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Abstract: The correct detection of the Berezinskii-Kosterlitz-Thouless (BKT) transition in quasi-two-
dimensional superconductors still remains a controversial issue. Its main signatures, indeed, are often
at odds with the theoretical expectations. In a recent work (Maccari, I.; Benfatto, L.; Castellani, C.
Phys. Rev. B 2017, 96, 060508), we have shown that the presence of spatially correlated disorder plays
a key role in this sense because it is the reason underlying the experimentally-observed smearing
of the universal superfluid-density jump. In the present paper we closely investigate the effects
of correlated disorder on the BKT transition, specifically addressing the issue of whether or not it
changes the BKT universality class.
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1. Introduction

Despite its age, the Berezinskii [1]-Kosterlitz and Thouless [2,3] (BKT) transition still constitutes a
very active field of research from both an experimental and a theoretical perspective. Actually, a wide
range of phenomena belongs to its universality class: from the quantum metal-insulator transition in
one dimension to the Coulomb-gas screening transition in 2D, and of course the metal-to-superfluid
transition in 2D [4]. Since its first experimental detection in He films [5], the BKT transition has been
investigated in many different real systems such as cold-atoms systems made of bosons [6], neutral
fermions [7] and also in quasi-two-dimensional (2D) superconductors (SC). The latter case includes not
only thin films of conventional [8–17] and unconventional [18–22] superconductors, but also artificially
confined 2D electron gas at the interface between two insulators in artificial heterostructures [23,24],
or in the top-most layer of ion-gated superconducting (SC) systems [25]. However, the experimental
observations made so far on 2D superconductors have raised new questions as to the nature of the
transition occurring in such systems because they are often at odds with the BKT theoretical predictions.

A typical example is the temperature dependence of the superfluid density which gives access to
the most spectacular signature of the BKT transition: as soon as the system reaches the BKT critical
temperature (TBKT), the proliferation of free topological defects (vortices) within the system leads
the superfluid density to jump suddenly to zero, causing, at the same time, the vanishing of the SC
state. Nonetheless, as reported by several experimental results [8–17], such a sharp jump at the critical
temperature results in being significantly smeared out around TBKT , revealing a smooth downturn
definitely broader than what is observed in the case of superfluid helium films [5]. This effect is even
more dramatic in ultrathin films of cuprate superconductors [21], where the BKT jump is completely
lost by underdoping. In addition, a long-term discussion exists also on the possibility to observe or
not quasi-2D BKT physics in bulk cuprate crystals (see, e.g., [26] and references therein). Indeed, with
the presence of a weak interlayer coupling one could expect to see a quasi-2D behavior. While this
could be ultimately true, the temperature scale where it occurs could move away from the universal
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one expected in the purely 2D case [26,27]. In the following we will focus, however, only on the purely
2D case, restricting our attention to the case of thin films, and we refer the reader to [22,26,27] for a
discussion on the occurrence of BKT physics in bulk crystals of layered cuprates.

Beyond the well-known differences between superfluid and superconducting systems, the latter
ones exhibit as a common characteristic a pronounced spatial inhomogeneity of the SC order parameter.
Such SC-state fragmentation, which occurs on a mesoscopic scale, might be due to the presence of
strong disorder as is the case for thin disordered films of conventional superconductors. It might also
be due to the artificial optical confinement, as in the SC interfaces, or to the intrinsic nature of the
system, as seen in cuprate superconductors. Indeed, as shown theoretically [28–33], the formation
of a “granular” inhomogeneous SC state is the way out of superconductivity, which requires phase
coherence, to survive in the presence of disorder-induced charge localisation. From these observations,
it is natural to wonder whether the observed broadening of the BKT transition could be due to the
presence of such spatially correlated disorder within the system.

In a recent paper [34], we have addressed this interesting issue by means of Monte Carlo
simulations on the classical 2D XY model:

HXY = −∑
〈i,j〉

Jij cos(θi − θj), (1)

where θi models the SC phase and Jij are the random couplings between neighbouring sites
i, j, mimicking the random Josephson-like couplings between coarse-grained adjacent SC islands.
The granular inhomogeneity of the SC order parameter is thus embedded in the couplings Jij,
whose disordered structure has been generated by the mean-field solution of the (quantum) XY
pseudo-spin 1/2 model in random transverse field (RTF) [33–36]:

HPS ≡ −2 ∑
i

ξiSz
i − 2J ∑

〈i,j〉

(
S+

i S−j + h.c.
)

, (2)

recently proven to model disordered superconductors with a non-trivial space structure [30,33,35].
In the pseudo-spin language, Sz = ±1/2 corresponds to a site occupied or unoccupied by a Cooper
pair, while superconductivity corresponds to a spontaneous in-plane magnetization, e.g., 〈Sx

i 〉 6= 0,
controlled by the coupling J. The random transverse field ξi, box distributed between −W and W,
simulates the effect of disorder, which tends to localize the Cooper pair on each site or, in terms of spins,
to align them out of the x-y plane. This competition is well captured by the mean-field solution of the
model (2), obtained by determining the value of the in-plane local magnetization 〈Sx

i 〉. While at small
W/J 〈Sx

i 〉 ' 1/2 everywhere, as W/J increases the pseudo-spins partly orient along the ẑ direction
suppressing the in-plane component, i.e., the local value of the SC order parameter. It can also be
shown [34,35] that the SC phase fluctuations on top of this granular SC ground state are controlled by
an inhomogeneous local stiffness Jij = J〈Sx

i 〉〈Sx
j 〉 between neighboring i, j sites.

In the following we will make use exactly of such inhomogeneous local stiffness Jij as couplings
constants for the classical disordered 2D XY model (1). In particular, we will refer to these
spatially-correlated disordered couplings as RTF, while with Pe f f we will indicate spatially uncorrelated
couplings extracted randomly from the same probability distribution which represents the RTF maps.
Finally, the label W/J will indicate the considered disorder level (see [34] for more details).

The main results of our numerical study, the technical details of which are discussed at the end of
the paper, are reported in Figure 1. The BKT critical temperature, used here to properly rescale the
temperatures, has been computed by means of the Nelson-Kosterlitz [37] universal relation:

Js(TBKT) = 2TBKT/π, (3)

which indicates the critical point at which the superfluid-stiffness jump is expected to occur.
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This study, largely discussed in [34], have revealed that for uncorrelated disorder the Harris
criterion [38] is guaranteed not only at the critical point, but even away from it. Indeed, not only does
the superfluid-stiffness jump remain as sharp as in the homogeneous case (green curve in Figure 1a),
but even the low-temperature trend before the jump is unchanged once the T = 0 suppression of the
stiffness is accounted by rescaling the curve with Js(T = 0). On the other hand, for the RTF case, the
fragmentation of the SC state at strong disorder leads to a smoothening of the BKT jump (red curve
in Figure 1a), which is symmetrically smeared out with respect to the expected transition, in strong
analogy with the experimental observations in thin SC films [10–17].
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Figure 1. (a) Rescaled curves of the superfluid stiffness Js(T) by its zero-temperature value
Js(T = 0) for the clean case, the uncorrelated Pe f f and correlated random transverse field (RTF)
disordered case at W/J = 10. The temperature axis has also been rescaled by the value of the
Berezinskii-Kosterlitz-Thouless (BKT) critical temperature obtained from the intersection between the
critical line 2T/π and the superfluid-stiffness itself [34]. Despite the strong disorder, the Pe f f curve
shows only a small finite-size effect above Tc, while the RTF stiffness is dramatically modified above
and below the transition. (b) Maps of the couplings Ji,i+x for both the spatially uncorrelated (Pe f f ) and
correlated (RTF) disorder. The disorder level has been fixed to W/J = 10 while the linear size of the
system is L = 128.

This result has been explained in terms of an unconventional vortex-pairs nucleation in the
granular SC state. Indeed, the formation of large regions with low couplings Jij (Figure 1b), allows
the system to nucleate several vortex-antivortex pairs already well below TBKT , leading to the
superfluid-stiffness suppression.

In the present manuscript we want to investigate more closely these results in order to understand
whether or not the correlated disorder changes the universality class of the BKT transition.

2. Results

In order to investigate the critical properties of the model (1), we need to extrapolate the
thermodynamic behavior of the system via a proper finite-size scaling analysis. In the following,
we will compare the well known homogeneous case (Jij = 1; ∀i, j) with the RTF model for a given
disorder level, fixed here to W/J = 10.

First of all, as shown in Figure 2, the superfluid-stiffness jump expected in the thermodynamic
limit is approached very slowly as a function of the size both for the homogeneous and for the RTF
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disordered case. This is exactly what one would expect from a BKT physics since the correlation length
ξ, instead of diverging as a power-law for T− > T+

c , diverges exponentially as:

ξ(T > TBKT) ∼ ea/(T−TBKT)
1/2

. (4)

As a consequence, since finite-size effects become relevant when ξ ∼ L, the finite-size correction
to TBKT decrease logarithmically with the linear size of the system L [39–42]:

T∗(L)− TBKT ∼
1

2 ln L
(5)

It also appears to be clear from Figure 2 that the superfluid stiffness scales differently with L
below and above TBKT . Following [40] we will study separately the two different regimes: T < TBKT
in the first part of this section and T > TBKT in the second one.

(a) (b)

Figure 2. Temperature dependence of the superfluid stiffness for different values of the linear sizes
L. The panel (a) corresponds to the homogeneous case, while panel. (b) to the disordered RTF case
at W/J = 10. The solid black line in both the panels is the critical line 2T/π whose intersection with
Js(T) would correspond to the critical point where the superfluid-stiffness jump is expected to occur.

2.1. Scaling from T → T−BKT

The scaling of Js in the homogeneous XY model below TBKT have been discussed in several
papers [39–42]. They essentially follow from the analysis of the perturbative RG equations near the
BKT critical point: {

dx
dl = −y2,
dy
dl = −xy,

(6)

where x = π Js(T)/T − 2 is the rescaled coupling constant and y = 4πe−βµ the vortex fugacity, with
vortex-core energy µ. When the critical line x2 − y2 = A2 is approached from below T → T−BKT
(A→ 0+), the solution for the coupling x is simply [39]:

x =
1

l + c
, (7)

where c is a constant connected with the initial values of the RG flow and l = ln(L). From Equation(7),
by the use of the Nelson-Kosterlitz universal relation [37]:

Js(TBKT) = 2TBKT/π, (8)
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we can derive the dependence between the finite-size value of the superfluid stiffness and its
thermodynamic limit at the critical point [39–42]:

Js(∞, TBKT) =
Js(L, TBKT)(

1 + (2 ln(L/L0))−1
) (9)

This means that, by rescaling the superfluid stiffness with Equation (9), all the rescaled curves
corresponding to different L will assume the same value at criticality. As a consequence, the crossing
point of all of the curves will indicate the thermodynamic value of the critical temperature itself.
The rescaled Js(T), obtained by tuning the value of the parameter L0 in Equation (9) in such a way to
obtain the best crossing point at finite temperature, are shown in Figure 3.

Figure 3. Rescaling of the superfluid stiffness curves by means of Equation (9) both for (a) the clean case,
(b) the RTF disordered case with W/J = 10. In the presence of disorder, for a better comparison with
the clean case, one can rescale both the superfluid stiffness and the temperature by Je f f = Js(T = 0).

This procedure allows us to derive the critical temperature of the RTF disordered model as well as
its critical line. For the homogeneous case (Figure 3a), the best crossing point is obtained with L0 = 1.4,
from which we extrapolate TBKT ' 0.89 in good agreement with [39].

On the other hand, for the RTF disordered case (Figure 3b), the best crossing point has been
found for L0 = 4. The first result to be highlighted is that the presence of correlated disorder does not
change the universality class of the XY model, because the crossing point is still on the critical line
x = 0 =⇒ Js(TBKT) = 2TBKT/π. However, despite having rescaled both the superfluid stiffness and
the temperature with respect to Js(T = 0) ≡ Je f f (for the clean case: Je f f = 1), the RTF disorder does
change the critical temperature of the rescaled model to a lower value:

TRTF
BKT ' 0.71 Je f f (10)

Quite interestingly, this result can be physically interpreted in terms of a decrease of the effective
vortex-core energy µ, due to the presence of spatially correlated disorder. Indeed, for the homogeneous
system it is well known [26] that a small µ implies a larger renormalization of Js before the transition,
and as a consequence a smaller value of the critical temperature. Another remarkable effect of the
presence of spatially correlated disorder is the magnification of the finite-size effects with respect to the
homogeneous case. For instance, the curve of the clean case in Figure 3a relative to L = 8 shows a tail
similar for extension to the one correspondent to L = 64 of the disordered case see Figure 3b, which is
eight times bigger than the homogeneous case. This result is due to a larger L0 scaling parameter in
Equation (9) which makes the finite-size effects stronger for the disordered case.
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2.2. Scaling from T > TBKT

In the high temperature regime, the thermodynamic limit of the superfluid stiffness is obviously
zero. The finite size effects in this region are essentially due to the correlation length ξ, whose divergence
for T → T+

BKT is cut off by the system size L. By means of the finite-size scaling hypothesis [41,43], we
can write the rescaled superfluid stiffness as a function of the ratio between L and ξ:

Js(L, T)(
1 + (2 ln(L/L0))−1

) = F(L/ξ) (11)

Taking thus the logarithm of the argument of the scaling function F(x), Equation (11) can be
written in terms of another function g(ln(L/ξ)), so that:

Js(L, T)(
1 + (2 ln(L/L0))−1

) = g(ln(L/ξ)) = g(ln L− a/(T − TBKT)
1/2) (12)

Hence, the rescaled superfluid stiffness will have the same functional dependence on
ln L− a/(T − TBKT)

1/2 for each value of the system size considered.
The collapsed curves of the rescaled stiffness, obtained from our numerical data, are shown in

Figure 4, where we have used TBKT = 0.89 for the clean case and the previously-derived critical
temperature TRTF

BKT = 0.71Je f f for the RTF disordered case.
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Figure 4. Superfluid stiffness curves of different linear size L, renormalised and collapsed on the same
universal curve relative to the high temperature regime: T > TBKT . (a) Clean case (b) RTF disordered
case with W/J = 10.

The parameter to be fixed in this study is the factor a in Equation (4), which is chosen in such way
to obtain the best collapse of all the curves. For the clean case it is known [41] to be a = 1.5, while in
the presence of correlated disorder we have obtained the best collapse for: a = 2.0. The increase of
the parameter a, by means of the presence of corraleted disorder, which is reflected in the scale of the
x-axis, is much smaller in the RTF case Figure 4b with respect to the homogeneous one in Figure 4a.

This physically means that the length of the correlations ξ diverges faster in the presence of
correlated disorder than without it, in agreement with the previously observed increase of the finite
size effects (Figure 3). Let us also highlight that, from the limit T → T+

BKT in Figure 4, which in terms
of the function g(L/ξ) corresponds to ln L− a/(T − TBKT)

1/2 → −∞, we can extrapolate the value of
the superfluid stiffness expected at the critical point.

Both for the clean and the disordered case, this confirms the Nelson-Kosterlitz relation (3):
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Js(∞, TBKT) =
2
π

TBKT ' 0.6 (13)

Js(∞, TRTF
BKT)

Je f f
=

2
π

TRTF
BKT
Je f f

' 0.45 (14)

as expected since both the critical points are crossed by the universal line x = 0.
Hence, this study confirms that in both the cases the universality class is the BKT one, showing,

at the same time, that even in the presence of correlated disorder, the correlation length diverges
exponentially in the reduced critical temperature. Moreover, it sheds light on the two main differences,
with respect to the clean case, introduced by the spatially correlated disorder: the reduction of the
critical temperature TBKT and the faster increase of the correlation length ξ as T → T+

BKT .
Finally, a very interesting issue to be addressed in future work is whether the presence of this

kind of granular disorder could also affect the low-temperature power-law decay of the two-point
correlations function, whose exponent in the clean case is known to be −η = −1/4 as soon as
T → T−BKT .

3. Methods

In our simulations, each Monte Carlo step consists of five Metropolis spin flips of the whole lattice,
needed to probe the correct canonical distribution of the system, followed by ten Over-relaxation
sweeps of all the spins, which help the thermalization. For each temperature, we performed 5000 Monte
Carlo steps, and we computed a given quantity as an average after discarding the transient regime,
occurring in the first 2000 steps. Finally, the average of the disorder is calculated with 15 independent
configurations for each disorder level. Where not shown, the error bars are smaller than the point size.

4. Discussion

The present paper completes the study started in [34] on the 2D XY model in the presence of
spatially correlated couplings, which mimics the mesoscopic inhomogeneity experimentally observed
in two-dimensional superconducting systems.

From the finite-size scaling analysis, we have shown that the presence of disordered couplings
with spatial correlations does not change the universality class of the BKT transition, affecting
nonetheless both the critical temperature and the exponential divergence of the correlation length.
More specifically, the critical temperature of the RTF model is found to be lower with respect to the
homogeneous case, as a consequence of an effective smaller vortex-core energy. This result appears to
be perfectly in agreement with the conclusions drawn in [44], where it was shown that for a correct
identification of the typical BKT signatures in NbN thin films it is needed to account for µ values
smaller than what is expected from the standard homogeneous XY model.

Our work has also revealed that the presence of a spatially-correlated disorder makes the finite-size
effects much stronger than in the homogeneous case, as reflected, e.g., in the divergence of the
correlation length as the transition is approached from above TBKT . This result opens interesting
perspectives for the understanding of the extended tails usually observed in the sheet resistance
curves in 2D superconducting interfaces [24]. Indeed, since the resistivity tends to zero as ξ−2 in the
BKT transition [45], the enhanced finite-size effects found in our numerical study could provide a
microscopic derivation for the phenomenological models of inhomogeneity proposed so far [46,47].

In addition, the presence of SC inhomogeneity at the mesoscopic level could account for the
suppression of the zero-temperature stiffness with respect to its BCS estimate recently reported in
LaAlO3/SrTiO3 [48]. A quantitative analysis of these effects could provide more insight into the
space structure of disorder in these SC 2D materials, whose high tunability constitutes an excellent
prerequisite for potential device applications.
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