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Abstract. For any smooth bounded domain Ω ⊂ R2 we consider positive solutions to{
−∆u = up in Ω
u = 0 on ∂Ω

which satisfy the uniform energy bound

p‖∇u‖∞ ≤ C
for p > 1. We prove convergence to

√
e as p → +∞ of the L∞-norm of any solution.

We further deduce quantization of the energy to multiples of 8πe, thus completing the
analysis performed in [5].

1. Introduction

This paper focuses on the asymptotic analysis, as p → +∞, of families of solutions to
the Lane-Emden problem  −∆u = up in Ω

u = 0 on ∂Ω
u > 0 in Ω

(Pp)

where Ω is any smooth bounded planar domain.

This line of investigation started in [11, 12] for families up of least energy solutions,
for which a one-point concentration behavior in the interior of Ω is proved, as well as the
L∞-bounds √

e ≤ lim
p→+∞

‖up‖∞ ≤ C (1.1)

and the following estimate

lim
p→+∞

p‖∇up‖22 = 8πe.

The bound in (1.1) was later improved in [1], where it was shown that for families of least
energy solutions it holds:

lim
p→+∞

‖up‖∞ =
√
e. (1.2)

Moreover in [1], [2] and [8] the Liouville equation in the whole plane{
−∆U = eU in R2∫
R2 e

Udx = 8π
(1.3)
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2 L∞-NORM AND QUANTIZATION

was identified to be a limit problem for the Lane-Emden equation. Indeed in [1] it was
proved that suitable rescalings around the maximum point of any least energy solution to
(Pp) converge, in C2

loc(R2), to the regular solution

U(x) = log

(
1

1 + 1
8 |x|2

)2

(1.4)

of (1.3). Hence least energy solutions exhibit only one concentration point and the local
limit profile is given by (1.4). More general solutions having only one peak have been
recently studied in [7], where their Morse index is computed and connections with the
question of the uniqueness of positive solutions in convex domains are shown.

Observe that when Ω is a ball any solution to (Pp) is radial by the result of Gidas, Ni
and Nirenberg ([10]) and so the least energy is the unique solution for any p > 1.

In general in non-convex domains there may be families of solutions to (Pp) other than
the least energy ones. This is the case, for instance, of those found in [9] when the domain
Ω is not simply connected, which have higher energy, precisely

lim
p→+∞

p‖∇up‖22 = 8πe · k,

for any fixed integer k ≥ 1. These solutions exhibit a concentration phenomenon at k
distinct points in Ω as p→ +∞ and their L∞-norm satisfies the same limit as in (1.2).

The question of characterizing the behavior of any family up of positive solutions to
(Pp) naturally arises. This issue was studied in [5] in any general smooth bounded domain
Ω, under the uniform energy bound assumption

p‖∇up‖22 ≤ C (1.5)

(see also [3], where the asymptotic analysis started for solutions of any sign, and the related
papers [4, 6]). The results in [5] show that under the assumption (1.5) the solutions to
(Pp) are necessarily spike-like. More precisely in [5, Theorem 1.1] it is proved that, up to
a subsequence, there exists an integer k ≥ 1 and k distinct points xi ∈ Ω, i = 1, . . . , k,
such that, setting

S = {x1, . . . , xk},
one has

lim
p→+∞

√
pup = 0 in C2

loc(Ω̄ \ S) (1.6)

and the energy satisfies

lim
p→+∞

p‖∇up‖22 = 8π

k∑
i=1

m2
i , (1.7)

where mi’s are positive constants given by

mi = lim
δ→0

lim
p→+∞

max
Bδ(xi)

up (1.8)

which satisfy

mi ≥
√
e. (1.9)
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Furthermore the location of the concentration points is shown to depend on the Dirichlet
Green function G of −∆ in Ω and on its regular part H

H(x, y) = −G(x, y) +
1

2π
log

1

|x− y|
. (1.10)

according to the following system

−mi∇xH(xi, xi) +
∑
`6=i

m`∇xG(xi, x`) = 0,

and moreover

lim
p→+∞

pup = 8π
k∑
i=1

miG(·, xi) in C2
loc(Ω̄ \ S).

In [5, Lemma 4.1] it is also proved that a suitable rescaling of up around each concentration
point converges to the regular solution U in (1.4).
The convergence (1.6) and the inequality (1.9) immediately imply the following bound on
the L∞-norm:

√
e ≤ lim

p→+∞
‖up‖∞ ≤ C. (1.11)

In [5] it was conjectured that for all solutions to (Pp), under the assumption (1.5), one
should have the equality in (1.9) and hence also the equality in the left hand side of (1.11).

As far as we know the only case where the equality has been proved is when up are least-
energy solutions (see [1]), as recalled before. The proof of [1] strongly uses the minimality
property of the solutions and does not apply to general families of solutions.

Here we answer this question by computing the exact value of the mi’s for any solution.
Our result is the following:

Theorem 1.1. Let up be a family of solutions to (Pp) satisfying (1.5). Then

(i) mi =
√
e, ∀i = 1, . . . , k

(ii) limp→+∞ ‖up‖∞ =
√
e.

This theorem shows that, for p large, all peaks of the solutions have essentially the
same height, namely

√
e. Moreover Theorem 1.1 allows to improve the analysis of the

asymptotic behavior of the solutions to (Pp) performed in [5], in particular implying, by
(1.7), a quantization of the energy to integer multiples of 8πe as p goes to infinity:

Corollary 1.2. Let up be a family of solutions to (Pp) and assume that (1.5) holds. Then
there exist a number k ∈ N and a sequence pn → +∞ as n→ +∞ such that one has

lim
n→∞

pn

∫
Ω
|∇upn(x)|2 dx = 8πe · k. (1.12)

This shows that each concentration point carries the same mass and implies that solu-
tions to (Pp) can exist, for p large, only at the level of energies given by multiples of 8πe.
Hence this number plays in the two dimensional case the same role as the best Sobolev
constant S in dimension N ≥ 3.
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2. Proof of Theorem 1.1

Let k ≥ 1 and xi ∈ Ω, i = 1, . . . , k, be as in the introduction and let us keep the notation
up to denote the corresponding subsequence of the family up for which the results in [5]
hold true.

In particular (see [5, Theorem 1.1 & Lemma 4.1]) for r > 0 such that B3r(xj) ⊂ Ω, for
any j = 1, . . . , k, and B3r(xj) ∩B3r(xi) = ∅, for any i, j = 1, . . . , k, j 6= i, letting yi,p ∈ Ω
be a sequence defined as

up(yi,p) := max
B2r(xi)

up (2.13)

it follows that

lim
p→+∞

yi,p = xi, (2.14)

lim
p→+∞

up(yi,p) = mi, (2.15)

lim
p→+∞

εi,p

(
:=
[
pup(yi,p)

p−1
]−1/2

)
= 0 (2.16)

and setting

wi,p(y) :=
p

up(yi,p)
(up(yi,p + εi,py)− up(yi,p)), y ∈ Ωi,p :=

Ω− yi,p
εi,p

, (2.17)

then

lim
p→+∞

wi,p = U in C2
loc(R2), (2.18)

where U is as in (1.4).

Furthermore by the result in [5, Proposition 4.3 & Lemma 4.4] we have that for any
γ ∈ (0, 4) there exists Rγ > 1 such that

wi,p(z) ≤ (4− γ) log
1

|z|
+ C̃γ , ∀ i = 1, . . . , k (2.19)

for some C̃γ > 0, provided Rγ ≤ |z| ≤ r
εi,p

and p is sufficiently large.

The pointwise estimate (2.19) implies the following uniform bound, which will be the
key to use the dominated convergence theorem in the proof of Theorem 1.1:

Lemma 2.1.

0 ≤
(

1 +
wj,p(z)

p

)p
≤
{

1 for |z| ≤ Rγ
Cγ

1
|z|4−γ for Rγ ≤ |z| ≤ r

εj,p

. (2.20)

Proof. Observe that by (2.14)

Br(yi,p) ⊂ B2r(xi), for p sufficiently large,

as a consequence

wi,p ≤ 0, in B r
εi,p

(0) (⊂ Ωi,p), for p large, (2.21)

which implies the first bound in (2.20).
For p sufficiently large, by (2.21) and (2.19), we also get the second bound in (2.20):

0 ≤
(

1 +
wj,p(z)

p

)p
= e

p log

(
1+

wj,p(z)

p

)
≤ ewj,p(z) ≤ Cγ

1

|z|4−γ
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for Rγ ≤ |z| ≤ r
εj,p

. �

Proof of Theorem 1.1. Observe that by the assumption (1.5) and Hölder inequality

(0 ≤) p

∫
Ω
upp(x)dx ≤ p

1
p+1 |Ω|

1
p+1

[
p

∫
Ω
|∇up|2dx

] p
p+1

= p

∫
Ω
|∇up|2dx(1 + op(1))

(1.5)

≤ C + op(1),

so that, by the properties of the Green function G,∫
Ω\B2r(xj)

G(yj,p, x)upp(x)dx ≤ Cr

∫
Ω\B2r(xj)

upp(x)dx

≤ Cr

∫
Ω
upp(x)dx = O

(
1

p

)
(2.22)

and similarly, observing that for p large enough the points yj,p ∈ B r
2
(xj) by (2.14) and

B r
2
(xj) ⊂ Br(yj,p) ⊂ B2r(xj), also∫

B2r(xj)\Br(yj,p)
G(yj,p, x)upp(x)dx ≤

∫
{ r
2
<|x−xj |<2r}

G(yj,p, x)upp(x)dx

≤ C r
2

∫
Ω
upp(x)dx = O

(
1

p

)
. (2.23)

By the Green representation formula, using the previous estimates, we then get

up(yj,p) =

∫
Ω
G(yj,p, x)upp(x)dx

=

∫
B2r(xj)

G(yj,p, x)upp(x)dx+

∫
Ω\B2r(xj)

G(yj,p, x)upp(x)dx

(2.22)

(2.23)
=

∫
Br(yj,p)

G(yj,p, x)upp(x)dx+ op(1)

(2.17)
=

∫
B r
εj,p

(0)
G(yj,p, yj,p + εj,pz)

(
1 +

wj,p(z)

p

)p
dz + op(1)

(1.10)
= −up(yj,p)

p

∫
B r
εj,p

(0)
H(yj,p, yj,p + εj,pz)

(
1 +

wj,p(z)

p

)p
dz

−up(yj,p)
2πp

∫
B r
εj,p

(0)
log |z|

(
1 +

wj,p(z)

p

)p
dz

−up(yj,p) log εj,p
2πp

∫
B r
εj,p

(0)

(
1 +

wj,p(z)

p

)p
dz + op(1)

= Ap +Bp + Cp + op(1). (2.24)
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Since H is smooth and xj 6∈ ∂Ω, by (2.14) and (2.16) we get

lim
p→+∞

H(yj,p, yj,p + εj,pz) = H(xj , xj), for any z ∈ R2,

so by (2.15), the convergence (2.18) and the uniform bounds in (2.20) we can apply
the dominated convergence theorem, and since the function z 7→ 1

|z|4−γ is integrable in

{|z| > Rγ} choosing γ ∈ (0, 2) we deduce

lim
p→+∞

up(yj,p)

∫
B r
εj,p

(0)
H(yj,p, yj,p + εj,pz)

(
1 +

wj,p(z)

p

)p
dz

= mjH(xj , xj)

∫
R2

eU
(1.3)
= 8πmjH(xj , xj),

from which

Ap := −up(yj,p)
p

∫
B r
εj,p

(0)
H(yj,p, yj,p + εj,pz)

(
1 +

wj,p(z)

p

)p
dz = op(1). (2.25)

For the second term in (2.24) we apply again the dominated convergence theorem, using

(2.20) and observing now that the function z 7→ log |z|
|z|4−γ is integrable in {|z| > Rγ} and that

z 7→ log |z| is integrable in {|z| ≤ Rγ}. Hence we get

lim
p→+∞

up(yj,p)

∫
B r
εj,p

(0)
log |z|

(
1 +

wj,p(z)

p

)p
dz = mj

∫
R2

log |z|eU(z)dz < +∞

and this implies that

Bp := −up(yj,p)
2πp

∫
B r
εj,p

(0)
log |z|

(
1 +

wj,p(z)

p

)p
dz = op(1). (2.26)

Finally for the last term in (2.24) let us observe that by the definition of εj,p in (2.16)

log εj,p = −(p− 1)

2
log up(yj,p)−

1

2
log p, (2.27)

again by the dominated convergence theorem

lim
p→+∞

∫
B r
εj,p

(0)

(
1 +

wj,p(z)

p

)p
dz =

∫
R2

eU
(1.3)
= 8π, (2.28)

and it follows

Cp := −up(yj,p) log εj,p
2πp

∫
B r
εj,p

(0)

(
1 +

wj,p(z)

p

)p
dz

(2.28)
= −up(yj,p) log εj,p

2πp
(8π + op(1))

(2.27)
= up(yj,p)

[
(p− 1)

p
log up(yj,p) +

log p

p

]
(2 + op(1)) . (2.29)

Substituting (2.25), (2.26) and (2.29) into (2.24) we get

up(yj,p) = u(yj,p)

[
(p− 1)

p
log up(yj,p) +

log p

p

]
(2 + op(1)) + op(1),
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passing to the limit as p→ +∞ and using (2.15) we conclude that

logmj =
1

2
.

From this we immediately deduce statement (i). Then, due to the property (1.6), also (ii)
follows. �
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