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Time reversal (TR) is an effective solution in both single user and multiuser communications for moving complexity from the
receiver to the transmitter, in comparison to traditional postfiltering based on Rake receivers. Imperfect channel estimation may,
however, affect pre- versus postfiltering schemes in a different way; this paper analyzes the robustness of time reversal versus All-
Rake (AR) transceivers, in multiple access communications, with respect to channel estimation errors. Two performance indicators
are adopted in the analysis: symbol error probability and spectral efficiency. Analytic expressions for both indicators are derived and
used as the basis for simulation-based performance evaluation. Results show that while TR leads to slight performance advantage
over AR when channel estimation is accurate, its performance is severely degraded by large channel estimation errors, indicating a
clear advantage for AR receivers in this case, in particular when extremely short impulsive waveforms are adopted. Results however
also show a stronger non-Gaussianity of interference in the TR case suggesting that the adoption of a receiver structure adapted to
non-Gaussian interference might tilt the balance towards TR.

1. Introduction

Time reversal (TR) is a signal processing technique that
takes advantage of the field equivalence principle [1–4]
and was originally proposed in acoustics [5–7]. By pre-
filtering transmissions with a scaled version of the channel
impulse response, reversed in time, TR allows simplification
of receiver design, since the channel is compensated by
precoding at the transmitter and can simplify the task of
synchronization at the transmitter.

In a legacy network, e.g., 3G orWiFi, where Base Stations
(BS) or Access Points (APs) were typically characterized
by higher computational power, TR would be typically
implemented in downlink, in order to concentrate most of
the complexity on the network side. However, the evolution
of networks is leading more and more to use cases where
devices with identical characteristics can play different roles
at different times, as for example in Device-2-Device (D2D)

connections that are already planned in LTE and are expected
to become common in 5G networks [8]. This is particularly
true in light of the extremely high density of devices and, in
turn, of massive amount of data expected in 5G networks,
that will call for efficient data fusion and data concentration
techniques [9], where in turn one device will take the
responsibility of collecting and merging the data generated
by a large number of other devices. In such a use case,
moving the complexity on the device that is playing the role of
sink/data collector is not necessarily the optimal choice and
in some cases might not even be feasible. In this context, this
work focuses on the analysis of what happens at the sinkwhen
comparing two approaches: TR, where the complexity is
distributed among devices, versus AR, where the complexity
is concentrated at the BS, taking care of compensating the
impact of the channels for all links. In agreement with such
use case scenario identified above, the network model in this
work, shown in Figure 1, considers multiple access by𝐾 user
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Figure 1: Network model: several user terminals (UTs) transmit
information-bearing symbols to a common sink, i.e., base station
(BS).

terminals (UTs) communicating to one BS, whereUTs andBS
differ in their functional roles (sources versus sink), but not
in general in their hardware characteristics.

Pioneering work on single-antenna TR spread-spectrum
communications dates back to the nineties, where the TR
prefilter was named pre-Rake [10, 11]. The basic idea was
to prefilter the transmitted pulse with the channel impulse
response reversed in time, thereforematching the transmitted
signal with the subsequent channel.

Precoding techniques formultiuser spread-spectrum sys-
tems were developed along similar lines of receive filters:
transmit Zero-Forcing (ZF) [12], that attempts to preequalize
the channel by flattening the effective channel formed by the
cascade of the prefilter and the actual channel, is optimum
in the high-SNR regime; transmit matched filter (MF), that
has been recognized to be equivalent to the pre-Rake filter
in [13], conversely is optimum in the low-SNR regime; and
finally, transmit MMSE (Wiener) filter minimizing the SINR
was derived in [14] following previous attempts [15, 16].

In recent years, along with the fast developing of narrow-
band MIMO systems, precoding techniques using multiple
antennas at the transmitter were thoroughly studied (for a
complete overview on MIMO precoding; see [17]). Since the
mathematical formulation of multiuser spread-spectrum is
very close to that of MIMO communications (see [18] for
an overview of this analogy), MIMO linear precoders can be
derived along similar techniques. Significant research efforts
were then devoted to the analysis of the impact of imperfect
channel estimation on such systems, with several authors
proposing closed-formulas for BER evaluation in both SISO
and MIMO systems affected by channel estimation errors
[19–22].

TR was proposed in connection with UWB communi-
cations in [23] that also addressed equalization through an
MMSE receiver. In [24], early experimental data, showing the
feasibility of TR, were collected. Shortly after, experimental
investigations on multiple-antenna systems with TR [25–
27] and performance analyses [28] were also pursued. In
[29, 30], compensation for pulse distortion in connection
with TR was investigated. In [31], the trade-off between the
complexity of transmitter versus receiver in terms of number
of paths was analyzed. In [32], the robustness of TR to the
lack of correlation between channels in a MISO system was
investigated. Finally, in [33], the effect of TR on statistical
properties ofmultiuser interference in communication versus
positioning was explored.

The above investigations were all carried out based on
the hypothesis of perfect channel estimation. Only recently,
the impact of imperfect channel state information (CSI) on
the performance of TR was experimentally investigated in
the case of UWB signals in [34], and analytic expressions for
BER evaluation in a TR-UWB system in presence of channel
estimation errors were provided in [35], where an iterative
algorithm to compensate for estimation errors was also
proposed. The impact of a channel estimation error in a TR-
UWB system was analyzed in terms of Bit Error Probability
also in [36], focusing however only on BPSK modulation,
and in [37], where an uncoordinated network of IR-UWB
devices was considered. The impact of nonstationarity in
the channel on TR-UWB communications was addressed in
[38], comparing a TR and a conventional system in terms
of BER and mutual information assuming that the error is
determined by temporal variation in the channel coefficients
and carrying thus out the analysis as a function of the
correlation coefficient 𝜌 between real and estimated channel.
The impact of channel nonstationarity was also addressed in
[39], and the analysis was extended in [40] by considering the
combined impact of nonstationarity and channel coefficients
quantization in terms of BER.

The above works highlighted that channel estimation
errors, in particular due to nonstationarity, may affect the
performance of TR systems, although the actual impact
mainly depends on the degree of stationarity of the channel.
Several aspects are however still open: in particular, an
exhaustive comparison of how channel estimation error
affects TR in comparison to other techniques; e.g., receiver-
based schemes is still missing, and the impact of imperfect
CSI in presence ofMultiple User Interference (MUI) was only
partially addressed.

This paper investigates such issues, focusing on the
specific case of single-antenna UWB systems using TR versus
as an exemplary case of a receiver-based scheme, that is anAR
scheme.The contributions of this paper can be thus identified
as follows:

(i) It carries out an extensive comparison of TR versus
AR under imperfect CSI, not carried out to this extent
in the previous works on this topic, and adopts an
estimation error model more general than the use of
correlation coefficient adopted inmost of such works.

(ii) It derives mutual information for TR versus AR
schemes in presence of both CSI estimation error and
MUI.

(iii) It analyzes the statistical properties ofMUI in order to
provide hints on how such properties might be used
to improve the performance of a TR system under
imperfect CSI.

Comparison of performance of TR versusAR transceivers
will be carried out in terms of effect of imperfect channel state
information (CSI) on symbol error probability of a generic
information-bearing symbol for a given UT (see [41] for a
work adopting a similar approach in other systems, in par-
ticular CDMA). The analysis will further explore robustness
of TR versus AR, by finding the maximum achievable rate for
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the uplink channel. Finally, the maximum information rate,
that takes into account channel estimation overhead, will be
explored.

The paper is organized as follows: Section 2 contains the
reference model; Section 3 is devoted to the performance
analysis in terms of symbol error probability, while Section 4
presents the comparison between TR and AR in terms of
uplink rate as measured by the mutual information. Finally,
Section 5 contains the conclusions.

2. Reference Model

This section is organized as follows: Section 2.1. Systemmodel;
Section 2.2. Single User Channel; Section 2.3.Multiuser Chan-
nel; Section 2.4. Channel Estimation and Data Transmission.

2.1. System Model. A generic UT𝑘 transmits data that is
encoded into a sequence of information-bearing symbols{𝑏𝑘[𝑚] : 𝑚 ∈ Z}. This set of symbols is partitioned into
blocks of 𝑛 symbols each, {b𝑘[𝑖] : 𝑖 ∈ Z} where b𝑘[𝑖] =(𝑏𝑘[𝑖𝑛], . . . , 𝑏𝑘[(𝑖 + 1)𝑛 − 1])T, where the length 𝑛 of the block
is typically determined based on the coherence time 𝑇coh of
the channel. Each block is transmitted by using the following
signal:

𝑠𝑘,𝑖 (𝑡; b𝑘 [𝑖]) = (𝑖+1)𝑛−1∑
𝑚=𝑖𝑛

𝑏𝑘 [𝑚] g𝑘,𝑚 (𝑡 − 𝑚𝑇s) , (1)

where 𝑇s (sec) is the symbol period and g𝑘,𝑚(𝑡) is the unit
energy waveform associated with the 𝑚-th symbol of user𝑘. In general, g𝑘,𝑚(𝑡) is a spread-spectrum signal at user𝑘 prefilter output and has band [−W/2,W/2]; that is, its
spectrum is nonzero for |𝑓| ≤ W/2. Assuming that {g𝑘,𝑚(𝑡 −𝑚𝑇s) : 𝑚 = 𝑖𝑛, . . . , (𝑖 + 1)𝑛 − 1} are orthonormal, or very
mildly cross-correlated, the energy of 𝑠𝑘,𝑖(𝑡; b𝑘[𝑖]) in (1) is𝑛E[|𝑏𝑘[𝑚]|2]; since the block has duration 𝑛𝑇s, the average
power isP𝑘 = E[|𝑏𝑘[𝑚]|2]/𝑇s.

In the adopted model, demodulation at BS is performed
on a block-by-block basis. Index 𝑖, that specifies the block
number, can be thus dropped. Consider for the sake of
simplicity 𝑖 = 0 in (1):

𝑠𝑘 (𝑡; b𝑘) = 𝑛−1∑
𝑚=0

𝑏𝑘 [𝑚] g𝑘,𝑚 (𝑡 − 𝑚𝑇𝑠) . (2)

Figure 2 shows the system model, including 𝐾 modulators
producing 𝐾 transmitted signals, 𝑠𝑘(𝑡), 𝑘 = 1, . . . , 𝐾, affected
by propagation within 𝐾 different channels and corrupted
at the receiver by white Gaussian noise 𝑛(𝑡). The receiver
consists in one demodulator.

Transmitted signal 𝑠𝑘(𝑡; b𝑘) of each user propagates over a
multipath channel with impulse response 𝑐𝑘(𝑡) leading to the
signal 𝑥𝑘(𝑡):

𝑥𝑘 (𝑡; b𝑘) = 𝑠𝑘 (𝑡; b𝑘) ∗ 𝑐𝑘 (𝑡) = ∞∑
ℓ=0

𝑐𝑘,ℓ𝑠𝑘 (𝑡 − 𝜏𝑘,ℓ; b𝑘) , (3)
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Figure 2: System model. The transmitter is formed by 𝐾 modu-
lators, representing the 𝐾 UTs. Radiated signals are affected by 𝐾
different channels and white Gaussian noise 𝑛(𝑡) at the receiver.
Receiver consists in one demodulator shown on the figure for the
example case of user 1.

where {𝑐𝑘,ℓ : ℓ ≥ 0} and {𝜏𝑘,ℓ : ℓ ≥ 0} are amplitudes and
delays of the paths of 𝑐𝑘(𝑡), respectively.The received signal is
as follows:

𝑦 (𝑡; b) = 𝐾∑
𝑘=1

𝑥𝑘 (𝑡; b𝑘) + 𝑛 (𝑡) , (4)

where 𝑛(𝑡) is a white Gaussian noise with flat power spectral
densityN0/2 (W/Hz).

Throughout the paper it is assumed that the receiver
estimates transmitted symbols of user 𝑘, {𝑏𝑘[𝑚] : 𝑘 =1, . . . , 𝐾;𝑚 = 0, . . . , 𝑛 − 1}, on a symbol-by-symbol basis,
by considering users 𝑗 ̸= 𝑘 as unknown interference over
user 𝑘; for example, Figure 2 shows the demodulation of user1. As detailed below, transmissions are symbol-synchronous
but not necessarily chip-synchronous; therefore the symbol-
by-symbol demodulation does not imply any performance
loss. In the adopted model, in agreement with the scenario
defined in Section 1, the receiver is a single user detector and
as such suboptimal, since it does not take into account the
possibility of joint multiuser detection, which is left for future
work. In addition, throughout the paper it is assumed that the
transmission data rate is such that Intersymbol Interference
(ISI) is negligible in agreement with other works operating
under the same assumption in the literature; see, for example,
[38, 39].

How channel is estimated and how errors in channel
estimation play a role in the model will be explained later in
this section, in association with the different modulation and
demodulation structures. Considering signals for the symbol
at time epoch 𝑚 = 0, notation can be simplified by setting𝑏𝑘 = 𝑏𝑘[0], and (2), (3), and (4) become the following:

𝑠𝑘 (𝑡; 𝑏𝑘) = 𝑏𝑘g𝑘,0 (𝑡) , (5)

𝑥𝑘 (𝑡; 𝑏𝑘) = 𝑠𝑘 (𝑡; 𝑏𝑘) ∗ 𝑐𝑘 (𝑡)
= ∞∑

ℓ=0

𝑐𝑘,ℓ𝑠𝑘 (𝑡 − 𝜏𝑘,ℓ; 𝑏𝑘) , (6)
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𝑦 (𝑡; 𝑏1, . . . , 𝑏𝐾) = 𝐾∑
𝑘=1

𝑥𝑘 (𝑡; 𝑏𝑘) + 𝑛 (𝑡) . (7)

2.2. Single User Channel. Since the system is symbol-syn-
chronous, analysis may refer to transmission of one generic
symbol, that is chosen as symbol 𝑚 = 0; the index 𝑘 can be
dropped in order to simplify the notation, leading to 𝑏[0] = 𝑏,
g0(𝑡) = g𝑘,0(𝑡).

If transmission does not foresee prefiltering, that is, a
zero-excess bandwidth pulse𝜓(𝑡)with bandwidthW and unit
energy is transmitted to modulate 𝑏, the received signal is as
follows:

𝑦 (𝑡; 𝑏) = 𝑥 (𝑡; 𝑏) + 𝑛 (𝑡) = 𝑏g0 (𝑡) ∗ 𝑐 (𝑡) + 𝑛 (𝑡)
= 𝑏𝑁−1∑

]=0
s []] 𝜓 (𝑡 − ]𝑇c) ∗ 𝑐 (𝑡) + 𝑛 (𝑡) (8)

where the spreading sequence s = (s[0], . . . , s[𝑁 − 1])T and
the chip period 𝑇c are made explicit. In the following, time-
hopping is considered, for which all s[]] are zero, but one.

Since 𝜓(𝑡), and therefore also 𝜓(𝑡) ∗ 𝑐(𝑡), are bandlimited
to W/2, these signals can be represented by their samples
spaced by 𝑇 = 1/W; in particular, 𝑐(𝑡) will be represented
by its samples 𝑐[𝑙] = 𝑐(𝑙/W), 𝑙 = 0, . . . , +∞. One has thus the
following:

𝑦 (𝑡; 𝑏) = 𝑏𝑁−1∑
]=0

s []] +∞∑
ℓ=0

𝑐 [ℓ] 𝜓 (𝑡 − ℓ
W

− ]𝑇c) + 𝑛 (𝑡) . (9)

In general, one will have 𝑇c ≤ 𝑇 = 1/W, where the case𝑇c > 𝑇 corresponds to a pulse duration shorter than chip
duration, as common inUWB communications.This is taken
into account in the model by defining the impulsiveness index
i, a positive integer defined such that 𝑇c = i/W; note that i
can be equivalently interpreted as the number of samples per
chip time 𝑇c. Furthermore it can be safely assumed that the
channel impulse response 𝑐(𝑡) is causal and has finite delay
spread 𝑇𝑑. By introducing the approximation 𝑇𝑑 ≈ 𝐿𝑇c =𝐿i/W, where 𝐿 is an integer, one has 𝑐[ℓ] = 0 for ℓ < 0 and𝑐[ℓ] = 0 for ℓ > 𝐿i. As a result, one can write the following:

𝑦 (𝑡; 𝑏) = 𝑏𝑁−1∑
]=0

s []] 𝐿i∑
ℓ=0

𝑐 [ℓ] 𝜓 (𝑡 − (ℓ + ]i)
W

) + 𝑛 (𝑡) , (10)

By projecting (10) onto {𝜓(𝑡−𝑘/W) : 𝑘 = 0, . . . , (𝑁+𝐿+1)i−1 − 1}, the following discrete model is obtained:

y = Cx𝑏 + n, x = s ⊗ ei1, (11)

where the symbol ⊗ indicates the Kronecker product, ei1 =[1, 0T(i−1)×1]T is the first vector of the canonical basis of Ri, x
is𝑁i×1, and C is a banded Toeplitz matrix with dimensions(𝑁 + 𝐿 + 1)i − 1 × 𝑁i and elements 𝐶𝑖𝑗 = 𝑐[𝑖 − 𝑗].

In general, for a systemwith prefiltering, with prefiltering
impulse response 𝑝(𝑡), (11) generalizes to the following (see,
e.g., [18]):

y = CPx𝑏 + n, (12)

whereP is a Toeplitzmatrix with dimensions (𝑁+2𝐿)i×(𝑁+𝐿 + 1)i − 1 and elements 𝑃𝑖𝑗 = 𝑝[𝑖 − 𝑗] = 𝑝 ∗ 𝜓((𝑖 − 𝑗)/W).
In this paper, prefiltering is introduced in order to

compensate channel effects; in particular, prefiltering is based
on an estimated version of the channel impulse response.
In other words, imperfect prefiltering may be matched to
channel estimation error patterns. If prefiltering is imperfect,
as will be justified in Section 2.4, the error due to the
estimation process can be modeled as a white Gaussian
process 𝜉(𝑡), that is, added to P as follows [42]:

P̂ = 𝛼 (P + Ξ) , (13)

where Ξ𝑖𝑗 = 𝜉𝑖−𝑗 ∼ N(0, 𝜎2𝜉 ), where 𝜎2𝜉 accounts for estima-
tion accuracy, and 𝛼 > 0 is such that ‖P̂x‖2 = ‖Px‖2, so as to
ensure an equal energy comparison.

No Prefiltering, All-Rake Receiver. The traditional (or con-
ventional) receiver is a matched filter, i.e., an AR receiver in
the case of a multipath channel. Knowing the time-hopping
spreading sequence x and the resolved channel c, a sufficient
statistic for 𝑏 is obtained by projecting the received signal y
onto h = Cx, or, equivalently, onto h/‖h‖:

𝑧AR = hT‖h‖y = ‖h‖ 𝑏 + ], (14)

where ] ∼ N(0,N0/2).
As occurs in the prefiltering, also the AR receiver is

affected by possible channel estimation errors. If the AR
receiver is providedwith imperfect CSI, that is, operates using
an estimation ĉ of channel c that is impaired by an error
𝜉 ∼ N(0, 𝜎2𝜉 I(𝐿i+1)), then it combines paths through ĥ ≜ Ĉx
instead ofh = Cx, and inference of 𝑏 is based on the following:

�̂�AR = ĥTĥy =
(h + 𝜒)Th + 𝜒 (h𝑏 + n)

= (h + 𝜒)Th + 𝜒 h𝑏 +
(h + 𝜒)Th + 𝜒 n,

(15)

where 𝜒 = [0T𝑗x , 𝜉T, 0T𝑁i−𝑗x
]T, 𝑗x being the nonzero dimension

of x.

TR Prefiltering, 1Rake Receiver.TheTR prefilter is represented
by 𝑝[𝑗] = 𝛼𝑐[𝐿i − 𝑗], where 𝛼 > 0 guarantees that
prefiltered and non-prefiltered transmitted waveforms have
same energy. Time-hopping implies s ∈ {e]}𝑁]=1, and x =
s ⊗ ei1 ∈ {e(]−1)i+1}𝑁]=1. A 1Rake receiver is given by e𝐿i+𝑗x .
Denoting by T the TR prefilter matrix, one has the following:

𝑧TR = eT𝐿i+𝑗xy = eT𝐿i+𝑗xCTx𝑏 + eT𝐿i+𝑗xn

= eT𝐿i+𝑗xHx𝑏 + 𝑛𝐿i+𝑗x ,
(16)

being 𝑛𝐿i+𝑗x ∼ N(0,N0/2) and having definedH = CT.
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If the transmitter is provided with imperfect CSI, then
model of (13) holds, and (16) becomes the following:

�̂�TR = eT𝐿i+𝑗xCT̂x𝑏 + eT𝐿i+𝑗xn

= eT𝐿i+𝑗xC [𝛼 (T + Ξ)] x𝑏 + 𝑛𝐿i+𝑗x .
(17)

AR versus TR. As well-known [33], TR is equivalent to a
system without prefiltering and AR in terms of the signal-
to-noise ratio. From a single user perspective, there is
no performance difference in both uncoded (symbol error
probability) and coded (channel capacity) regimes between
the two transceiver structures. Moreover, previous work [31]
suggested that sets of equivalent systems can be obtained
with partial Rakes compensating for partial TR transmitter
structures. This paper extends the comparison of AR versus
TR to the case where imperfect CSI is available.

2.3.Multiuser Channel. A straightforward extension of (11) to𝐾 users is as follows:

y = 𝐾∑
𝑘=1

C𝑘x𝑘𝑏𝑘 + n, (18)

where x𝑘 = s𝑘 ⊗ ei𝑙𝑘 and 1 ≤ 𝑙𝑘 ≤ i models the chip-
asynchronism by making 𝑙𝑘 i.i.d. according to a uniform
distribution. This extension holds based on the hypothesis
that all UTs are symbol-synchronous. This hypothesis is
reasonable since, as further discussed in Section 2.4, the BS
broadcasts in a link setup phase a known sequence to theUTs.

Denoting by h𝑘 = C𝑘x𝑘 the spreading sequence x𝑘 after
transition in the multipath channel, and by

H = 𝐾∑
𝑘=1

eT𝑘 ⊗ h𝑘 = [h1, . . . , h𝐾] (19)

the spreading matrix, (11) can also be rewritten as follows:

y = Hb + n, (20)

where b = (𝑏1, . . . , 𝑏𝐾)T.
For systems with prefiltering, (18) generalizes to

y = 𝐾∑
𝑘=1

C𝑘P𝑘x𝑘𝑏𝑘 + n, (21)

where matrices P𝑘 and C𝑘 have same dimensions as P and C
of (12), respectively, and (20) holds with h𝑘 = C𝑘P𝑘x𝑘.

In the presence of imperfect CSI, P𝑘 in (21) is substituted
by P̂𝑘, as defined in (13), where estimation errors are indepen-
dent of 𝑘.
No Prefiltering, All-Rake Receiver. The decision variable fol-
lowing the matched filter of user 𝑘 is

𝑧AR𝑘 = h𝑘 𝑏𝑘 +
𝐾∑
𝑗=1
𝑗 ̸=𝑘

hT𝑘h𝑘h𝑗𝑏𝑗 +
hT𝑘h𝑘n

= h𝑘 𝑏𝑘 + 𝐼𝑘 + ]𝑘,
(22)

where h𝑖 = C𝑖x𝑖, 𝐼𝑘 represents theMUI and ]𝑘 = (hT𝑘/‖h‖)n ∼
N(0,N0/2).

If the AR is provided with imperfect CSI, then signal y is
projected onto ĥ𝑘 instead of h𝑘, hence

�̂�AR𝑘 = ĥT𝑘ĥ𝑘h𝑘𝑏𝑘 +
𝐾∑
𝑗=1
𝑗 ̸=𝑘

ĥT𝑘ĥ𝑘h𝑗𝑏𝑗 +
ĥT𝑘ĥ𝑘n

= 𝑎AR𝑘𝑘 𝑏𝑘 + 𝐼AR𝑘 + ]̂AR𝑘 ,
(23)

where ]̂AR𝑘 = (ĥT𝑘/‖ĥ𝑘‖)𝑛 ∼ N(0,N0/2).
TR Prefiltering, 1Rake Receiver.With TR, the decision variable
for user 𝑘 becomes the following:

𝑧TR𝑘 = eT𝑞𝑘C𝑘T𝑘x𝑘𝑏𝑘 + 𝐾∑
𝑗=1
𝑗 ̸=𝑘

eT𝑞𝑘C𝑗T𝑗x𝑗𝑏𝑗 + eT𝑞𝑘n, (24)

where 𝑞𝑘 = 𝐿i + 𝑗x𝑘 is the delay (in samples) to which the
1Rake is synchronized. In the presence of imperfect CSI, the
decision variable is

�̂�TR𝑘 = eT𝑞𝑘C𝑘𝛼𝑘 (T𝑘 + Ξ𝑘) x𝑘𝑏𝑘
+ 𝐾∑

𝑗=1
𝑗 ̸=𝑘

𝛼𝑗eT𝑞𝑘C𝑗 (T𝑗 + Ξ𝑗) x𝑗𝑏𝑗 + eT𝑞𝑘n. (25)

AR versus TR. As well-known [33, 43], TR usually increases
the kurtosis of the interference at the output of Rake receivers.
This follows from the fact that the effective channel impulse
response formed by the combination of prefilter and mul-
tipath channel has a peaked behavior, whereas without TR
the behavior is nonpeaked. While in the single user case the
two schemes are equivalent, this equivalence does not hold
in the multiuser case. The impact of estimation errors will be
investigated in Sections 3 and 4.

2.4. Channel Estimation andData Transmission. For bothAR
and TR, the channel impulse response estimation requires
cooperation between the transmitter and in the receiver.
Actual transmission of the set of information-bearing sym-
bols requires, therefore, additional symbols to be sent either
in a preamble or in a postamble of the block [44]. Note that in
the scenario considered in this work precoding of UT𝑘 does
not depend on channels experienced by users 𝑗 ̸= 𝑘, and thus
feedback from the BS to each UT is not required (see [42] for
a thorough discussion).

Assuming Time-Division Duplexing (TDD) is adopted,
transmission can follow the scheme shown in Figure 3, sum-
marizing the organization of the different links (downlink,
i.e., broadcast, versus uplinks) over time, where durations
of data, preamble, and postamble are indicated in terms of
number of chips (𝑁DL

𝑡 , 𝑁UL
𝑡 , 𝑁d, 𝑁UL

𝑔 ). The information
exchange between the BS and eachUT consists in four phases:
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Figure 3: Channel estimation and data transmission scheme.

(1) Phase 1, Downlink Channel Training: the BS broad-
casts a training sequence of length 𝑁DL

𝑡 i samples
(corresponding to𝑁DL

𝑡 i/W seconds) that is received
by eachUT starting at time 0. Eachmultipath channel
spreads the sequence for 𝐿i samples; hence each UT
listens from time 0 to time 𝑁DL

𝑡 i + 𝐿i samples.
This training sequence may be also used for network
synchronization at symbol level.

(2) Phase 2, Uplink Channel Training: each UT transmits
its own training sequence of length 𝑁UL

𝑡 i samples
to the BS (preamble). By reciprocity, channels spread
these sequences for 𝐿i samples; therefore each UT
remains idle for 𝐿i samples.

(3) Phase 3, Data Transmission: each UT transmits a
sequence of information-bearing symbols for 𝑁di =𝑛𝑁i samples.

(4) Phase 4, Idle: each UT transmits a sequence of null
symbols of duration 𝐿i samples denoted with 0
(postamble).

During the downlink training, the BS broadcasts its
training sequence to the UTs. With reference to model of
Section 2, and in particular to (11) and impulsiveness index
i, the received signal at UT𝑘 is

yDL𝑘 = C𝑘𝜐
DL + n𝑘, 𝜐DL = 𝜙DL ⊗ ei1, (26)

where yDL𝑘 is (𝑁DL
𝑡 i+𝐿i)×1 vector of received samples,C𝑘 is(𝑁DL

𝑡 i + 𝐿i) ×𝑁DL
𝑡 i Toeplitz channel matrix, 𝜙DL is𝑁DL

𝑡 × 1
training sequence with energy ‖𝜙‖2, 𝜐DL is𝑁DL

𝑡 i × 1 training
sequence accounting for impulsiveness with energy ‖v‖2 =‖𝜙‖2, and n𝑘 is (𝑁DL

𝑡 i + 𝐿i) × 1 white Gaussian noise vector.
Equation (26) can be rewritten as follows:

yDL𝑘 = ΥDLc𝑘 + n𝑘, (27)

where now ΥDL is a (𝑁DL
𝑡 i + 𝐿i) × 𝐿i Toeplitz matrix and c𝑘

is the 𝐿i × 1 channel vector.
In order to minimize the signal-plus-interference-to-

noise ratio, UT𝑘 may use an MMSE estimation of c𝑘, where
the interference is caused by multipath. However, the use of
PN sequences as training sequences is very common, due to

their good autocorrelation properties. In fact, PN sequences
have periodic ACF of the following form [45, 46]:

𝜌𝜙 [𝑖] =
{{{{{{{

𝜙2 for 𝑖 = 0
−𝜙2𝑁DL

𝑡

for 0 < |𝑖| ≤ 𝑁DL
𝑡 − 1 (28)

that is asymptotically impulse-like, as𝑁DL
𝑡 ≫ 1.

Asymptotically then, and dropping the superscript DL to
unclutter notation,ΥTΥ ≈ ‖𝜙‖2I = ‖𝜐‖2I, andMMSE reduces
to a matched filter, and estimation is as follows:

z𝑘 ≈ ΥTΥc𝑘 + ΥTn𝑘 = ‖𝜐‖2 c𝑘 + ^𝑘,
^𝑘 ∼ N (0, 𝜎2𝑛 ‖𝜐‖2 I) . (29)

Dividing by ‖𝜐‖2 the previous expression yields the following:
ĉ𝑘 ≜ 1

‖𝜐‖2 z𝑘 ≈ c𝑘 + 1‖𝜐‖^𝑘 = c𝑘 + ^𝑘, (30)

where ^𝑘 ∼ N(0, (𝜎2𝑁/‖𝜐‖2)I). Note that, as well-known (e.g.,
[47]), the estimation can be made as accurately as desired by
increasing ‖𝜐‖2. For antipodal sequences, say 𝜙[𝑖] ∈ {−A𝑡,A𝑡}
with A𝑡 > 0, the energy of the training sequence is A2

𝑡𝑁DL
𝑡 ;

therefore, ‖𝜐‖2 can be increased either by increasing power
spent on training, that is, by increasing A𝑡, or by increasing
time spent for training, that is, by increasing𝑁DL

𝑡 , or both.
In the uplink training, the BS receives the superposition

of the sequences of users each filtered by the corresponding
channel, that is,

yUL = 𝐾∑
𝑘=1

ΥUL𝑘 c𝑘 + n ≡ ΥULc + n, (31)

having defined

ΥUL ≜ 𝐾∑
𝑘=1

eT𝑘 ⊗ ΥUL𝑘 ,

c ≜ 𝐾∑
𝑘=1

e𝑘 ⊗ c𝑘.
(32)

As previously mentioned, the superscript UL is dropped to
unclutter notation.

The goal of the BS is to linearly estimate c by observing y,
knowing Υ:

z = WTy ≡ 𝐾∑
𝑘=1

e𝑘 ⊗ z𝑘 = WTΥc +WTn, (33)

where z is the 𝐾𝐿i × 1 vector of channel estimations, being
z𝑘 the 𝐿i × 1 vector representing c𝑘 estimate, and WT

is the 𝐾𝐿i × 𝑁UL
𝑡 i matrix representing the estimator. All

common linear estimators, that is, ZF (Zero-Forcing), RZF
(Regularized Zero-Forcing), MMSE (minimummean square
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error), and MF (matched filter), can be described by the
following expression, parametrized by 𝜉 and 𝜁:

WT = (𝜉ΥTΥ + 𝜁I)−1 ΥT. (34)

Indeed, MMSE is obtained with (𝜉, 𝜁) = (1, 𝜎2𝑛); ZF with(𝜉, 𝜁) = (1, 0); MF with (𝜉, 𝜁) = (0, 1); RZF with (𝜉, 𝜁) = (1, 𝑧).
In the simple case of ZF, the form assumed by (33) is as

follows:

z = c + (ΥTΥ)−1 ΥTn ≡ c + ^,
^ ∼ N (0, 𝜎2𝑛 (ΥTΥ)−1)

(35)

and, therefore, the ℓ-th tap of the channel of generic user 𝑘 is
𝑧𝑘 [ℓ] = 𝑐𝑘 [ℓ] + ]𝑘 [ℓ] . (36)

Here, ]𝑘[ℓ] is a correlated Gaussian random variable with
variance coinciding with the ((𝑘 − 1)𝐿i + ℓ + 1)-th diagonal
element of 𝜎2𝑁(ΥTΥ)−1.

Assuming all UTs are transmitting the same power, i.e.,‖𝜐𝑘‖2 is the same for each 1 ≤ 𝑘 ≤ 𝐾, the approximation
ΥT𝑗Υ𝑖 = ‖𝜐‖2I𝛿𝑗𝑖 allows assuming uncorrelated estimation
errors, since ΥTΥ = ‖𝜐‖2I, and thus

z = c + ^,
^ ∼ N(0, ( 𝜎2𝑁‖𝜐‖2) I) ,

𝑁UL
𝑡 ≫ 𝐿.

(37)

2.5. Performance Indicators. In both system structures, the
statistic for inferring the transmitted symbol 𝑏𝑘 of user 𝑘 can
be written in the following form:

𝑧𝑘 = 𝑎𝑘𝑘𝑏𝑘 + 𝐾∑
𝑗=1
𝑗 ̸=𝑘

𝑎𝑘𝑗𝑏𝑗 + ]𝑘 = 𝑎𝑘𝑘𝑏𝑘 + 𝐼𝑘 + ]𝑘, (38)

where ]𝑘 is a r.v. representing noise, and {𝑎𝑘𝑗 : 𝑗 = 1, . . . , 𝐾}
are r.vs. depending on multipath channels, random time-
hopping codes, random delays, and estimation errors.

Two Performance Indicators Are Considered.
In the uncoded regime, the probability of error as defined

by

𝑃𝑒 = 12P (𝑧𝑘 < 0 | 𝑏 = √E)
+ 12P (𝑧𝑘 > 0 | 𝑏 = −√E)

(39)

is considered.
In the coded regime, mutual information with Gaussian

inputs and a bank ofmatched-filters followed by independent
decoders is considered; for the generic user 𝑘, this is given by

𝐼 (𝑏𝑘; 𝑧𝑘) nats/channel use, (40)

where 𝐼(𝑏𝑘; 𝑧𝑘) is the mutual information between the trans-
mitted symbol 𝑏𝑘 and the decision variable 𝑧𝑘. Since a channel
use corresponds to 𝑁𝑇c = 𝑁i/𝑊 seconds, the sum-rate
achieved by the set of𝐾 users is

𝑅 ≜ 𝑊𝛽
i
𝐼 (𝑏; 𝑧) nats/s, (41)

having indicated with 𝐼(𝑏; 𝑧) the mutual information (40) for
a generic user. Finally, a spectral efficiency equal to

R ≜ 𝛽
i
𝐼 (𝑏; 𝑧) (nats/s) /Hz (42)

is obtained.

3. Probability of Error

3.1. Single User. Themain contribution of this subsection is to
show that imperfect TR and AR achieve the same probability
of error, and, therefore, that the same accuracy is needed for
channel estimation at transmitter and receiver in order to
achieve a given error probability.

With reference to decision variables �̂�TR of (17) and �̂�AR
of (15), the probability of error, in both cases, is

𝑃𝑒 = 12P (𝑧 < 0 | 𝑏 = A) + 12P (𝑧 > 0 | 𝑏 = −A)
= P (𝑧 < 0 | 𝑏 = A) ,

(43)

where the first equality follows from 𝑏 belonging to {−A,A}
with equal probability, and the second equality follows from
the distribution of 𝑧 being an even function. For the power
constraint, A = √E results. Equivalence of 𝑃𝑒 for the two
cases is derived by showing that �̂�TR and �̂�AR have the same
distribution.

To this end, rewrite the decision variable �̂�AR conditioned
on 𝑏 = A. Without loss of generality, and for the sake of
simplicity, consider x = e1. Then

�̂�AR = ‖c‖2 A + cT (n + 𝜉A) + 𝜉Tn
= ‖c‖2 A + cT𝜉A + nT (𝜉 + c) . (44)

Similarly, the decision variable �̂�TR conditioned on 𝑏 = A is

�̂�TR = AcT (c + 𝜉) + 𝑛 ‖c + 𝜉‖ , (45)

where 𝑛 ∼ N(0, 𝜎2
𝑁). By comparing the two expressions,�̂�AR is equivalent to �̂�TR, the equivalence being defined as

producing the same 𝑃𝑒, iff term nT(𝜉+ c) in �̂�AR is distributed
as 𝑛‖c + 𝜉‖ in �̂�TR. This is, indeed, the case; by choosing an
orthogonal matrixQ such thatQ(c + 𝜉) = ‖c + 𝜉‖e1, one has

nT (c + 𝜉) = nTQTQ (c + 𝜉) = nT
1 ‖c + 𝜉‖ e1

= 𝑛1 ‖c + 𝜉‖ ,
(46)

where 𝑛1 ∼ N(0, 𝜎2𝑁); hence the equivalence in terms of
distributions, and, therefore, probability of error is verified.
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Figure 4: Probability of error 𝑃𝑒 versusE/𝜎2
𝑁 (dB) for systems with i = 1, (𝛽1, 𝛽2, 𝛽3) = (1/200, 1/20, 1/10) and (𝜎2
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3) = (0, 1/20, 1/10).
Figure (a) refers to TR while (b) refers to AR.
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Figure 5: Probability of error 𝑃𝑒 versus E/𝜎2
𝑁 (dB) for impulsive (i = 5) systems with (𝛽1, 𝛽2, 𝛽3) = (1/200, 1/20, 1/10) and (𝜎2
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3) =(0, 1/20, 1/10). Figure (a) refers to TR while (b) refers to AR.

3.2. Multiuser. In the multiuser setting, although the expres-
sion for the probability of error remains as in (43), there
are three sources of errors: thermal noise, imperfect CSI,
and multiuser interference (MUI). In particular, as E/𝜎2𝑁
increases, the last two factors both lead to a probability error
floor, i.e., 𝑃𝑒 → 𝑃floor

𝑒 (𝛽, 𝜎2𝜉 ) > 0 as E/𝜎2𝑁 → ∞, being𝛽 = 𝐾/𝑁 the load of the system.

Figures 4 and 5 show the probability of error 𝑃𝑒
versus E/𝜎2𝑁 (dB) for systems with i = 1 versus
i = 5, respectively, and for different values of 𝛽, with(𝛽1, 𝛽2, 𝛽3) = (1/200, 1/20, 1/10), and 𝜎2𝜉 , with (𝜎21 , 𝜎22 , 𝜎23) =(0, 1/20, 1/10). All results were obtained by Monte-Carlo
simulations of finite-dimensional systems with 𝑁 = 200
chips. In both figures, the left-hand side plot (Figures 4(a) and
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5(a)) refers to TR, while the right-hand side plot (Figures 4(b)
and 5(b)) refers to AR.

For low-SNR, i.e., E ≪ 𝜎2𝑁, 𝑃𝑒 is not very sensitive to
estimation errors: the performance of the systems thusmainly
depends on the considered load. The impact of estimation
error becomes however evident for high SNR, i.e., E ≫ 𝜎2𝑁,
with significantly different 𝑃floor

𝑒 values depending on the
combination of estimation error variance 𝜎2𝜉 and system load
(and thus MUI).

Figures 4(a) and 4(b), presenting the results for both
systems with i = 1, show that AR outperforms TR when
imperfect CSI is themain cause of error (see, for example, the
case (𝛽1, 𝜎2), for which the floor in the case of TR ismore than
an order ofmagnitude larger), while the opposite is truewhen
the load is the main cause of error, with a slight advantage of
TR with respect to AR for high traffic loads; see, for example,
the case (𝛽3, 𝜎1)where TR guarantees a gain of about 3 dBs in
terms of E/𝜎2𝑁 for a 𝑃𝑒 = 10−4.

Figure 5 presents results for impulsive systems, charac-
terized by i = 5. Focusing first on the case of perfect CSI
estimation (plots with𝜎1), it can be observed that, in presence
of MUI, that is for medium (𝛽2) and high (𝛽3) system loads,
the performance of both TR and AR is significantly worse
than in the case with i = 1. An increase of impulsiveness
leads thus to a lower robustness with respect to MUI for both
AR and TR schemes, although this phenomenon is arguably
more evident in the TR case, since this scheme shows a slight
performance advantage in the case with i = 1, while for i = 5
TR and AR have exactly the same performance for all system
loads.When one considers the impact of CSI estimation error
(plots with 𝜎2 and 𝜎3), the introduction of a more impulsive
waveform has the opposite effect: both AR and TR prove to
be more robust to CSI estimation errors, with lower error
probability floors. The extent to which the phenomenon is
visible in the two schemes is however very different: while a
moderate improvement can be seen for TR, the AR scheme
shows a dramatic performance increase, in particular for a
low network load (𝛽1), where the error probability floors are
not visible. The stronger positive impact of impulsiveness
on the AR is a rather surprising result, which might be
explained by the role of impulsiveness in the number of
resolvable paths at the receiver: a shorter pulse makes in fact
more paths resolvable, and TR, which allows resolving more
paths than AR by approximately a factor of 2, appears to be
more sensitive to estimation errors, thus reducing the advan-
tage of increasing the impulsiveness of the system; further
research is however required in order to properly explain this
result.

4. Mutual Information, Sum-Rate,
and Spectral Efficiency

In this section, mutual information defined in (40) is derived
for AR and TR. The other merit figures defined in (41)
and (42) follow directly, although all the elements for a
comparison are already included in (40).

4.1. Derivation of Mutual Information. The decision variable
for both the imperfect TR (cf. (25)) and AR (cf. (23)) can be
cast in the following form:

�̂�𝑘 = 𝑎𝑘𝑘𝑏𝑘 + 𝐾∑
𝑗=1
𝑗 ̸=𝑘

𝑎𝑘𝑗𝑏𝑗 + ]̂𝑘 = 𝑎𝑘𝑘𝑏𝑘 + 𝑆𝑘 + ]̂𝑘, (47)

where ]̂𝑘 = 𝑛𝑞𝑘 ∼ N(0,N0/2).
Let us specify and give an interpretation of the terms 𝑎𝑘𝑖,𝑖 = 1, . . . , 𝐾, for both TR and AR.

TR Coupling Coefficients. For TR, the term 𝑎𝑘𝑘 is given by

𝑎TR𝑘𝑘 = eT𝑞𝑘C𝑘𝛼𝑘 (T𝑘 + Ξ𝑘) x𝑘 = c←T
𝑘

t𝑘 + 𝜉𝑘t𝑘 + 𝜉𝑘
= cT𝑘

c𝑘 + 𝜉←𝑘c𝑘 + 𝜉←𝑘  ,
(48)

where k← ∈ R𝑛 denotes a vector with same components of
vector k in reversed order, i.e., [k←]𝑖 = k𝑛−𝑖+1, 1 ≤ 𝑖 ≤ 𝑛. The
term 𝑎𝑘𝑗, 𝑗 ̸= 𝑘, is

𝑎TR𝑘𝑗 = eT𝑞𝑘𝛼𝑗C𝑗 (T𝑗 + Ξ𝑗) x𝑗
= eT𝑞𝑘

1t𝑗 + 𝜉𝑗C𝑗 (t𝑗 + 𝜉𝑗)
= eT𝑞𝑘

1t𝑗 + 𝜉𝑗 (𝛾

𝑗 + 𝜁𝑗) ,

(49)

where 𝛾𝑖 = [0T𝑗x𝑖×1, 𝛾T𝑖 , 0T(𝑁i−𝑗x𝑖 )×1
]T being 𝛾𝑗 the (2(𝐿 + 1)i −1) × 1 autocorrelation sequence of (𝑐𝑗[ℓ])𝐿iℓ=0, and, similarly,

𝜁𝑖 = [0T𝑗x𝑖×1, 𝜁T𝑖 , 0T(𝑁i−𝑗x𝑖 )×1
]T with 𝜁𝑖 aGaussian randomvector

with non-identity correlation.
In order to provide an interpretation of the above expres-

sions, it is useful to start with the case of no estimation error.
In general, the decision variable at the output of the matched
filter of user 𝑘 is given by the 𝑞𝑘-th sample of the sum of both
intended and interference signals, plus noise. In the special
case of no estimation errors, 𝑎𝑘𝑘 = ‖c𝑘‖ is the square-root
energy of channel 𝑘, i.e., the maximum tap of the effective
channel, while 𝑎𝑘𝑗 is either equal to zero if the effective
channel of user 𝑗, that occupies 2(𝐿+1)i−1 out of𝑁i degrees
of freedom in a symbol period, is not present at delay 𝑞𝑘, or to
a random resolved path of the effective channel of user 𝑗, the
randomness owing to randomhopping and asynchronism. In
presence of estimation errors, 𝑎𝑘𝑘 is smaller than, although in
general in the neighbourhood of, the square-root energy of
channel 𝑘 due to the mismatch between ĥ𝑘 and h𝑘, and 𝑎𝑘𝑗 is
either equal to zero if the perturbed effective channel of user𝑗, that occupies 2(𝐿 + 1)i − 1 out of 𝑁i degrees of freedom
in a symbol period, is not present at delay 𝑞𝑘, or equal to a
random path of the perturbed effective channel of user 𝑗, the
perturbation owing to the imperfect channel estimation of
user 𝑗.
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AR Coupling Coefficients. For AR, the set of coupling coeffi-
cients {𝑎𝑘𝑖}𝐾𝑖=1 are

𝑎AR𝑘𝑘 = ĥT𝑘ĥ𝑘h𝑘 =
c𝑘2 + 𝜉T𝑘c𝑘, (50)

𝑎AR𝑘𝑗 = ĥT𝑘ĥ𝑘h𝑗, 𝑗 ̸= 𝑘 (51)

where ĥ𝑘 = h𝑘 + 𝜒𝑘, h𝑘 = C𝑘x𝑘, and 𝜒𝑘 = Ξ𝑘x𝑘.
We can think of ĥ𝑘/‖ĥ𝑘‖ as the perturbed direction along
which the received signal is projected in order to decode
user 𝑘; 𝑎AR𝑘𝑘 represents, therefore, the “mismatch” between the
perturbed andunperturbed channels of user 𝑘; 𝑎AR𝑘𝑗 represents
the coupling between user 𝑘, that is perturbed, and another
user 𝑗. As in the TR case, a channel impulse response occupies
a fraction, that is approximately equal to (𝐿 + 1)/𝑁, of the
available degrees of freedom in a symbol period; opposite of
the TR case, where the perturbation affects user 𝑗 in 𝑎TR𝑘𝑗 , user𝑘 is perturbed in the AR case (through ĥ𝑘) and user 𝑗 appears
with the true channel impulse response h𝑗.

Derivation. Being each term in the r.h.s. of (47) independent
of the other terms, mutual information 𝐼(𝑧𝑘; 𝑏𝑘) can be
derived once the distributions of 𝑎𝑘𝑘 and 𝑆𝑘 are known.
The former depends on both the random channel impulse
response and estimation errors of user 𝑘, and the latter on
the randomchannel impulse responses and estimation errors,
and the random delays with respect to user 𝑘. Hence, the
final form assumed by 𝐼(𝑧𝑘; 𝑏𝑘) strongly depends on the
channel model; however, in the following, the effect of the
time-hopping and random asynchronism will be enucleated,
without entering in the computation of a mutual information
when a particular channel model is adopted; this last task
was addressed by simulations, where ChannelModel 1 (CM1)
specified in the IEEE 802.15.3a standard [48], that is valid for
bandwidths up to several gigahertz, was selected. Details on
the settings and results of these simulations are provided in
Section 4.2.

In the case of TR, since the effective channel of user 𝑗
occupies a fraction𝑓 = (2(𝐿+1)i−1)/(𝑁i), and user 𝑘, due to
the assumptions on independence and uniformity of hopping
codes and asynchronism, selects uniformly at random one of
the𝑁i samples available per symbol period, then 𝑎𝑘𝑗, 𝑗 ̸= 𝑘,
is equal to zero with probability 1 − 𝑓, and is distributed as
the generic path of the effective channel h𝑗 with probability𝑓, that is

𝑃𝑎TR
𝑘𝑗
= (1 − 𝑓) 𝛿0 + 𝑓𝑃TR, (52)

where 𝑃TR indicates the distribution of the generic path of
the effective channel of user 𝑗 (that is independent of 𝑗). In
presence of estimation errors, the above argument holds, that
is, 𝑎𝑘𝑗, 𝑗 ̸= 𝑘, is equal to zero with probability 1 − 𝑓, and
is distributed as the generic path of the perturbed effective
channel ĥ𝑗 with probability 𝑓:

𝑃𝑎TR
𝑘𝑗
= (1 − 𝑓) 𝛿0 + 𝑓�̂�TR, (53)

where �̂�TR indicates the distribution of the generic path of the
perturbed effective channel of user 𝑗 (that is independent of𝑗).

In the case of AR, let us start by finding the distribution of𝑎𝑘𝑗, 𝑗 ̸= 𝑘, i.e., the coupling coefficient between two users in
absence of estimation error. Each channel spans a subspace of
dimension (𝐿+1)i in a space with (𝑁+𝐿+1)i−1 dimensions
(the number of degrees of freedom in a symbol period is𝑁i;
in the large system limit, as 𝑁 ≫ 𝐿, the difference between(𝑁+𝐿+1)i−1 and𝑁i due to the convolution is negligible.);
in otherwords, just (𝐿+1)i entries ofh𝑖 are nonzero. From the
hypotheses of independence and uniformity of delays due to
asynchronism between users and time-hopping codes, there
exists a probability 𝑓 such that the inner product hT𝑘h𝑗 is
nonzero, and the remaining probability 1 − 𝑓 that the inner
product is zero. We may think of the “nonzero event” as
the partial overlapping between two channels. As 𝑁 ≫ 𝐿,𝑓 ≈ (2(𝐿 + 1)i − 1)/(𝑁i) results, where the assumption𝑁 ≫ 𝐿 allows neglecting border effects. Indicating with 𝑃AR

the distribution of 𝑎AR𝑘𝑗 conditioned on the nonzero event, one
has the following:

𝑃𝑎AR
𝑘𝑗
= (1 − 𝑓) 𝛿0 + 𝑓𝑃AR. (54)

In presence of estimation errors, the above discussion
remains valid, since an error 𝜒𝑘 changes, in general, the
direction of vector ĥ𝑘 with respect to h𝑘, i.e., ĥ𝑘 and h𝑘, is,
in general, not colinear, but it does not change the subspace
spanned by the two channels, i.e., the subspace spanned by
the true channel is equal to the subspace spanned by the
perturbed channel. Indicating with �̂�AR the distribution of𝑎AR𝑘𝑗 conditioned on the nonzero event, one has the following:

𝑃𝑎AR
𝑘𝑗
= (1 − 𝑓) 𝛿0 + 𝑓�̂�AR. (55)

�̂�AR reduces to 𝑃AR when the estimation error is nil.
In terms of c.fs., (55) and (53) become the following:

𝜑𝑎𝑘𝑗 (𝑢) = E [𝑒𝑗𝑢𝛼] = 1 − 𝑓 (1 − 𝜑 (𝑢)) , (56)

where

𝜑 (𝑢) = ∫
R

𝑑𝛼𝑒𝑗𝛼𝑢�̂� (𝛼) , (57)

being �̂� equal to either �̂�AR or �̂�TR in (55) and (53),
respectively. In general, given two independent r.vs.𝑋 and 𝑌
and their product𝑍 = 𝑋𝑌, 𝜑𝑍(𝑢) = E[𝜑𝑌(𝑢𝑋)] = E[𝜑𝑋(𝑢𝑌)]
results; therefore, the r.v. 𝑎𝑘𝑗𝑏𝑗 has c.f.:
𝜑𝑎𝑘𝑗𝑏𝑗 (𝑢) = E [𝜑𝑎𝑘𝑗 (𝑏𝑗𝑢)] = 1 − 𝑓 (1 − E [𝜑 (𝑏𝑗𝑢)])

= 1 − 𝑓 (1 − 𝜑 (𝑢)) , (58)

where the expectation is taken with respect to 𝑏𝑗 ∼ N(0,E),
and𝜑(𝑢) is independent of 𝑗. Since {𝑎𝑘𝑗𝑏𝑗}with 𝑗 ∈ {1, . . . , 𝐾}\𝑘 are independent, 𝑆𝑘 has c.f.:

𝜑𝑆𝑘 (𝑢) = {1 − 2 (𝐿 + 1) i − 1𝑁i
(1 − 𝜑 (𝑢))}𝐾−1 , (59)
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that, in the large system limit, where 𝐾 → ∞, 𝑁 → ∞,𝐾/𝑁 → 𝛽, converges to
𝜑𝑆𝑘 (𝑢) = 𝑒−𝛽eff[1−𝜑(𝑢)] = ∑

𝑟≥0

𝛽𝑟
eff𝑟! 𝑒−𝛽eff [𝜑 (𝑢)]𝑟 , (60)

where 𝛽eff = 𝛽(2(𝐿 + 1)i − 1)/i is the effective load; without
multipath (𝐿 = 1) and one pulse per chip (i = 1), 𝛽eff reduces
to the usual load 𝛽 as given by 𝐾/𝑁. The interference-plus-
noise variable has thus c.f. given by the following:

𝜑𝑆𝑘+]̂𝑘 (𝑢) = 𝜑𝑆𝑘 (𝑢) 𝜑]̂𝑘 (𝑢) = 𝑒−𝛽eff[1−𝜑(𝑢)]−(𝜎2𝑁/2)𝑢2 . (61)

Knowing the distribution of 𝑧𝑘 conditioned on 𝑏𝑘, or
equivalently its c.f., mutual information 𝐼(𝑧𝑘; 𝑏𝑘) = ℎ(𝑧𝑘) −ℎ(𝑧𝑘 | 𝑏𝑘) follows directly. Hence, the c.f. of 𝑧𝑘 given 𝑏𝑘 is the
following:

𝜑�̂�𝑘|𝑏𝑘 (𝑢) = 𝜑𝑆𝑘+]̂𝑘 (𝑢) 𝜑𝑎𝑘𝑘 (𝑏𝑘𝑢) ; (62)

hence, the c.f. of �̂�𝑘 is as follows:
𝜑�̂�𝑘 (𝑢) = E [𝜑�̂�𝑘|𝑏𝑘 (𝑢)] = 𝜑𝑆𝑘+]̂𝑘 (𝑢)E [𝜑𝑎𝑘𝑘 (𝑏𝑘𝑢)] , (63)

where the expectation is over 𝑏𝑘 ∼ N(0,E). Explicitly, one
has the following:

ℎ (�̂�𝑘) = ∫
R

−𝑃𝑧𝑘 (𝑧) ln𝑃𝑧𝑘 (𝑧) 𝑑𝑧, (64)

where

𝑃𝑧𝑘 (𝑧) = 12𝜋 ∫
R

𝑑𝑢𝑒−𝑗𝑢𝑧𝜑�̂�𝑘 (𝑢) , (65)

and

ℎ (�̂�𝑘 | 𝑏𝑘) = ∫
R

Φ0,E (𝑏) ℎ (𝑎𝑘𝑘𝑏 + 𝑆𝑘 + ]̂𝑘)
= ∫

R

Φ0,E (𝑏) ∫
R

−𝑃𝑧𝑘|𝑏𝑘=𝑏 (𝑧) ln𝑃𝑧𝑘|𝑏𝑘=𝑏 (𝑧) 𝑑𝑧,
(66)

where Φ0,E denotes a Gaussian distribution with zero mean
and variance E, and

𝑃𝑧𝑘|𝑏𝑘=𝑏 (𝑧) = 12𝜋 ∫
R

𝑑𝑢𝑒−𝑗𝑢𝑧𝜑�̂�𝑘|𝑏𝑘=𝑏 (𝑢) . (67)

The above derivation allows one to find 𝐼(�̂�𝑘; �̂�𝑘) = ℎ(�̂�𝑘)−ℎ(�̂�𝑘 | 𝑏𝑘) as a function of the distribution �̂� of 𝑎𝑘𝑗, 𝑗 ̸= 𝑘,
and the distribution𝑃𝑎𝑘𝑘 accounting for the loss of correlation
incurred by the user to be decoded because of the estimation
error. Both �̂� and 𝑃𝑎𝑘𝑘 account for the channel model and the
estimation error, in particular its variance.

As baseline comparison, we also provide the following
lower bound 𝐼(�̂�𝑘; 𝑏𝑘) for 𝐼(�̂�𝑘; 𝑏𝑘), that is achieved when the
interference is Gaussian:

𝐼 (�̂�𝑘; 𝑏𝑘) ≥ 𝐼 (�̂�𝑘; 𝑏𝑘)
= E[12 ln(1 + E𝑎2𝑘𝑘

var [𝑆𝑘] + var []̂𝑘])] ,
(68)

where the expectation is over 𝑎𝑘𝑘.The corresponding spectral
efficiency lower bound isR = (𝛽/i)𝐼(�̂�𝑘; 𝑏𝑘) (cf. (42)).

Results are shown on Figure 6, whereR (solid curve) and
R (dashed curve) are presented as a function of E/𝜎2𝑁, for
different values of 𝛽 and 𝜎2𝜉 . The receiver structure shows a
mutual information floor at high SNR. By comparing Figures
6(a) and 6(b), one observes that R increases sublinearly as𝛽 increases, while by comparing Figures 6(a) and 6(c), or
Figures 6(b) and 6(d), a reduction in spectral efficiency due
to the presence of an estimation error is observed. R scales
with i as shown on Figures 6(e) and 6(f).

For all results presented in Figure 6, AR outperforms TR,
again indicating that, under the assumptions considered in
this work, performance of TR is significantly degraded by
channel estimation errors. It is interesting to note, however,
that the gap R − R can be interpreted as a measure of the
non-Gaussianity of �̂�𝑘 and �̂�𝑘 | 𝑏𝑘, and is indeed higher in the
TR case with respect to the AR case, because of the different
distribution of the interference term. A detailed discussion
on the characteristics of interference is provided in the next
subsection.

4.2. Impact of Channel Model and Interference Distribution.
As previously said, the distributions of the channel paths and
in turn of the coupling coefficients used in (52)-(55) depend
on the channel model and were obtained by simulation. All
simulations were carried out for a system with fixed chip
duration 𝑇c = 1 ns and bandwidthW = i/𝑇c. Power control
was assumed; in particular, ‖c𝑘‖2 = 1 for all users, 𝑘 =1, . . . , 𝐾. The delay spread of each channel impulse response
was fixed at a value 𝑇𝑑 = 50 ns that includes most of the
energy of typical CM1 channels. For a given bandwidth W,
the length of the channel expressed in number of samples per
channel is 𝑇𝑑W; i.e., c𝑘 is a (⌊𝑇𝑑W⌋ + 1) × 1 vector.

Figure 7 shows the distributions 𝑃TR, �̂�TR, 𝑃AR, and �̂�AR

in (52), (53), (54), and (55), respectively, and the distribution𝑃𝑎 of the term 𝑎𝑘𝑘.
Figure 7(a) versus Figure 7(b), in particular, shows the

distributions of the coupling coefficient 𝑎𝑘𝑗, 𝑗 ̸= 𝑘, in case of
no estimation errors, for AR and TR, respectively. As may be
expected, the variance of the latter is larger than the variance
of the former, as follows from the property of TR to increase
the total energy of the effective channel; in the specific case,
one has var[𝑎AR𝑘𝑗 ] ≈ 0.0099, while var[𝑎TR𝑘𝑗 ] ≈ 0.0173. In
Figure 7(b) the presence of a strong interference (𝑎TR𝑘𝑗 = 1)
is highlighted, not present in the AR case; this is coherent
with the fact that, in the TR case, there is, indeed, among the2(𝐿 + 1)i − 1 paths of the effective channel, one path with
amplitude equal to the square-root energy of the channel,‖c𝑘‖ = 1, that is, therefore, selected with probability 1/(2(𝐿 +1)i − 1). 𝑃TR is also more leptokurtic than 𝑃AR, showing
a kurtosis approximately equal to 34 for TR versus 12 for
the AR variable. Figure 7(c) versus Figure 7(d) shows the
distributions of the coupling coefficient 𝑎𝑘𝑗, 𝑗 ̸= 𝑘, in case
of estimation error with per sample variance 𝜎2𝜉 = 0.01, for
AR and TR, respectively. Even in presence of CSI estimation
error, both variance and kurtosis of TR are larger than those
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Figure 6: Spectral efficiencyR (solid curve) and lower bound assuming Gaussian interference (dashed curve) versus SNR = E/𝜎2
𝑁 (dB) for

different values of load 𝛽 and error variance 𝜎2
𝜉 . Impulsiveness index is fixed to i = 1 in Figs. from (a) to (d) and to i = 2 in Figs. (e) and (f).

of AR; in particular, one has var[𝑎AR𝑘𝑗 ] ≈ 0.0099 versus
var[𝑎TR𝑘𝑗 ] ≈ 0.0149, and kurt[𝑎AR𝑘𝑗 ] ≈ 6.9 versus kurt[𝑎TR𝑘𝑗 ] ≈21.7. Figure 7(e) shows the distribution of the term 𝑎𝑘𝑘, that
is the same for both TR and AR, and is represented for 𝜎2𝜉 =0.01.

Figure 8 shows distributions 𝑃, 𝑃𝑆, 𝑃], and 𝑃𝑆+]̂, that
correspond to c.fs. 𝜑, 𝜑𝑆, 𝜑]̂, and 𝜑𝑆+]̂ defined above, for
different values of 𝜎2𝜉 and SNR = E/𝜎2𝑁, and fixed value of

load 𝛽 = 0.1. Figures 8(a) and 8(b) show a noise-limited
scenario, where SNR = 0 dB, without and with estimation
errors, respectively: simulations show that the interference-
plus-noise variable is not significantly affected by estimation
errors (cf. 𝑃𝑆+] and 𝑃𝑆+]̂ curves), although 𝑃𝑆, as well as 𝑃,
becomes less leptokurtic in presence of estimation errors.
Figures 8(c) and 8(d) show an interference-limited scenario,
where SNR = 20 dB: in this case 𝑃𝑆 is far from Gaussian, and
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Figure 7: PDFs �̂� and 𝑃𝑎 of the variables 𝑎𝑘𝑗, 𝑗 ̸= 𝑘, and 𝑎𝑘𝑘, respectively. Distributions do not depend on the particular user 𝑘. Figs. (a) and
(b) correspond to a variable 𝑎𝑘𝑗, 𝑗 ̸= 𝑘, in systems without estimation errors; Figs. (c) and (d) correspond to a variable 𝑎𝑘𝑗, 𝑗 ̸= 𝑘, in systems
with estimation errors with variance 𝜎2

𝜉 = 0.01; Fig. (e) corresponds to a variable 𝑎𝑘𝑘 in systems with the same error variance.

so is the interference-plus-noise PDF 𝑃𝑆+]; the effect of the
estimation error is to decrease the kurtosis of 𝑃𝑆, and so that
of 𝑃𝑆+].

As a summary, results show that TR leads to a more
leptokurtic interference distribution, even in presence of
estimation errors. It was however shown in the past that
the non-Gaussianity of interference can be taken advantage
of by an adapted receiver structure [43, 49]: it can be thus
expected that TR could benefit more than AR in case a
different receiver structure taking into account the non-
Gaussianity of interference were to be adopted and in turn
reduce or compensate the gap in performance observed with
the receiver considered in this work, not adapted to the MUI
distribution. The performance improvement would heavily
depend on the specific channel characteristics, suggesting
that the choice between AR and TR should be performed
taking into account the characteristics of the signal and of the
propagation channel.

5. Conclusions and Future Investigations

In this paper the problem of characterizing system perfor-
mance for single-antenna systems using TR in the case of

imperfect channel estimation was addressed. The reference
network model included one BS and several UTs, and
the uplink communication channel was considered in the
investigation, representing a scenario where devices with
similar characteristics play different role in a D2D network.
TR was compared against a reference configuration with no
prefiltering and AR at the receiver.

The effect of imperfect channel estimation on both
transceiver configurations was analyzed, also taking into
account the degree of impulsiveness of the transmission
waveform. Channel estimation error wasmodeled as an addi-
tive Gaussian noise based on the output of a training phase
that was used to tune transmitter and receiver structures.The
comparison was performed for both the single user channel
and the multiuser channel with power control. Modeling
of the channels was obtained based on the 802.15.3a CM1
model. The two communication schemes, TR and AR, were
compared based on two different performance indicators:
probability of error and mutual information as a function of
signal-to-noise ratio.

Results highlighted that, for the single user channel,
probability of error for TR and AR coincided, while for the
multiuser channel, the two schemes had similar performance
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Figure 8: PDF 𝑃 of interfering terms 𝑎𝑘𝑗𝑏𝑗, 𝑗 ̸= 𝑘, given 𝑎𝑘𝑗 ̸= 0, 𝑃] of the noise variable ]̂𝑘, 𝑃𝑆 of interference 𝑆𝑘, and 𝑃𝑆+]̂ of interference-
plus-noise 𝑆𝑘 + ]̂𝑘. Error variance 𝜎2

𝜉 and SNR = E/𝜎2
𝑁 are specified below each subfigure. The noise variance 𝜎2

𝑁 is normalized to 1. The load𝛽 of the network is fixed and equal to 𝛽 = 0.1. Solid versus dashed curves refer to TR versus AR, respectively.

when the load, as measured by the ratio between the number
of terminals𝐾 and the number of chips𝑁 in a symbol period,𝛽 = 𝐾/𝑁, was the main cause of error, irrespectively of
the degree of impulsiveness; oppositely, AR outperformed
TR when imperfect CSI was the main cause of error in
impulsive systems, suggesting a higher robustness of AR
to CSI estimation error, related to the different number of
resolvable paths between the two schemes.

In terms of spectral efficiency, a lower bound expression
was provided, and the two schemes were analyzed under
different impulsiveness index i and load 𝛽. Results expressed
by spectral efficiencyR (nats/s/Hz) as a function of signal-to-
noise ratio indicated that, for low-SNR,Rwas similar for the
two systems, while, for higher SNR values, AR outperformed
TR. In all cases, however, TR led to a more leptokurtic MUI
noise.

In summary the following observations can be drawn
based on the analysis carried out in this work: (1) both AR
and TR benefit from the use of a more impulsive waveform,

with an increase in robustness to CSI estimation errors; (2)
AR outperforms TR if a simple receiver not matched to the
MUI statistics is taken into account; (3) the MUI statistics
confirm however that, even in presence of CSI estimation
error, TR leads to a significantly non-Gaussian MUI, that
could be taken advantage of with a different receiver structure
adapted to the MUI, possibly compensating the gap between
TR and AR.

Future work will indeed investigate the use of different
receiver structures capable of taking advantage of the pro-
nounced non-Gaussianity of interference in the TR case but
will also extend the work towards more complex receiver
schemes, such as multiuser detection, to provide a fair
comparison.
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