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Abstract In this paper we deal with matrix-free preconditioners for Nonlinear Con-
jugate Gradient (NCG) methods. In particular, we review proposals based on quasi-
Newton updates, and either satisfying the secant equation or a secant-like equation at
some of the previous iterates. Conditions are given proving that, in some sense, the
proposed preconditioners also approximate the inverse of the Hessian matrix. In par-
ticular, the structure of the preconditioners depends both on low-rank updates along
with some specific parameters. The low-rank updates are obtained as by-product of
NCG iterations.
Moreover, we consider the possibility to embed damped techniques within a class
of preconditioners based on quasi-Newton updates. Damped methods have proved
to be effective to enhance the performance of quasi-Newton updates, in those cases
where the Wolfe linesearch conditions are hardly fulfilled. The purpose is to extend
the idea behind damped methods also to improve NCG schemes, following a novel
line of research in the literature.
The results, which summarize an extended numerical experience using large scale
CUTEst problems, is reported, showing that these approaches can considerably im-
prove the performance of NCG methods.
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1 Introduction

Several iterative methods were proposed in the literature, for the solution of the large
scale unconstrained optimization problem minx∈Rn f (x), where f : Rn→R (see e.g.
[1, 2, 8, 7, 9, 15]). Among them, the Nonlinear Conjugate Gradient (NCG) along
with quasi–Newton methods are undoubtedly the most commonly used. Indeed they
both prove to be actually effective in practice and are endowed with a mature theory,
including strong convergence properties.

On this purpose, let us first consider a general iterative Preconditioned Nonlinear
Conjugate Gradient (PNCG) method, which generates a sequence of iterates {xk}.
Essentially three choices at current step k strongly affect both the effectiveness and
the efficiency of the overall method. The first choice refers to the adopted linesearch
procedure, along with the selected steplength αk > 0 used to give the next iterate
xk+1, being

xk+1 = xk +αk pk,

where pk is the search direction. The second choice refers to the selection of the
parameter βk, which is responsible for the computation of the next search direction,
being

pk+1 =−gk+1 +βk pk,

where p1 = −g1 and gk denotes ∇ f (xk). In the case where the function f (x) is
non-quadratic, different expressions for the parameter βk in the latter formula may
yield significantly different (Preconditioned) NCG schemes. In particular, among
the first classic choices in the literature for the parameter β , we have the proposals
by Fletcher and Reeves (FR) [4], Polak and Ribière (PR) [5], Hestenes and Stiefel
(HS) [6]. More modern and efficient schemes have also been studied. In particu-
lar, we urge to mention the proposals in the seminal papers [10] and [7, 8], since
they raised novel ideas which have inspired several advances in the last decade. Re-
cently, Neculai (see [11] and therein references) reported an efficient version of the
NCG method, which promises to outperform the proposal in [8]. This gives room
to further improvements in the latest literature (see also [9]), where some appealing
properties of L-BFGS update are exploited in the context of NCG, with the pur-
pose of improving efficiency. The latter research area has also partially inspired the
results reported in the current paper.

The third proper choice for the symmetric positive definite preconditioner Mk+1 ∈
Rn×n often plays a keynote role for the computation of pk+1, being

pk+1 =−Mk+1gk+1 +βk pk,

where βk may depend on Mk and Mk+1 and p1 =−M1g1. Of course the latter three
choices are not independent. Indeed, an inaccurate linesearch procedure turns to
be harmful and may require a large number of function and gradient evaluations.
Similarly, a careless choice of the preconditioner risks to possibly destroy both con-
vergence properties and numerical performance of the PNCG. These observations
impose a specific attention before selecting a preconditioner.
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In the first part of this paper we review some preconditioners for NCG, which are
based on the satisfaction of a secant-based equation (see [19, 24] and [25] for de-
tails). Our main purpose here is to show that, imposing the satisfaction of the secant
condition, surely represents an important guideline to gain second order informa-
tion about the objective function. However, on highly nonlinear functions, when the
distance among the last iterates increases, the satisfaction of the secant equation
at any iterate might represent a tight request, which does not necessarily enhance
the information on second order information. On the contrary, in [19] the approx-
imation of an average Hessian matrix is built by using an initial guess suggested
by the quadratic case. Then, the initial guess is refined imposing some secant-like
conditions, which are used to set accordingly some parameters.

We remark that the preconditioners are iteratively constructed and based on sat-
isfying either the secant or a modified-secant equation, and partially recover the
structure of quasi–Newton updates. On the overall, our proposals for precondition-
ers comply with the next specifications:

• do not rely on the structure of the minimization problem in hand;
• are matrix–free, hence they are naturally conceived for large scale problems;
• are built drawing inspiration from quasi–Newton schemes;
• convey information from previous iterations of the PNCG method.

We urge to recall that the idea of using a quasi–Newton update as a possible precon-
ditioner, within the NCG algorithms, is not new; examples of such an approach can
be found for instance in [12, 13], or in the more recent proposal [16]. In particular,
the efficient framework in [16] explicitly exploits the relation between the Conjugate
Gradient method and BFGS quasi-Newton approach, in the quadratic case.

In the second part of the paper we show how to combine damped techniques
with preconditioning strategies, as introduced in [22]. Taking inspiration from [17,
18, 14] two different damping strategies are proposed. In particular, we focus on
the Polak–Ribière (PR) (recently, Polak–Ribière–Polyak (PRP)) method, showing
that, under reasonable assumptions, the damped and preconditioned version of this
method (denoted by D-PR-PNCG), can be able to efficiently tackle also difficult
problems. This is confirmed by the results of an extensive numerical testing reported
(see [22] for details).

Under mild assumptions, the proposals in this paper preserve convergence prop-
erties for the PNCG method.

As regards the notations, we denote for an n-real vector x, the Euclidean norm by
‖x‖. Moreover, for a symmetric matrix A, A� 0 indicates that A is positive definite.

1.1 Preconditioned Nonlinear Conjugate Gradient (PNCG) method

Here we first recall a general scheme of PNCG algorithm. In the following scheme
Mk ∈ Rn×n denotes a possible positive definite preconditioner at the iteration k.
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Preconditioned Nonlinear Conjugate Gradient (PNCG) Scheme

Step 1: Data x1 ∈ Rn and M1 � 0. Set p1 =−M1g1 and k = 1.

Step 2: Use a linesearch procedure to compute the steplength αk, which satisfies
the Wolfe conditions, and set the next iterate as

xk+1 = xk +αk pk.

Step 3: If a stopping criterion is satisfied then stop, else compute the coefficient
βk along with the preconditioner Mk+1 � 0. Compute a search direction
by

pk+1 =−Mk+1gk+1 +βk pk. (1)

Set k = k+1 and go to Step 2.

Of course, in case Mk = I for all k, the PNCG scheme reduces to the NCG
method. Also observe that as an alternative, in order to possibly improve the ef-
ficiency of NCG by introducing preconditioning strategies, the Step 3 of PNCG
might be replaced by the next one.

Step 3: If a stopping criterion is satisfied then stop, else compute the coefficient
βk along with the preconditioner Mk+1. If Mk+1 6� 0 or Mk+1gk+1 = 0
then set Mk+1 = I. Compute the search direction

pk+1 =−Mk+1gk+1 +βk pk.

Set k = k+1 and go to Step 2.

The steplength αk and the parameter βk can be chosen in a variety of ways. In
particular, in order to prove global convergence properties, a Wolfe-type linesearch
procedure seems mandatory, while to improve the overall efficiency several values
for βk have appeared in the literature (see also Section 1). Here we neither intend to
propose a novel choice of βk, nor we want to consider any specific linesearch proce-
dure to compute αk for the PNCG algorithm. In this regard, the Wolfe conditions are
well-suited for our purposes, inasmuch as under mild assumptions they guarantee
the fulfillment of the usual curvature condition

sT
k yk > 0,

being sk = xk+1− xk and yk = gk+1−gk. On the other hand, we strongly remark the
importance of the positive definiteness for preconditioners, in order to prove global
convergence results.
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2 Quasi-Newton updates for preconditioning

In this section we suitably exploit some quasi–Newton updates in order to build
preconditioners. As well known (see e.g. [1]), when using quasi–Newton methods
in place of (1), at iteration k we generate a search direction of the form

pk =−Hkgk,

where Hk represents an approximation of the inverse Hessian matrix [∇2 f (xk)]
−1.

Then, as in Step 2 of PNCG, the new iterate xk+1 can be obtained according to
xk+1 = xk +αk pk, where αk as above is a steplength computed by a Wolfe-type
procedure. In particular, instead of computing Hk from scratch at each iteration k,
quasi-Newton methods update Hk in a simple manner by means of adding a small
number of rank one matrices, in order to obtain the new approximation Hk+1 to
be used in the next iteration. Moreover, instead of storing full dense n× n approx-
imations, they only save a few vectors of length n, which allow to represent the
approximations {Hk} implicitly.

Among the quasi–Newton schemes, the L-BFGS method is definitely considered
one of the most efficient methods, and the amount of storage it requires can be
controlled by the user throughout setting the limited memory parameter. This method
is based on the construction of the approximation of the inverse Hessian matrix,
by exploiting curvature information gained only from the most recent iterations.
Specifically, Hk−1 is updated by BFGS at the k-th iteration as

Hk =V T
k−1Hk−1Vk−1 +ρk−1sk−1sT

k−1, (2)

where
ρk−1 =

1
sT

k−1yk−1
, Vk−1 = I−ρk−1yk−1sT

k−1.

In case f (x) is quadratic, i.e. f (x) = 1
2 xT Ax+bT x, A ∈ Rn×n, b ∈ Rn, then we have

explicitly Vk−1 = I−Ask−1sT
k−1/sT

k−1Ask−1 and the following lemma holds.

Lemma 1. Let us consider the quadratic function f (x) = 1
2 xT Ax+bT x with A� 0.

Suppose the steplength αk in Step 2 of PNCG is computed using an exact linesearch
procedure. Given the expression of Hk in (2), along with Hk � 0 and the positions

ρi =
1

sT
i yi

, sT
i yi 6= 0, i = 1, . . . ,k,

Vi = I−ρiyisT
i , i = 1, . . . ,k,

then we have

Hk =V T
k−1V T

k−2 · · ·V T
1 H1

k V1 · · ·Vk−2Vk−1 +
k−1

∑
i=1

sisT
i

sT
i Asi

, (3)
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where H1
k � 0 is given (usually, a multiple of the unit matrix).

Proof. First observe that since f (x) is quadratic then yi = Asi, i = 1, . . . ,k, and the
vectors s1, . . . ,sk are mutually conjugate, i.e. sT

i As j = 0, for any 1 ≤ i 6= j ≤ k. We
prove (3) by complete induction.
When k = 2, by (2) we explicitly obtain

H2 =V T
1 H1

k V1 +ρ1s1sT
1 =V T

1 H1
k V1 +

s1sT
1

sT
1 As1

.

Now, assume (3) holds for some k− 1, we prove (3) for the index k as follows.
Recalling the conjugacy among vectors {si} yields

V T
k−1si =

(
I−

sk−1yT
k−1

sT
k−1Ask−1

)
si = si, i = 1, . . . ,k−2,

by (2) we immediately have after some computations

Hk = V T
k−1Hk−1Vk−1 +

sk−1sT
k−1

sT
k−1Ask−1

= V T
k−1V T

k−2 · · ·V T
1 H1

k V1 · · ·Vk−2Vk−1 +
k−1

∑
i=1

sisT
i

sT
i Asi

.

�

Note that formula (3) for the quadratic case can suggest iterative updates to gen-
erate preconditioners for PNCG. Indeed, drawing inspiration from (3) and [20], in
case f (x) is quadratic (i.e. NCG coincides with the Conjugate Gradient method), we
have

A−1 =
n

∑
j=1

s jsT
j

sT
j As j

. (4)

In view of (4) the rightmost contribution in (3) may represent an approximate inverse
of the Hessian matrix A up to the k-th iteration. As an extension, we can borrow the
last idea also in case f (x) is a general nonlinear function, in order to generate possi-
ble preconditioners which approximate the rightmost matrix in (3). In particular, in
this regard we will have to assess a couple of issues:

(a) we have to set a finite number of NCG iterations m≤ n, which are necessary to
build the approximation of the rightmost matrix in (3);

(b) we have to explicitly indicate how to approximately compute the quantities
sT

i Asi, for i≥ 1, in (3); indeed, unlike in the quadratic case, when f (x) is a general
nonlinear function, the quantity sT

i Asi is unavailable at iteration i.
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3 Preconditioners based on the BFGS update: first proposal

In this section we review the preconditioners for PNCG proposed in [19], which
exploits the contents of Section 2. We now report the general expression of this
class of preconditioners.

Mk+1 = τkCk + γkvkvT
k +ωk

k

∑
j=k−m

s jsT
j

yT
j s j

, (5)

where Ck ∈Rn×n, vk ∈Rn, τk,γk,ωk ∈R and m is positive integer. Here, we consider

Ck =
sT

k yk

‖yk‖2 I, τk = ωk, γk =
2

sT
k yk

,

vk = sk− τkCkyk−ωk

k

∑
j=k−m

sT
j yk

yT
j s j

s j,

ωk =

1
2

sT
k yk

yT
k Ckyk +

k

∑
j=k−m

(sT
j yk)

2

sT
j y j

, γk =
2

sT
k yk

and m� n, 0 ≤ m ≤ k−1. For further motivations along with the rationale behind
this proposal, we refer to [19]. In the sequel, we report the main theoretical results
and a summary of the numerical experience.

Observe that the righthand side of (5) includes three contributions. More specif-
ically, the rightmost matrix represents an approximate inverse Hessian, as in the
guidelines of the conclusions of Section 2. In particular, exploiting the Mean Value
Theorem we can write

y j = g j+1−g j =
∫ 1

0
∇

2 f (x j + ts j)
T s jdt, j ≥ 1,

so that assuming ∇2 f (z) = A j constant for z ∈ [x j,x j+1], we have

yT
j s j =

∫ 1

0
sT

j ∇
2 f (x j + ts j)

T s jdt ≈ sT
j A js j, j ≥ 1,

showing that the issue (b), at the end of Section 2, can be easily treated. Moreover,
the integer m in (5) represents a memory, and guarantees that complying with (a),
information from only the lattermost m iterations is collected.

A few comments need also be added, with respect to the role played by the matrix
Ck and the parameter τk in (5). Ck is chosen similarly to the matrix H1

k = λkI, where
λk is the solution of the subproblem

min
λ

‖(λ I)yk− sk‖2.
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In other words, λk = yT
k sk/‖yk‖2 is a value of the parameter λ which aims at ap-

proximately solving the initial secant equation (λ I)yk = sk. As usual, the use of the
Wolfe conditions ensures that λk > 0.
On the other hand, the exact role played by the parameter τk in (5) is a bit more
technical, and is in particular related to eigenvalue clustering for the preconditioner
Mk+1, as highlighted in the next Theorem (see also Proposition 3 in [19]).

Theorem 1. Let f (x) = 1/2xT Ax+bT x, with A� 0, and assume that

• k ≥ 2 iterations of the NCG algorithm are performed;
• an exact linesearch procedure is adopted;
• Mk+1 is defined as in (5) with m≤ n−2.

Then, at least n− (m+2) eigenvalues of Mk+1 coincide with τk.

As detailed in [19], the next proposition can be proved for the update (5), showing
its well-posedness and the satisfaction of some secant-like conditions.

Proposition 1. Let f be twice continuously differentiable. Suppose that k iterations
of NCG are performed, using the strong Wolfe linesearch procedure. Let Mk+1 be
defined as in (5), with 0≤ m≤ k−1, τk > 0 and γk,ωk ≥ 0.

(i) Let Ck ∈ Rn×n be symmetric positive definite, then there exist values of τk,γk,ωk
such that Mk+1 � 0 and the secant equation Mk+1yk = sk is satisfied.

(ii) Let f (x) = 1/2xT Ax+ bT x, with A � 0. Suppose k ≥ 2 iterations of the NCG
algorithm are performed, using an exact linesearch. Then, there exist values of
τk, γk, ωk, and a positive semidefinite matrix Ck, such that Mk+1 � 0. Moreover,
Mk+1yk = sk and the modified secant conditions

Mk+1yi = ωksi, i = k−m, . . . ,k−1,

are satisfied.

Before reporting other proposals for possible preconditioners in PNCG, we high-
light the role played by the vector vk in (5). In particular, the value of vk is set in
such a way that Mk+1 satisfies the secant equation Mk+1yk = sk (at iteration k). In
this regard, the computation of vector vk follows a similar guideline with respect to
the idea adopted by SR1 quasi-Newton update (see also [1] for details).

As a preliminary numerical experience which reveals the performance of the
proposal Mk+1 in (5), the preconditioner Mk+1 has been embedded in PNCG, with
m = min{4,k−1} and βk computed as in the Polak–Ribière (PR) (recently, Polak–
Ribière–Polyak (PRP)) formula

βk =
[gk+1−gk]

T Mk+1gk+1

gT
k Mkgk

.

In [19], the resulting PR-PNCG has been experienced over a set of 112 large scale
problems of CUTEst collection [26]. This proposal (5) (namely OUR PREC PR) is
compared with the L-BFGS update (setting the memory parameter m = 4) (namely
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PREC-LBFGS PR), used as a preconditioner, and with the unpreconditioned NCG
scheme (namely UNPREC PR). Results are reported in Figures 1 and Figures 2, in
terms of # iterations and # of function evaluations. Note that the steplength αk is

Fig. 1 Performance profiles using the original stopping criterion ‖gk‖∞ ≤ 10−5(1+ | fk|) in the
code CG+ [28], adopting PR and with respect to # iterations (up) and # f unction evaluations
(down).

computed such that the strong Wolfe conditions

fk+1 ≤ fk + c1αkgT
k pk,

and
|gT

k+1 pk| ≤ c2|gT
k pk|,
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Fig. 2 Profiles using the novel stopping criterion (6), adopting PR and with respect to # iterations
(up) and # f unction evaluations (down).

where 0< c1 < 0.5 and c1 < c2 < 1, hold (we used as for the code CG+, c1 = 0.0001
and c2 = 0.9). We also remark that in Figures 1 the original stopping criterion of the
code CG+ (see [28]), i.e. ‖gk‖∞ ≤ 10−5(1+ | fk|), is adopted, while in Figures 2 the
more common criterion from the literature

‖gk‖ ≤ 10−5 max{1,‖xk‖} (6)

is used, showing the effectiveness and efficiency of our first proposal (5).
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4 Preconditioners based on the BFGS update: second proposal

As second proposal for a possible preconditioning strategy, which again exploits the
contents in Section 2, we have the following update for Mk+1 in PNCG scheme as
proposed in [25].

Mk+1 = δkMk + γkvkvT
k +ωk

pk pT
k

yT
k pk

, δk > 0, (7)

with γk,ωk ∈R\{0}, and where, given Mk and the vector pk generated by NCG, we
have for vk the expression

vk = σk (sk−δkMkyk−ωk pk) , σk ∈ {−1,+1}.

The proposal in (7) follows a different strategy with respect to (5), inasmuch as it
more closely attempts to emulate quasi-Newton updates. Indeed, similarly to (5) also
in (7) Mk+1 includes three contributions, being the rightmost term ωk pk pT

k /yT
k pk

built using information collected at iteration k of the NCG method, and the leftmost
term δkMk being representative of the preconditioner at the previous iteration. Fi-
nally, the term γkvkvT

k in (7) is introduced so that Mk+1 can explicitly satisfy the
secant equation Mk+1yk = sk. The latter considerations confirm that, similarly to
BFGS update, the dyad ωk pk pT

k /yT
k pk aims at adding the most recent information

from NCG to our current preconditioner.
The next couple of theoretical results can also be proved for the proposal (7),

confirming to what extent (7) closely resembles quasi-Newton approaches (see [25]
for details).

Proposition 2. Let f (x) = 1
2 xT Ax− bT x, where A is a symmetric matrix. Suppose

k steps of the NCG method are performed, adopting an exact linesearch procedure
(which imposes ∇ f (x j+1)

T p j = 0, j = 1, . . . ,k), in order to detect the stationary
point (if any) of the function f . Then, the matrix Mk+1 in (7) satisfies the modified
secant equationsMk+1y j = δ js j, δ j > 0, j = 1, . . . ,k−1,

Mk+1yk = sk,
(8)

provided that the nonzero coefficients γ j, ω j, j = 1, . . . ,k are chosen such that
γ j =

1
sT

j y j−δ jyT
j M jy j−ω j pT

j y j
, j = 1, . . . ,k,

ω j 6=
sT

j y j−δ jyT
j M jy j

pT
j y j

, j = 1, . . . ,k.

(9)
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Proposition 2 reveals to what extent the matrix Mk+1 substantially summarizes some
second order information on the objective function f (x). In particular, by (8) the se-
cant equation at the current iterate xk is fulfilled, while a weaker condition holds at
the previous iterates, being possibly δ j 6= 1, for j = 1, . . . ,k− 1. Also note that the
choice of the parameters {δ j}, {γ j} and {ω j} in Proposition 2 does not ensure in
general the positive definiteness of Mk+1. Indeed, pre-multiplying the second rela-
tion in (8) by yk we obtain yT

k Mk+1yk = yT
k sk, where the right hand side might be

possibly negative, inasmuch as no Wolfe conditions were adopted in Proposition 2
when applying the NCG. On this guideline, the next result helps recover the positive
definiteness of the preconditioner Mk+1 (see [25]).

Proposition 3. Let f be a continuously differentiable function. Suppose that the
NCG method is used to minimize the function f . Suppose that sT

k yk > 0, Mk � 0,
εk ∈ (0,1) and

0 < δk = (1− εk)
sT

k yk

yT
k Mkyk

,

0 < ωk < εkαk,

0 < γk =
1

(εkαk−ωk)pT
k yk

.

Then conditions (8)-(9) hold and Mk+1 � 0 in (7).

By Proposition 3 a suitable interval of values for δk, γk and ωk always exists such
that (8)–(9) hold and Mk+1 � 0, even though an inexact linesearch procedure is
adopted (but not necessary the Wolfe linesearch procedure). Moreover, the hypoth-
esis Mk � 0 might be too restrictive to our purposes and we can easily prove that
what really matters is the weaker condition yT

k Mkyk > 0 along with the inequality
yT

k sk > 0.
By Proposition 2 we have also a remarkable result in case the objective function
f (x) is quadratic. Indeed, after n steps the matrix Mn+1 retains information on the
inertia of the Hessian matrix, as in the next corollary (see [25]), where λm(·) and
λM(·) represent respectively the smallest and the largest eigenvalue.

Corollary 1. Let f (x) = 1
2 xT Ax−bT x, where A is symmetric and nonsingular. Sup-

pose that n steps of the CG are performed, in order to detect the stationary point of
the function f , and that the vectors p1, . . . , pn are generated.

(i) If (8)–(9) hold, we have

Mn+1A = (s1 · · ·sn)D(s1 · · ·sn)
−1,

with
D = diag{δ1,δ2, . . . ,δn−1,1}.

(ii) It results

λm(Mn+1A) = λm(D), λM(Mn+1A) = λM(D). (10)
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Several interesting conclusions arise considering the two proposals in Sections 3
and 4 for Mk+1; we urge to carry out the following observations, which are also the
result of a deeper investigation not reported here:

• both the proposals for the preconditioner Mk+1 are based on the attempt to emu-
late the BFGS update, in order to possibly benefit from some of its well-known
features (i.e. the satisfaction of the secant equation and BFGS attitude to approx-
imate the inverse Hessian in the quadratic case);

• while the scheme in (5) details an update based on m+ 1 pairs (s j,y j), j = k−
m, . . . ,k, provided by the NCG method, the scheme in (7) simply relies on the
pair (pk,yk) generated at step k of the NCG method;

• the proposal in (7) seems to be endowed with stronger theoretical properties with
respect to (5). As also shown in the next sections, the latter fact is also reflected in
an appreciable enhancement of numerical performance, over a significant large
scale test set. Indeed, comparing the proposals in Sections 3 and 4, over the same
test set specified in Section 3, we obtain the performance profiles in Figure 3,
using (6) for termination which is the same as that used for obtaining Figure 2.

5 Damped strategies for NCG preconditioning

Damped techniques were introduced in the framework of quasi–Newton methods,
and their rationale can be summarized as follows. As is well known (see e.g. [1]),
when dealing with the BFGS update, a crucial issue in order to guarantee the pos-
itive definiteness of the updated Hessian approximation, is the satisfaction of the
curvature condition

sT
k yk > 0. (11)

In case f is strongly convex, then (11) holds for any pair of points xk and xk+1 (see,
e.g. [3]). In case of nonconvex functions, imposing the satisfaction of condition (11)
requires a proper choice of the stepsize αk, from the linesearch procedure adopted.
Indeed, in principle the satisfaction of (11) can always be obtained by a suitable
linesearch procedure, provided that the objective function is bounded below. To this
aim, as mentioned above, the Wolfe conditions (in practice, the strong Wolfe condi-
tions) are usually adopted, which ensure the fulfillment of condition (11). However,
for sufficiently large value of c2, the value of sT

k yk may not be sufficiently positive. In
addition, if only the backtracking linesearch framework is employed, the curvature
condition (11) may not hold.

A possible successful strategy to cope with the last issue is to adopt the damped
technique proposed by Powell in [14], in the context of SQP Lagrangian BFGS
methods for constrained optimization and applied for the first time by Al-Baali [21]
to unconstrained optimization. In [14] the author proposes to modify the difference
of the gradients vector yk in (11), before performing the BFGS update. Namely, if Bk
denotes the current BFGS positive definite Hessian approximation at k-th iteration,
the following modified (damped) vector is used in place of yk:
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Fig. 3 Comparison between the proposal of preconditioner in (5) (namely M, dash line) and the
proposal in (7) (namely M mod, solid line), using the stopping criterion (6). Profiles with respect
to # iterations (up) and # function evaluations (down).

ŷk = ϕkyk +(1−ϕk)Bksk, (12)

where ϕk is chosen in (0,1] such that sT
k ŷk is “sufficiently positive”. The latter fact

guarantees that the use of the damped vector ŷk is in principle preferable with re-
spect to yk. In particular, given σ ∈ (0,1], the value of the parameter ϕk is often set
according with the rule:

ϕk =


σsT

k Bksk

sT
k Bksk− sT

k yk
, if sT

k yk < (1−σ)sT
k Bksk,

1, otherwise,

(13)
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which for σ = 0.8 yields that in Section 18.3 in [1]. There are several reasons which
motivate (13), including the fact that by this choice we have

sT
k ŷk = (1−σ)sT

k Bksk, (14)

i.e. the quantity sT
k ŷk is sufficiently positive, inasmuch as Bk is positive definite. Al-

Baali suggests using the modified damped vector (12) with (13) for unconstrained
optimization and extended it to

ϕk =



σ1sT
k Bksk

sT
k Bksk− sT

k yk
, if sT

k yk < (1−σ1)sT
k Bksk,

σ2sT
k Bksk

sT
k Bksk− sT

k yk
, if sT

k yk > (1+σ2)sT
k Bksk,

1, otherwise,

(15)

where σ1 ∈ (0,1] and σ2 ≥ 2. Note that the value σ2 = ∞, reduces choice (15) to
(13).

In [22], in order to extend the definition of the damped vector ŷk in (12), a novel
vector ŷk is defined as a combination of the original vector yk and an appropriate
vector zk, namely

ŷk = ϕkyk +(1−ϕk)zk, (16)

(see also [23]). The vector zk plays a noteworthy role to ensure that sT
k ŷk is suf-

ficiently positive, for suitable values of ϕk ∈ (0,1]. Of course, a key point of this
approach is an appropriate choice of zk. Two choices for zk have been proposed in
[22].

The first proposal corresponds to set zk = ηksk, where ηk > 0, based on approx-
imating Bk by ηkI. This choice originates from the idea of using zk = Ak+1yk in
(16), where Ak+1 is a positive definitive approximation of the inverse Hessian. In
particular, Bk ≈ ηkI satisfies the modified secant equation

Ak+1yk = ηksk.

Hence, by using the latter equation, we can set

ŷ(a)
k = ϕkyk +(1−ϕk)ηksk. (17)

Interesting properties of (17) are that it does not require the explicit knowledge of
the approximate inverse Hessian matrix Ak+1, and that

sT
k ŷ(a)

k = (1−σ1)ηk‖sk‖2 > 0, (18)

for appropriate choice of the parameter in (16). This condition may be of great
interest if we consider a geometric interpretation of the curvature condition (11).
Indeed, since for the vector ŷ(a)

k condition (18) is satisfied, it means that sT
k ŷ(a)

k is
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always sufficiently positive. Moreover, it can be easily proved that for proper choices
of the parameters ηk and σ we obtain (as long as (11) holds)

sT
k ŷ(a)

k ≥ sT
k ŷk. (19)

Furthermore, also in case (11) does not hold, by relation (18) we immediately infer
that again (19) holds.

The second proposal corresponds to set in (16) zk = −αkgk, so that the novel
damped vector becomes

ŷ(b)
k = ϕkyk− (1−ϕk)αkgk. (20)

This choice of zk comes from the following observation: if Bk � 0 is an approxi-
mation of the Hessian and we consider −B−1

k gk as search direction, it immediately
follows that

sk = xk+1− xk =−αkB−1
k gk,

which implies
Bksk =−αkgk.

This formula allows to compute the original damped vector (12) without explicitly
using the matrix Bk. Indeed, it suffices to replace Bksk with−αkgk in (12), according
with (20).
Similarly to the choice ŷ(a)

k , also for ŷ(b)
k in (20) we can guarantee that sT

k ŷ(b)
k is suffi-

ciently positive. In fact, we immediately have from (14)

sT
k ŷ(b)

k =−αk(1−σ1)sT
k gk =−α

2
k (1−σ1)pT

k gk > 0,

where the last inequality holds because pk is a descent direction. Several theoretical
properties can be proved for the choices (17) and (20) (see also [22]). Some of them
are summarized here below, where we assume that the coefficient βk in PNCG is
replaced by the PR–type ‘damped coefficient’

β̂
PR
k =

(
ŷ(a)

k

)T
Mk+1gk+1

gT
k Mkgk

(the resulting PNCG scheme, with ŷ(a)
k in place of yk will be addressed as D-PR-

PNCG).

Assumption 1 (see [22])

a) Given the initial point x1 and the function f ∈C1, the level set L1 = {x : f (x)≤ f1}
is compact.

b) There exists an open ball Br := {x : ‖x‖< r} containing L1 where f (x) is con-
tinuously differentiable and its gradient g(x) is Lipschitz continuous. In particu-
lar, there exists L > 0 such that

‖g(x)−g(y)‖ ≤ L‖x− y‖ for all x,y ∈Br.
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c) There exist λ > 0 and Λ > 0 such that the preconditioner M(x), for any x ∈Br,
is positive definite with the smallest [largest] eigenvalue λm (M(x)) [λM (M(x))]
satisfying

0 < λ ≤ λm (M(x))≤ λM (M(x))< Λ .

Proposition 4. Let {xk} be an infinite sequence (with gk 6= 0) generated by the D-
PR-PNCG method, where the steplength αk > 0 is determined by a linesearch pro-
cedure such that, for all k, the following conditions hold:

(i) xk ∈L1 for all k;

(ii) lim
k→+∞

|gT
k pk|
‖pk‖

= 0;

(iii) lim
k→+∞

αk‖pk‖= 0.

If Assumption 1 holds, then
liminf
k→+∞

‖gk‖= 0

and hence there exists at least a stationary limit point of {xk}.

Similarly to the proposals in Sections 3 and 4, we consider now a brief numerical
experience on the use of the damped vectors in (17) and (20). A complete study
can be found in [22]. Observe that in principle the use of damped techniques fully
affects the preconditioning strategies (where yk is replaced by ŷ(a)k or ŷ(b)k ), i.e. both
the value of βk along with the preconditioner, and not just the value of βk. However,
our preliminary aim here is to report a numerical experience with PNCG (and not D-
PR-PNCG), i.e. embedding the damped techniques within the preconditioner used
in a PNCG scheme, where the standard Polak–Ribière (PR) formula for βk is used.
In particular, the same settings used in Sections 3 and 4, along with the same test set
are considered. We also recall that a standard implementation of the PNCG method
in CG+ code was adopted (see [28]), where the preconditioner (5) is included, and
the linesearch technique is the same as that in [27]. Finally, the stopping criterion
adopted is the standard one in (6). We also recall that in the linesearch procedure
adopted in [27] the number of function and gradient evaluations coincide. In Figure
4 the two damped strategies in (17) (with ηk = 4 and ϕk chosen as in (13)) and in
(20) (with ϕk chosen as in (13)) are compared, with respect to both # iterations and
# function evaluations. The strategy (17) seems to be somehow preferable to (20).

To complete our analysis we note that a full information from damped techniques
can be used, both affecting the computation of the coefficient βk and the precondi-
tioner Mk+1 in PNCG (see [22]). More explicitly, the performances of PNCG vs.
D-PR-PNCG (where β̂ PR

k is used in place of β PR
k ), in both the preconditioned and

unpreconditioned case are compared. The corresponding results are summarized in
Figure 5 (names of the schemes are self-explanatory). As it can be observed from
the profiles, the use of β̂ PR

k does not yield a noteworthy improvement. Neverthe-
less we also observe that the D-PR-PNCG scheme, which also uses β̂ PR

k , reveals to
outperform the standard NCG method.
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Fig. 4 Comparison between the adoption of the two damped strategies in (17) and in (20). Profiles
with respect to # iterations (up) and # function and gradient evaluations (down).
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