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a b s t r a c t

In this paper, we solve in the convergence set, the fractional logistic equation making
use of Euler’s numbers. To our knowledge, the answer is still an open question. The key
point is that the coefficients can be connected with Euler’s numbers, and then they can be
explicitly given. The constrained of our approach is that the formula is not valid outside
the convergence set. The idea of the proof consists to explore some analogies with logistic
function and Euler’s numbers, and then to generalize them in the fractional case.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The logistic function

A logistic function is

u(t) =
u0

u0 + (1 − u0)e−t/M (1.1)

with M positive and u0 positive and less than 1. The function was introduced by Pierre Francois Verhulst [1] to model the
population growth. At the beginning of the process the growth of the population is fast; then, as saturation process begins,
the growth slows, and then growth is close to be flat.

The logistic function is solution of the logistic differential equation

u′(t) =
1
M

(u(t) − u2(t))

with initial condition

u(0) = u0.

The key assumptions in the logistic model are:

- The population is composed by individual not distinguishable;
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- The population is isolated;
- Self-limiting growth, that is an intrinsic mechanism of saturation holds when the density of population reaches a

certain level.

These basic assumptions may be checked in laboratory for biological diffusion. At least for bounded time they agree to
the experience, hence they may be adopted to describe phenomena as biological models of tumour growth [2–5]. As well
many processes may be modelled by the logistic differential equation, or generalization of it, and the applications are wide
and in different field of applications [6].

Sharing the applications with the logistic case, the fractional equation is a model for the growth of a given population,
describing the population behaviour and showing an increase, a saturation and a flat asymptotic behaviour. The global shape
is also respected by the fractional logistic case by numerical evidence; however, some peculiar differences show that the
fractional model is a good candidate to model a memory effect on the population (see (1.7)) and that the fractional order
may bemodified along the process in order to constrain the growth (see for example [7] for the estimation of fractional order
by observations).

The problem to give a solution of the fractional logistic equation was unsolved and several attempts have been done (see
for instance [8–11]). A close answer from an empirical point of view is contained in [12]. The solution we propose here has
an exact representation given by a closed formula for the coefficients in the convergence set. The convergence analysis is
stated in Theorem 3.1

A model considering a modified logistic equation has been also treated in [13].
To our knowledge, from amathematical point of view, the fractional logistic function is undefined. This paper answers to

the question for limited time. The observation is that for any positive t less than π , denoted by u the logistic function (with
all the parameters simplified) the equality holds true

u(t) =
1
2

∑
k≥0

Ek
k!

tk, (1.2)

with Ek the Euler’s numbers. In the next subsection we explore this point.

1.2. The logistic fractional function

In this subsection we introduce the logistic fractional function. As usual by Γ we denote

Γ (x) =

∫
+∞

0
tx−1e−tdt

for any real positive x.
Let R > 0 fixed. In (0, R), we introduce the function

w(t) =

∑
k≥0

Eβ

k

Mβk

tβk

Γ (βk + 1)
, M ≥ 1, β ∈ (0, 1), t < R (1.3)

where the Euler’s β-numbers {Eβ

k }k∈N0 are defined here by considering the relation

Eβ

k+1 = −

∑
i,j

i+j=k

Γ (βk + 1)
Γ (βi + 1)Γ (βj + 1)

Eβ

i E
β

j

= −
1

βk + 1

∑
i,j

i+j=k

Eβ

i E
β

j

B(βi + 1, βj + 1)
, k ∈ 2N (1.4)

together with the logistic constrains

Eβ

1 = Eβ

0 − (Eβ

0 )
2,

Eβ

0 = 1/2.
(1.5)

The result we obtain is that, in the convergence set, the function w is solution (in the Caputo sense) of the fractional
logistic equation. We recall that the Caputo fractional derivative is given by

∗Dβ
t w(t) :=

1
Γ (1 − β)

∫ t

0

w′(s)
(t − s)β

ds, t > 0, β ∈ (0, 1)

with w′(s) = dw/ds. Thus, the fractional logistic equation is

∗Dβ
t w =

1
Mβ

w(1 − w) (1.6)
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forM = 1. The proof of this result leads to introduce a new class of numbers that corresponds to Euler’s numbers for special
value of the fractional order. This new class that we called generalized Euler’s numbers has an interest by itself. As we will
see in the paper they share with the Euler’s numbers properties helpful to find solutions. The method we propose here is
suggested by the logistic case and goes back to the exact solution to the logistic equation in (0, π ). However, in the fractional
logistic case other considerations are no more valid to solve the problem in the whole positive line.

The fractional equation (1.6) has the following interesting integro-differential counterpart

dw
dt

=
1
Mβ

1
Γ (β)

∫ t

0
(w(s) − w2(s))(t − s)β−1ds (1.7)

that we also consider further on.

2. Logistic equation and fractional derivatives

2.1. The Euler’s numbers

We first recall the Euler’s polynomials

Ek(x) =
1

k + 1

k∑
s=0

(
k + 1

s

)
2s Bs(x/2)

where the Bernoulli polynomials can be written as

Bs(x) =

s∑
j=0

(
s
j

)
bs−j xj

in terms of the Bernoulli numbers bj = Bj(0) (usually denoted by B−

j ). In particular,

b0 = 1, b1 = −
1
2
, b2 =

1
6
, b3 = 0, b4 = −

1
30

, b5 = 0, b6 =
1
42

, b7 = 0, b8 = −
1
30

, . . .

We recall the useful formula

Ek(x) =

k∑
s=0

(
k
s

)
Ek
2k

(
x −

1
2

)k

.

We also recall some explicit case of the Euler’s polynomial

E0(x) = 1, E1(x) = x −
1
2
, E2(x) = x2 − x, E3(x) = x2 −

3
2
x2 +

1
4
, E4(x) = x4 − 2x3 + x, . . .

and the Euler’s numbers are usually referred to as 2kEk( 12 ). Here, we consider the Euler’s polynomials at x = 1 and, in
particular we have that the Euler’s numbers Ek = Ek(1) are given by

E0 = 1, E1 =
1
2
, E2 = 0, E3 = −

1
4
, E4 = 0, . . . .

We refer to the book [14, formulas from no. 9.6] for details on this topic.

2.2. The logistic equation

Let us consider the generating function ([14, formula no. 9.65])

ext

1 + et
=

1
2

∑
k≥0

Ek(x)
tk

k!
, |t| < π (2.1)

of the Euler’s polynomials Ek(x) introduced above. For k odd, we have that (see [15, Corollary 3])

(−1)
k+1
2

π k+1

4Γ (k + 1)
Ek(x) → cos(πx) as k → ∞.

We immediately recover the uniform convergence for the series (2.1) on compact subsets of C.
For the sake of simplicity we now assume that M = 1 in (1.1). Throughout, we consider the function (1.1) written as in

(1.2), that is formula (2.1) with x = 1. This is a special case obtained form (3.1) with β = 1. Indeed, we show that, for β = 1,

E1
k =

Ek
2

=
Ek(1)
2

(2.2)

where Ek = Ek(1) are the Euler’s polynomials evaluated at x = 1.
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Remark 2.1. Observe that,

U(t) =

∑
k≥0

(
a

g(t)

)k

=
g(t)

a + g(t)
=

(
1 + e−

∫ t
0 v(s)ds

)−1
, g(t) < a

where v(s) = (ln g(s))′ 1(g(s)>a) solves the logistic equation

U ′
= (ln g)′

(
U − U2) , g(t) < a.

For the sake of simplicity we equals to one the growth rate and the carrying capacity considered in the literature. Thus,
(1−u) is the biological potential describing the density dependence, if negative, the population decreases back to the carrying
capacity. The logistic model may be generalized as follow

KΦ
∗ u′

= f (u)

where

(KΦ
∗ u′)(t) :=

∫ t

0
KΦ (t − s) u′(s) ds.

and

f (u) = u(1 − u). (2.3)

Definition 1. A function φ : (0, ∞) ↦→ R is a Bernstein function if φ is of class C∞, φ(λ) ≥ 0 for all λ > 0 and

− (−1)nφ(n)(λ) ≥ 0 for all n ∈ N and λ > 0.

We introduce the Bernstein function

Φ(λ) =

∫
∞

0

(
1 − e−λz)Π (dz) (2.4)

with
Φ(λ)

λ
=

∫
∞

0
e−λzΠ ((z, ∞))dz (2.5)

where Π on (0, ∞) with
∫
(1 ∧ z)Π (dz) < ∞ is the associated Lévy measure (and Π ((z, ∞)) is the tail of the Lévy measure

Π ). If Φ(λ) = λβ for instance, we have that

Π (dz) =
β

Γ (1 − β)
z−β−1dz and Π ((z, ∞)) =

z−β

Γ (1 − β)
.

Let M > 0 and w ≥ 0. Let Mω be the set of (piecewise) continuous function on [0, ∞) of exponential order ω such that
|u(t)| ≤ Meωt . Denote by ũ the Laplace transform of u. Then, we define the operatorDΦ

t : Mω ↦→ Mω such that∫
∞

0
e−λtDΦ

t u(t) dt = Φ(λ)̃u(λ) −
Φ(λ)

λ
u(0), λ > ω

where Φ is given in (2.4). Since u is exponentially bounded, the integral ũ is absolutely convergent for λ > ω. By Lerch’s
theorem the inverse Laplace transforms u andDΦ

t u are uniquely defined. Since

Φ(λ)̃u(λ) −
Φ(λ)

λ
u(0) = (λ̃u(λ) − u(0))

Φ(λ)
λ

(2.6)

the operator DΦ
t can be written as a convolution involving the ordinary derivative and the inverse transform of (2.5) iff

u ∈ Mω ∩ C([0, ∞),R+) and u′
∈ Mω . Throughout we consider

DΦ
t u = f (u). (2.7)

For different definitions and representations of the operatorDΦ
t the interested reader can also see the recent works [16–18]

and [19,20] for fractional calculus and derivatives.

Remark 2.2. We observe that for Φ(λ) = λ (that is we deal with the ordinary derivative) we have that Eq. (2.7) becomes
the logistic equation.

Remark 2.3. If Φ(λ) = λβ , the operatorDΦ
t becomes the Caputo fractional derivative

DΦ
t u(t) =

∗Dβ
t u(t) :=

1
Γ (1 − β)

∫ t

0

u′(s)
(t − s)β

ds, t > 0, β ∈ (0, 1)
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with u′(s) = du/ds. Thus, Eq. (2.7) becomes the equation

∗Dβ
t u = f (u) (2.8)

which is well-known in the literature as the fractional logistic equation.

Remark 2.4. A further example is given by the symbol Φ(λ) = λ2β
+ λβ for β ∈ (0, 1/2), that is,DΦ

t becomes the telegraph
fractional operator. Since we have infinite Bernstein function, then we can define a number of fractional operators together
with the correspond fractional equations (2.7).

We denote by Dβ
t the Riemann–Liouville derivative

Dβ
t u(t) :=

1
Γ (1 − β)

d
dt

∫ t

0

u(s)
(t − s)β

ds, t > 0, β ∈ (0, 1)

with Laplace transform∫
∞

0
e−λtDβ

t u(t) dt = λβ ũ(λ).

We recall that∫
∞

0
e−λt ∗Dβ

t u(t) dt = λβ ũ(λ) − λβ−1u(0).

We also recall the Stirling’s approximation for the Gamma function

Γ (x) :=

∫
∞

0
e−zzx−1dz ∼

√
2πx

(x
e

)x
and the Beta function

B(x, y) :=

∫ 1

0
zx−1(1 − z)y−1dz ∼

√
2π

xx−1/2yy−1/2

(x + y)x+y−1/2 (2.9)

for large values of x > 0 and y > 0. Moreover, the following bounds hold true [21]

B(x, y) ≤
1
xy

, x, y > 1 (2.10)

and [22]

2x−1
≤ Γ (x + 1) ≤ 1, 0 ≤ x ≤ 1. (2.11)

We also consider the following bounds for the Gamma function [23]

xx−γ

ex−1 < Γ (x) <
xx−1/2

ex−1 , x > 1 (2.12)

where

γ ≈ 0.577215. (2.13)

is the Euler–Mascheroni constant. Note that, from (2.9),

Γ (1 − β) |∗Dβ
t u| ≤

∫ t

0
|u′(s)|(t − s)−βds ≤ B(1 + θ, 1 − β) if |u′(t)| ≤ tθ , θ > −1

and, from (2.11) and the fact that (1 − β)Γ (1 − β) = Γ (2 − β) we have that

|
∗Dβ

t u| ≤ (1 − β)B(1 + θ, 1 − β) ≤ B(1 + θ, 1 − β).

From the Laplace transform (2.6), by Young’s inequality, we obtain that∫
∞

0
|DΦ

t u|
pdt ≤

(∫
∞

0
|u′

|
pdt
)(

lim
λ↓0

Φ(λ)
λ

)p

, p ∈ [1, ∞) (2.14)

where limλ↓0Φ(λ)/λ is finite only in some cases.
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3. Fractional logistic equation: Main result and proof

3.1. The fractional equation

Let R > 0. We consider the function

w(t) =

∑
k≥0

Eβ

k

Mβk

tβk

Γ (βk + 1)
, M ≥ 1, β ∈ (0, 1), t < R (3.1)

where

Eβ

k+1 = −

∑
i,j

i+j=k

Γ (βk + 1)
Γ (βi + 1)Γ (βj + 1)

Eβ

i E
β

j

= −
1

βk + 1

∑
i,j

i+j=k

Eβ

i E
β

j

B(βi + 1, βj + 1)
, k ∈ 2N (3.2)

with the logistic constrains

Eβ

1 = Eβ

0 − (Eβ

0 )
2,

Eβ

0 = 1/2.
(3.3)

We refer to the sequence of Euler’s fractional numbers {Eβ
n }n∈N0 as the Euler’s β-numbers (we introduce the Euler’s Φ-

number further on).
We are not able to prove absolute or uniform convergence of (3.1) in (0, R). Our approach is therefore focused on the

Weierstrass M-test in order to obtain different intervals of convergence depending on the fractional order β for different
values ofβ . Thus,weobtain that (3.1) is convergent in some subsets of (0, R), that isw(t) is absolutely convergent∀ t ∈ (0, rβ ).
In particular, we have uniform convergence in (0, rβ ). Each interval of convergence turns out to be given in terms ofβ ∈ (0, 1]
and it depends continuously on β . As β increases to onewe recover the solution to the logistic equation and the convergence
in (0, π ) of u′ and u in (1.2) has been extensively investigated in the literature. Concerning the differentiation of w for
β ∈ (0, 1) we easily have convergence on (0, rβ ) from (1.6) and the uniform convergence of the product of uniformly
convergent series.

Theorem 3.1. Let β ∈ (0, 1), M > 1, 0 < rβ < R. Let γ be the Euler–Mascheroni constant. The series (3.1) uniformly converges
in each compact subsets of (0, rβ ). In particular,

(i) we have that

rβ = M
(

Γ (β + 1)Γ (3β + 1)
Γ (2β + 1)

) 1
2β

and rβ ↓ M as β ↓ 0, rβ ↑ Mc1 as β ↑ 1 where c1 ≈ 1.732051.
(ii) Moreover,

rβ ≥ ρβ = M

(
2β

eβ

(
3β + 1
2β + 1

)2β+1/2

(3β + 1)β+(1/2−γ )

) 1
2β

and ρβ ↑ Mc2 as β ↑ 1 where c2 ≈ 1.647524.

The series (3.1) solves the fractional logistic equation

∗Dβ
t w(t) =

1
Mβ

w(t)
(
1 − w(t)

)
, w(0) = 1/2. (3.4)

Proof. We first show that (3.1) solves (3.4) pointwise and then we study the convergence of (3.1).
(1) The Riemann–Liouville derivative of w gives the series

Dβ
t w(t) =

∑
k≥0

Eβ

k

Mβk
tβk−β

Γ (βk + 1 − β)
= Eβ

0
t−β

Γ (1 − β)
+

∑
k≥1

Eβ

k

Mβk

tβk−β

Γ (βk + 1 − β)

that is, the Caputo derivative of w is given by

∗Dβ
t w(t) = Dβ

t (w(t) − w(0)) =

∑
k≥0

Eβ

k+1

Mβ(k+1)

tβk

Γ (βk + 1)
.
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Let Lw = w − w2 be the logistic operator. From (3.1) we have that

Lw(t) =

∑
k≥0

Eβ

k

Mβk

tβk

Γ (βk + 1)
−

∑
k≥0

∑
s≥0

Eβ

k

Mβk

tβk

Γ (βk + 1)
Eβ
s

Mβs

tβs

Γ (βs + 1)

= Eβ

0 − Eβ

0 E
β

0

+

(
Eβ

1

Γ (β + 1)
− 2

Eβ

0 E
β

1

Γ (β + 1)

)
tβ

Mβ

+

(
Eβ

2

Γ (2β + 1)
− 2

Eβ

0 E
β

2

Γ (2β + 1)
−

Eβ

1 E
β

1

Γ (β + 1)Γ (β + 1)

)
t2β

M2β

+

(
Eβ

3

Γ (3β + 1)
− 2

Eβ

0 E
β

3

Γ (3β + 1)
− 2

Eβ

1 E
β

2

Γ (β + 1)Γ (2β + 1)

)
t3β

M3β

+

(
Eβ

4

Γ (4β + 1)
− 2

Eβ

0 E
β

4

Γ (4β + 1)
− 2

Eβ

1 E
β

3

Γ (β + 1)Γ (3β + 1)
−

Eβ

2 E
β

2

Γ (2β + 1)Γ (2β + 1)

)
t4β

M4β

+ . . . .

Under the constrains (3.3) we obtain the coefficients Eβ

k for k > 1. In particular, we have that

1
Mβ

Eβ

2

Γ (β + 1)
=

Eβ

1

Γ (β + 1)
− 2

Eβ

0 E
β

1

Γ (β + 1)
1
Mβ

Eβ

3

Γ (2β + 1)
= −

Eβ

1 E
β

1

Γ (β + 1)Γ (β + 1)
1
Mβ

Eβ

4

Γ (3β + 1)
=

Eβ

3

Γ (3β + 1)
− 2

Eβ

0 E
β

3

Γ (3β + 1)
1
Mβ

Eβ

5

Γ (4β + 1)
= − 2

Eβ

1 E
β

3

Γ (β + 1)Γ (3β + 1)
1
Mβ

Eβ

6

Γ (5β + 1)
=

Eβ

5

Γ (5β + 1)
− 2

Eβ

0 E
β

5

Γ (5β + 1)
1
Mβ

Eβ

7

Γ (6β + 1)
= − 2

Eβ

1 E
β

5

Γ (β + 1)Γ (5β + 1)
−

Eβ

3 E
β

3

Γ (3β + 1)Γ (3β + 1)
1
Mβ

Eβ

8

Γ (7β + 1)
=

Eβ

7

Γ (7β + 1)
− 2

Eβ

0 E
β

7

Γ (7β + 1)
1
Mβ

Eβ

9

Γ (8β + 1)
= − 2

Eβ

1 E
β

7

Γ (β + 1)Γ (7β + 1)
− 2

Eβ

3 E
β

5

Γ (3β + 1)Γ (5β + 1)
1
Mβ

Eβ

11

Γ (10β + 1)
= − 2

Eβ

1 E
β

9

Γ (β + 1)Γ (9β + 1)
− 2

Eβ

3 E
β

7

Γ (3β + 1)Γ (7β + 1)
−

Eβ

5 E
β

5

Γ (5β + 1)Γ (5β + 1)
that is

1
Mβ

Eβ

n+1 = −

∑
i,j

i+j=n

Γ (nβ + 1)
Γ (iβ + 1)Γ (jβ + 1)

Eβ

i E
β

j .

As a consequence of the logistic conditions (3.3) we have that Eβ

2k = 0.
(2) Now we prove uniform convergence of (3.1). We first rewrite the coefficient Eβ

k as follows

Eβ

1 = + Γ (β + 1)

(
Eβ

1

Γ (β + 1)

)
= 1/4

Eβ

3 = − Γ (2β + 1)

(
Eβ

1

Γ (β + 1)

)2

Eβ

5 = + 2Γ (4β + 1)
Γ (2β + 1)
Γ (3β + 1)

(
Eβ

1

Γ (β + 1)

)3
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Eβ

7 = − 22Γ (6β + 1)

[
Γ (4β + 1)Γ (2β + 1)
Γ (5β + 1)Γ (3β + 1)

+
1
4

(
Γ (2β + 1)
Γ (3β + 1)

)2
](

Eβ

1

Γ (β + 1)

)4

Eβ

9 = + 23Γ (8β + 1)

[
Γ (6β + 1)Γ (4β + 1)Γ (2β + 1)
Γ (7β + 1)Γ (5β + 1)Γ (3β + 1)

+
1
2

Γ (4β + 1)
Γ (5β + 1)

(
Γ (2β + 1)
Γ (3β + 1)

)2

+

+ 23Γ (8β + 1) +
1
4

Γ (6β + 1)
Γ (7β + 1)

(
Γ (2β + 1)
Γ (3β + 1)

)2
](

Eβ

1

Γ (β + 1)

)5

from which we get that, for n ≥ 2, the following representation holds true

Eβ

n+1

Γ ((n + 1)β + 1)
=

(−2)n/2

2

(
Eβ

1

Γ (β + 1)

) n
2 +1

⎛⎝ n/2∏
j=1

Γ (2jβ + 1)
Γ ((2j + 1)β + 1)

+ Rn

⎞⎠ .

Since

Aj :=
Γ (2jβ + 1)

Γ ((2j + 1)β + 1)
< Aj−1 (3.5)

we obtain that

Rn ≤ 2n/2
n/2∏
j=1

Γ (2jβ + 1)
Γ ((2j + 1)β + 1)

and therefore, we have that⏐⏐⏐⏐ Eβ

n+1

Γ ((n + 1)β + 1)

⏐⏐⏐⏐ ≤ 4n/2

(
Eβ

1

Γ (β + 1)

) n
2 +1 n/2∏

j=1

Γ (2jβ + 1)
Γ ((2j + 1)β + 1)

.

From (3.5), we also obtain that
n/2∏
j=1

Γ (2jβ + 1)
Γ ((2j + 1)β + 1)

≤

(
Γ (2β + 1)
Γ (3β + 1)

)n/2

and therefore,⏐⏐⏐⏐ Eβ

n+1

Γ ((n + 1)β + 1)

⏐⏐⏐⏐ ≤
Eβ

1

Γ (β + 1)

(
4

Eβ

1

Γ (β + 1)
Γ (2β + 1)
Γ (3β + 1)

)n/2

. (3.6)

Since Eβ

2k = 0, further on we write Eβ

2k+1 instead of Eβ

n+1. We now continue our analysis from (3.6) and obtain two related
results:
(i) The first result immediately follows by considering that∑

k≥1

⏐⏐⏐⏐ Eβ

2k+1

Γ ((2k + 1)β + 1)

⏐⏐⏐⏐ tβ(2k+1)

Mβ(2k+1) ≤
Eβ

1

Γ (β + 1)
tβ

Mβ

∑
k≥1

ak
t2βk

M2βk

where

ak :=

(
4

Eβ

1

Γ (β + 1)
Γ (2β + 1)
Γ (3β + 1)

)k

and, we recall that Eβ

1 = 1/4. Then, the majorant series converges uniformly in (0, rβ ) and

rβ = M
(

Γ (2β + 1)
Γ (β + 1)Γ (3β + 1)

)−
1
2β

with β ∈ (0, 1)

which increases as β ↑ 1. Without loss of generality we considerM = 1. Thus, rβ →
√
3 ≈ 1.732051 as β → 1.

(ii) By taking into account (2.12) and the left-hand side of (2.11) for 1/Γ (β + 1), we get that⏐⏐⏐⏐ Eβ

2k+1

Γ ((2k + 1)β + 1)

⏐⏐⏐⏐ ≤
Eβ

1

Γ (β + 1)

(
2
2β

(
2β + 1
3β + 1

)2β+1/2 eβ

(3β + 1)β+1/2−γ

)k

=: bk. (3.7)
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The series∑
k≥1

bk
tβ(2k+1)

Mβ(2k+1)

uniformly converges in (0, rβ ) with β ∈ (0, 1) and

rβ = M

(
2β−1

eβ

(
3β + 1
2β + 1

)2β+1/2

(3β + 1)β+(1/2−γ )

) 1
2β

.

ForM = 1, we have that rβ ↑ 1.647524 as β → 1. □

3.2. Integro-differential equation

Let us focus on the Sonine kernels

κ(t) =
t−β

Γ (1 − β)
, κ(t) =

tβ−1

Γ (β)

for which we have that

(κ ∗ κ)(t) :=

∫ t

0
κ(s)κ(t − s)ds =

1
Γ (1 − β)Γ (β)

∫ 1

0
s(1−β)−1(1 − s)β−1ds = 1.

By considering the Laplace transform techniques, we immediately have that

(∗Dα
t u ∗ κ)(t) =

∗Dα−β
t u

and
d
dt

(∗Dβ
t u ∗ κ)(t) =

du
dt

.

The Eq. (3.4) can be therefore rewritten as

dw
dt

=
1
Mβ

1
Γ (β)

∫ t

0
(w(s) − w2(s))(t − s)β−1ds (3.8)

where a singular kernel is involved. We underline that the function (3.1) solves the integro-differential equation (3.8) and
the fractional logistic equations (3.4).

Roughly speaking, we can study the solution to DΦ
t u = f (u) by considering the equation u′

= κΦ
∗ f (u) where κΦ is a

kernel depending on the symbol Φ .

3.3. The Euler’s Φ-numbers

The Euler’s β-numbers have been introduced in the previous section as the sequence

Eβ

0 = 1/2, Eβ

1 = 1/4, Eβ

k+1 as in (3.2) for k ∈ 2N

such that

w(t) =

∑
k≥0

Eβ

k
tβk

Γ (βk + 1)

solves the fractional logistic equation
∗Dβ

t w = w − w2.

The Euler’s Φ-numbers can be therefore defined as the sequence {EΦ
k }k∈N0 such that

v(t) =

∑
k≥0

EΦ
k

tβk

Γ (βk + 1)

solves the fractional logistic equation

DΦ
t v = v − v2.

We provide below some examples concerning the equation with specific Φ .
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3.3.1. The Caputo–Fabrizio operator
Recently, in a series of papers starting from [24], some authors considered the Caputo-Fabrizio operator (for a given

constant a)

D
(α)
t f (t) =

M(α)
1 − α

∫ t

a
ḟ (τ ) exp

[
−

α (t − τ )
1 − α

]
dτ

where M(α) is a normalizing function such that M(0) = M(1) = 1 and α ∈ (0, 1) is the fractional order of the derivative (in
the Caputo-Fabrizio notation). As pointed out in [24], we have that D

(α)
t f (t) → ḟ (t) as α → 1 and D

(α)
t f (t) → f (t) − f (a) as

α → 0. The authors provided some properties of D
(α)
t f (t), in particular, for a = 0, the Laplace transform reads as follows (as

usual we denote by f̃ the Laplace transform of f )∫
∞

0
e−λtD

(α)
t f (t) dt =

M(α)
1 − α

(
λ̃f (λ) − f (0)

) ∫ ∞

0
e−λte−

α t
1−α dt

=
M(α)

α + λ(1 − α)

(
λ̃f (λ) − f (0)

)
.

Notice that, for α = 1/2, the Laplace transform takes the form∫
∞

0
e−λtD

(1/2)
t f (t) dt = 2

M(1/2)
1 + λ

(
λ̃f (λ) − f (0)

)
that is, up to the constant 2M(1/2), the Laplace transform of the derivativeDΦ

t with

Φ(λ) =
λ

1 + λ
and Π ((z, ∞)) = e−z .

Let us consider the operator

DΦ
t u(t) =

∫ t

0
u′(s)e−(t−s)ds (3.9)

and the fractional non-linear equation u = DΦ
t U where U(t) =

∫ t
0 (u(s) − u2(s))ds, that is

u(t) =

∫ t

0
u(s)(1 − u(s))e−(t−s)ds. (3.10)

From Eq. (3.10) we get that

u′(t) = u(t)(1 − u(t)) −

∫ t

0
u(s)(1 − u(s))e−(t−s)ds

and

u′
+ u = u(1 − u)

which can be reduced to u′
= −u2. Let us focus now on the solution u of the logistic equation u′

= u(1 − u). From (3.9), we
write

DΦ
t u(t) =

∫ t

0
u(s)(1 − u(s))e−(t−s)ds

and
d
dt

DΦ
t u + DΦ

t u = u(1 − u).

By considering the Caputo-Fabrizio notation, we have that the solution to

D
(3/2)
t u + D

(1/2)
t u = u(1 − u)

is also the solution to u′
= u(1 − u). In our view, find the solution to the telegraph-like logistic equation is an interesting

open problem. For the linear case ∂
2β
t u+∂

β
t u = ∂2

x u the solution is associated with themotion of particle moving with finite
velocity [25,26]. We provide in Fig. 1 the profile of the numerical solution to the telegraph-like equation

u′′
+ u′

= u(1 − u). (3.11)

Let us consider the fractional integral

(Iu)(t) =
1

√
π

∫ t

0

(
(t − s)−1/2

+ 2(t − s)1/2
)
u(s) ds
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Fig. 1. The upper profile shows the numerical solution to (3.11) with u(0) = 1/2 and below, u′ are u′′ are respectively plotted.

for which we have that (for a well-defined function u)∫
∞

0
e−λt (Iu)(t)dt =

1 + λ

λ3/2 =
1 + λ

λ

1
λ1/2 .

By considering the Riemann–Liouville derivative Dα
t of order α = 1/2, we have that∫

∞

0
e−λt (D1/2

t Iu)(t)dt =
1 + λ

λ
=

1
Φ(λ)

.

This allow us to study the equation

DΦ
t u = u(1 − u)

by considering the equation

u′
= D1/2

t Iu(1 − u).

The detailed discussion on the previous arguments will be considered in a forthcoming work.

3.3.2. Tempered derivatives
The tempered fractional calculus has bothmathematical and practical advantages.We consider, for β ∈ (0, 1) andµ > 0,

Φ(λ) = (µβ
− (µ + λ)β ) with Π ((z, ∞)) =

β

Γ (1 − β)

∫
∞

z

e−µs

sβ+1 ds

so thatDΦ
t is the so-called tempered derivative usually denoted byDβ,µ

t , that is by also considering the tempering parameter
µ (see [27,28] and the references therein for a detailed discussion). This is a special case in which in the integro-differential
equation we have a kernel belonging in the well-known class of Kawashima functions. This kind of kernels are considered
in the analysis of viscoelasticity with fading memory [29].
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