖ξ‖2β = μν−1

μν − r1
+ μν−1

μν − r2
− μ2ν−1

(μν − r1) (μν − r2)

= μν−1

μν − r1
+ μν−1

μν − r2
−

[
μν−(1−ν)

μν − r1
− μν−(1−ν)

μν − r2

]
1

2
√
λ2 − c2 ‖ξ‖2β

, (4.16)

where

r1 = −λ+
√
λ2 − c2 ‖ξ‖2β, r2 = −λ−

√
λ2 − c2 ‖ξ‖2β. (4.17)

and, thus, by inverting (4.16) by means of (2.33), we obtain result (4.5). An alternative
derivation of (4.5) can be carried out as follows

ŵ
β
ν (ξ , t) =

∫ ∞

−∞
eiξ ·x

∫ ∞

0
Pr

{
S2β
n

(
c2s

) ∈ dx
}

Pr {Lν(t) ∈ ds}

=
∫ ∞

0
e−c

2s‖ξ‖2β

Pr {Lν(t) ∈ ds} = (4.5) (4.18)

because of Theorem 2.2. �

4.1. The Case ν = 1
2 , Subordinator with Drift

The fractional equation (4.2), for n = 1, ν = 1
2 , reads(

∂

∂t
+ 2λ

C∂
1
2

∂t
1
2

)
w
β
1
2
(x, t) = c2 ∂2β

∂|x|2β w
β
1
2

(x, t) , 0 < β < 1, (4.19)

where ∂2β

∂|x|2β is the Riesz operator defined in (3.12). For β = 1 we have the special case(
∂

∂t
+ 2λ

C∂
1
2

∂t
1
2

)
w1

1
2

(x, t) = c2 ∂
2

∂x2
w1

1
2

(x, t) (4.20)
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dealt with in Orsingher and Beghin [14]. The construction of the composition related to
Equation (4.19) involves the subordinator

H 1
2 (t) = t + (2λ)2H

1
2 (t), t > 0, (4.21)

where H
1
2 (t), t > 0, is a positively skewed stable process and has the same law as the

first-passage time of a Brownian motion through level t√
2
. We note that H 1

2 (t), t > 0, has

distribution with support [t,∞) and, thus, differs from Hν(t), t > 0, 0 < ν < 1
2 , which

instead has support [0,∞). The distribution of (4.21) writes

Pr
{
H 1

2 (t) < x
}

=
∫ x−t

(2λ)2

0

t√
2

e−
t2

4z√
2πz3

dz, x > t > 0. (4.22)

The inverse process

L 1
2 (t) = inf

{
s : s + (2λ)2H

1
2 (s) ≥ t

}
= inf

{
s : H 1

2 (s) ≥ t
}

(4.23)

is related to (4.21) by means of the relationship

Pr
{
L 1

2 (t) < x
}

= Pr
{
H 1

2 (x) > t
}

=
∫ ∞

t−x
(2λ)2

x√
2

e−
x2

4z√
2πz3

dz. (4.24)

From (4.24), we can extract the distributon of L 1
2 (t), t > 0, in the following manner

l 1
2
(x, t) =

Pr
{
L 1

2 (t) ∈ dx
}

dx
= ∂

∂x

∫ ∞

t−x
(2λ)2

x e−
x2

4z√
4πz3

dz

= 2λx e−
(2λx)2

4(t−x)√
4π (t − x)3

+ 2λ
e
− (2λx)2

4(t−x)

√
π (t − x)

, 0 < x < t. (4.25)

Remark 4.1. The distribution (4.25) can be also obtained from the general case (2.50),
which for ν = 1

2 becomes, for 0 < x < t ,

l 1
2
(x, t) =

∫ t

0
δ(s − x)h 1

2
(t − s, 2λx) ds + 2λ

∫ t

0
l 1

2
(2λx, s) δ (x − (t − s)) ds

= h 1
2

(t − x, 2λx) + 2λ l 1
2
(2λx, t − x)

= 2λx e−
(2λx)2

4(t−x)√
4π (t − x)3

+ 2λ
e
− (2λx)2

4(t−x)

√
π (t − x)

. (4.26)

In the last step we used the fact that

L
1
2 (t)

law= |B(t)| , t > 0, (4.27)

where L
1
2 (t), t > 0, dealt with in Section 1.3, is the inverse of the totally positively skewed

stable process H
1
2 (t), t > 0.
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The t-Laplace transform of (4.25) becomes

l̃ 1
2
(x, μ) =

∫ ∞

x

e−μt l 1
2
(x, t) dt

= 2λx√
2

∫ ∞

x

e−μt
e
− (2λx)2

4(t−x)√
2π (t − x)3

dt + 2λ
∫ ∞

x

e−μt
e
− (2λx)2

4(t−x)

√
π (t − x)

dt

= 2λx√
2
e−μx

∫ ∞

0
e−μt

e−
(2λx)2

4t√
2πt3

dt + 2λe−μx
∫ ∞

0
e−μt

e−
(2λx)2

4t√
πt

dt

= e−μxe−2λx
√
μ + 2λμ− 1

2 e−μxe−2λx
√
μ. (4.28)

Finally, the x-Laplace transform of (4.28) becomes

˜̃l 1
2

(γ, μ) =
∫ ∞

0
e−γ x

(∫ ∞

x

e−μt l 1
2
(x, t) dt

)
dx

= 1

μ+ γ + 2λ
√
μ

+ 2λ√
μ

1

μ+ γ + 2λ
√
μ

= 1 + 2λμ− 1
2

μ+ γ + 2λ
√
μ
, (4.29)

which coincides with (2.31), for ν = 1
2 . Let us now consider the process Wn(t) =

S2β
n

(
c2Lν(t)), t > 0, dealt with in Theorem 4.1. For β = 1, n = 1 and ν = 1

2 this pro-
cess becomes

W1(t) = S2
1

(
c2L 1

2 (t)
)

= B
(
c2L 1

2 (t)
)
, t > 0 (4.30)

where B represents a standard Brownian motion and L 1
2 (t), t > 0, is the process defined in

(4.23). With

p|B|(x, t) = e−
x2

4t√
πt
, x > 0, t > 0, (4.31)

we denote the law of the process |B(t)|, t > 0. In view of the previous results we are able
to prove the following theorem.

Theorem 4.2. The law of (4.30) coincides with the law of the composition

W (t) = T (|B(t)|) , t > 0, (4.32)

where T is the telegraph process (1.20) with parameters c > 0, λ > 0 and law pT (x, t)
which has characteristic function

p̂T (ξ, t)

= 1

2

[(
1 + λ√

λ2 − c2ξ 2

)
e−λt+t

√
λ2−c2ξ 2 +

(
1 − λ√

λ2 − c2ξ 2

)
e−λt−t

√
λ2−c2ξ 2

]
.

(4.33)



1032 D’Ovidio et al.

In other words, we have the following equality in distribution

B
(
c2L 1

2 (t)
) law= T (|B(t)|) , t > 0. (4.34)

Proof. First, we show that the Fourier-Laplace transform of the laww1
1
2
(x, t) of the process

W1(t) = S2
1 (c2L 1

2 (t)) = B(c2L 1
2 (t)), t > 0, is written as in (4.15) for ν = 1

2 , β = 1, n = 1,
and reads

̂̃
w1

1
2

(ξ, μ) = 1 + 2λμ− 1
2

μ+ 2λ
√
μ+ c2ξ 2

. (4.35)

We have that

w̃1
1
2
(x, μ) =

∫ ∞

0
e−μt

(∫ t

0
pB

(
x, c2s

)
l 1

2
(s, t) ds

)
dt

=
∫ ∞

0
pB(x, c2s) ds

∫ ∞

s

e−μt l 1
2
(s, t) dt

=
∫ ∞

0
pB(x, c2s) ds

⎡⎣∫ ∞

s

e−μt

⎛⎝ 2λs e−
(2λs)2

4(t−s)√
4π (t − s)3

+ 2λ
e
− (2λs)2

4(t−s)
√
π (t − s)

⎞⎠ dt
⎤⎦

=
∫ ∞

0
pB

(
x, c2s

) (
e−s(μ+2λ

√
μ) + 2λ

√
μe−s(μ+2λ

√
μ)

)
ds

=
∫ ∞

0

e
− x2

4c2s√
4πc2s

e−s(μ+2λ
√
μ) ds + 2λμ− 1

2

∫ ∞

0

e
− x2

4c2s√
4πc2s

e−s(μ+2λ
√
μ) ds, (4.36)

and, thus, by taking the Fourier transform we get

̂̃
w1

1
2

(ξ, μ) =
∫ ∞

0
e−sc

2ξ 2
e−s(μ+2λ

√
μ) ds + 2λμ− 1

2

∫ ∞

0
e−sc

2ξ 2
e−s(μ+2λ

√
μ) ds

= 1 + 2λμ− 1
2

μ+ 2λ
√
μ+ c2ξ 2

. (4.37)

Now we are going to prove that the law w (x, t) of the process W (t), t > 0, has
Fourier-Laplace transform that coincides with (4.35). We have that

w (x, t) =
∫ ∞

0
pT (x, s)p|B|(s, t) ds, (4.38)

and thus the Fourier transform of w (x, t) reads

ŵ (ξ, t) =
∫ ∞

−∞
eiξxdx

∫ ∞

0
pT (x, s) p|B|(s, t) ds

= 1

2

∫ ∞

0

[(
1 + λ√

λ2 − c2ξ 2

)
e−λs+s

√
λ2−c2ξ 2
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+
(

1 − λ√
λ2 − c2ξ 2

)
e−λs−s

√
λ2−c2ξ 2

]
p|B|(s, t) ds. (4.39)

Passing now to the Laplace transform, we have

˜̂w (ξ, μ) = 1

2

∫ ∞

0
e−μt dt

∫ ∞

0

[(
1 + λ√

λ2 − c2ξ 2

)
e−λs+s

√
λ2−c2ξ 2

+
(

1 − λ√
λ2 − c2ξ 2

)
e−λs−s

√
λ2−c2ξ 2

]
e−

s2

4t√
πt
ds

= 1

2

∫ ∞

0

[(
1 + λ√

λ2 − c2ξ 2

)
e−λs+s

√
λ2−c2ξ 2

+
(

1 − λ√
λ2 − c2ξ 2

)
e−λs−s

√
λ2−c2ξ 2

]
e−s

√
μ

√
μ

ds

= 1

2
√
μ

[(
1 + λ√

λ2 − c2ξ 2

)(
1

λ+ √
μ−

√
λ2 − c2ξ 2

)

+
(

1 − λ√
λ2 − c2ξ 2

)(
1

λ+ √
μ+

√
λ2 − c2ξ 2

)]

=
(
λ+

√
λ2 − c2ξ 2

) (
λ+ √

μ+
√
λ2 − c2ξ 2

)
(

2
√
μ
√
λ2 − c2ξ 2

) (
μ+ 2λ

√
μ+ c2ξ 2

)
+

(√
λ2 − c2ξ 2 − λ

) (
λ+ √

μ−
√
λ2 − c2ξ 2

)
(

2
√
μ
√
λ2 − c2ξ 2

) (
μ+ 2λ

√
μ+ c2ξ 2

)
= 1 + 2λμ− 1

2

μ+ 2λ
√
μ+ c2ξ 2

, (4.40)

which coincides with (4.35). �

This shows that for each t we have the following equality in distribution

T (|B(t)|) law= B
(
c2L 1

2 (t)
)
, t > 0, (4.41)

where the role of the Brownian motion is interchanged in the two members of (4.41). Thus,
by suitably slowing down the time in (4.41), we obtain the same distributional effect of a
telegraph process taken at a Brownian time.

Remark 4.2. The probability distribution of the process

W1(t) = B(c2L 1
2 (t)), t > 0, (4.42)
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can be written as

w1
1
2
(x, t) = λ

cπ

∫ t

0

1√
s(t − s)

e
− x2

4c2s
− λ2s2

t−s

[
s

2(t − s)
+ 1

]
ds

= λ

cπ

∫ t

0

1√
s(t − s)

e
− x2

4c2s
− λ2s2

t−s

[
1

2

(
1 + t

t − s

)]
ds

y=λs=
√
λ

cπ

∫ λt

0
e
− λx2

4c2y e
− y2

t− y
λ

1
√
y

√
t − y

λ

[
1

2

(
1 + t

t − y

λ

)]
dy. (4.43)

Taking the limit for c → ∞, λ → ∞, c
2

λ
→ 1, formula (4.43) becomes

lim
λ, c → ∞
c2

λ
→ 1

y1
1
2

(x, t) = 2
∫ ∞

0

e
− x2

4y

√
4πy

e−
y2

t√
πt
dy (4.44)

which coincides with the distribution of an iterated Brownian motion B1 (|B2(t)|), t >
0, with Bj , j = 1, 2, independent Brownian motions. From (4.43), we can see that the
distribution of W1(t), t > 0, has a bell-shaped structure. Finally, we show that the density
w1

1
2

(x, t) integrates to unity in force of the calculation

∫ ∞

−∞
w1

1
2

(x, t) dx =
∫ ∞

−∞
dx

∫ t

0
ds

e−
x2

4s√
4πs

l 1
2

(s, t) =
∫ t

0
ds

(
∂

∂s

∫ ∞

t−s
(2λ)2

s e−
s2

4z√
4πz3

dz

)

=
[∫ ∞

t−s
(2λ)2

s e−
s2

4z√
4πz3

dz

]s=t
s=0

=
∫ ∞

0

te−
t2

4z√
4πz3

dz = 1. (4.45)

In the intermediate step, formula (4.25) has been applied.

Remark 4.3. The characteristic function of the process T 2β(t), t > 0, whose distribution
satisfies⎧⎪⎪⎨⎪⎪⎩

(
∂2

∂t2
+ 2λ ∂

∂t

)
p

2β
T (x, t) = c2 ∂2β

∂|x|2β p
2β
T (x, t), 0 < β < 1, β 	= 1

2

p
2β
T (x, 0) = δ(x),
∂
∂t
p

2β
T (x, t)

∣∣∣
t=0

= 0,

(4.46)

reads

EeiξT
2β (t) = e−λt

2

[(
1 + λ√

λ2 − c2|ξ |2β
)
et

√
λ2−c2|ξ |2β

+
(

1 − λ√
λ2 − c2|ξ |2β

)
e−t

√
λ2−c2|ξ |2β

]
(4.47)

see [15]. Therefore, by performing the same steps as in theorem (4.2), we prove that

S
2β
1 (L 1

2 (t))
law= T 2β (|B(t)|) , t > 0. (4.48)
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4.2. The Case ν = 1
3 , Convolutions of Airy Functions

We first recall that the totally positively skewed stable process H
1
3 (t), t > 0 has law

Pr
{
H

1
3 (t) ∈ dx

}
= t

x
3
√

3x
Ai

(
t

3
√

3x

)
dx, x > 0, t > 0, (4.49)

where Ai(·) is the Airy function. Result (4.49) can be obtained from the general series
expansion of the stable law of order 1

3 (see [17], p. 245) which reads

h 1
3
(x, 1) = 1

3π

∞∑
k=0

(−1)k
	

(
k+1

3

)
k!

x− 1
3 (k+1)−1 sin

(π
3

(k + 1)
)

= 1

3π

∞∑
k=0

(−1)k
	

(
k+1

3

)
k!

x− k+1
3 −1(−1)k sin

(
2π (k + 1)

3

)

= 1

3

3
2
3

x 3
√
x

Ai

(
1

3
√

3x

)
= 1

x
3
√

3x
Ai

(
1

3
√

3x

)
, (4.50)

where we used formula (4.10) of [17], which reads

Ai(w) = 3− 2
3

π

∞∑
k=0

(
3

1
3w

)k sin
( 2π(k+1)

3

)
k!

	

(
k + 1

3

)
. (4.51)

Since

H
1
3 (t)

law= t3H
1
3 (1), (4.52)

we have result (4.49). From the relatioship between H
1
3 (t), t > 0, and the inverse process

L
1
3 (t), t > 0,

Pr
{
H

1
3 (t) < x

}
= Pr

{
L

1
3 (x) > t

}
(4.53)

we extract the density of L
1
3 (x), x > 0,

Pr
{
L

1
3 (x) ∈ dt

}
dt

= − ∂

∂t

∫ x

0

t

s

1
3
√

3s
Ai

(
t

3
√

3s

)
ds

= −
∫ x

0

1

s
3
√

3s
Ai

(
t

3
√

3s

)
ds−

∫ x

0

t

s
3
√

3s
Ai′

(
t

3
√

3s

)
ds
3
√

3s
(4.54)

Since

∂

∂s
Ai

(
t

3
√

3s

)
= − t

3s 3
√

3s
Ai′

(
t

3
√

3s

)
(4.55)

we conclude that, for x > 0, t > 0,

l 1
3
(t, x) =

Pr
{
L

1
3 (x) ∈ dt

}
dt
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=
∫ x

0

−1

s
3
√

3s
Ai

(
t

3
√

3s

)
ds +

∫ x

0

3
3
√

3s

∂

∂s
Ai

(
t

3
√

3s

)
ds

=
∫ x

0

−1

s
3
√

3s
Ai

(
t

3
√

3s

)
ds +

[
3

3
√

3s
Ai

(
t

3
√

3s

)]s=x
s=0

+
∫ x

0

ds

s
3
√

3s
Ai

(
t

3
√

3s

)
= 3

3
√

3x
Ai

(
t

3
√

3x

)
. (4.56)

In the last step we took into account the asymptotic expansion 7.2.19 of Bleistein and
Handelsman [4].

With a similar calculation we obtain the law h 2
3
(x, t) of the process H

2
3 (t), t > 0,

which is expressed in terms of the Airy function. From the general series expression of the
stable law (see [17]), we have that

h 2
3
(x, 1)

= 2

3π

∞∑
k=0

(−1)k
	

(
2
3 (k + 1)

)
k!

x− 2
3 (k+1)−1 sin

(
2π

3
(k + 1)

)

= 2

3π
√
π

∞∑
k=0

(−1)k

k!

x− 2
3 (k+1)−1

21− 2
3 (k+1)

	

(
k + 1

3

)
sin

(
2π

3
(k + 1)

)∫ ∞

0
dw e−ww

k+1
3 + 1

2 −1

= 1

x

3

√
22

3x2

1√
π

∫ ∞

0
e−ww− 1

6 Ai

(
− 3

√
22w

3x2

)
dw, (4.57)

and, thus, in force of the fact that H
2
3 (t)

law= t
3
2H

2
3 (1),

h 2
3
(x, t) = t√

π

1

x

∫ ∞

0
dw e−ww− 1

6
3

√
22

3x2
Ai

(
−t 3

√
22w

3x2

)
. (4.58)

Remark 4.4. We check that the distribution (4.58) integrates to unity. We have that∫ ∞

0
h 2

3
(x, t) dx

= t√
π

∫ ∞

0
dw e−ww− 1

6
3

√
22

3

∫ ∞

0
dx x− 2

3 −1 Ai

(
−t 3

√
22w

3x2

)

y=x− 2
3 t

3
√

22w
3= t√

π

∫ ∞

0
dw e−ww− 1

6
3

√
22

3

3

2

(
t

3

√
22w

3

)−1 ∫ ∞

0
dy Ai (−y)

= 1√
π

∫ ∞

0
dw e−ww− 1

6
3

√
22

3

(
3

√
22w

3

)−1

= 1√
π

∫ ∞

0
dw e−ww− 1

6 − 1
3 = 1√

π

∫ ∞

0
dw e−ww

1
2 −1 = 1, (4.59)
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where we used the fact that ∫ ∞

0
dy Ai(−y) = 2

3
. (4.60)

For the law of the process L
2
3 (x), x > 0, we, therefore, have that

Pr
{
L

2
3 (x) < t

}
= Pr

{
H

2
3 (t) > x

}
=

∫ ∞

0

∫ ∞

x

t√
π

1

z

3

√
22

3z2
Ai

⎛⎝−t 3

√
22w

3z2

⎞⎠ e−ww− 1
6 dw dz (4.61)

and, thus,

l 2
3

(t, x) =
∫ ∞

0

∫ ∞

x

dw dz

z
√
π

3

√
22

3z2
Ai

⎛⎝−t 3

√
22w

3z2

⎞⎠ e−ww− 1
6

−
∫ ∞

0

∫ ∞

x

t

z
√
π

3

√
22

3z2
3

√
22w

3z2
Ai′

⎛⎝−t 3

√
22w

3z2

⎞⎠ dz dw

=
∫ ∞

0

∫ ∞

x

dw dz

z
√
π

3

√
22

3z2
Ai

⎛⎝−t 3

√
22w

3z2

⎞⎠ e−ww− 1
6

−3

2

∫ ∞

x

∫ ∞

0

1√
π

3

√
22

3z2
e−ww− 1

6
∂

∂z
Ai

⎛⎝−t 3

√
22w

3z2

⎞⎠ dw dz

=
∫ ∞

0

∫ ∞

x

dw dz

z
√
π

3

√
22

3z2
Ai

⎛⎝−t 3

√
22w

3z2

⎞⎠ e−ww− 1
6

−
⎡⎣ 3

2
√
π

∫ ∞

0
dw

3

√
22

3z2
e−ww− 1

6 Ai

⎛⎝−t 3

√
22w

3z2

⎞⎠⎤⎦z=∞

z=x

−
∫ ∞

0

∫ ∞

x

dw dz

z
√
π

3

√
22

3z2
Ai

⎛⎝−t 3

√
22w

3z2

⎞⎠ e−ww− 1
6

= 3

2
√
π

∫ ∞

0

3

√
22

3x2
e−ww− 1

6 Ai

(
−t 3

√
22w

3x2

)
dw. (4.62)

For checking that (4.62) integrates to unity one can perform calculation similar to that of
Remark 4.4.
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Now we have all the information to get the distribution of the process L 1
3 (t), t > 0, by

means of formula (2.50). We have that

l 1
3
(x, t) =

Pr
{
L 1

3 (t) ∈ dx
}

dx

=
∫ t

0
l 2

3
(x, t − s)h 1

3
(s, 2λx)ds + 2λ

∫ t

0
l 1

3
(2λx, s)h 2

3
(t − s, x) ds

=
∫ t

0
ds

⎡⎣ 3

2
√
π

∫ ∞

0
dw

3

√
22

3(t − s)2
e−ww− 1

6 Ai

⎛⎝−x 3

√
22w

3(t − s)2

⎞⎠ dw

⎤⎦
× 2λx

s
3
√

3s
Ai

(
2λx
3
√

3s

)
+ 2λ

∫ t

0
ds

3
3
√

3s
Ai

(
2λx
3
√

3s

)

× s√
π (t − s)

∫ ∞

0
dw e−ww− 1

6
3

√
22

3(t − s)2
Ai

⎛⎝−x 3

√
22w

3(t − s)2

⎞⎠
= 2λ√

π

∫ t

0
ds

∫ ∞

0
dw e−ww− 1

6 Ai

⎛⎝−x 3

√
22w

3(t − s)2

⎞⎠ Ai

(
2λx
3
√

3s

)

× 3
3
√

3s
3

√
22

3(t − s)2

[
x

2s
+ s

t − s

]
. (4.63)

Result (4.63) permits us to write explicitly the solution of the fractional telegraph equation
(1.4) for ν = 1

3 , β = 1 and n = 1, as

w1
1
3
(x, t) =

∫ ∞

0

e
− x2

4c2s√
4πc2s

l 1
3
(s, t) ds, x ∈ R, t > 0. (4.64)

4.3. The Planar Case

Let us consider the planar process

T (t) = (X(t), Y (t)) , t > 0, (4.65)

with infinite directions and finite velocity c, investigated in Orsingher and De Gregorio
[16], which has probability law (see formula 1.2 therein)

r(x, y, t) = λ

2πc

e−λt+
λ
c

√
c2t2−(x2+y2)√

c2t2 − (x2 + y2)
, x2 + y2 < c2t2, t > 0, (4.66)

which satisfies the telegraph equation(
∂2

∂t2
+ 2λ

∂

∂t

)
r(x, y, t) = c2

(
∂2

∂x2
+ ∂2

∂y2

)
r(x, y, t). (4.67)
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The distribution of T (t), t > 0, has a singular component uniformly distributed on the circle
∂Cct = {

(x, y) ∈ R
2 : x2 + y2 = c2t2

}
with probability mass equal to e−λt . The process

T (t), t > 0, describes a random motion where directions change at Poisson paced times
and the orientation of each segment of the sample paths is uniform in [0, 2π ).

Let q(x, y, t) be the distribution obtained by means of the composition of the process
T (t) with a reflecting Brownian motion with law

p|B|(s, t) = e
−s2
4t√
πt
, t > 0, s > 0, (4.68)

which satisfies the equation

C∂
1
2

∂t
1
2

p|B|(s, t) = − ∂

∂s
p|B|(s, t) (4.69)

and also

∂

∂t
p|B|(s, t) = ∂2

∂s2
p|B|(s, t) (4.70)

We have the following theorem.

Theorem 4.3. The law of the composition

Q(t) = T (|B(t)|) , t > 0 (4.71)

written as

q(x, y, t) =
∫ ∞

0
r(x, y, s)p|B|(s, t) ds, (4.72)

satisfies the two-dimensional time-fractional equation(
∂

∂t
+ 2λ

C∂
1
2

∂t
1
2

)
q (x, y, t) = c2

(
∂2

∂x2
+ ∂2

∂y2

)
q (x, y, t) , x, y ∈ R, t > 0, (4.73)

subject to the initial condition q(x, y, 0) = δ(x, y).

Proof. By considering (4.72) and (4.69), we can write

C∂
1
2

∂t
1
2

q(x, y, t) =
∫ ∞

0
r(x, y, s)

C∂
1
2

∂t
1
2

p|B|(s, t) ds

=
∫ ∞

0
r(x, y, s)

(
− ∂

∂s
p|B|(s, t)

)
ds

= [−p|B|(s, t) r(x, y, s)
]s=∞
s=0 +

∫ ∞

0
p|B|(s, t)

∂

∂s
r(x, y, s) ds.(4.74)

In the previous step, it must be taken into account that the boundary ∂Ccs is excluded. From
(4.72) and (4.70), we have that

∂

∂t
q(x, y, t) =

∫ ∞

0
r(x, y, s)

∂

∂t
p|B|(s, t) ds =

∫ ∞

0
r(x, y, s)

∂2

∂s2
p|B|(s, t) ds
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=
[
r(x, y, s)

∂

∂s
p|B|(s, t)

]s=∞

s=0

−
∫ ∞

0

∂

∂s
r(x, y, s)

∂

∂s
p|B|(s, t) ds

= −
[
p|B|(s, t)

∂

∂s
r(x, y, s)

]s=∞

s=0

+
∫ ∞

0
p|B|(s, t)

∂2

∂s2
r(x, y, s) ds.(4.75)

Thus, by looking at (4.67), (4.74), and (4.75) we obtain

∂

∂t
q(x, y, t) + 2λ

C∂
1
2

∂t
1
2

q(x, y, t)

=
∫ ∞

0
p|B|(s, t)

[
∂2

∂s2
r(x, y, s) + 2λ

∂

∂s
r(x, y, s)

]
ds

=
∫ ∞

0
p|B|(s, t) c2

(
∂2

∂x2
+ ∂2

∂y2

)
r(x, y, s) ds = c2

(
∂2

∂x2
+ ∂2

∂y2

)
q(x, y, t). (4.76)

which means that q(x, y, t) satisfies equation (4.73). �

It is easy to show that the process Q(t) = T (|B(t)|), t > 0, has not the same law
of the process W 2(t) = B2(c2L 1

2 (t)), t > 0. However, it is possible to construct a planar
process, say T(t), t > 0 (which is a slightly different version of T (t), t > 0) composed
with a suitable “time process” which has the same distribution as W 2(t), t > 0. The planar
random motion T(t), t > 0, with distribution

r(x, y, t) = λ e−λt

2πc

⎡⎣e λc√c2t2−(x2+y2) + e−
λ
c

√
c2t2−(x2+y2)√

c2t2 − (
x2 + y2

)
⎤⎦ , (4.77)

where (x, y) ∈ Cct = {
(x, y) : x2 + y2 < c2t2

}
, can be constructed starting from the model

dealt with in Orsingher and De Gregorio [16]. The distribution is based on the solution to
the planar telegraph equation(

∂2

∂t2
+ 2λ

∂

∂t

)
r(x, y, t) = c2

(
∂2

∂x2
+ ∂2

∂y2

)
r(x, y, t), (4.78)

namely,

r (x, y, t) = e−λt√
c2t2 − (

x2 + y2
) [
Ae

λ
c

√
c2t2−(x2+y2) + Be−

λ
c

√
c2t2−(x2+y2)

]
, (4.79)

with A = B = λ
2πc and, thus, we can easily check that∫

Cct

dx dy r (x, y, t) = 1 − e−2λt . (4.80)

We take a particle starting from the origin, moving at finite velocity c, and changing direction
(chosen with uniform distribution) at Poisson times and neglect displacements started off
by even-labeled times. The sample paths of this motion are constructed by piecing together
only odd-order displacements of the planar motion T (t), t > 0. The process just described
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has distribution (4.77) as shown below

r(x, y, t)

= Pr {T(t) ∈ dx}
dx

= λ e−λt

2πc

⎡⎣e λc√c2t2−(x2+y2) + e−
λ
c

√
c2t2−(x2+y2)√

c2t2 − (
x2 + y2

)
⎤⎦

= λ2

c2

1

π
e−λt

[ ∞∑
k=0

(
λ

c

√
c2t2 − (

x2 + y2
))2k−1 1

(2k)!

]

= λ2

c2

1

π

∞∑
k=0

(
λ

c

)2k−1

(2k + 1)
(
c2t2 − (

x2 + y2
))k− 1

2
e−λt

(2k)!(2k + 1)

(λt)2k+1

(λt)2k+1

= 2
∞∑
k=0

Pr {X(t) ∈ dx, Y (t) ∈ dy|N (t) = 2k + 1} e−λt (λt)2k+1

(2k + 1)!

= 2
∞∑
k=0

Pr {T (t) ∈ dx|N (t) = 2k + 1} e−λt (λt)2k+1

(2k + 1)!
, (4.81)

where, for x2 + y2 < c2t2 (see [16]),

Pr {X(t) ∈ dx, Y (t) ∈ dy|N (t) = n}
dx dy

= n

2n(ct)n
(
c2t2 − (

x2 + y2
)) n

2 −1
, (4.82)

and

2e−λt
∞∑
k=0

(λt)2k+1

(2k + 1)!
=

∞∑
k=0

2 Pr {N (t) = 2k + 1} = 1 − e−2λt . (4.83)

The factor 2 appearing in (4.81) and (4.83) can be interpreted as follows. The displace-
ments generated by an even number of Poisson events are disregarded and replaced by
displacements produced by an odd number of deviations. Therefore, odd-order Poisson
events ignite twice the displacements considered in (4.81).

Theorem 4.4. The composition with distribution

q(x, y, t) =
∫ ∞

0
ds r (x, y, s)

[
p|B| (s, t) + 1

2λ

∂
1
2

∂t
1
2

p|B| (s, t)

]
, (4.84)

which satisfies the time-fractional equation(
∂

∂t
+ 2λ

C∂
1
2

∂t
1
2

)
q(x, y, t) = c2

(
∂2

∂x2
+ ∂2

∂y2

)
q(x, y, t), (4.85)

has the same law of the process W 2(t) = B2(c2L 1
2 (t)).

Proof. We begin by evaluating the Fourier-Laplace transform of (4.84).

̂̃q(ξ, α, μ)
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=
∫ ∞

0
ds

∫ ∞

0
dt e−μt

∫
Cct

dx dy eiξx+iαyr(x, y, s)

[
p|B|(s, t) + 1

2λ

∂
1
2

∂t
1
2

p|B|(s, t)

]

= 2λ+ √
μ

2λ
√
μ

∫ ∞

0
ds

∫
Cct

dx dy eiξx+iαy r (x, y, s) e−s
√
μ. (4.86)

Now we need the Fourier transform of the law r(x, y, t) of the process T(t), t > 0, which
reads

r̂(ξ, α, t)

= λ e−λt

2πc

�
Cct

eiξx+iαy

⎡⎣e λc√c2t2−(x2+y2) + e−
λ
c

√
c2t2−(x2+y2)√

c2t2 − (
x2 + y2

)
⎤⎦ dx dy

= λ e−λt

2πc

∫ 2π

0
dθ

∫ ct

0
dρ ρeiρ(ξ cos θ+α sin θ) λ

c

e
λ
c

√
c2t2−ρ2 + e−

λ
c

√
c2t2 − ρ2√

c2t2 − ρ2

= 2λ2e−λt

c2

∫ ct

0
ρ

∞∑
m=0

(
λ

c

√
c2t2 − ρ2

)2m−1 1

(2m)!
J0

(
ρ
√
ξ 2 + α2

)
dρ

= 2λe−λt

c

∞∑
m=0

(
λ
c

)2m

(2m)!

∞∑
k=0

(−1)k
(√

ξ 2+α2

2

)2k

(k!)2

∫ ct

0

(
c2t2 − ρ2

)m− 1
2 ρ2k+1 dρ

= 2λe−λt

c

∞∑
m=0

(
λ
c

)2m

(2m)!

∞∑
k=0

(−1)k
(√

ξ 2+α2

2

)2k

2(k!)2 (ct)−(2m+2k+1)

∫ 1

0
yk (1 − y)m− 1

2 dy

= λ

c
e−λt

∞∑
m=0

(
λ

c

)2m 1

(2m)!

∞∑
k=0

(−1)k
(√

ξ 2 + α2

2

)2k
(ct)2m+2k+1	

(
m+ 1

2

)
k!	

(
k +m+ 1 + 1

2

) .
(4.87)

Thus, from (4.86), we have that

˜̂q (ξ, α, μ) = 2λ+ √
μ

2λ
√
μ

∫ ∞

0
ds r̂(ξ, α, s) e−s

√
μ = 1 + 2λμ− 1

2

μ+ 2λ
√
μ+ c2

(
ξ 2 + α2

) (4.88)

in force of the calculation∫ ∞

0
ds r̂ (ξ, α, s) e−s

√
μ

= λ

c

∫ ∞

0
ds e−λs

∞∑
m=0

λ2m

c2m(2m)!

∞∑
k=0

(−1)k
(√

ξ 2+α2

2

)2k

	
(
m+ 1

2

)
k! (cs)−(2m+2k+1) 	

(
k +m+ 1 + 1

2

)e−s√μ
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= λ

∞∑
m=0

√
π21−2m	 (2m)

λ−2m(2m)!	(m)

∞∑
k=0

(−1)k
(√

ξ 2+α2

2

)2k

c2k

k!	
(
k +m+ 1 + 1

2

) ∫ ∞

0
e−s(λ+

√
μ) s2m+2k+1ds

= λ

2
(
λ+ √

μ
)2

∞∑
m=0

λ2m√
π21−2m

m!
(
λ+ √

μ
)2m

∞∑
k=0

(−1)k
(√

ξ 2+α2

2

)2k

k!
(
λ+ √

μ
)2k
c−2k

	 (2k + 2m+ 2)

	
(
k +m+ 1 + 1

2

)

=
√
πλ

2
(
λ+ √

μ
)2

∞∑
m=0

λ2m21−2m

m!
(
λ+ √

μ
)2m

∞∑
k=0

(−1)k
(√

ξ 2+α2

2

)2k

k!
(
λ+ √

μ
)2k
c−2k

	 (k +m+ 1)

21−2(k+m+1)
√
π

= 2λ(
λ+ √

μ
)2

∞∑
m=0

λ2m

m!
(
λ+ √

μ
)2m

∞∑
k=0

(−1)k
(√
ξ 2 + α2

)2k

k!
(
λ+ √

μ
)2k
c−2k

∫ ∞

0
e−uuk+m du

= 2λ(
λ+ √

μ
)2

∫ ∞

0
du e

u λ2

(λ+√
μ)2 −u c

2(ξ2+α2)
(λ+√

μ)2 −u =
2λ

(λ+√
μ)2

1 − λ2

(λ+√
μ)2 + c2(ξ 2+α2)

(λ+√
μ)2

= 2λ(
λ+ √

μ
)2 − λ2 + c2

(
ξ 2 + α2

) = 2λ

μ+ 2λ
√
μ+ c2

(
ξ 2 + α2

) . (4.89)

The Fourier-Laplace transform of the law of the process B2(c2L 1
2 (t)) is written as in

(4.15) for n = 2, β = 1, and ν = 1
2 as the following calculation shows

̂̃
w1

1
2

(ξ, α, t) =
∫ ∞

0
p̂B

(
ξ, α, c2s

)
l̃ 1

2
(s, μ) ds

=
(

1 + 2λμ− 1
2

) ∫ ∞

0
e−μs−(ξ 2+α2)c2s

[
e−2λs

√
μ + 2λ

e−2λs
√
μ

√
μ

]
ds

= 1 + 2λμ− 1
2

2λ
√
μ+ μ+ c2

(
ξ 2 + α2

) . (4.90)

In the previous calculation, we use the Laplace transform of l 1
2
(x, t) obtained in (4.28).

The proof is complete since (4.90), coincides with (4.88) and with the Fourier-Laplace
transform of (4.85). �

Remark 4.5. Since for the first passage time τ s√
2

= inf
{
z : B(z) = s√

2

}
of a Brownian

motion through level s√
2

we have that∫ ∞

0
e−μt Pr

{
τ s√

2
∈ dt

}
= e−s

√
μ, (4.91)

and ∫ ∞

0
e−μt

∂
1
2

∂t
1
2

p|B|(s, t) dt = e−s
√
μ (4.92)
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we can write

∫ ∞

0
r(x, y, s)

∂
1
2

∂t
1
2

p|B|(s, t) ds =
∫ ∞

0
r(x, y, s)

s√
2

e−
s2

4t√
2πt3

ds

=
∫ ∞

0

∂

∂s
r(x, y, s)

e−
s2

4t√
πt
ds =

∫ ∞

0

∂

∂s
r(x, y, s)p|B|(s, t) ds. (4.93)

This representation of the second term of (4.84) is extremely interesting because by inte-
grating (4.93) in Cct we get

∫ ∞

0

∂

∂s
(1 − e−2λs)p|B|(s, t) ds = 2λ

∫ ∞

0
e−2λsp|B|(s, t) ds (4.94)

and yields the missing probability of the first term of (4.84).

Remark 4.6. We check that the law

q(x, y, t) =
∫ ∞

0
r(x, y, s)

[
p|B|(s, t) + 1

2λ

∂
1
2

∂t
1
2

p|B|(s, t)

]
ds (4.95)

integrates to unity. By taking the t-Laplace transform, the integral with respect to (x, y)
becomes

�
Cct

dx dy

∫ ∞

0
dt e−μt q(x, y, t)

=
∫ ∞

0

(
1 − e−2λs

) [∫ ∞

0
e−μt

(
p|B|(s, t) + 1

2λ

∂
1
2

∂t
1
2

p|B|(s, t)

)
dt

]
ds

=
∫ ∞

0

(
1 − e−2λs) [e−s√μ√

μ
+ e−s

√
μ

2λ

]
ds

=
(

1√
μ

+ 1

2λ

)[∫ ∞

0
e−s

√
μds −

∫ ∞

0
e−s(2λ+√

μ)ds

]
= 2λ+ √

μ

2λ
√
μ

(
1√
μ

− 1

2λ+ √
μ

)
= 1

μ
=

∫ ∞

0
e−μtdt. (4.96)

The same check can be done directly by taking into account formulas (4.93) and (4.94).

Relationships similar to B(c2L 1
2 (t))

law= T (|B(t)|), t > 0, and the analogous one in
the plane, cannot be established in spaces of dimension n ≥ 3, because random motions
governed by telegraph equations in such spaces have not been constructed. Random flights
in R

n have been studied [16] but their distributions are not related to higher-dimensional
telegraph equations.



Space-Time Fractional Telegraph Equations 1045

References

1. Allouba, H., and Nane, E. 2013. Interacting time-fractional and�ν PDE’s systems via Brownian-
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