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Abstract—The world of machine-to-machine (M2M) commu-
nication is gradually moving from vertical single purpose solu-
tions to multi-purpose and collaborative applications interacting
across industry verticals, organizations and people – a world of
Internet of Things (IoT). The dominant approach for delivering
IoT applications relies on the development of cloud-based IoT
platforms that collect all the data generated by the sensing
elements and centrally process the information to create real
business value. In this paper, we present a system that follows
the Fog Computing paradigm where the sensor resources, as well
as the intermediate layers between embedded devices and cloud
computing datacenters, participate by providing computational,
storage, and control. We discuss the design aspects of our
system and present a pilot deployment for the evaluating the
performance in a real-world environment. Our findings indicate
that Fog Computing can address the ever-increasing amount of
data that is inherent in an IoT world by effective communication
among all elements of the architecture.

I. INTRODUCTION

The advent of Internet of Things (IoT) and the anticipated
exponential increase of interconnected devices, paves the way
for the introduction of novel network architectures which aim
to enhance the currently deployed cloud computing paradigm.
We are gradually moving from vertical single purpose solu-
tions to multi-purpose and collaborative applications interact-
ing across industry verticals, organizations, and people. With
the ever-increasing amount of data that is inherent in an IoT
world, the key to gaining real business value is effective
communication among all elements of the architecture.

The dominant approach followed by large industries focused
SMEs and startups is the development of cloud-based IoT
platforms that simplify the interconnection of smart devices,
the collection of data generated to the cloud, and the central
processing of the information utilizing other cloud-based ser-
vices (see Figure 1). Platforms such as AWS IoT1, Xively2

and Arrayent3 provide a cloud-based back-end that helps de-
velopers focus on how to accelerate the creation of compelling
solutions that integrate with existing business processes and
IT enterprise infrastructures. With existing IoT deployments
being sparse and incorporating a limited number of sensors
this approach performs adequately.

1https://aws.amazon.com/iot/
2https://www.xively.com/
3https://www.arrayent.com/

Fig. 1. Typical cloud-based IoT architecture

With the continuous development of IoT technologies, new
deployments become denser and utilize a larger number of
smart devices [1]. The cloud-based approach needs to address
multiple performance issues appearing at all levels of the net-
work architecture (as depicted in Figure 1) while transferring
massive datasets collected from the sensors and delivered to
distant machine clouds: (a) network bandwidth issues at the
network edge, (b) network energy consumption as traffic flows
through the network core, (c) continuous I/O operations on the
data centers where datasets are stored, (d) increased exposure
of data across third-party cloud-based services. As stated in
[2] minimal possible latency, network bandwidth preservation,
increased security and enhanced reliability are elements of
paramount importance for any IoT-related application. The
necessity for data collection, storage and availability across
large areas, the demand for uninterrupted services even with
intermittent cloud connectivity and resource constrained de-
vices [3], along with the necessity of sometimes near-real-time
data processing in an optimal manner, create an amalgam of
challenges where only radical and holistic solutions apply.

Fog and edge computing, in general, is an emerging plat-
form that provides computational, storage, and control re-
sources in an intermediate layer between end-user devices and
cloud computing datacenters. The physical proximity of fog



infrastructure with the resource-bound last-mile sensors of any
IoT-related application, allows limited latency, less bandwidth
consumption, as well as elevated degrees of reliability and
security. This approach extends the cloud computing paradigm
by migrating data processing closer to the production site,
accelerates system responsiveness to events along with its
overall awareness, by eliminating the data round-trip to the
cloud.

In this paper, we present a new approach that takes ad-
vantage of the resources available at the edge of the net-
work. Our solution provides a uniform environment where
edge and cloud resources can be interchanged without the
need to implement additional complex code for managing
the infrastructure. Domain experts focus on specifying the
rules for data-driven processing and event-based response
and let our platform automatically tune the infrastructure for
high-performance and high-availability. The resulting system
continues to operate even when certain parts of the IoT domain
become disconnected or experience periods of low-bandwidth.
Data are stored locally at the edges of the network and only
the parts that need to be accessible by other systems are
forwarded to the cloud. Our platform conveniently removes the
burden of having to explicitly to configure every single smart
device and manually relocate the point of execution of each
different automation task as the demand for data processing
and integration increases.

The rest of the paper is organized as follows: in Section II
we briefly present recent and relevant developments regarding
edge and fog computing. Section III presents the dominant
characteristics of our architecture and the issues this new layer
tackles towards deploying an end-to-end computing platform
and provides technical insights on the operation of our solu-
tion. In Section IV we present in detail a pilot deployment of
an IoT infrastructure that facilitates a broad range of people-
centric IoT applications. In Section V we report on the findings
of the performance evaluation that we conducted based on
the real-world pilot deployment. Finally, Section VI draws
conclusions and summarizes the paper.

II. RELATED WORK

In the past several approaches have been proposed in order
to address the potentially huge number of sensor data arriving
from the IoT domain, each one of them applied in different
parts of the network architecture. Starting from the low-end
devices, the approach of in-network aggregation and data
management has been proposed where sensor devices follow
local coordination schemes in order to combine data coming
from different sources and/or within the same time period
based on similarities identified using data analysis. Usually
these techniques operate in combination with network-level
routing protocols and/or lower-level medium access control
protocols. For an overview of different techniques and existing
protocols see [4]. Since this approach relies on spatial and
temporal correlation without taking into consideration seman-
tic correlation of the data, very few theoretical algorithms are

used in real-world deployment since they significantly limit
the concurent support of different high-level applications.

As soon as the information reaches the fixed network,
several approaches have been proposed for time-series com-
pression using different aggregation techniques. One such
approach originates from [5] applies different models to
identify similarities in the time-series and effectively reduce
the total number of data using a “piecewise approximation”
technique that replaces every fixed number of points with their
arithmetic mean. In [6] follow a different approach where they
analyze the data points trying to evaluate their importance
using local minima and maxima and subsequently keeping
only the most important points. Such approaches have been
studied extensively in the past however they require that all the
incoming data are collected in order to complete the analysis.
Moreover, these techniques do not take full advantage of the
benefits of the cloud and the possibility of using multiple
servers in order to speed-up the processing.

As Big Data has been introduced, several approaches have
been introduced using the map-reduce paradigm [7] (e.g.,
Apache Spark4) that essentially split the analysis in batches.
More recently, new tools have been developed that allow the
analysis of the time-series in a streaming way, hence the name
Stream Processing Frameworks (among the most well known
are Apache Storm5 and Flink6). For a survey of possible stream
processing optimizations and variations see [8].

Interestingly offloading large datasets to the core network is
no longer a necessity [9]. Very recently, new approaches have
been proposed that take into advantage edge resources not
only for load balancing the server load using only geo-spatial
criterial but more importantly by taking into consideration
the internal logic of the components that constitute the high-
level application [10]. Such solutions confront several of the
intrinsic limitations of cloud and alleviate the deployment of
services with low or even zero tolerance for latency delays.

III. OUR SOLUTION FOR FOG-COMPUTING-AWARE
DEPLOYMENTS

We now proceed by describing in more details the basic
building blocks of our IoT platform. We introduce a message
bus through which the sensor data generated by the end-
devices propagate across the layers of our platform and are
transformed and aggregated based on the high-level applica-
tion requirements. We introduce a novel mechanism where raw
sensor data along with meta-data and alerts (produced by the
analysis of the data) are stored at the edges of the network
and are delivered to cloud-based storage services on-demand
based on the actual needs of the data analytics executed
by the high-level applications. Finally, we employ a self-
organization mechanism that allows sensor and edge devices
to self-describe their capabilities so that virtual networks are
formed across the different layers of the network to optimize
usage of available resources (see Figure 2).

4http://spark.apache.org/
5http://storm.apache.org/
6https://flink.apache.org/



Fig. 2. Information flow across the different layers of the architecture

A. Message Bus, Intermediate & Deep Storage

All data messages retrieved from the IoT end-devices and
control messages generated from cloud and edge-devices are
circulated over a message bus system that is responsible for
distributing the information gathered to the various subsystems
responsible for storing and processing the data or generating
alerts. The message bus system offers us the flexibility to
introduce data processing, transformation, and aggregation
mechanisms at different layers of the architecture depending
on the needs of the high-end application.

The message bus layer offers us the ability to store data in
a scalable way at different layers of the architecture: (a) data
are formatted for near-instantaneous retrieval, thus avoiding
time-consuming queries and aggregations; (b) a cache-like
mechanism is available for providing recent data for a specific
sensor devices or collection of end-devices using a single
lookup in near-located storage service; (c) older historical
measurements are stored in a deep storage service that is used
only when measurements that are older than the ones provided
by the first service. This decoupling of the data generators and
the data storage services allows us to implement a broad range
of services that need to optimize different performance criteria.

B. Self-organization of Sensor & Edge resources

In order to be able to move computation to specific edge
devices, we provide certain mechanisms for self-configuration
and self-organization. In our system, edge devices are capable
of self-describing their capabilities using standard M2M proto-
cols and are able to form virtual networks based on the needs
of the high-level applications. In this way, we completely avoid
the need for the preconfiguration of the IoT infrastructure
and the fixed routing of data through the various cloud-based
services that constitute the resulting system.

In order to improve the flexibility of storing and managing
the context data for the deployed sensors we store the sensor
annotations and metadata on a different storage than the
raw sensor data or the transformed and aggregated data. This
service stores the different deployed sensors and their metadata
(e.g., observed properties, units of measurements or locations)
as part of a graph database and thus allows us to do complex
relation queries like getting the list of available temperature

Fig. 3. An example of the graph data for a single school building.

sensors in multiple locations simply by running a graph
traversal query. Figure 3 depicts the end-devices deployed at
a specific location (for more details see Section IV).

C. Data Transformation & Aggregation

Domain experts specify the rules for data-driven processing
and event-based response using JSR-000335 lambda expres-
sions. These specifications are injected into our system through
the cloud-based services. The lambda expressions are decom-
posed based on the sensor data that they process as well as the
time-windows used for processing the stream of data. Given
the decomposition of the sensor data and by exploring the
sensor annotations graph, we identify the edge-device through
which the majority (if not all) end-devices are connected. This
edge device becomes the “primary” processing point for the
specific lambda expression. Data from each sensor is assigned
to the same processing instance based on the unique name of
the sensor to avoid duplicate data.

In the sequel, the time-windows defined by the lambda
expression are evaluated based on those that are already being
executed on the specific edge device. Our goal is to combine
the different intervals defined as well as the size of the multiple
windows that are concurrently supported in order to fine-
tune the intermediate storage available at the edge devices.
Essentially we offer data retrieval of specific time points in
constant time and data between two-time instants in time
relative to the time duration. In this way, data processing



is scalable as multiple lambda expressions can be combined
for each type of sensor avoiding re-computation of the same
transformations and aggregation functions.

IV. PILOT DEPLOYMENT

In order to evaluate the performance of our system in
a real-world environment, we look into supporting people-
centric applications [11] for facilitating the educational sector
towards improving the energy efficiency of school buildings.
We envision an IoT ecosystem that is composed of a variety
of business players that collaborate towards bringing together
a diverse set of devices for real-time monitoring and manage-
ment of school buildings. To do so, we work by following the
concept and scope of the IoT as defined by ITU-T in 2012 [12].

The educational sector presents a very interesting and im-
portant case for the monitoring and management of buildings,
by having a very large number of buildings to operate, situated
in a very fragmented manner. In national educational systems
we have literally thousands of buildings spread throughout a
country, usually, with very different characteristics in terms of
construction, age, size, etc. It is reasonable to expect a diverse
set of device providers working under the same interoperability
framework. Due to this, we are hardware independent: sensors
from different manufacturers interoperate with our system.

Clearly, an IoT system deployed at a national scale and op-
erating in real-time must handle, store and analyze vast quanti-
ties of data collected from the devices. Given the heterogeneity
of the hardware devices, data need to be homogeneous across
different buildings and should be accessible through open
and easy-to-use APIs. For this reason, our platform enables
direct comparisons of energy efficiency between buildings
and cities, carefully taking into account all the environmental
parameters. We integrate the diverse capabilities of IoT devices
and provide open interfaces to application developers.

Our platform supports different end-user groups that in-
herently exist in the educational sector: students, educators,
building administrators and other administrative staff. Our
platform provides access to the available information in a way
that suits all of these end-users groups. In some cases unifying
different school buildings into a single view is necessary to
make interaction simpler, visualize data more naturally and
create an environment that conveys valuable insights.

Regarding the actual deployment of our prototype, we used
12 school buildings in Greece (see Table I), spread in 7
locations, covering a range of local climatic conditions. Three
of the buildings are situated in suburban areas, one in a rural
area, two in small islands, while the rest are placed close to
city centers. The vast majority of the rooms monitored are
used for teaching purposes and the rest for other activities
like teacher/staff rooms, etc. The year of construction of these
buildings ranges from 1950 to 2000.

A. End-Device Layer

In each of the 12 buildings participating in our pilot study
we deploy sensor devices that measure (a) the overall power
consumption of the building, (b) the environmental comfort

TABLE I
A SUMMARY OF A FEW KEY FACTS REGARDING OUR DEPLOYMENT

Parameter # Description
Schools 12 6 primary, 5 secondary, 1 high school
Sensing Points 1055 ≥ 6 sensors per device
Students 2267 students in all levels
Teachers 294 teachers in all levels
Sensing Rate 30sec . . . 5min classroom sensors

within each individual class (see below for more details)
and (c) the weather condition and air pollution meters of
each building. For more details regading the sensor devices
see [13]. On the physical and data link layer, all indoor IoT
nodes form IEEE 802.15.4 networks and communicate with
the Edge devices by establishing ad hoc multihop bidirectional
trees, setup in the time of the deployment and maintained
throughout the network lifetime. The outdoor nodes are either
connected via Power Over Ethernet cables both for power and
communication, or via IEEE 802.11 using solar panels. On
the transport and session layers, we depend on CoAP [14] for
the discovery of resources and transmission of measurements.

1) Power Consumption: The power consumption meters
installed measure the apparent power and average power
consumption of a school building. Meters are situated on the
general electricity distribution board of each such building.
Remark that schools use 3-phase power supply.

2) Environmental Comfort: The Environmental Comfort
Meter measures various aspects affecting the well-being of
the building inhabitants, such as thermal (satisfaction with sur-
rounding thermal conditions), visual (perception of available
light) comfort, poor classroom acoustics due to background
noise and monitor overall noise exposures and air quality
(presence of CO and CH4). We also monitor room occupancy
using PIR sensors.

3) Weather and Atmosphere Stations: The Weather Station
provides information for the outdoor atmospheric conditions
including precipitation levels, wind speed and direction. The
Atmospheric meter monitors atmospheric pressure and con-
centration of pollutants, to better understand the pollution near
school buildings.

B. People-Centric IoT Usage Scenarios

A main objective of environmental sustainability education
and energy efficiency awareness initiatives in schools is to
make students aware that energy consumption is largely in-
fluenced by the sum of individual behaviors (at home, school,
etc.) and that behavior changes and simple interventions in the
building (e.g., replacing old lamps with energy-efficient ones)
can have a great impact on achieving energy savings.

To this purpose, IoT technologies can definitively support
these initiatives by intermediating the interaction of people
with the environment to provide immediate feedback and
actual measures of the impact of human actions (e.g., by pro-
viding a feedback on the consumption of a PC left in standby)
and automating the implementation of energy savings policy
while maintaining the comfort level perceived by people.



Indeed, IoT technologies allows producing data from the
real world in order to feed a plethora of people-centric
information, education and involvement initiatives in order to
effectively change the ways people live and work inside school
buildings and achieve better energy efficiency. This means on
the one hand, to better inform people and enable them to
make educated decisions, and on the other hand to enable a
whole different set of applications, like gamification apps that
bridge the virtual world with the real one, towards the end-
goal of such systems. We argue that the availability of actual
measurements of environmental parameters, such as energy
consumption, indoor and outdoor luminosity, temperature,
noise, pollution, etc., enables the conception and realization
of diverse people-centric application and scenarios.

Education: Teachers use collected data and analytics during
the class to explain to pupils basic phenomena related to the
parameters monitored.

Students’ engagement: Teachers organize student projects
where each student (or group of students) monitors specific
environmental parameters at their home, e.g., via participatory
sensing or by using low-cost sensors installed at their homes.

End-user programming: Students can develop software ap-
plications using the data provided by the platform and utilizing
the available APIs or other frameworks (such as Minecraft
game modules)

Building management: Collected data can feed applications
informing building managers about the energy profile perfor-
mance of the building and specific equipment. The availability
of data from similar schools and/or similar equipment allows
to do some benchmarking and supporting decisions for pre-
ventive maintenance or substitution of existing equipment.

Scientific research: Data collected in the schools can be
made available to the scientific community, so that studies can
be performed on a common dataset and results can be more
easily compared.

The level of abstraction introduced by an IoT service
architecture on top of sensors provided by different man-
ufacturers, together with the capability of performing data
analytics and interpreting data with context information (e.g.,
building profile, education curricula, etc.), definitively widen
the scope of application of IoT from the local to a national
or international extent. Monitoring school buildings situated
in different countries can help, e.g., to identify usage or
energy consumption patterns. This, in turn, can be utilized
to make comparisons or realize competitions through social
networking and game applications (e.g., students of school
A compete with students of school B in answering energy
awareness questions). This could also help understanding
and reflecting on cultural differences with respect to energy
efficiency awareness and attitude towards behavioral changes.

With respect to interfacing the system with the end-users and
the general public, we provide a series of web applications
that cover the needs of several end-user groups such as
students, educators and administrative staff from each school,
the regional government and top-level staff at the national
Ministry of Education. The first set of web applications is

Fig. 4. People-centric IoT application developed on top of our platform,
depicting a list of the school buildings that can be selected to reveal further
details (left), the list of sensors inside a specific school building and their
current values (right).

used by students and provide access only to data related to
their classroom. The second set targets school staff and ad-
ministrative personnel offering access to the respective school
building. Finally, a the third set of application provide access
to the entirety of the buildings.

As an example consider a single web application that unifies
different school buildings into a single view (see Fig. 4) to
make interaction simpler, make data visualization more natural
and create an environment that conveys valuable insights and
clear actions related to general as well as specific aspects
of the participating building ecosystem. This people-centric
IoT application presents collected information hierarchically
as follows:

• At the highest level, a list of all buildings participating
is presented, along with certain administrative info.

• The end-user can select a specific building to navigate to
more analytic info about this building. A set of average
and current values is presented regarding the whole
building, followed by a list of each classroom/room.

• End-users can navigate to specific rooms/classrooms and
see the list of IoT nodes installed with the respective
average/current values.

• The final hierarchical level displays information produced
by each specific sensor.

Facilitating all these diverse application scenaria and sup-
porting the different requirements in terms of data interpreta-
tion and analytics we implemented a series of lambda expres-
sions for processing and transforming data received from the
end-devices layer. These lambda expressions are executed at
the either at cloud level or at the edge level depending on the
traffic of data, the current conditions of the network and the
overall load of the system. Our expressions are organized into
three categories: (a) expressions that involve linear regression,
(b) expressions that employ data mining techniques for clus-
tering data, and (c) fast Fourier transformation expressions.

1) Linear Regression: The implementation of the pilot
applications that address the people-centric IoT usage scenaria
requires employing linear regression for modeling the rela-



TABLE II
TECHNICAL SPECIFICATIONS OF CLOUD-BASED VMS

Specification Azure A1 Azure A4
Processor Xeon E5-2673 Xeon E5-2673
Frequency 2.40GHz 2.40GHz
Cores 1 8
Memory 1792 MB 14 GB
Disk 29GB HDD 240GB HDD

tionship between scalar dependent variables and one or more
explanatory variables (or independent variables). Most of the
implementations are based on simple linear regressions yet in
a couple of cases we also use multivariate linear regressions.
For example, consider the prediction of the environmental
conditions within a specific class room, or the estimation of the
power consumption of a specific building for the next period.

2) Clustering: Across the different applications imple-
mented data need to be homogenized using unsupervised
learning techniques. We address this need by using the well-
established k-means clustering method of vector quantization,
originally from signal processing, that is popular for cluster
analysis in data mining. k-means clustering aims to partition n
observations into k clusters in which each observation belongs
to the cluster with the nearest mean, serving as a prototype
of the cluster. This results in a partitioning of the data space
into Voronoi cells. In particular, we use Lloyd’s algorithm to
produce a simple implementation that can be applied even
to large data sets. As an example consider the unsupervised
characterization of the luminosity of each individual class
room across all schools, or the classification of the power
consumption of each classroom during each day/time-slot.

3) Fast Fourier Transform: The third group of transforma-
tion expression relies on the usage of fast Fourier transform
(FFT) algorithm to compute the discrete Fourier transform
(DFT) of a sequence or its inverse. Fourier analysis converts
a signal from its original domain (often time or space) to a
representation in the frequency domain and vice versa. An
FFT rapidly computes such transformations by factorizing the
DFT matrix into a product of sparse (mostly zero) factors. As
a result, it manages to reduce the complexity of computing
the DFT from O(n2), which arises if one simply applies the
definition of DFT, to O(n log n) , where n is the data size.

These expressions are used for feature extraction, for ex-
ample, to analyze the power consumption of the school in
order to identify whether specific laboratory equipment is
still operational although the particular course that is using
this equipment is complete. Another example involves the
quantification of events of a loud environment or poor air
quality.

V. PERFORMANCE EVALUATION

We evaluate the performance of the Fog-computing ap-
proach by comparing the performance of the Spark Works IoT
platform when executed only on cloud-based infrastructures
such as Microsoft Azure against the performance achieved

TABLE III
TECHNICAL SPECIFICATIONS OF EDGE DEVICES

Specification Raspberry Pi Zotac Atom
Processor BCM2836 Arm7 i3-3120M
Frequency 900MHz 2.2GHz
Cores 1 2
Memory 736 MB 8 GB
Disk 64GB SSD 120GB SDD

TABLE IV
PERFORMANCE COMPARISON OF EDGE-BASED VS CLOUD-BASED

PROCESSING (EVENTS/SEC)

Machine Scenario 0 Scenario 1 Scenario 2
Pi 110 62 60
Atom 8010 5800 4400
A1 1170 870 680
A4 10480 6360 5800

when the aggregation and transformation are executed on low-
end devices such as Raspberry PI boards and low-end Intel
based systems that are located on the edges of the network.
Remark that this evaluation strategy is in line with most related
works, like e.g., [15]. In terms of cloud-based infrastructure,
we select the virtual machines with the most limited resources
(see Table II) so that they are relevant to the resources available
to the edge devices (see Table III). Clearly, in contrast to the
capabilities of the edge-devices that remain fixed and are hard
to replace, the cloud-based machines can be easily upgraded
to achieve higher performances.

We model the different stream processing requirements of
the applications developed in Section IV based on the number
of distinct time-windows used (denoted by the parameter l),
the total number of historic values (denoted by the parameter
k) and the transformation functions used. As an example
consider the web-application depicted in Figure 4 where the
administrative personnel requires keeping the maximum and
minimum values of the sensor observations based on daily
time-intervals (i.e., l = 1) over a history of 7 weeks (i.e.,
k = 49). We call this example “Scenario 1”. Another example
is the application developed for assessing the environmental
conditions of the classrooms during the teaching activities
where aggregates (e.g., average, minimum, maximum) of the
sensor observations are generated over five different period
intervals: 5-minute, 15-minute, 30-minute, 1-hour, 1-day (i.e.,
l = 5) over a history of 4-hours, 12-hours, 24-hours, 48-hours
and 7 weeks (i.e., k = 49). We call this application example
“Scenario 2”. We compare the performance of our system on
each different platform under the different stream processing
requirements and compare it to a reference “pass-through”
scenario where the l = 0 and k = 0 (noted as “Scenario
0”).

The results of our first experiment indicate that as the
number of distinct aggregation time-windows increases (l)
there is a slight degradation of the throughput of the system.
In order to better visualize the performance of each different
platform, we include Figure 5 where the case of l = 10 is



Fig. 5. Performance evaluation (numbers of events processed per second) of
edge-based vs cloud-based stream processing for applications scenarios with
different requirement distinct time-windows (l)

also shown. Indeed the fact that Raspberry Pi underperforms
the other platforms at such a level was expected, given that
the available memory is extremely limited; remark that after
the OS is fully-loaded, about 300MB of RAM are available
to our application-level process. However, given the actual
load generated by the school buildings considered under our
real-world pilot presented in Section IV, even this level of
throughput is almost sufficient. In particular, consider that
in one of the schools of the pilot deployment7 currently
includes 106 sensors generating 212 events per second. Each
of these events includes the actual sensor value along with a
timestamp and thus requires a total of 12 bytes when stored
on the cloud-based database. Since we are transmitting these
values over the 802.15.4 network using the CoAP protocol,
each event requires 1 packet, which translates to 134 bytes.
Therefore, the cloud-based approach requires the propagation
of all the events to the cloud, so for delivering all the events
that are accumulated for a single month we need a total of
1.2GB while for storing them we need a total 108MB. On
the contrary, although the Raspberry Pi is not sufficient to
handle such load, if we use the Atom-based machine, the Fog-
based solution requires to transmit and store just 148KB per
distinct stream processing requirements. The particular real-
world case demonstrates the benefits of using the edge-devices
for transforming and aggregating the sensor values.

We continue by examining the performance of our system
when certain applications require the execution of more com-
plex transformation functions (e.g., FFT computations, linear
regression, clustering and classification, anomaly detection,
etc). Given that the computation resources of a Raspberry
Pi are not sufficient to handle the load of a single building,
we evaluate the performance of the system based on the
Zotac Atom-based edge device. In Figure 6 we measure

7Elementary School of Kastellorizo Island, Dodecanese, Greece

Fig. 6. Performance evaluation (number of events processed per second) of
different transformation functions used for stream processing when executed
on a Zotac Atom-based edge device

the total number of events processed per second when the
stream processing requires the application of each of the three
transformation functions described in Section IV. Interestingly
the results indicate that computation of the average value over
49 consecutive 5-minute moving windows (involving 10 values
each) is a much more demanding process than the execution
of any of the three transformation functions on the same total
number of sensor values. The results provide a very promising
indication of the usage of edge resources even for executing
complex transformation and aggregations of the large data
arriving from the IoT end devices.

As a final step towards assessing the performance of our
system we conduct a comparative study with InfluxDB8,
a mainstream solution specifically developed for IoT-based
applications that rely on time series. Once again we use the
Zotac Atom-based edge device for all the computation required
to transform and aggregate the events received from the
sensor devices. We evaluate the performance of the aggregates
provided to the applications as served directly from the file
system of the edge device. We also consider the combination
of our Spark IoT platform with a MongoDB9 that is used to
serve the files. We also install a local version of InfluxDB
on the same type of edge machine and carefully follow all
the installation instructions provided by InfluxDB in order
to optimize the performance for 7 different type of sensor
values (i.e., the actual number of different sensors considered
in our pilot deployment). We run several thousand queries in
order to calculate the time intervals and then we used the
average time of those queries to obtain the information about
the efficiency. Figure 7 depicts the results of our comparative
evaluation based on the real-world values arriving from the

8https://www.influxdata.com/
9http://www.mongodb.com



Fig. 7. Performance evaluation (query response time in seconds) of Spark
IoT platform stand alone, in combination with MongoDB and versus InfluxDb
when executed on a Zotac Atom-based edge device

same school considered above. We start by assuming that 10
different client applications are continuously issuing queries
on the edge device for retrieving the aggregate values for the
above mentioned “Scenario 2”. Our evaluation indicates that
the performance of InfluxDB is heavily affected in contrast
to our solution. For this reason, we also include a separate
evaluation (under the title “Low Traffic”) where only 1 client is
issuing queries to the InfluxDB. We are very pleased to report
that our system achieves a constant performance regardless of
the number of clients or the sensor type aggregated, in contrast
to InfluxDB that is clearly affected by the total number of
concurrent clients.

VI. CONCLUSIONS

This paper has presented some of the basic issues a sys-
tem architect must consider when designing, implementing
and deploying an end-to-end application which includes IoT
nodes and cloud computing backend services, that leverages
the benefits of the Fog computing approach. Being an in-
termediate layer between end-user devices and the remote
cloud datacenters, Fog alleviates a series of issues in the
areas of scalability, bandwidth consumption reduction, latency
decrease and seamless operation. However, one should focus
on the actual problems derived from the fundamentals of
IoT applications. The huge increase of interconnected devices
indicated that holistic solutions are needed for efficiently solve
the problems of colossal data transfer between the network
nodes. As shown by the evaluation of a functional end-to-end
application prototype designed by the latest trends of IoT and
Fog Computing, presented in Section V, monitoring a single
school building requires significant amounts of storage and
throughput to deliver sensor data to the cloud. Considering

that these numbers will increase linearly to the number of
interconnected IoT devices and users in general, maybe an
even more radical approach than Fog computing is advised.
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