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Liquidity crises on different time scales
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We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and
dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are
connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in
other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows,
triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order
book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement
of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present
in the book and we show that it is correlated to both the sign and the magnitude of the next price movement.
These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent
on the considered time scales.
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I. INTRODUCTION

The application of tools and methods borrowed from the
fields of statistical mechanics and the physics of complex
systems to the study of financial markets has led to a number
of empirical and theoretical results [1,2]. In particular, the
analysis of markets’ microstructure [3,4] benefits from the
huge amount of available data, which permits to ground models
and findings on a strong empirical basis [5]. One of the most
important issues is related to the subtle relationships among
order flow, liquidity, and price movements. The empirical
evidence, in fact, is in contrast with the natural guess that
price movements should be trivially related to the arrival of
orders and, in particular, to their volume. First, orders are
strongly correlated in sign [6–8], in sharp contrast with the
well-known absence of autocorrelation in price returns, which
is at the basis of the efficient markets hypothesis [9]. Moreover,
the magnitude of price movements has been shown to be little
dependent on the volume of the incoming orders [10–12] (in
passing we point out that, as it has been shown in Ref. [13],
neither the arrival of new information and news in the market
is able to explain the occurrence of large price movements. In
the following, we will focus on the endogeneous mechanisms
that can trigger price jumps, regardless of possible external
causes). The possibility to reconstruct the microstructure of
financial markets, namely, the so called limit order book (LOB)
[14,15], permits us to stress the importance of agents’
strategies on the state of the market, for example, on spread
dynamics and volatility clustering [16], and the reaction in
terms of balancing order flow to explain the magnitude of
price movements [17–20]. These findings directly lead us
to the concept of liquidity. Even if it is widely recognized
as “the most important characteristic of well-functioning
markets” [3], liquidity does not have a single shared definition.
Generally speaking, a market is liquid if agents can trade
large volumes quickly, with little impact on the price and
facing low transaction costs. In other words, it is a measure
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of the ease of converting assets into legal tender (which is,
by definition, fully liquid) and vice versa. From a practical
point of view, and keeping in mind possible applications to
the LOB, this situation can be described by a number of
features that make a market liquid. Using the suggestions of
Sarr and Lybek [21], we can say that a market is liquid if it
has the following characteristics: (i) tightness, both implicit
and explicit transaction costs are low; (ii) immediacy, the
trading speed is high; (iii) depth, the orders already placed
in the book cover a wide range of prices; (iv) breadth, the best
quoted orders are large enough to guarantee a low impact even
for large incoming orders; (v) resilience: the market reacts
quickly to possible order imbalances by means of an opposite
order flow [22]. These features are linked, even if they capture
different aspects of liquidity. In this work we will argue that
the relative importance of these different aspects depends on
the time scales in play and, in particular, we will focus on
the depth and the breadth of the LOB for small time scales
and on its resilience for large time scales, introducing suitable
measures of liquidity. The importance of the latter is based on
a number of empirical studies on the LOB, which singled out
liquidity as the main driver of large price fluctuations [23]. In
particular, the distribution of returns due to single transactions
has been proved to be substantially equal to the distribution
of the first gaps of the LOB [18]. Toth et al. [24] carried
out an extensive study on the post-large-events dynamics
that characterizes large price changes, finding evidence for
power-law relaxations typical of complex systems [25].

In our work we will study which kind of LOB dynamics
may eventually lead to large price changes. The aim is to
identify those situations in which an intrinsic state of instability
enhances the probability to have a price jump on the short run.
The first step is to build a methodology to identify large events
in an unbiased way. Then, we study the order flows around
these events, finding peculiar patterns, especially at the best
prices. The analysis of the statics and the dynamics of the
LOB permits us to define in a quantitative way liquidity, whose
imbalance is directly related to future price changes. Our focus
will change with the time scales in play. In particular, order
flow will turn out to be the main driver on large time scales

1539-3755/2015/92(6)/062802(9) 062802-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.062802


CORRADI, ZACCARIA, AND PIETRONERO PHYSICAL REVIEW E 92, 062802 (2015)

Price

V
o
l
u
m
e

 buy orders

 sell orders

incoming
LO buy

spread s(t)

midprice m(t)best bid b(t)

LO buy range [0,a(t)]
LO sell range [b(t),inf]

best ask a(t)

ASK sideBID side

incoming
LO sell

incoming
CA sell

incoming
MO buy

FIG. 1. (Color online) Synthetic view of the different operations
available on the electronic market. Incoming limit orders add liquidity
to the book, while market orders and cancellations remove such
availability of orders. The midprice m(t) can change if, as a
consequence of these operations, the best sell limit orders (ask) or the
best buy limit orders (bid) change.

while the depletion of one side of the book will turn out to be
more important on small time scales. In general, this empirical
work confirms the idea that price changes, and in particular
large fluctuations, are closely related to liquidity dynamics. To
give the reader an idea of the potential role of liquidity we
cite the fact that, for a large cap stock, the typically available
liquidity is about 1% of the daily traded volume, which is, in
turn, only 0.1% of the total capitalization [26,27].

Before proceeding let us briefly recall how a LOB works.
The different elements we are going to introduce are depicted
in Fig. 1. Traders have at their disposal three different
operations: (i) they can place a limit order (LO), which is the
proposal to buy or sell a certain amount (or volume) of shares
at a fixed price. Since limit orders are usually not immediately
traded, they are stored in the book until they can be matched
with another order; (ii) they can decide to buy or sell a volume
of shares at the best available price (these prices are called best
ask and best bid, respectively), that is, place a so-called market
order (MO), which will be matched with the best available
limit order; (iii) cancel (C) a placed LO. Potentially, all three
operations may have an impact on the price, which is usually
defined as the value at which the last transaction occurred or
the average between best bid and best ask (in this last case
the price is called midprice). For example, an incoming MO
to buy a given volume of shares could remove totally the best
ask, triggering a price increment. Traders can place sell (buy)
LOs also at a price that is lower (higher) than the best bid
(ask): in this case one can see all or part of the LO as an
effective MO, because it will trigger an immediate transaction.
In the following, as it is usually done in the literature, we
will call MOs the effective MOs. The price of a LO has to
be chosen among a discrete set of prices. For example, a LO
could be placed at 9.5 or 9.75 dollars, but not at 9.66. The
minimum distance in price between two orders is called tick.
In the previous example, the tick was equal to 0.25. This is
the natural measure of distance among the placed limit orders,
which constitute the limit order book.

Our empirical analysis is based on a database of various
stocks traded at the London Stock Exchange. In particular, we
analyzed four liquid stocks (AZN, BP, RBS, and VOD), but

we show, for reasons of space, only the results for AZN. We
point out that we performed our analysis also on the other three
stocks, finding similar results. Our database covers the whole
year 2002. As it is usually done in the literature, we discarded
the first 30 min of each trading day to avoid anomalous effects
due to the opening of traders’ positions.

II. UNBALANCED ORDER FLOWS DURING
LARGE PRICE FLUCTUATIONS

A. Selection of large events

In this section we will be mainly interested in large price
fluctuations, so we need in the first place a criterion to define a
large event. A naive approach would select those time windows
within which a return above a certain fixed threshold, let us
say x%, occurred. However, such an absolute filter would be
affected by the intraday volatility pattern and will select mostly
events from the begin and from the end of the trading day. On
the other hand, a relative filter, in which one selects those
events that are larger than the average fluctuations at the same
time of the day, will suffer from the effect of an opposite uneven
selection. As a consequence, in this work we use a combination
of the two filters, following Refs. [24,28,29]. If one chooses
suitable thresholds for both filters, a uniform distribution of
events over the day can be recovered.

The authors of the above-mentioned papers do not set a time
interval for the large event, because a large return that passes
both filters may be defined on different time scales. So they
simply set the temporal reference frame in order to have t = 0
when both filters are passed. In this way, they can study only
the post-event dynamics, since events have different temporal
dimensions. Moreover, also a classification as a function of
the return is troublesome: since the algorithm that searches
for the large events stops when the thresholds are reached, all
events will tend to have similar returns, since the only possible
variation will be due to the U-shaped intraday volatility pattern.
In order to avoid these drawbacks we use time windows of
fixed length �t = 15 min. In practice, for every operation in
the LOB we check if a large price fluctuation is present in
the next �t . The specific value of �t is chosen to have a
reasonable compromise between two needs: to have enough
statistics the time interval cannot be too large, but to be able
to study the dynamics inside the event �t cannot be too small.
Obviously, by keeping the time windows’ size constant we are
treating in the same way events that could be very different, the
only thing in common being the presence of a large net return
between the start and the end of the considered time interval.
However, this is the only way to make a pre-event analysis
possible and to have a broad distribution of returns to analyze.
We would like to stress that the heterogeneity of events is an
intrinsic feature of this kind of analysis: for example, using the
same criteria of Ref. [24], one could find events with a temporal
extension up to 2 h. An important issue is the presence of strong
autocorrelations in almost every time series of interest and, in
particular, the volumes of incoming orders and the absolute
values of returns. To avoid our analysis to be undermined by
such effects, we discard all those events with another close
event before, that is, we discard those events that are preceded
by another large event at a distance �t .
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In practice, for the (relatively) large time scales analysis
(�t = 15 min) we select those time windows with a price
fluctuation larger than x = 0.5% (in absolute value) and larger
than n = 3 times the average volatility σ during that time of
the day. After the application of the various filters we find
332 positive and 362 negative events for AZN, 358 positive
and 381 negative events for BP, 306 positive events and 325
negative events for RBS, 402 positive and 436 negative events
for VOD.

B. Order flows before and during large fluctuations

It is a well-known feature of LOBs that the arrival of a
significant flow of MOs triggers a liquidity response in terms
of LOs, which are usually placed close to the best price of the
pushed side [19,30]. For example, if a persistent flow of MOs,
such as the ones that result from the splitting of a large hidden
order [31], is somehow detected, the other traders will likely
provide more liquidity, effectively contrasting the incoming
flow [this behavior is sketched in Fig. 2(a)]. As a consequence,
the ratio of MOs to LOs remains constant even if the two
volumes can fluctuate a lot, keeping the market resilient and
contrasting large price fluctuations. In this section we will see
that the break of this dynamical equilibrium is a key element
of large price fluctuations. In fact, we will show that during
large price movements the flow of LOs is no more able to stand
in the way of the incoming MOs, as schematically depicted in
Fig. 2(b). We note that, in our reasonings, cancellations have
not been mentioned, even if their volume is not negligible. This
is due to the fact that in the analyses we are going to present
their relative flow does not change from normal times to time
windows characterized by large price movements.

In order to check this line of reasoning, we empirically
study the orders’ flow before and during the large events

Price

V
o
l
u
m
e

(a)

 buy orders

 sell orders
liquidity
response

incoming MO
buy

midprice

−60 −50 −40 −30 −20 −10 0
0

0.2

0.4

0.6

0.8

Time (min)

R
e
l
a
t
i
v
e
 
f
l
o
w
s

(b)

 limit orders  market orders

large event

FIG. 2. (Color online) (a) Sketched representation of the reac-
tion, in terms of placement of limit orders, to an incoming flow of
market orders. (b) We have a large event when the relative flows
change, breaking the dynamical equilibrium.

we defined in the previous section. First of all, we point out
that during large events all flows exhibit large fluctuations. In
particular, the side under pressure experiences an increase of
LO and cancellations up to about three times, and of MO up
to five times, with respect to the respective annual averages. In
the following we will consider the relative flows of the three
possible operations (LO, MO, and cancellations) with respect
to their sum during large events. Since we will study one side
of the book at a time and positive and negative large events
separately, we will have four different relative flows for each
operation. For example, the relative flow of LOs on the ask
side, denoted by A, during large positive events, denoted by
+, is calculated in the following way:

rA+
LO =

〈
QLOS

QLOS + QMOB + QCS

〉
A+

(1)

where QLOS is the volume of sell LOs, QMOB is the volume of
buy MOs, and QCS is the volume of the cancellations of sell
LOs. So we consider the relative flows of all the operations that
are made on the same side of the book during large events. The
averages are performed by considering a total time range of 1 h
from the end of the large event, but backwards, in such a way
that 15 min belong to the large event and 45 min belong to the
pre-event. We divide such a time range in subintervals of 30 s
each, and we calculate the averages 〈. . .〉 for each subinterval
separately. The other relative flows are calculated in a similar
way, always considering operation made on the same side of
the book. In Fig. 3 we plot the relative flows of MOs (red
triangles), LOs (blue squares), and cancellations (black dots)
at the best bid and ask for both positive and negative events.
The beginning of the large event is indicated by the vertical
dashed line, while the horizontal line represents the relative
flows calculated by averaging over the whole year. While
cancellations remain roughly constant in all four plots, one
can notice that the side of the book that is under pressure [that
is, the ask side during positive events (a), and the bid side
during negative events (b)] shows an excess flow of MOs that
is not balanced by a corresponding increase of LO flow. The
opposite behavior is evident for the pressing side of the book
[(c) and (d)]. This situation is clearly related to the presence
of large price fluctuations: since we have a large flow of MOs
not opposed by an adequate flow of LOs, the MOs face a low
resistance and can penetrate into the side under pressure of the
order book, leading to a large price movement.

This situation is, at a first glance, in sharp contrast with
the results presented in Ref. [24], where the relative flows
remain constant before and after the large event. Moreover,
the relative number of MOs and cancellations are practically
inverted; while in Ref. [24] one can see a relative number of
cancellations roughly equal to 0.35 and a relative flow of MOs
around 0.05, in Fig. 3 we observe approximately 0.32 for MOs
and 0.15 for cancellations. While the discrepancy between the
average values is due to our choice to show only the flows
at the best bid and ask, we believe that the sharp increase of
MOs and the decline of LOs are visible only if one averages
over a coherent set of events. In fact, while we keep our time
windows fixed, Toth et al. consider events of very different
duration, and time windows which could span, in principle,
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FIG. 3. (Color online) Relative volumes of operations at the best price before and during large price fluctuations, defined in time windows
of 15 min. On top, the two sides under pressure: the ask side for positive events (a) and the bid side for negative events (b). The increase
of market orders (represented by red triangles) is not balanced by an opposite response of limit orders (blue squares). At the bottom, we
show the bid side during positive events (c) and the ask side during negative events (d). The pressing side experiences the opposite situation.
Cancellations (black circles) remain constant in all four cases.

from a few minutes up to 2 h. Moreover, we point out that the
increase of MOs and the decrease of LOs is much less evident,
even if still clearly visible, when one selects the large events
by means of our filter but considers the whole book instead of
the bests.

C. Lack of display of latent liquidity

The previous analysis suggests that large price fluctuations
are due to an unexpected lack of response in terms of liquidity
to an incoming MO flow, that is, a loss of resilience. In order to
confirm this view we studied how the number of LOs placed
at the best price varies as a function of the number of the
incoming MOs. Let us focus on the ask side of the book (the
same results are valid for the bid side). Since we find a clear
correlation between the volumes of MOs to buy QMOB and LOs
to sell QLOS placed at the best ask in the same time window of
size �t = 15 min, we can use, as a first-order approximation,
a linear relationship of the type QLOS ≈ aQMOB + b, where
a and b can be seen as proxies for market’s resilience. We
point out that at this stage of our analysis, both flows being
calculated on the same time window, there is no clear causal
relationship between the two, even if one usually thinks of the
placement of LOs close to the best as a reaction to an incoming
MOs flow. To make cause-effect relationships come to light
we need a finer temporal resolution, which will be adopted in
the following sections.

Now we study how the linear relationship between the
volumes of MOs and LOs changes during the large price
fluctuations. To do so we consider the order flows QLOS and
QMOB in each time window, but selecting the latter in three
different ways: during normal times, large positive and large
negative events. We come up with three sets of points in the
QLOS-QMOB plane. In Fig. 4 we plot both the parametric and
the nonparametric (binning) fits of the three sets of points,
finding that the response in terms of sell LOs on the ask
side of the book is much less than the average during large
positive events. The black dots represent the average response,
which is measured considering all time windows. The linear
relationship is clear. The blue squares represent the same
calculation, but considering only that subsample of windows
that have been classified as large positive events, that is, the
ones in which the ask side is under pressure and does not
resist to the incoming flow of MOs. One can see that both the
coefficient a of the linear approximation and the absolute mean
values of LOs, given a similar flow of MOs, are lower. On the
contrary, during the large negative events (red triangles), in
which the considered side of the book is pressing, one can see
an excess placement of LOs. We find very similar results for
the bid side of the book and the relationship between QLOB

and QMOS.
This is a direct, empirical evidence of the relationship

between large price fluctuations and traders’ operations. It
is important to recall herein that most of the liquidity of the
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FIG. 4. (Color online) Comparison between market and limit
order flows, on the ask side of the book, on normal times and during
large price movements. With respect to the average (black dots),
during large positive events (blue squares) there is a lack of display
of hidden liquidity, namely, too few limit orders to counterbalance the
market orders flow. The opposite behavior can be seen during large
negative events (red triangles). A similar analysis can be performed
on the bid side of the book, finding analogous results.

book is hidden, in the sense that most traders prefer not to
place their limit orders until a clear flow of market orders
is detected. Only in this case, and proportionally, additional
liquidity is provided. We have seen that during large events
this mechanism of automatic compensation stops: a big price
jump is therefore related to a lack of revealed liquidity (which
is instead present during normal times) and which makes the
market less resilient. Similar concepts have been used by Toth
et al. [27], who proposed a model to investigate the relationship
between revealed liquidity and the empirical price impact
function, introducing the concept of latent order book.

III. DEPLETION OF THE LIMIT ORDER BOOK
ON SHORT TIME SCALES

The main empirical properties of financial markets, the
so called stylized facts [1,2], are present on very different
time scales. In particular, the log returns r�t = log p(t +
�t) − log p(t) are power-law distributed for values of �t

ranging from seconds to months. Only if one considers single
operations this scale invariance breaks down, as expected,
because of discreteness effects. In this section we investigate in
which terms liquidity crises may trigger large price fluctuations
at smaller time scales. We will consider time windows and
returns taking events of �t = 30 s and the state of the LOB
just before them. Practically, we study the condition of the
LOB at the moment of the last operation before the beginning
of the time window that defines the event. We point out that in
this way we neglect the orders’ flow inside the time windows,
adopting a different approach with respect to the analysis we
performed in the previous sections. In fact, we believe that
on smaller time scales the static structure of the book is the
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FIG. 5. (Color online) Large price fluctuations are driven mostly
by the presence of large gaps in the LOB. (a) A situation of intrinsic
fragility of the ask side book. (b) The consequence of an incoming
MO, which triggers a large midprice change.

key element to determine the magnitude and the sign of price
movements.

The smallness of the considered time intervals permits
us to study the condition of the LOB before the large
price fluctuations with a significant number of events at our
disposal. First of all, we check if some average property
of the LOB is changed before the large events. A natural
observable is the LOB profile, that is, the volume present
in the form of available LOs as a function of the distance,
expressed in price units or ticks, from the respective bests,
usually averaged over a certain time interval [32]. Bouchaud
et al. [33] have found that the LOB profile has an universal
shape, even if large temporal fluctuations are present. The
study of these fluctuations concerns, using the terminology of
Sarr and Lybek [21], the breadth and the depth of the order
book, instead of its resilience, which is a property closer to
the ones we analyzed in the previous section. In order to
illustrate how the fluctuations of the order book profile can
influence the magnitude of price movements we consider a
real situation, showed in Fig. 5, and in particular we focus on
the structure of the LOB before [Fig. 5(a)] and after [Fig. 5(b)]
the arrival of a MO. The reconstruction of the order book
refers to the stock AZN on 26/04/2002, at time 13:31:26
and 13:31:27, respectively. Before the transaction, we have
a different breadth of the two sides of the book. In fact, while
the bid side is dense and able to absorb a discrete amount of
incoming MOs without affecting the midprice in a relevant
way, the ask side is far more fragile, because the presence
of large gaps between the order indicate that the arrival of
sufficiently large MOs could trigger large movements of the
midprice, that is what happens just a second later [Fig. 5(b)].
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FIG. 6. (Color online) Comparison between the average order
book profile with the average profile before a large positive price
fluctuation. While the bid profile before the event is roughly similar
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which is going to break down, is much less liquid.

In order to explore this idea in a systematic way, we select
the large events with the same methodology we used before,
but considering �t = 30 s and x = 0.3% and n = 6σ as
thresholds for the absolute and relative filters, respectively.
Furthermore, we discard those events that are preceded by
another large event within 90 s. Again, we consider only large
positive events, but our results are qualitatively similar for the
negative ones. In Fig. 6 we plot the average profile (empty
blue circles for the ask, empty red triangles for the bid) of
the two sides of the LOB in comparison with the same sides
just before the large positive fluctuations, that is, their state
at the beginning of the considered time window (full blue
circles for the ask, full red triangles for the bid). One can see
that, while the pressing side (which is, for positive returns,
the bid side, red triangles) remains substantially unchanged,
the side that is about to break down (in this case the ask,
blue circles) is characterized by substantially lower volumes,
especially near the best. We can state that there is an intrinsic
instability of that side of the book that can cause large price
jumps even if the incoming flow of MO is not significantly
higher than the average. In the following section we introduce
a quantitative framework to measure the breadth and the depth
of the book and the correlation between the lack of liquidity
and the ensuing returns.

A. A microstructural definition of liquidity

As already noted in Refs. [18,23], the presence of gaps in
the LOB plays a key role in enhancing the impact of MOs
on the price. In particular, the authors have shown that the
distribution of returns is to a large extent coincident with the
one of the gaps, if one considers placement of single orders.
However, when different time scales are considered, also the
amount of shares and their distribution at different prices must
be taken into account. In order to cope with these needs we
study the breadth and depth of the LOB, which we quantify
calculating the exponential liquidity
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FIG. 7. (Color online) (a) Returns, measured as multiples of the
average standard deviation, and liquidity of the ask side of the book
for all time windows with positive returns. High returns are present
most probably during liquidity crises. (b) Power-law fit and binned
version of the cloud of points. The clear deviation at high values of
liquidity is due to the presence of a minimum value for the possible
returns.

where 〈VN 〉 is the average volume in the book present within
a maximum distance of N = 100 ticks from the best, V (�)
is the volume placed at tick �, where � = 1 corresponds
to the best price, and δ is a parameter that regulates the
exponential weights, defining the relative importance of the
orders. The liquidity is calculated on one side of the book
and at the beginning of the time window. In the following
we will indicate the liquidity that is computed on the ask
side with LA and the one computed on the bid side with LB .
To study the correlation between the state of the LOB and the
following return we plot the latter and the ask-side liquidity for
all the time windows containing positive returns. The results
are presented in Fig. 7(a), where each point corresponds to a
different time window of 30 s and the returns are expressed in
units of the average standard deviation of the year. The same
analysis can be performed using negative events and the bid
side of the book, obtaining analogous results. One can see
that the number of events prevents a visual inspection of the
core and of the distribution of the resulting cloud of points.
However, it is evident that high returns occur only if liquidity
is low and high values of liquidity prevent large fluctuations.
In order to investigate this result in a quantitative way we fit
the whole set of points with a power law. We compare this
fit with a logarithmic binning in Fig. 7(b). The deviation for
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FIG. 8. (Color online) Coefficient of determination relative to the
power-law fit of returns versus liquidity for positive (blue dots) and
negative (red triangles) events, as a function of the parameter δ, the
characteristic distance of the exponential liquidity. The correlation is
higher for values of δ around 5–6.

small return values is due to the presence of a minimum value
of the possible returns, which is a consequence of the discrete
nature of the order book. The minimum return is equal to one
tick; this effect is less evident, but present, also in Fig. 7(a).

We have verified that these results are stable for different
values of the parameters in Eq. (2), as long as N is large
enough. The characteristic distance δ can be chosen, for
instance, to maximize the goodness of fit, as measured by R2

[34]. In Fig. 8 we plot the values of R2 we obtain when we use
different values of δ to calculate the exponential liquidity. One
can notice a maximum around δ = δ� ≈ 5–6 and then a sharp
decline. This is a clear evidence that, for the considered time
scale, the volumes near the best influence more the subsequent
returns, but all the book must be considered. In a further
analysis, which we do not show for reasons of space, we have
found that the value of δ� increases with the length of the
time window �t . Obviously, if �t is too large, the correlation
disappears, because at longer time scales price fluctuations are
mostly driven by order-flow effects, studied in the previous
sections, rather than a static depletion of the book (to give an
idea, in a time window of 15 min hundreds of orders are placed
or canceled).

At a first look the values of the correlation coefficient
could seem too little to be meaningful. However, one has to
consider that the number of points is large enough to make
the results of our fit statistically significant, as can be seen
if one performs a t test and checks the resulting p value. A
direct consequence is the low errors associated to the estimated
parameters. Assuming a relationship of the kind r(t) = KL−α

A

one finds K = 0.2944 ± 0.0028 and α = 0.2800 ± 0.0041 for
positive events. The analysis of the negative events gives values
of A and α compatible within error bars.

Recently, Yura et al. [35] introduced a new mathematical
framework to investigate the microstructural dynamics of stock
prices, seen as colloids that interact with the various layers of
the LOB. In this work we have found qualitatively compatible
results, namely, that orders placed near the best should weigh

more. In particular, they use larger time windows (on average)
and find the largest correlation at a higher distance from
the best with respect to our δ� ≈ 5–6. Even if a systematic
comparison is made difficult by the different datasets we use
and by the different definitions of both time windows and
liquidity, since we observe an increase of δ� with �t we can
reasonably expect the two analyses to be compatible.

We end this section noticing that, in general, many possible
empirical measures of liquidity are possible. According Aitken
and Comerton-Forde, the liquidity measures used in literature
are actually 68 (see Ref. [36] and references therein), but
many of them are widely discussed, leading Goyenko et al. to
the choice of a meaningful title for their review of the subject:
“Do liquidity measures measure liquidity?” [37]. A systematic
comparison of some measures of liquidity with the ones we
introduce in this article will be presented in a forthcoming
work.

B. Liquidity imbalance

In the previous section we measured the liquidity consid-
ering only one side of the book and conditioning our analysis
to the presence of a future return of a given sign. As a
consequence, we left aside returns exactly equal to zero (which
are, especially for small time windows, a considerable fraction
of the total) and we did not study any possible predictive power
on the sign that this kind of approach could have. In order to
define a microstructural property of the book that takes into
account the static asymmetry between the volumes placed on
both sides we define the liquidity imbalance as

Limb(δ) = LB(δ) − LA(δ)

LB(δ) + LA(δ)
, (3)

where LA(δ) is the exponential liquidity defined in Eq. (2) and
calculated for the ask side, and LB(δ) refers instead to the bid
side. As before, we measure these quantities just before the
beginning of the time window. Given the definition of Eq. (3),
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FIG. 9. (Color online) Average return given the liquidity imbal-
ance. The return is measured over all the time windows (which are
30 s long) and the imbalance at the beginning of them. We find a
monotonic, nonlinear dependence.
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FIG. 10. (Color online) Relative frequencies of return signs as a
function of the liquidity imbalance defined by Eq. (3). The imbalance
is calculated at the beginning of the time window, which defines the
price movement. Positive liquidity imbalances are often associated
with positive returns, and vice versa. For instance, when Limb ≈ 0.8,
one finds a number of positive returns, that is roughly double than the
number of the negative ones.

we expect that the state of the book facilitates positive returns
when Limb(δ) is positive, and vice versa. If one takes �t = 30 s
and δ = 5 ticks one obtains a cloud of points in the Limb-returns
plane. A nonparametric fit of this set of points is depicted in
Fig. 9. Each point represents the average over all the returns
that occur on all time windows that follow a given liquidity
imbalance. The bars are given by two times the standard error
of the average value. We remind that each time window is
30 s long and the liquidity is computed at the beginning of the
time interval. One finds a clear, nonlinear correlation between
the liquidity imbalance and the return in the following time
window.

In Fig. 10 we repeat the same analysis but considering
the frequency of three possible outcomes for the return that
follows the LOB state as measured by the liquidity imbalance:
positive (blue squares), zero (black dots), and negative returns
(red triangles). Even if about half of the events have zero
return, it is evident that different states of the book lead to
different frequencies of subsequent return signs. In particular,
high values of Limb are clearly associated to positive returns.
For example, if one takes a state of the book in which Limb ≈
0.8, the frequency of the positive returns is more than double
the frequency of the negative ones. To assess the predictive
power of this kind of analysis one should measure this effect
on a training set of events and then check its ability to forecast

future price movements on a test set. We aim to perform this
kind of test in a future work.

IV. CONCLUSIONS AND DISCUSSION

In this work we present an empirical study of the static
and dynamic properties of the limit order book and their
relationship with price movements. In particular, we study
two effects, both connected to the concept of liquidity, which
are present on different time scales. We divide our time series
in time windows of length �t = 15 min and 30 s. We find
that on (relatively) large time scales large price fluctuations
are connected to a low resilience of the market, namely, a
lack of response, in terms of limit orders, to an incoming flow
of market orders. Obviously, at this stage of analysis we are
not able to claim a direct cause-effect relationship between
order flow imbalance and price jumps, because we do not
have a time delay between the two and we do not perform the
opposite analysis; that is, we do not consider all the events
with a clear order flow imbalance. On smaller time scales,
instead, we adopt a static approach, in which the state of the
book at the beginning of the time window is analyzed. A
suitable measure of liquidity, and in particular of the breadth
and the depth of the market, is presented. We find that the
liquidity present on one side of the book is correlated with
the magnitude of the immediately following return. Moreover,
the liquidity imbalance between the two sides of the book is
clearly related with the sign of this return.

Such an analysis can be inserted in the wider field that stud-
ies the lack of linearity and simple cause-effect mechanisms
in financial markets. In fact, we find that liquidity crises can
enhance in a strongly nonlinear way the predisposition toward
instability of markets. This behavior defines a stylized fact
that has to be taken into account in both theoretical modeling
and practical applications. In order to cope with these effects
we suggest considering measures of liquidity like the ones we
proposed in practical situations, such as the evaluation of the
expected price impact of an order. This can be accomplished,
for example, by considering a two-dimensional price impact
function, like the one introduced in Ref. [38], which explicitly
takes into account the impact dependence on both volume and
liquidity.
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