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Abstract

Many nonstationary time series exhibit changes in the trend and seasonal-
ity structure, that may be modeled by splitting the time axis into differ-
ent regimes. We propose multi-regime models where, inside each regime,
the trend is linear and seasonality is explained by a Periodic Autoregressive
model. In addition, for achieving parsimony, we allow season grouping, i.e.
seasons may consist of one, two, or more consecutive observations. Since the
set of possible solutions is very large, the choice of number of regimes, change
times and order and structure of the Autoregressive models is obtained by
means of a Genetic Algorithm, and the evaluation of each possible solution is
left to an identification criterion such as AIC, BIC or MDL. The comparison
and performance of the proposed method are illustrated by a real data anal-
ysis. The results suggest that the proposed procedure is useful for analyzing
complex phenomena with structural breaks, changes in trend and evolving
seasonality:.

Keywords: Genetic algorithms, Structural break, Regime change

1. Introduction

Many seasonal time series exhibit an autocorrelation structure which de-
pends not only on the time between observations but also on the season of
the year. Moreover, the time series of observations within a given season is
usually second order stationary [9]. In order to model appropriately these
and similar types of time series, Periodic AutoRegressive models (PAR) can



be employed. These models are appropriate, for instance, for describing time
series drawn from different areas such as economy, hydrology, climatology
and signal processing ([7, 9, 19]). When fitting a PAR model to periodic
time series a separate AR model for each season of the year is estimated.

In this study we consider a generalization of PAR models with linear
trend in two directions. First, the model may follow different regimes in
time, and regime changes may occur at any time. The regime changes may
affect the linear trend, the seasonal means and the autoregressive parameters.
We also allow a discontinuous trend which can identify changes in level.
Second, inside each regime the model structure may be different for each
seasonal position (e.g. months) or vary more slowly, changing only according
to grouped seasons like quarters, trimesters or semesters.

The number of regimes and change times (or break point) are assumed to
be unknown. The problem of their identification can be treated as a statis-
tical model selection problem according to a specified identification criterion
[1]. This approach has been used for identification of structural breaks in
[5] for piecewise AR process, in [6] for piecewise generalized autoregressive
conditionally heteroscedastic (GARCH) processes and in [11] to detect struc-
tural breaks in the form of level shifts in climatic time series. In these works
a minimum description length (MDL) principle is adopted as identification
criterion, and Genetic Algorithms (GAs) are proposed to solve the selection
problem.

A classical approach formulates the structural change problems as hy-
pothesis tests where the null is set to no structural change’ and the alterna-
tive contains one or multiple structural breaks. The CUSUM and supF tests
are the most popular methods to detect a level change and parameter change
in statistical models [1]. In a PAR framework, [12] proposed a modified supF
test to detect structural changes for series with autocorrelated and periodic
features. In the latter paper the focus is on mean changes and not on auto-
covariance, trend, or other types of changes. To the best of our knowledge,
there are no articles that handle the changing parameters and changing trend
problem in PAR models simultaneously. Motivated by this, we proposed a
class of GAs to detect the number of regimes of piecewise PAR models and
their locations. Our procedure evaluates several regime patterns where the
locations that are possibly change times are simultaneously considered. In
this way, GAs deal efficiently with the detection of multiple change points.
We also allow subset AR models to be selected. Each piecewise subset PAR
configuration is evaluated by an AIC identification criterion. So, the GAs



seem able to provide more flexibility and adaptation to the change time de-
tection problem.

A potential drawback of using our model in applications is that the model
often requires the use of a substantial number of parameters. This total
number of parameters can be large even for moderate values of time series
periodicity and no break. Moreover changes in periodic processes from season
to season may be slow and more detailed models would be redundant. Many
authors have investigated parsimonious versions of PAR models. [17] suggest
grouping similar seasons into blocks to reduce parameter totals; alternatively,
[4] consider modeling slow seasonal changes in parameters with Fourier series.

In our paper, since the seasonal effect on means, variances and correla-
tions may show different speed and pattern, we propose to join appropriate
season parameters into groups for each of these three features. Three differ-
ent heuristic strategies are implemented to find the optimal season grouping
for the mean, the variance and the correlation. The empirical results showed
that different season grouping for mean, variance and correlation produces
parsimonious piecewise PAR models with better fitting.

2. Model

Suppose that a time series {X;} of N observations is available. The
seasonal period of the series is s and is assumed to be known. Assume that
there are m +1 different regimes, separated by m change times 7; so that the
first regime contains observations from time 1 to 7, — 1, the second regime
contains data from time 7, to 7 — 1, the (j + 1)-th regime contains data from
7; to Tj41 — 1, and the last regime data from 7, to N. To ensure reasonable
estimates we assume that the minimum regime length is a fixed constant
mrl, so that 7; > 7;,_1 + mrl for any j. Any regime assignment is defined by
the set {7;,7 =1,...,m} subject to

mrl<n<n<..<tmmm<N-mrl |, ;27 0+mrl, j=2,...,m.

The parameters of the model for regime 5 will be denoted by a superscript
().

A linear trend and a different mean for each season is assumed. The
residuals are treated as zero mean and described by an autoregressive model
with maximum order p, and parameters varying with seasons. Let k; denote
the season of the t-th observation (1 < k, < s), denote by a¥) 4 bU)¢ the



linear trend in regime j, by p¥)(k) the mean of season k in regime j, and

by gbg )(z) the lag-i autoregressive parameter for the model in season k£ and
regime 7. Then

X, = a9 + 09t + (k) +W, |, 7 <t <7

P
Wy = Z%ﬁi)(@)m_z +er, T ST <T
i=1

where 7 = 1 and 7,,.1 = N + 1.

The innovations ¢ are supposed independent and zero-mean, with vari-
ances 02(j, k) possibly depending on the regime and season.

As far as subset selection is concerned, we introduce also m + 1 binary
vectors ', ..., 6™, which specify presence or absence of autoregressive pa-
rameters in each regime as follows: if ¢/[p(k; — 1) + 4] = 1 then qﬁ,(ft (i) is
constrained to zero. In summary, a model is identified by the following:

e external parameters (fixed and equal for all models)
N, s, maximum order p, maximum number of regimes M, and minimum
number of observations per regime mrl

e structural parameters (determining the model structure)

m number of change points, from 0 to M — 1
Ti, T2, ..., Tm change times or thresholds
ot .. omH denote which ¢ are zero in each regime and season

e regression parameters (to be estimated by Least Squares (LS) or
Maximum Likelihood (ML))

ai, g, ...,aymy1 intercepts
bi,ba, ..., b1 slopes
19 (k) seasonal means, k=1,...,s;j=1,....,m+1
I(Cj)(i) AR parameters, k=1,...,s;7=1,....m+1;1=1,...

(some of them may be constrained to zero)
a2(j, k) innovation variances, regime j, season k

For estimating trend and seasonal means by LS, note that the intercept
and the means are linearly dependent, therefore we assume that the seasonal
means sum to zero on one cycle:

pD 1)+ pD(©2) + .. +uD(s) =0 V5. (1)



Therefore the following equations are estimated:
X, =Dt +c(j k) , 7, <t<Tin (2)
and then the parameter vector is
A= bW, b@ b o(1,1),¢(1,2), .. e(1,8), ¢(2, 1), . . .,

c(2,8),...,c(m+1,1),...,c(m+1,s)}

with dimension (m+ 1) x (s 4 1). Each row of the design matrix relates to a
time ¢ from 1 to N and has the value ¢ in the column corresponding to b9,
and 1 in the column m+ (j — 1)s + k; that corresponds to parameter c(j, k).
For determining k; we compute mod (t — 1+ s,s). If the result is 0 we are
in the first season, if the result is 1 we are in the second season, and so on.
It follows that

ki = mod (t—1+s,s)+ 1.

From the {¢(j, k)}, the intercepts @) and seasonal means ) (k) are recov-
ered basing on assumption (1). It follows
I . .
0 INT k) A9k = A k) — )
a S;C(J,),u() ¢(j, k) —a

Moreover it is possible to prescribe trend continuity by imposing that, if the
number of regimes is larger than one, the trend values of two consecutive
regimes coincide on the first observation of the second regime. For imposing
a continuity constraint on the trend a¥) +bU) t between consecutive regimes,
we consider constrained LS with the constraints HS = 0, where each row of
the matrix H imposes that the trend part coincides at the first time of each
successive regime:

S

. : IR 1 .
b(])Tj+1 — b(]+1)7'j+1 + g ;C(j’ k) - g ZC(] +1, k) = 0.

k=1

It follows that H has m rows and the j-th row has value 7, in the j-th entry
and —7;4+1 in the (j + 1)-th entry, that the entries from m + (j — 1) x s + 1
to m 4+ j x s are all equal to 1/s and the entries from m + j x s + 1 to
m+ (j+ 1) X s are all equal to —1/s.

The trend continuity is controlled by an indicator (if indT # 0 then the
continuity constraints are added). A possible level change at t = 7;4; is
estimated if the trend continuity is not imposed.

bt



2.1. Parameters of the periodic autoregressive model

Conditioning on thresholds, seasonal arrangement and estimated trend
and means, the residual series is computed:

W, =X, —a¥ — bWt — 40 (k).

For each regime j and season k a separate autoregressive process is consid-
ered:

p
Wt = Z (blg;]t) (Z)Wtfz + Et.
i=1

We denote by (7, k) the set of times belonging to regime j and season k
(1; <t < 7j41 such that k; = k). For each pair (7, k) the observation indexes
belonging to the subseries I(j, k) are selected and the LS estimates of the
parameters {(b,(j)(i),z’ = 1,...,p} are obtained, together with the related
residual variance estimate 6%(j, k). For each pair regime j, season k (j =
1,...,M;k=1,...,s), the data are the (j, k) subseries {m,t € 1(j,k)} that
we put in a vector z with nj; rows and one column. The design matrix

Z :nj, X p has rows containing the regressors Wt,l, Wt,g, cee Wt,p and the
parameter vector to be estimated is ¢ = | l(j)(l), 2])(2), ce g)(p)].

In each regime and season, all possible subset models may be estimated.
If g = &[p(k = 1)+ 1]+ &[p(k = 1) + 2] + ... + &[p(k — 1) + p] denotes
the number of AR parameters constrained to zero in regime j and season k,
the constrained lags matrix H is a g X p matrix that designates the AR
parameters to be constrained to zero, and depends on the binary sequence
87 in this way: for each value r from 1 to p, if 8[p(k —1) +7r] = 1, add a row
to H equal to the r-th row of I, identity matrix of order p.

Then the AR parameters for regime j and season k are estimated by least
squares constrained optimization with linear constraint given by the g;;, x p
linear system H¢ = O:

b=o¢rs— (Z2)'H'[H(Z'Z)""H' 'Hoys,

where ¢rs = (Z'Z )~1Z'z are the unconstrained least squares estimates (this
ensures that ¢, = 0 if [p(k — 1) +r] = 1) and the residuals

e=z2—2 é
give the estimate of the innovations for regime j and season k {&;,t € I(j,k)}.
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The number of change times m, the time thresholds 7y, 7,..., 7, and
the indicators ¢ of the gb{c(z) coefficients constrained to zero in each segment
are called the structural parameters. They take discrete values and their
combinations amount to a very large number. GAs are naturally suitable for
the choice of optimal structural parameters.

3. Genetic algorithms

Many optimization problems do not satisfy the necessary conditions to
guarantee the convergence of traditional numerical methods. For instance, in
order to apply standard gradient methods to maximum likelihood estimation
we need a globally convex likelihood function, however there are a number of
relevant cases with non-convex likelihood functions or functions with several
local optima. Another class of “hard” problems is when the solution space
is discrete and large. These problems are known as combinatorial problems.
A simple approach for solving an instance of a combinatorial problem is
to list all the feasible solutions, evaluate their objective function, and pick
the best. However, for a combinatorial problem of a reasonable size, the
complete enumeration of its elements is not computationally feasible, and
most available searching algorithms are likely to yield some local optimum
as a result [13].

GAs are often used to solve such problem instances. These methods do
not rely on a set of strong assumptions about the optimization problem, on
the contrary they are robust to changes in the characteristics of the problem.
But, on the other side, they do not produce a deterministic solution but a
high quality stochastic approximation to the global optimum.

GAs have been initially developed by [10] and they are classified as pop-
ulation based methods and evolutionary algorithms. They work on a whole
set of solutions that is adapted simultaneously by imitating the evolutionary
process of species that reproduce sexually. We give a brief sketch of this
method.

GAs imitate the evolution process of biological systems, to optimize a
given function. They use a set of candidate solutions, called population,
instead of one single current solution. In GA terminology, any candidate
solution is encoded via a numerical vector called chromosome. The GA pro-
ceeds iteratively by updating the population of active chromosomes (the sets
of current candidate solutions) in rounds, called generations. In each genera-
tion, some of the active chromosomes are selected (parents-chromosomes) to



form the chromosomes of the next generation (children-chromosomes). The
selection process is based on an evaluation measure called fitness function,
linked to the objective function, that assigns to each chromosome a positive
number. This fitness is the determining factor for the probability to select a
chromosome as a parent. A higher fitness value leads to higher probability
that the corresponding chromosome will be one of the parents used to form
the children-chromosomes. Children are formed by recombining (crossover)
the genetic material of their two parents-chromosomes and perhaps after a
random alteration of some of the genes (single digits of the chromosome),
which is called mutation [see 10, 8, for a detailed description)].

4. Estimation of structural parameters

This section further describes the algorithms implementation we used for
building the model. A successful implementation of GAs is certainly crucial
to obtain satisfactory results. Before a GA can be applied to a problem some
important decisions have to be made. The GA methods require a suitable
encoding for the problem and an appropriate definition of objective function.
In addition operators of selection, crossover and mutation have to be chosen.
The following sections describe the choices made.

4.1. Solution Encoding

An appropriate encoding scheme is a key issue for GAs. The chromosome
genotype is a sequence of binary digits in one-to-one correspondence with
the phenotype. In order to set up a GA, each model is represented by a
chromosome phenotype that may be associated to the following integer array:

1 2 M
m,Tl,TQ,...,TM_1,5,5,...,5 s (3)

where m is between 0 and M —1, the tau’s satisfy mri+1 < 7, i +mrl <
To, T2 +mrl < 73 and finally 7,,, < N —mrl — 1. The m change times 7; are
coded using m numbers thy, ths, ..., th.,, each with value in (0,1), as in [3].

The deltas are binary sequences specifying what lags are constrained (as-
sociated with ¢’s equal zero) in regime j and the consecutive seasons: each
delta is a vector of p x s binary digits and if digit is O the corresponding AR
parameter is in the model for that season and regime, otherwise it is missing.
More precisely, if 07[p(k —1)+i] = 1 then ¢! (k) is constrained to zero. Genes
are encoded in the following way:



One gene encodes m. If max regimes is M = 4 use two bits g;(1), ¢1(2) and
m = 2¢1(1)4¢1(2); if max regimes is larger we use three bits g1(1), g1(2), 91(3).
Thus encoding m requires 2 or 3 bits.
M —1 genes encode 7y, Ty, ..., Tapy—1 by means of M —1 real numbers thy, the, ..., thy_1,
each with value in (0, 1). These latter are constructed to determine the per-
centage of remaining values to place a changepoint. In fact, when placing a
new changepoint there are some illegal positions, due to the constraints on
minimum regime length mrl. These imply that mrl observations must be
left out from both the beginning and the end of considered segment. This
strategy depends on candidate number of regimes, and allows to always pro-
vide legal changepoints. For numbers th;(j = 1,..., M —1), in order to ensure
that any time could be a changepoint a priori, each gene length should be
at least log, N bits. The number of bits for each coding may be left as an
external parameter [bit.
M genes encode 0,62, ..., 6. The deltas are sequences of p x s binary digits,
thus they are directly coded in p x s bits.
In case of GA including full described phenotype/genotype, the total length
of the binary sequence is 2 (or 3) +1bit x (M — 1)+ M x p x s. If all subset
models are estimated and the best retained, the deltas are not considered in
the chromosome.

From gene 1 one obtains the number of thresholds m by m = 2¢;(1)+¢:1(2)
orm =4g1(1)+2¢1(2)+¢1(3). From genes 2 to M to the change times decode
with the routine of [3]:

o If m =0 (only 1 regime) let ; = N + 1.
o If m =1 (two regimes) let 7y = mrl + 14 (N — 2mrl) X thy.

o If m = 2 (three regimes) let 7 = mrl + 1+ (N — 3mrl) x thy and
=71 +mrl+ (N —2mrl —7m + 1) X thy

o If m = 3 (four regimes) let 7 = mrl + 1+ (N — 4mrl) x th; and
T2:7-1+m’l"l—|—(N—3m7"l—7'1+1)Xthz andT3:T2—|—mrl_|_(N_
2mrl — 7o+ 1) X ths.

and similar way for more than four regimes. Genes M+1 to 2M give directly
the vectors §7.

This method guarantees an efficient coding since it produces no illegal
chromosome and no redundancy.



4.2. Objective function

The most natural objective in building statistical models is to minimize
an identification criterion such as AIC, BIC, ICOMP, MDL. They all are
based on the estimated residual variance 6%(j, k) and the total number of
estimated parameters: there are m + 1 parameters for trend, (m + 1) X s
seasonal means, and in regime j there are (p + 1) X s — |§7| autoregressive
parameters (where |z|? = >, 27). So, the total number of estimated param-
eters, P, is:

P=m+1)(s+1)+ (m+1)ps— |6 — 0% —...— [oM].

If continuity constraints on trend are added, the number of parameters
decreases by m.

The most obvious generalization of AIC is the NAIC criterion introduced
by [18, p. 379] for threshold models:

m+1 s m+1l s
NAIC =) "3 AIC;)/N = | njilog6?(j k) + 7 x P| /N,
j=1 k=1 j=1 k=1

where AIC;, is identification criterion for series of regime j and season £,
02(j, k) is the related residual variance, P is the total number of parameters,
7 is the penalization term (equal to 2 in the original Akaike’s proposal).

A possible alternative is the weighted Schwarz criterion where each pa-
rameter is penalized with the logarithm of the number of observations on
which it is estimated. Slopes and means are in number of (m + 1)(s + 1)
and are estimated on N observations, leading to a penalization term of
(m + 1)(s + 1)log(N) (minus mlog(N) in case of continuity constraints).
The AR parameters and residual variance for regime j and season k are es-
timated on n;;, observations and are in number of p — |§;;| + 1, where ;x| is
the number of parameters constrained to zero. Thus a generalized Schwarz
criterion may be written

Z Z n;i, log(o ) + Z Z — |65k + 1) log(n;)
+(m+1)(s+ 1) log(N) — Tieongg{mlog(N)}

where Ijcony is the indicator of trend continuity constraints.
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A simplified approximate form of Schwarz criterion is obtained consider-
ing the NAIC criterion with a penalizing constant © = log(/N/s). A further
alternative is the MDL criterion (Minimum Description Length criterion) of
[15], based on a penalization given by the minimum length in bits necessary
for describing the data. For a model M, MDL is the sum of the length
to code the model C(M) and the length to code the errors of the model
C(g|M). Rissanen shows that C(¢|M) equals —3 log,(L), where L is the
maximum likelihood, therefore in our case

1 .
ClelM) =5 > D niuloga(G3).
J k

while C(M) is the sum of the binary code length necessary to code the
parameters of the models, according to the following rules:

e for an integer parameter p, code length is log,(p);
e for an integer with an upper bound U, code length is log,(U),

e for a real parameter estimated by ML on n observations, code length
is 3 logy(n).

The parameters of our model are of 6 kinds :
e Number of seasons s, integer number, code length log,(s)
e Autoregressive order p, integer number, code length log,(p)

e Number of change points m, integer, code length log,{maz(1,m)} =
log; (m)

e Change times: m integer numbers < N, code length mlog,(N)

e Trend slope parameters and means. There are (m + 1)(s + 1) real
parameters, estimated by least square on N observations, leading to
a code length of 1(m + 1)(s + 1)logy(N). If continuity constraints
are required, m linear constraints determine the slopes after the first
regime, therefore the total code length is decreased by %mlogQ(N ).

e Autoregressive parameters (subset models). The constrained parame-
ters are determined by the arrays ¢;;, binary with length p bits. For

11



each j, k the number of estimated AR parameters is p — |d;x| + 1, they
are real parameters estimated on nj, observations. Thus the overall

code length is %Z] Y@ — 10,k + 1) logy (njk).
Finally we may write:

C(M) = logy (m) + mlogy(N) + logy(s) + logy(p)+
m+1l s

S (m+ 1)(s + 1) logy(N)) + 5 3 (0~ 10 + 1) ogalnz)

=1 k=1
1
_][cont} ém 10g2 (N> :

Since the identification criteria are to be minimized, the fitness function
is a monotonically decreasing function of the identification criterion. We
propose two kinds of fitness functions:

1. Exponential: f = exp(—NAIC/«), where « is a scaling constant

2. Linear: f = [log(32~, X?/N) 4+ n/N] — NAIC, where first term is a
possible worst case scenario corresponding to i. i. d. observations,
and similar for the other two alternative identification criteria, putting
log(N) in place of 7.

4.3. Operators and other implementation issues in the GAs

Since the binary chromosome has independent bits and any sequence of
bits is legal, the usual genetic operators may be employed. Any selection
method is suitable but we propose three types of selection operators: roulette
wheel selection, rank selection and tournament selection. In “roulette wheel”
rule the probability of a chromosome being selected as a parent is propor-
tional to its fitness. In ranking selection the individuals are sorted in order of
fitness and then reproductive fitness values are assigned according to rank.
Then every chromosome is selected with respect to its rank. The basic idea
of tournament selection is to select the individual with the highest fitness
value from a certain number of individuals (tournament) in the population
into the next generation. The number of the individuals taking part in the
tournament is called tournament size. In the tournament selection, there is
only comparison between individuals by fitness value.

Each selected couple of parents will produce two “children” by methods
of crossover and mutation.

12



Two types of crossover are implemented: random one cut point and uni-
form crossover. In order to make sense as an exchange of parent phenotypes,
crossover should be between genes, rather than bits. In other terms, the
cut points should fall between genes. Alternative is uniform crossover - each
child receives each (entire) gene from one parent or the other randomly with
probability 1/2. Other crossover methods may be employed.

Finally, a probability is chosen for randomly changing the value of each
bit of each gene of the child-chromosome (mutation).

The entire population of chromosomes is replaced by the offsprings cre-
ated by the crossover and mutation processes at each generation except for
the best chromosome, which survives to the next generation. This elitist
strategy ensures that the fitness will never decrease through generations [16].

Another important decision is the initial population. A simple way to
start would be to select the initial genotype chromosomes to be random bi-
nary sequences of required bits. As to the population size, [14] suggests (for
binary random population) that to ensure that the probability of every single
bit appearing in the population is at least Q, population size should be at
least 1+ log(—G/log(@))/log2 where G is number of bits. For reasonable
probability @) = 0.999 this rule gives a size around 20.

5. Seasons grouping

The seasonal effect on means, variances and correlations may show dif-
ferent speed and pattern, thus it seems advisable, for each of these features,
to use a different splitting of the year, determined by a different length of
the season inside which that feature remains constant. For example, if the
seasonal period is s, we may have exactly s different models, one for each
seasonal position; or rather only s/c different structures, when ¢ consecutive
observations are supposed to belong to the same season. E. g. if s = 12
(monthly data) and ¢ = 3, the same model works for each quarter, there-
fore there are only s/c = 4 different seasons. This may be useful when the
seasonal variation is slow and more detailed models would be redundant.

Regime changes may occur at any time, and the data length N is not
assumed a multiple of s. It follows that in each regime, the number of
observations belonging to different seasons may be different. For full seasonal
models,; i.e. ¢ = 1, the season to which the first observation belongs is labeled
"1”. When grouped seasons are considered, i.e. ¢ > 1, and the seasons are

13



only s/c rather than s, the first completely observed season is labeled as ’1’:
it could start at observations 1,2, ..., ¢, thus the parameter fo (< ¢) specifies
what is the index of the first observation belonging to season labeled 1.

We allow a different season grouping for means, correlation and variance.
We denote by c); the number of consecutive observations for which the mean
remains constant (cy; divides s); if ¢y > 1, let fops denote the time of the
first observation of the first season (the season labeled 1 as far as the means
are concerned). Each season for the mean is formed by ¢)s consecutive ob-
servations, and the different seasons are ss = s/cj;. In an analogue fashion,
we denote by car the number of consecutive observations for which the AR
parameters remain constant. If cqg > 1, let fosar be the time of the first
observation in the first season (i. e. the season labeled 1 concerning the
AR model). Each season for the AR model is cag observation long, and the
number of different seasons is sv = s/car. E. g. for s = 12, if cygp = 1,
each month has a different set of AR parameters, then the variances of the
12 month may a priori be different. If on the contrary cqg > 1, the vari-
ances of cyr contiguous observations all are proportional, through the same
coefficient, to the residual variances, thus a variance instability is equiva-
lent to a residual variance instability. Therefore, we allow the possibility
that, inside each single season for the AR model (containing c4g consecutive
observations) the residual variances may change. Thus we must consider
sub-seasons composed by ¢y observations, where ¢y divides c4r, and allow
the residual variance to change every cy observations, in a total number of
seasons (concerning the residual variance) equal to svar = s/cy. If ¢y > 1,
the first observation of the first season remains at time foag.

A complete model with season grouping includes therefore the structural
parameters of model without season grouping and, in addition, the parame-
ters cpr, Car, cv, fou, foar subject to the following constraints:

cy divides s 5 cagdivides s; cy dividescar; 1 < foyr < cpr; 1 < foar < Cag-

The external parameters are the same as for the model without season
grouping but the number and estimation of the regression parameters is
considerably different. The regression parameters are

14



a1, a9, ...,0ny1 iNtercepts

bi,b9,..., b1 slopes
w9 (k) seasonal means, k =1,...,s8s;j=1,...,m+1
Ej)(i) AR parameters, k =1,...,sv;j=1,....m+1;1=1,...

(some of them may be constrained to zero)
o2(j, k) innovation variance, k = 1,...,svar; j=1,...,m+1
The seasonal means are in number of ss, the AR parameters are sv and
the innovation variances are svar. Also in this case for the estimation of
trend and seasonal means we assume that the seasonal means sum to zero
on one cycle because the intercept and the means are linearly dependent:

pD 1)+ pDQ2) 4+ . +uD(ss) =0 V.
Therefore the following equations are estimated:
X, =0t 4 c(j k) , 7, <t<Tin (4)
and then the parameter vector is
A= oM, 6@ b e(1,1),¢(1,2), ..., c(1, 88),¢(2, 1), . ...,

c(2,s8),...,c(m,1),...,c(m,ss)}

with dimension m X (ss+1). Each row of the design matrix relates to a time
t from 1 to N and has the value ¢ in the column corresponding to b, and 1
in the column m + (j — 1)ss + k; that corresponds to parameter ¢(j, k). For
determining k;, since the first observation of the first season is at time fo,,,
we compute mod (t — fop + s, 5). If the result is from 0 to ss — 1 we are
in the first season, if the result is from ss to 2ss — 1 we are in the second
season, and so on. It follows that

1
ki=|— mod (t — foy +s,8)| +1,
Cm

where |n] is the largest integer contained in n. The intercepts a¥) and

seasonal means 1) (k) are determined from the {é(j, k)}, assuming that the
means sum to zero on a whole seasonal cycle in each regime, as follows

CL(]) = g ZC(]a k) ) M(J)(k) = C(]a k) - CL(]).
k=1
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Moreover, it is possible to prescribe trend continuity, by imposing that (if
the number of regimes is larger than one) the trend values of two consecutive
regimes coincide on the first observation of the second regime. For imposing
a continuity constraint on the trend a¥) +bU) t between consecutive regimes,
we consider constrained least squares with the constraints HS = 0, where
each row of the matrix H imposes that the trend part coincides at the first
time of each successive regime:

Ss

‘ ‘ 1 ss 1
D - plu+h) - k) — — ; —
b1 —bY T]+1—|—SS;C(j,]€) Ssgc(j—l—l,k‘)—(].

It follows that H has m rows and the j-th row has value 74, in the j-th entry
and —7;41 in the (j + 1)-th entry, that the entries from m + (j — 1) x ss +1
to m + j x ss are all equal to 1/ss and the entries from m + j X ss+ 1 to
m+ (j+ 1) x ss are all equal to —1/ss.

Based on thresholds, seasonal arrangement and estimated trend and means,
the residual series is computed:

W, =X, —a¥ — bWt — 40 (k).

For each regime j and season k the autoregressive parameters of process:
Wt = Z Qﬁl(i) (Z)Wtfz + &
i=1

are estimated in a similar way of the model without season grouping. The
main difference is in the selection, for each season k = 1,2, ..., sv and regime
j, of observations belonging to that subseries (¢ such that k; = k). For each
pair regime j, season k (j = 1,...,M;k =1,...,sv), the data are the (j, k)
subseries {W;, ¢ € I*(j, k)} where the entries of the time index vector I*(j, k)
are the times from ¢ X s+ (k—1) X car + foar to { X s+ k X cap+ foar—1
for any natural ¢ such that the resulting time is between 7; and 74, — 1.
The estimation of the innovations is obtained using the residuals

e:z—Zé

that give the estimates of the innovations {g;,¢t € I*(j, k)} for regime j and
season k.

The optimum value of structural parameters may be determined following
different strategies. The first strategy is a GA algorithm where the phenotype
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contains also the genes for coding cys, car,cv, forr and fousg. In this way
it optimizes simultaneously all the parameters of a complete model. Many
generations may be needed to reach satisfying results.

The second strategy is a two step GA. We try first to determine the best
splitting in regimes, considering in the first stage a GA for chromosomes
containing only the number of regimes and thresholds m, 7, ...,7a/_1. To
ensure that the fitness depends essentially only on the fitting of trend and
regimes, we try to account for seasonality and correlation instability as much
as possible, considering monthly seasonality (cy; = cag = 1) and only full
autoregressive models (with no parameter constrained to zero). Given the
best choice of m, 7, ..., 7as_1, a second stage runs a GA for optimizing the
remaining features: selection of the best subset model, and season grouping
assignment; here the chromosome contains only the genes §', ..., * and those
for ¢y, car, cv, forr and foug.

The third possible strategy is a hybrid algorithm. As an alternative to the
preceding one, if the order p and the seasonal period s are not too large, we
can substitute the second stage with a complete enumeration of the possible
solutions for the §’s and the parameters ¢y, cag, ¢y, forr and foag.

For all strategies, when computing the fitness, the first term is based
on the logarithm of the residual variances of the svar sub-seasons,while the
second term (penalization) accounts for the parameters of the sv seasons
related to the AR models, the ss means and the trend parameters. Finally,
we consider the residual variances as unknown parameters themselves and
their values inserted into the fitness as ML estimates, therefore we add in the
penalization term their number, equal to svar times the number of regimes.

6. Applications

The proposed methods will be illustrated on datasets from the fields of
hydrology, economics and climate. Four kinds of periodic autoregressive
models will be fitted to the time series: a complete model, with a different
AR model for each seasonal position (month or quarter) and no constraint
on the autoregressive parameters; a subset model similar to the previous
one, but with some AR parameters constrained to zero in order to maximize
fitness; a grouped subset model where the seasons are grouped as explained
in Section 5; and finally a constant seasonality model, subset as well, where
the autoregressive parameters remain equal in each regime.
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For all those models, the structure was chosen by maximization of the
fitness function. We considered the original NAIC criterion (7 = 2), the
weighted Schwarz criterion (labeled BIC') and the approximate criterion ob-
tained choosing m = log(N/s). The fitness form was exponential with scale
a = 0.1. In our framework, a model is better than another model simply
if its fitness is larger; however, all the estimated models were subject to a
diagnostic checking step, and in particular the usual portmanteau tests were
computed on the residuals.

For comparison, more conventional seasonal autoregressive integrated
moving average (SARIM A) models were also fitted to the series.

The parameters of each model were estimated not on all available data,
but leaving some most recent observations for out-of-sample forecasts.

In the present application we adopted the hybrid algorithm strategy: the
regime changes are identified on complete models, then all possible season
grouping and subset choice are evaluated and the best one retained. The GA
population size was 50 and the number of generations 200. We used roulette
wheel selection with elitist strategy, uniform cross-over and mutation with
probability 0.2.

6.1. Garonne riverflow

The first considered time series contains the natural logarithms of the
riverflows of the river Garonne. The data are obtained from daily discharge
measurements in cubic meter per second (m?/s) recorded at the Tonneins
gauging station (DIREN-Banque Hydro, French water monitoring). The
observations are monthly from January 1959 to December 2012, and the
twelve months of 2013 will be used for out-of-sample forecasts. The Garonne
time series is reported in Figure 1. Here N = 648 and s = 12. The maximum
allowed order for the autoregressive models is p = 3 and the minimum regime
length mrl = 120 months. The results appear in Table 1. Each column
relates to a different fitness type, and each row to a different model and
reports the fitness value and the overall residual variance. The first row
explains the suggested regime splitting (remember that it is identified on
optimizing the complete model): number of regimes, and starting time of each
successive regime. For models that group seasons, the grouping is indicated
by the triple (ss, sv, svar). In the last row the results, in terms of residual
variance and fitness, of an airline model SARIMA(0,1,1) x (0,1,1);2 are
shown.
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Figure 1: Garonne river log flows, 1959-2012

The optimal regime identification is different for the different fitness func-
tions. The fitness AIC{2} favors a less parsimonious model, and points to
a regime change at August 1988, while the other two fitness types are more
similar and detect no regime change. The resulting two alternative trend
estimates are reported in Figure 2. With the fitness AIC{2} the best model
is one with constant seasons (the seasonal behavior does not change in the
two regimes) and grouping (12, 3,12): means different for each month, but
only three different AR models, one for each four months period, and residual
variances different in each month. We note that the grouped (non constant)
model does not suggest any season grouping neither in mean, nor in AR pa-
rameters, nor in residual variances, therefore it is equal to the subset model.

Using the other two fitness forms the results are similar. Here, since
only one regime is proposed, the constant model is equal to the grouped
model, which is the most fit according to both fitness forms. There is only a
slight difference in the number of residual variances detected (quarterly for
AIC{log(N/s)} and half-yearly for BIC'), but both suggest different means
for each month, and only two AR models alternating across semesters. An
overall observation is that for this series the possible regime change does not
appear to have a sensible influence on seasonality.

The SARIMA(0,1,1) x (0,1, 1);5 model shows worse fit when the fitness
AIC{2} is considered, while for the other two fitness forms it is inferior only
to the best periodic model (the grouped season one).
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Figure 2: Estimated regimes and trends for Garonne river data. Continuous line: ATC{2};
dashed line: BIC'

The results of a forecasting exercise are illustrated in Table 4. One-step-
ahead forecasts for the 12 months of 2013 were computed for each model,
and the average square forecast errors appear in the table. It may be seen
that, whatever the fitness form, the optimal models achieve also the smallest
forecast error. The SARIMA model gives a larger forecast error than all
other models.

6.2. Italian Industrial Production Index

We consider the time series of the Italian industrial production index
(Ateco branch C), monthly from January 1990 to September 2016 (published
by the National Institute of Statistics); the observations from October 2016
to September 2017 will be left for out-of-sample forecasts. The time series
is reported in Figure 3. Here N = 321, s = 12. The maximum allowed
order for the autoregressive models is p = 3 and the minimum regime length
mrl = 84 months. The results appear in Table 2. Here also the optimal
regime identification is different for the different fitness functions. The fitness
AIC{2} suggests three regimes, the second starting at July 2002, and the
third at September 2009; the other two fitness types are more similar and
detect only one regime change at November 2008 (see Figure 4).

With the fitness AIC{2} the best model is the subset model, which is

similar to the grouped one, since no grouping is suggested. The constant
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Table 1: Garonne River log flows, monthly 1959-2012

| Model | AIC{2} | AIC{log(N/s)} | BIC |
| Regimes | 2: Aug 1988 | 1 .
Complete o2 0.129 0.150 0.15
fitness 5.44 7.5 28.9
Subset o? 0.135 0.154 0.154
fitness 12.5 23.7 91.1
Grouped  group | (12,12,12) (12,2,4) (12,2,2)
seasons o? 0.135 0.156 0.158
fitness 12.5 46.8 240.8
Constant  group | (12,3,12) - -
seasons o? 0.154
fitness 102.0 - -
Airline o? 0.195 0.195 0.195
fitness 1.18 11.1 103
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Figure 3: Italian industrial production index, 1990-2016

21




0 50 100 150 200 250 300 350

Figure 4: Estimated regimes and trends for IPI data. Continuous line: AIC{2}; dashed
line: BIC

seasonality model shows a fitness considerably smaller than all other models
(and a much larger residual variance).

Using the other two fitness forms the results are somewhat similar. The
best is the grouped model, and the suggested grouping is in both cases to
maintain 12 different means for the months, but to reduce the number of
different AR models to 6 or to 2, the fitness BIC being more parsimonious
than AIC{log(N/s)}.

The results of a forecasting exercise are also reported in Table 4. One-
step-ahead forecasts from October 2016 to September 2017 were computed
for each model, and the average square forecast errors appear in the table. It
is apparent that the forecasts obtained with the constant seasonality models
are worse than all others, the forecast errors for the other models are not
much different, but the complete model seems to perform slightly better.
Moreover, the identification of one single regime change seems to reduce the
forecast error with respect to the two regime change model.

The SARIMA(0,1,1) x (0,1,1);2 model shows a much smaller fitness
than the other models in any case. However, as far as the average forecast
errors are concerned, it is comparable to the others, though always worse
than the optimal models.

The results as a whole suggest that the industrial production series presents
at least one serious regime change, and it influences also the seasonal behav-
ior. Figure 5 shows the estimated monthly means for the optimal model for
AIC{log(N/s)} and the two regimes, and suggests that the seasonal varia-
tions became smaller after the regime change, though maintaining a similar
pattern.
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Table 2: Italian Industrial Production Index, monthly Jan 1990 : Sept 2016

| Model | AIC{2} | AIC{log(N/s)} | BIC |
| Regimes | 3: Jul 2002, Sep 2009 | 2: Nov 2008 | 2: Nov 2008 |
Complete o? 5.75 6.46 6.46
fitness 380 2.76 0.35
Subset o2 6.29 717 7.06
fitness 2710 47.3 2.1
Grouped  group (12,12,12) (12,6,6) (12,2,2)
seasons o? 6.29 8.42 9.99
fitness 2710 55.1 4.3
Constant  group (12,12,12) (12,12,12) (12,12,12)
seasons o? 16.18 16.35 16.35
fitness 7.5 2.9 0.36
Airline o? 35.4 35.4 35.4
fitness 0.003 0.002 0.002
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Figure 5: Italian industrial production index: estimated monthly means.

first regime, dotted line: second regime
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Figure 6: Turin quarterly average temperature, 19072006

6.3. Turin temperature

We consider a long temperature recording series starting in 1760, recorded
in Turin (Italy). The observations are quarterly average temperatures for
years 1760 to 2008, and come from the repository of the Histalp Project [2].
Here we consider hundred years from 1907 to 2006, while the years 2007
and 2008 will be left for out-of-sample forecasts (thus N = 400 and s = 4).
The maximum considered AR order was 2 and the minimum regime length
mrl = 80 quarters. The time series appears in Figure 6, and the results in
Table 3. The optimal regime identification again is different for the different
fitness functions. The fitness AIC{2} suggests three regimes, the second
starting in the second quarter 1942, and the third in the fourth quarter 1970;
the other two fitness types are more similar and detect no regime change.
These two alternatives are displayed in Figure 7.

With the fitness AIC{2} the best model is the subset without any season
grouping. The constant model (imposing equal seasonal behavior for each
of the 3 regimes) suggests a grouping of season with only one constant AR
model, but achieves a considerably smaller fitness value.

Using the other two fitness forms the results are similar. Here, since only
one regime is proposed, the constant model is equal to the grouped model,
which is the most fit according to both fitness forms. The optimal grouping
is equal to the previous one: four quarterly means and four quarterly residual
variances, but only one constant AR model.
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Figure 7: Estimated regimes and trends for Turin temperature data. Continuous line:
AIC{2}; dashed line: BIC

An overall observation is that for this series the possible regime change
does not appears to have a sensible influence on seasonality. We note further
that in several cases (especially for the more parsimonious fitness types) the
autoregressive parameters are all constrained to zero, leading to models with
uncorrelated observations and only means depending on the season.

The results of a forecasting exercise are also reported in Table 4. One-
step-ahead forecasts for the 8 quarters of years 2007 and 2008 were computed
for each model, and the average square forecast errors appear in the table.
For the fitness AIC{log(N/s)} and BIC the optimal models (the grouped
season one) achieve also the smallest forecast error, and with the alternative
fitness AIC{2} the smallest forecast error is also achieved by the most fit
(the subset model). Note that here the models with regime changes ensure
a forecast error definitely smaller than those without regime splitting.

The SARIMA(0,1,1) x (0, 1, 1), model has fitness of type AIC{2} much
smaller, but a slightly larger fitness than the other models if the other fitness
types are considered. However the SARIM A model shows forecast errors
uniformly larger than the other models.

We may conclude that for this temperature series the detection of a regime
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Table 3: Average temperature in Turin, quarterly 1907 : 2006, piecewise continuous

| Model | AIC{2} | AIC{log(N/s)} | BIC |
| Regimes | 3: 11, 1942; IV, 1970 | 1 |1
Complete o? 78.8 94.2 94.2
fitness 21.9 4.3 3.2
Subset o? 80.7 94.7 94.7
fitness 38.2 7.3 5.4
Grouped  group (4,4,4) (4,1,4) (4,1,4)
seasons o? 80.7 94.7 94.7
fitness 38.2 9.1 6.4
Constant  group (4,1,4) - -
seasons o? 90.2
fitness 26.0 - -
Airline o? 97.0 97.0 97.0
fitness 11.6 9.5 8.6

change is important also for forecasting purposes, but on the other side this
regime change seems to influence more the levels than the seasonal behavior.

7. Conclusions

In this paper we have proposed models that are able to explain, on one
side, regime changes and structural breaks, and on the other side a seasonal
behavior that evolves in time.

The complex problem of identifying and estimating such models is solved
by computational strategies based on GAs. The best model is selected ac-
cording to a fitness function that is a monotonically decreasing transforma-
tion of widely used identification criteria. Experience on real and simulated
data suggests that the choice of the fitness function is crucial because a too
parsimonious criterion may lead to models that overlook important structure
changes.

The results obtained analyzing some hydrological, climatological and eco-
nomic time series seem to support the usefulness of the proposed methods
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Table 4: Average square one-step-ahead forecast errors

| Series Model | AIC{2} | AIC{log(N/s)} | BIC
Garonne River Complete .269 274 274
(1 year) Subset 275 292 292
Grouped seas. 275 251 231

Constant seas. .243 251 231

Airline 372 372 372

Ind. Prod. Index Complete 24.4 17.41 17.41
(1 year) Subset 29.9 15.3 20.2
Grouped seas. 29.9 26.5 22.7

Constant seas. 42.8 53.6 53.6

Airline 26.7 26.7 26.7

Turin temper. Complete 66.6 72.4 72.4
(2 years) Subset 61.7 72.0 72.0
Grouped seas. 61.7 70.9 70.9

Constant seas. 68.9 70.9 70.9

Airline 88.9 88.9 88.9
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in detecting relevant changes in the structure of the trend and also possible
evolution in the seasonal behavior concerning levels, variance and correlation.

The generalized periodic autoregressive models allow a closer analysis

of the seasonal behavior, suggesting also the most convenient grouping of
seasons in terms of fitness.

In our applications, the proposed models achieved a larger fitness, and a

smaller forecast error, than the more common seasonal autoregressive inte-
grated moving average models.
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