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Abstract—The fog computing paradigm brings together storage, com-
munication, and computation resources closer to users’ end-devices.
Therefore, fog servers are deployed at the edge of the network, offering
low latency access to users. With the expansion of such fog computing
services, different providers will be able to deploy multiple resources
within a restricted geographical proximity.

In this paper, we investigate an incentive-based cooperation scheme
across fog providers. We propose a distributed cooperative algorithm
amongst fog computing providers where fully collaborative fog nodes
are subject to different loads. The proposed algorithm leverages the
power-of-two result and exploits a cooperation probability, namely the
probability that a given provider collaborates by accepting a computation
request from another provider, as a mean to achieve a fair cooperation.

We adopt an analytical approach based on exploiting a simplified
performance model to demonstrate numerically that a set of optimal
accepting probabilities exits when the number of server nodes goes to
infinity. This result then drives the design of our distributed algorithm.
Second, in our experimental approach, we perform a set of simulation
analysis to verify the validity of the proposed solution when the number
of servers is limited.

1 INTRODUCTION

The rapid rise of the Internet of Things (IoT) as the
main connectivity medium for billions of industrial sensors,
smart home appliances, and consumer wearable devices,
is paving the way for novel communication and compu-
tation paradigms that can help scale such unexpected new
communications [1], [2]. The resulting IoT data volume is
expected to overwhelm the network bandwidth, the storage
systems, the compute resources, and the analytics services.
Current Cloud computing services have shown limitations
in dealing with such scale of data and compute resources [3],
[4].

Fog or Edge computing were proposed to address the
needs to bring the computation closer to the edge of the net-
work taking advantage of the shorter round trip time (RTT)
delays to reduce operational. Fog computing paradigm
aims at decreasing network congestion while increasing
the Quality of Experience (QoE)–faster analysis and shorter
computation delays. Fog computing takes advantages of the
shorter round trip time delays to minimize the operational
cost [5], [6], limit the overwhelming of the core network [7],
and reduce computation delays [8]. With the ever-increasing
wireless and compute capabilities, offloading computation
to edge nodes, called cloudlets [9], become an attractive
and cheap solution than reaching a distant and often costly
cloud.
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Fig. 1: A Fog computing scenario: fog nodes may have dif-
ferent utilization levels resulting on varying performances
(green indicates low and red indicates high utilization lev-
els).

While traditional uncoordinated compute resources have
been deployed as operational schemes for such fog comput-
ing platform, we consider a scenario of coordinated scheme,
where such compute resources, called fog nodes, can col-
laborate by dedicating part of their resources to improve
the overall system performance with respect to satisfying
all computational requests as shown in Fig. 1. Collaboration
between competitive entities is often restricted unless a
credit based incentive is ensured and applied in exchange
for dedicating resources for foreign fog nodes. They simplify
the coordination and the accounting, however in the context
of fog computing, ensuring that all providers will be willing
to participate in order to help each others is challenging and
may not guarantee the system stability.

In this paper, we aim at ensuring a fair use of resources
across all providers as a mean to increase the overall service
utility. We leverage the power-of-two random choices result
to design a simple and effective scheduling algorithm for
collaborative fog computing. We consider a network con-
sisting of N collaborative fog nodes belonging to different
providers and each serving a Poisson flow of computation
requests, or tasks. When a given task h reaches a fog node
u ∈ N , u polls another node v 6= u at random. The polled
node decides to cooperate with a certain probability, which
is tuned dynamically. In case of cooperation, if the polled
node’s service utilization Uv is lower than Uu, h is for-
warded to node v. The design of the algorithm is inspired to
the results of the analysis of an ideal system with infinitely
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many nodes loaded with Poisson traffic whose mean can
only assume a finite set of values. We first numerically show
that in such a system the nodes can cooperate in a fair and
optimal way, i.e., they can set their cooperation probabilities
in such a way that on the average a node receives the
same amount of CPU cycles that the node borrows to other
providers. We then propose an algorithm to tune the cooper-
ation probabilities dynamically. Our simulation results show
that the tuning algorithm converges and correctly reacts to
changes in the loads. In addition, a provider can get the
same performance that it would obtain if the resources of
the provider were increased of 30 %.

The paper is organized as follows. Section 2 reports
background and the state-of-the-art of fog computing and
the power of two choice models. Section 3 gives a de-
tailed overview of our system model and the corresponding
performance model. In Section 4, we propose an adaptive
cooperative model where we discuss the tuning of the co-
operative probabilities. Section 5 discusses the design of our
proposed protocol, LOCAL. Before concluding this paper in
Section 7, we provide the experimental results and discuss
the performance of our proposed scheme in Section 6.

2 BACKGROUND AND RELATED WORK

Cloud Computing is a new term for a long-held dream of
computing as a utility [10], which has recently emerged as a
commercial reality. Cloud computing providers build huge
data centers from where they deliver computation power
and other abstractions as a Service to the end users. While
this approach suites many companies it is less appropriate
for the new emerging needs raising from mobile devices
and smart objects. Due to their limited resource availability,
new support is required in terms of capacity to execute
computation on-demand with little delay and jitter [11].

Fog computing, in its simplest concept, can be seen as an
evolution of the current cloud model, where cloud function-
alities are made available closer to the end user, i.e., to the
edge of the network. This model can for example support
the Internet of Things (IoT) concept, in which most of the
devices used by humans on a daily basis will be connected
to each other, [12]. Recently, the fog computing model has
also been used in the context of Wireless Sensor Networks
(WSN) as a support to a global monitoring capability for
tracing moving sensors and detecting malicious ones [13].
A discussion about the flexibility of Fog Computing can be
found in [14]. In addition, a broader definition of the fog
concept is discussed in [15] and a survey can be found in
[16].

As far as our work is concerned, we register that Fog,
Edge, and various other solutions have been proposed to
offload computation to powerful surrogate machines [17],
[18], [19] such in CloneCloud [20] and MAUI Project [21],
or smaller computational resources such as cloudlets [22]
which reside closer to edge devices. Research for fog com-
puting have been mainly focusing on building platforms
and prototypes to make the case for such novel comput-
ing paradigms. Little research, to the best of our knowl-
edge, have modeled interaction between distributed fog
nodes [23], especially cooperation and incentives models for
fog and edge computing [24].

In this work, we consider the power-of-two result as
a mean to randomize load balancing across different fog
nodes in the network [25], [26]. Load balancing is the process
of scheduling jobs among a set of N physical servers. In
general, each server can run up to C jobs in parallel and
has a waiting area of capacity B jobs. The power of two
(in general d) random choices is a term used to describe
the improvement in the performance of a stochastic process
characterized by a random decision that has to be taken. By
allowing the inspection of d possible options, instead that
just one, a substantial improvement in the performance of
the process is observed, with the largest improvement seen
when passing from d = 1 to d = 2. This phenomena has
been analyzed in different communities and reader can refer
to [25] for a broad survey.

In Shortest Queue among d (SQ(d)) scheduling disci-
pline, the scheduler picks d out N nodes at random and
schedules the job the the lowest loaded server, with ties
broken at random. SQ(d) has been studied in the seminal
paper [26] where each server is modeled as an M/M/1
queue, i.e., C = 1, B = ∞. The proposed supermarket
model describes the dynamics of the system as the fraction
of servers with at least k jobs and it is formulated as a set
of differential equations. The key result is that the average
delay seen by a job entering the system decays doubly
exponentially in the limit ofN →∞ and λ→ 1−, compared
to an isolated queue size, where the delay decays exponen-
tially. An important result that guided our model is that,
for N → ∞, the dynamic of queues becomes asymptotic
independent from each other, e.g., [27]. More precisely, for
a randomized load balancing scheme in equilibrium, any
fixed number of queues become independent of one another
as N → ∞. Authors in [28] studied a system with C finite,
i.e., jobs can be discarded. Authors provide upper bounds
of the discard probability for when N,C, λ → ∞. Another
study [29] used SQ(d) for a finite set N of M/M/1 queues.
They provide numerical bounds on the delay and show that
the delay can be quite different w.r.t the limit case.

To the best of our knowledge, the closest work that
investigates cooperation in fog computing, [30], proposes
probabilistic forwarding of requests blocked at a small
compute-limited data center to a bigger compute-capable
server. While findings suggest that the proposed strategy
can significantly improve blocking at a small data center
without affecting the performance of the server, this work
remains limited to cloudlet-cloud cooperation and does not
investigate a fully cooperation among similar providers of
fog nodes. Our paper aims at filling this gap and focuses on
proposing a fair use of resources across all providers as a
mean to increase the overall service utility.

3 SYSTEM MODEL

We consider a set of N providers divided into G different
groups and each managing a single fog node composed of C
independent physical servers. We define, Stu the state of fog
node u at time t, as the number of busy servers (i.e., on use)
at time t, Stu ∈ {0, 1, ..C}. Thus, we define the workload of
node u at time t,wtu, as the fraction of busy servers of a given
node u, wtu = Stu/C . We assume that computation requests
to fog nodes all follow a Poisson process whose mean can
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N Number of fog nodes
G Number of groups G = |Λ|
C Number of servers in a fog node
Λ Set of different traffic intensities
λg g-th traffic
ρg Load for nodes in g, ρg =

λg

C
ρgE Out coming cross load from a random node in g to other

nodes
ρEg Incoming cross load coming from other nodes to a random

node in g
pg Cooperation probability for nodes with traffic λg
g Group of nodes with same λg and pg

PBg Blocking probability of a node in g
πgi Stationary probability that the state of a node in g is i
Pgi Tail probability

∑
j≥i πgj

P ′gi = 1− Pgi

TABLE 1: Model terminology.

take value in the set Λ = {λ1, . . . , λG}, where |Λ| = G ≤ N
and require an exponentially distributed service time with
unitary mean. Table 1 summarizes the main notations and
parameters used throughout our paper.

We call λ the traffic intensity, i.e., the average number of
computation requests per unit of time of a node, and ρ = λ

C ,
i.e., the average traffic per server, its load. As the behavior of
a node is only influenced by the value of its load, we assign
all nodes subject to the same load to the same group g. Thus,
for any node belonging to group g, has mean traffic λg and
load ρg . For the sake of simplicity, we assume that the size
of all groups is constant.

We are interested in deriving the probability that a new
computation request (i.e., task) is not accepted by a fog node
u due to idle compute resources’ unavailability (i.e., Stu=C),
namely the blocking probability (PBu).

We derive the blocking probability for N → ∞ and
Λ finite, when providers cooperate in the following way:
when a new request arrives at fog node s ∈ g, s polls
another node, say s′ ∈ g′, selected uniformly at random
among all providers. s′ decides to accept the request and
cooperate with a probability pg′ referred to as the cooperation
probability. In case of cooperation, if wts′ < wts then s
forwards the given request to s′ while if wts′ = wts the task
is sent with probability 0.5. The cooperation probability fog
nodes of type g is pg . We call p = (p1, . . . , pG) the cooperation
probability vector.

For |Λ| = 1, p1 = 1, our model corresponds to the SQ(2)
scheduling discipline. For this case, in the limit of N → ∞
nodes become statistically independent from each other and
a unique equilibrium distribution for the state of a node
exists [27]. Our analysis is based on the ansantz that is also
true for |Λ| > 1 and any p. As a consequence, in the limit
of N → ∞, all nodes with the same load λg have the same
steady state probabilities.

We then focus on a tagged node s in the system, s ∈ g.
Due to the independence among nodes, the dynamic of its
state can be captured by a simple birth-death Markov Chain
with state dependent birth rate, see Fig. 2. For this reason,
we will refer to this model as Markov Chain model, MC for
short.

Let πgj be the steady state probability of such a node,
Pgi =

∑
j≥i πgj , P

′
gi = 1 − Pgi. The state transition rate

from state i to i−1 is i, whereas from i to i+1 it is obtained

0 1 2 C

λ0 λ1 λC-1

1 2 C

….

Fig. 2: Markov chain capturing the dynamic of the state of
a node.

by inspecting all the possible cases that make the state of the
node to increase.

3.1 Transition Probabilities

In an infinitesimal time interval δt → 0, we identify the
following exclusive compound events that make the state of
s change from i to i + 1: (C1) a new request arrives at s, or
(C2) s is polled by another node s′.

The following cases may then occur:

C1-1: The polled server, s′ has state i+ 1 and belongs to a
group g′. Since the probability of belonging to group
g′ is 1

G , and Pg′i+1 is the probability of s′ having at
least i+ 1 tasks running, hence:

α1g(i) =
λgπgi
G

G∑
g′=1

Pg′i+1

C1-2: s′ belongs to g′, its state Sts′ = Sts = i and ties are
broken: (i) in favor of s (this occurs with probability
1
2 ), or (ii) in favor of s′, and s′ does not cooperate
(occurring with probability

1−pg′
2 ). Thus:

α2g(i) =
λgπgi
G

G∑
g′=1

(1

2
+

1− pg′
2

)
πg′i

=
λgπgi
2G

G∑
g′=1

(2− pg′)πg′i (1)

C1-3: s′ belongs to a group g′, its state Sts′ < i, and s′ does
not cooperate. This event occurs with probability:

α3g(i) =
λgπgi
G

G∑
g′=1

P ′g′i(1− pg′)

The second category (C2) of events satisfying an increase
of s’s state from i to i+1, captures the cases when s is polled
from another node s′, subject to load λg′ . Since the request
flow from nodes in a group g′ is λg′ NG and the probability
s′ polls s is 1

N , we have:

C2-1: Sts′ > i, and s accepts to cooperate. This event
occurs with probability:

α4g(i) =
pgπgi
G

G∑
g′=1

λg′Pg′i+1

C2-2: Sts′ = Sts = i, ties are broken in favor of s, and s
cooperates. Thus:
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Fig. 3: Possible cases when the state of node A increases.
Fog nodes are represented as rectangles, with the filled part
representing its state (workload).

α5g(i) =
pgπgi
2G

G∑
g′=1

λg′πg′i

Therefore, any of the above probabilities, αkg, 1 ≤ k ≤
5, represents a compound event of finding one node in a
given state and another into another different state 1. The
transition rate of the tagged node from state i to state i +
1 is then given by the sum of above probabilities divided
by the probability to find s in state i (so that the result is
a conditional probability). Hence, in order to compute the
steady-state probabilities, πgi, we can study a birth-death
Markov process with state dependent transition rates λgi
from i to i+ 1 given by:

λgi =

∑
j αjg(i)

πgi
(2)

whereas the rates from state i to state i−1 are given by µgi =
i. For instance, in Fig. 3, (a) Node A polling three different
nodes to increase its state; Node B has a lower utilization
but it does not accept the computation request, node C has
the same utilization but it does not accept the request, node
D has a higher utilization. Nodes A,D belong to the same
group (their load is the same). Nodes C,B form to another
group. (b) Node A is polled by node B (whose utilization is
higher) and by C (same utilization) and it accepts the task.

To compute the set of the steady state probabilities of all
the nodes, we use standard flow balance equations:

πgi+1 =
λgi
i+ 1

πgi ∀g

with the normalized condition
∑
i πgi = 1.

Thus, starting from g arbitrary normalized state distribu-
tions, [π0

1 , π
0
2 , . . . , π

0
g ], each representing the state of a node

in each group (π0
j = [π0

j0, π
0
j1, . . . , π

0
jC ]), a set of transition

rates is computed according to Eq. 2. These rates are then
used to compute a new set of distributions [π1

1 , π
1
2 , . . . , π

1
g ],

and so on, until a fixed point is reached for every node, i.e,
πk
i = πk+1

i = π∞i ,∀i. Once the steady st ate probabilities for
all nodes are computed, the probability of a given request

1. Conditions C1-2 and C2-2 could in principle be removed. However
we keep them in order to adhere to the original result in [26].

N C = 5 C = 10 C = 20 C = 35
2 0.18 0.11 0.072 0.047
5 0.15 0.094 0.047 0.021
10 0.13 0.077 0.032 0.011
50 0.12 0.060 0.016 0.0019
100 0.12 0.056 0.014 8.710−4

∞ 0.12 0.055 0.012 3.5 10−5

Erlang 0.24 0.16 0.11 0.072

TABLE 2: Blocking probability for different N and C, ρ =
0.9. The values for N finite is obtained via simulations.

arriving to node s ∈ g is not served, namely the blocking
probability, can be derived as following:

PBg =
πgC
G

G∑
g′=1

πg′C + (1− pg′)P ′g′C

Therefore, a given request is blocked at time t, if the
requested node s is congested, i.e., its state Sts = C and the
polled node, say s′ ∈ g′, is also congested and/or does not
cooperate.

3.2 Discrepancy

As the MC model provides only limiting results, we mea-
sure the discrepancy between a finite system of nodes and
the ideal system with infinitely many nodes. To this end,
we derive the blocking probability for the case of one
group. Table 2 reports the value of the blocking probability
obtained from the model and from simulations for a single
group of server with load ρ = λ

C = 0.9 and different values
of C. We can see the model provides valid results even for
N small, but only up to a given value of C; after that value,
it provides a lower bound on blocking probability. We guess
that it due to the independence among nodes that does not
hold for C high. In addition, the table reports the blocking
probability when a node works in isolation, which is given
by the Erlang B Formula

PB(λ,C) =
λC

C!
C∑
k=0

λk

k!

4 TUNING THE COOPERATION PROBABILITY

In this section we discuss implementing a tit-for-tat mech-
anism as an incentive approach that aims at ensuring fair
cooperation among the different fog nodes or providers [31].
The idea behind the proposed algorithm is that a given node
s sets its local cooperation probability such that s forwards
to other providers as many requests as it receives. In other
words, if s receives more requests than what it can sent,
s reduces its cooperation probability. On the other hand,
s increases its cooperation probability if it forwards more
requests than what it receives.

When the average number of tasks sent is the same of
the received one, we say that a local equilibrium point is
reached. Our goal is to satisfy such condition for all nodes,
∀s ∈ N , which we will refer to as the global equilibrium
point. We, now, formally assert these conditions.



2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2828809, IEEE
Transactions on Cloud Computing

5

Let λgE be the mean of computation requests sent by a
given node s ∈ g and accepted by other nodes, λEg the rate
of received and accepted requests by node s forwarded by
other nodes. The local equilibrium condition corresponds to:

λgE − λEg = 0

In addition, the global equilibrium is reached if:

G∑
g=1

|λgE − λEg| = 0

Clearly, before designing any practical algorithm, it is
important to assess first if such equilibrium points exist.
Therefore, we calculate such rates and provide numerical
evidence that these equilibrium points indeed exist. In ad-
dition, we show that it there exits a single equilibrium point
that minimizes the blocking probabilities at each fog node.

The out-coming traffic is a Poisson process with mean:

λgE =
λg
G

( C∑
i=1

G∑
g′=1

πgiP
′
g′ipg′ +

C∑
i=1

G∑
g′=1

πgiπg′i
pg′

2

)
The probability of a given request reaching node s and
forwarded to another node s′ is equal to the probability
of: (1) Sts = i, Sts′ < i, and s′ accepts the request, or (2)
Sts = Sts′ = i, ties are broken in favor of s′, and s accepts the
request.

Similarly, the incoming traffic is a Poisson flow with
mean:

λEg =
1

G

( C∑
i=1

G∑
g′=1

λg′πgiPg′i+1pg +

C∑
i=1

G∑
g′=1

λg′πgiπg′i
pg
2

)
In fact, a request arrives to s from another node s′ if: (1’)

the state of s′ is Sts′ > i, Sts = i, and s accepts the request,
or (2’) Sts′ = i and s′ accepts to collaborate.

In the rest of the paper, we call ρgE =
λgE

C the out-
coming load and ρEg =

λEg

C the incoming loads and refer
to them as cross-loads. In addition, we define ∆ρg the net
incoming cross-load for group g as:

∆ρg = ρEg − ρgE (3)

4.1 Equilibrium and Optimal Points
In our preliminarily analysis we use the MC model to
elaborate on the equilibrium points. We start by considering
G = 2. The two groups g1 and g2 are of equal size, with
loads ρ1 = 0.9 and ρ2 = 0.8, respectively. We consider a
fixed number of servers per node and vary the cooperation
probability p2 when p1 = 1 or p1 = 0.9. Fig. 4 shows the
incoming and out-coming loads for the tagged node in the
two groups.

Two pairs of cooperation probabilities provide equilib-
rium (occurring at the vertical line at the figures), roughly at
p1 = 1, p2 = 0.4 and p1 = 0.9, p2 = 0.35. The corresponding
blocking probability is therefore PB1 = 0.030, PB2 = 0.010
and PB1 = 0.039, PB2 = 0.013 for the top and bottom
figures respectively. Note that we have performed other
empirical experiments using different, however we decide
to omit the results as they are very similar to the one shared
in Fig. 4.
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Fig. 4: Example of cross loads measurement while varying
the cooperation probability p2 for two groups. We set p1 = 1
(top), and p1 = 0.9 (bottom).

These numerical experiments reveal few interesting
properties. The first property is that, at the equilibrium
point, nodes in g1 have higher cooperation probability com-
pared to nodes in g2. This derives from the observation that
the nodes in g1 see their servers busy more often, and this
will produce a higher out-coming load compared to nodes
in g2. As a consequence, in order to reach the equilibrium
point, nodes in g1 accept requests more often than nodes in
g2, i.e., p1 > p2.

The second property is related to the impact of the coop-
eration probabilities among each others at the equilibrium. If
nodes in g1 decrease their cooperation probability, then the
requests coming from g2 are accepted less often. Therefore,
to preserve the equilibrium, the cooperation probability of
nodes in g2 must be reduced. In other words, for G = 2 and
ρ1 > ρ2, any pair of cooperation probabilities (p1, p2) that
ensures the equilibrium is such that p1 > p2; in addition, p2

is directly proportional to p1.
The last observation is that the highest possible pair

of cooperation probabilities that ensure the equilibrium
implies the maximum possible amount of fair resource
sharing among nodes, with the net effect of minimizing both
blocking probabilities (resource sharing is a well known
principle to increase resource utilization in stochastic sys-
tems). We can then conclude that for G = 2, ρ1 > ρ2 it exits
an equilibrium point (1, p2) providing the lowest blocking
probability while assuring fair cooperation.

A similar behavior was observed for G = 3. Fig. 5 shows
∆ρ =

∑
i |∆ρi| when ρ1 = 0.95, ρ2 = 0.9, ρ3 = 0.85.

We compute the cross load as a function of p2, p3 while
setting p1 = 1. The cooperation probabilities vary in step
of 10−2. The lowest value registered was ∆ρ = 1.2 × 10−3
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Fig. 5: Measuring ∆ρ while varying the acceptance proba-
bilities p2, p3 and setting p1 = 1.

corresponding to p2 = 0.67, p3 = 0.43. If one zooms in
square [0.660, 0.680] × [0.420, 0.440], at step 10−3, the pair
p2 = 0.666, p3 = 0.426 provides ∆ρ = 1.1×10−4. We repeat
the same magnification and we find ∆ρ = 8.66 × 10−6 for
p2 = 0.6662, p3 = 0.4256. As a conclusion, we argue that
iterating such procedure, eventually will lead to ∆ρ = 0.
We have repeated the same experiment setting p1 = 0.9
and found that, similar to the previous case, the blocking
probability increased, whereas p2, p3 decreased.

Based on these numerical evidence, we argue that the
aforementioned properties are valid for any G, which leads
us to, without a formal proof, the following property:

Claim: For a system consisting of: (i) infinite servers di-
vided into G groups of equal sizes and a vector of loads ρ =
(ρ1, . . . , ρG), there exists infinitely many equilibrium points,
i.e., vector of cooperation probabilities p = (p1, . . . , pG)
that provides ∆ρ = 0, where pi > pi+1. However, there
exists a “unique” probability vector p∗ = (1, p2 . . . , pG) that
minimizes all the blocking probabilities PBg , which we call
the optimal cooperation probability vector.

To find the optimal cooperation vector for any G, we
cast the problem as an optimization problem, where the
objective function is to minimize ∆ρ(p) =

∑
i |∆ρi(p)|,

where each ∆ρi(p) is computed by Eq. 3. We adopt a
heuristic approach as shown in Alg. 1. The algorithm is
inspired by the optimization technique known as downhill
simplex method developed by Nelder and Mead [32].

This method iteratively approximates a local optimum
of a problem with n variables when the objective function
varies smoothly, by applying at each iteration several vari-
ation rules to the set of current possible solutions. These
rules include the possibility to ‘go back’ (reflection) and to
reduce (shrink) the step according to solution’s variation.
Although the original algorithm could be applied, we use
a much simpler version, where only one solution is carried
out and the two above variations are applied.

Our algorithm (shown in Alg. 1) starts from p =
(1, 1, . . . , 1). As according to our claim, the optimal solution
has p1 = 1, pi > pi+1 with each pi be the maximum value
that ensures an equilibrium, the algorithm keeps p1 = 1
and tries to sequentially decrease each pi from pi = 1 to

1. where ρi is the load of any server in a given group g and ρi > ρi+1

Algorithm 1 Finding the optimum vector p
Input:ρ = (ρ1, . . . ρG), G > 0, ε > 0, δp ∈ (0, 1)
Output:p = (p1, . . . pG)

1: for i=1..G do . initialization
2: δpi ← δp
3: pi ← 1
4: diri ← 0 . direction (0=init, -1=backward, 1=forward)
5: ∆ρi ← ∆ρi(ρ, p) . See Eq. 3
6: end for
7: ∆ρ←∞
8: while ∆ρ > ε do
9: for i=2..G do

10: if ∆ρi < 0 then
11: pi ← max(0, pi − δpi)
12: if diri == 0 then
13: diri ← −1
14: end if
15: if diri == 1 then . change direction
16: diri ← −1
17: δpi ← δpi/2
18: end if
19: end if
20: if ∆ρi > 0 then
21: pi ← min(1, pi + δpi)
22: if diri == 0 then
23: diri ← +1
24: end if
25: if diri == −1 then . change direction
26: diri ← 1
27: δpi ← δpi/2
28: end if
29: end if
30: end for
31: ∆ρ← 0
32: for i=1..G do
33: ∆ρi ← ∆ρi(ρ, p) . See Eq. 3
34: ∆ρ← ∆ρ+ |∆ρi|
35: end for
36: end while
37: return p

the first (highest) p∗i that ensure the equilibrium. Hence, the
equilibrium condition found also corresponds to the optimal
cooperation probability vector.

More specifically, the algorithm iteratively computes the
cross-loads ∆ρi for each group under a collaboration vector
p, and modifies the cooperation probabilities until ∆ρ ≈
0 (line 8). We will empirically and quantitatively test the
convergence of the algorithm in Fig. 6.

At each iteration, the cooperation probability of each
node of group i can either be increasing (dir=1) or decreas-
ing (dir=-1) of a variable amount called the step size δpi.
Initially the direction is set to dir = 0. If ∆ρi < 0, the
incoming load is higher than the out-coming load; therefore,
the node reduces the cooperation probability pi to pi − δpi
(line 11). In addition, if in the previous step, pi was increased
(line 15), the sign of the variation is inverted (from dir = 1
to dir = −1) and the step is halved (line 17). In this
way, the cooperation probability goes ‘back’ of half δpi, i.e.,
pi = pi− δpi

2 , and from now on it will change at such halved
step. If the cooperation probability was already decreasing,
i.e., dir = −1, no changes are required. A similar behavior
occurs if ∆ρi > 0.

Fig. 6 shows a typical behavior of Alg. 1. We plot
the cooperation probability as a function of the iterations
performed by the Alg. 1 using the following parameters:
C = 20, δp = 0.1, ε = 10−10 when: ρ1 = 0.95, , ρ2 =
0.90, ρ3 = 0.85, ρ4 = 0.80

As shown in Fig. 6, all the cooperation probabilities start
from 1, and then converge to smaller values. The discontinu-
ity in the value of the probability occur when the direction
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Fig. 6: Computation of the optimal cooperation probabilities
vs iterations.

dir in the algorithm changes. The cooperation probability
of g1 remains stable to 1, indicating that the cooperation
probabilities correspond to the optimal equilibrium point.

ρ1 δp = 0.5 δp = 0.2 δp = 0.1 δp = 0.05 δp = 0.01
0.95 70 54 63 71 151
0.85 66 63 74 84 291
0.75 67 76 91 101 893

TABLE 3: Number of iterations for different δp and ρ

Table 3 shows the number of iterations required to
converge, obtained for G = 4, C = 20, ε = 10−10 under
loads (0.75, 0.85, 0.95) as a function of step size δp. When
the step size is high (δp = 0.5), the cooperation probabilities
at each iteration vary of a big amount, so that there is
the risk for ∆ρi to change often its sign; the variations
in the cooperation probability are then bounced back and
forth more frequently. However, for very small step size
(δp = 0.01), the variation is very slow which requires more
iterations for algorithm convergence. A good compromise
seems to be δp = 0.2.

5 A DISTRIBUTED ALGORITHM: DESIGN AND
ANALYSIS

Despite verifying the existence of an optimal cooperation
between infinitely many servers, subject to different loads,
we investigate, in this section, the existence of such optimal
cooperation for a finite number of servers. Then, we grasp
the results and the ideas from the analysis to design an
distributed algorithm for fog cooperative computing.

The main challenge for using a finite number of nodes
is to dynamically tune the nodes’ cooperation probabilities.
As fog computing scenarios are distributed by nature, a
centralized solution is undesired. Indeed, a central node can
be designed to receive the loads statistics from all nodes and
run an algorithms, e.g., the greedy algorithm presented in
the previous section, to compute the optimal cooperation
probabilities. This solution is not suitable in fog computing
for several reasons. First, a centralized architecture always
represents a single point-of-failure. Second, considering
one distant central node that serves thousands/millions of
nodes adds significant delay [22]. Another solution will be
electing a cluster-head like node from existing collaborating
nodes arises questions such as trust, overhead, and delay.
Finally, periodic gathering of queue states at a central node

Algorithm 2 LOCAL running at node s
1: c, c′ ← 0
2: p← 1
3: On receiving compReq:
4: if compReq.sender == OtherNode() then
5: Serve(compReq)
6: return
7: end if
8: s′ ← Rnd(N)
9: probeMeggage.busy ← Busy()

10: probeMeggage.sender ← s
11: ok = send(probeMessage, s′)
12: if ok then
13: send(compReq, s′)
14: c–
15: else
16: Serve(compReq)
17: end if
18: On receiving probeMessage:
19: rb=probeMessage.busy
20: lb=Busy()
21: ok = (rb > lb & Rnd() < p)||(rb == lb & Rnd() < 0.5p)
22: if ok then
23: send(ok, probeMessage.sender)
24: c++
25: else
26: send(nok, probeMessage.sender)
27: end if
28: On receiving timeout
29: setNextTimeout(∆T )
30: c← αc+ (1− α)c′

31: if c > 0 then
32: p← max(0, p− δp)
33: else
34: p← min(1, p+ δp)
35: end if
36: c′ ← c
37: c← 0

(proactive approach) often relies on stale information due
to communication delays and data gathering granularity,
while in distributed architecture nodes will always get the
most up-to-date state of their queue when needed (reactive
approach).

We propose, LOCAL, a distributed and LOcal Cooper-
ation ALgorithm that leverages only node’s assessments of
cross loading to dynamically tune the node’s cooperation
probability, see Alg. 2.

In LOCAL, a given node s receives a new computation
requests sent by another node s′ only if s was previously
probed by s′ and it accepted to cooperate. Therefore s
accepts received requests as per line 5 in Alg. 2.

Otherwise, the request comes from an provider’s user
and s probes another node at random, s′, by sending its
current number of busy servers and waits until it receives
the reply (lines 8-11). In case of cooperation, s forwards the
computation request to s′ and decreases its local counter c.
If s′ does not cooperate, the request is served locally.

When s receives a probe message (line 18) it extracts
rb (number of remote busy servers) from the message and
checks lb its current number of local busy servers. It applies
the following cooperation rule: If lb < rb then it cooperates
with probability p. If lb = rb it cooperates with probability
0.5p. In case of cooperation a positive message is sent back
and the local counter is increased (lines 23-24). In the other
case it doesn’t cooperate and a negative message is sent (line
26).

The cooperation probabilities are updated every ∆T
units of time (lines 28-37).

When a given time slot ∆T expires, an exponential
weighted moving average (EWMA) with parameter α is
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computed based on c and the counter of the previous time
slot, stored in c′ (line 30). If the EWMA is greater than 0

then the number of computation requests accepted by
the node was higher than the one it got accepted. As a
consequence, the node decrease its cooperation probability
(line 32). Otherwise the cooperation probability is increased
(line 34). Finally, the current counter is stored in c′ and a
new time slot begins with c = 0 (lines 36-37).

6 PERFORMANCE RESULTS

In this section, we perform a set of simulation-based ex-
periments to assess the efficiency and effectiveness of our
proposed tuning mechanism and its computed blocking
probabilities. We used a custom simulator written in Python.
In all our experiments we set µ = 1 unit of time. We also
fixed α = 0.9 which we choose empirically after testing
different values ([0.5, 0.9] interval). α = 0.9 provides the
lowest variance of the cooperation probabilities.

6.1 Effectiveness of Probability Tuning

As a key element in LOCAL is the estimation of the cooper-
ation probability, our first goal is to assess the suitability of
such mechanism both under constant loads and under vari-
able loads. We performed the following three experiments:

Exp1.1: The goal of this experiment was to verify that
LOCAL reaches and maintains an equilibrium condition
under fixed loads. We choose the following parameters of
this experiment: G = 2, ρ1 = 0.9, ρ2 = 0.8, N1 = N2 =
10, C = 10,∆T = 500, δp = 0.005. 2

Fig. 7a plots the cooperation probabilities p1 and p2 of
two probed nodes belonging to the two groups. Initially
p1 = p2 = 1. We can see that p2, with load ρ2, decreases
and converges around an average stable value, whereas p1

remains close to p1 = 1. This is in accordance with our
analysis given in Sect. 4.1, i.e., p2 < p1 because ρ2 < ρ1.

Exp1.2: We now consider G = 4 groups of nodes
composed of 10 server each subject to very different loads;
specifically ρ1 = 0.99, ρ2 = 0.95, ρ3 = 0.50, and ρ4 = 0.3,
respectively. As before, we set C = 10 and we consider one
probe node in each of the four groups. The results, reported
in Fig. 7b, show that despite the large difference between
loads, the cooperation probabilities converge to a set of
values with pi > pi+1, as predicted by the performance
model. In addition, the first cooperation probability is close
to 1. As a matter of comparison, the heuristic algorithm
used to compute the optimal probability vector under the
same load, for ε = 10−10 provided the following values
after only 65 iterations: p1 = 1, p2 = 0.68, p3 = 0.054, and
p4 = 0.006, which are very close to the probabilities found
for finite system size, that were equal to p1 = 0.99, p2 =
0.67, p3 = 0.055, and p4 = 0.005 on average.

Exp1.3: In this last experiment, we assess the adap-
tiveness of LOCAL to a change in the load. We consider
the same system detailed in Exp1.2, i.e., G = 4 groups,
10 nodes per group, C = 10. This time, we fixed the

2. As opposed to variable δp used in Alg. 1, LOCAL uses constant
steps, which we choose to set to small values in order have a low
variance of the blocking probabilities. A possible algorithm based on
variable δp is proposed later in this section.
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Fig. 7: Cooperation probability over time using (a) G = 2
groups of nodes, and (b) G = 4 group of nodes.
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Fig. 8: Cooperation probability over time for Exp1.3;
Zoomed-in version displayed in right.

loads in the time interval between 0 to 5 × 106 to ρ1 =
0.99, ρ2 = 0.90, ρ3 = 0.80, ρ4 = 0.6; then we change
ρ1 = 0.70 afterwards, i.e., when t > 5 × 106. Fig. 8 plots
the cooperation probabilities at 4 probed nodes over time
as we vary new load profile at timescale 5 × 106. When
ρ1 falls to 0.7, the highest load becomes ρ2 = 0.90; and,
in fact, the corresponding acceptance probability increases
to almost 1. The reduction of the first group’s load incurs
fewer forwarded requests to the third and to the last group
of nodes. As a consequence their accepting probabilities are
increased and stabilize around a new higher value. We show
that, as ρ2 registers the highest value, p2 rises to 1, whereas
p1 falls down to approximatively 0.2, crossing p2 and p3.
The time required to reach the new set of probabilities is
≈ 8× 104.
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6.2 Algorithm Responsiveness

We define the response time of LOCAL, R, as the minimum
amount of time required to reach the new set of cooper-
ation probabilities that provides a new equilibrium. From
Fig. 8, we find R =≈ 8 × 104 time units. In order to see
how the absolute values of the loads affect R we repeat a
similar experiment with initial loads scaled of 0.1, i.e., ρ1 =
0.89, ρ2 = 0.85, ρ3 = 0.80, ρ4 = 0.65 and ρ1 changing from
0.89 to 0.7. The stable cooperation probability before and
after the change was p1 ≈ 1, p2 ≈ 0.8, p3 ≈ 0.6, p4 ≈ 0.2
and p1 ≈ 0.38, p2 ≈ 1, p3 ≈ 0.73, p4 ≈ 0.28 respectively.
In this case, we registered a value R ≈ 6.2 × 104 time
units. After that, we have empirically tested multiple load
variations and found that R varies by orders of magnitude
smaller or larger due mainly to the steps δp.

In general, after a load change, the responsiveness R is
related to the difference gap between the old (p) and new (p′)
stable cooperation probabilities over all the nodes. Recall
that the cooperation probability at every node changes every
∆T time units with steps δp. If pi is the stable cooperation
probability of a node belonging to group i prior to a load
change, p′i the new stable probability after the load change,
and δp is the probability step size, then the probability
reaches p′i no earlier than ∆T

pi−p′i
δp time units.

Thus, a lower bound to the responsiveness of the al-
gorithm is determined by nodes whose variation in the
cooperation probabilities is maximum, i.e.,

R ≥ ∆T
max
i∈G

(p′i − pi)

δp

In general, to reduce R, one can (1) decrease ∆T , or
(2) increase δp. However, a small value of ∆T implies a
less accurate estimate in the cross load with an increase in
variance, say σ, of the cooperation probability and, conse-
quentially, of the blocking probability seen by a end user.
Similarly, a high value of δp means a higher magnitude
in the oscillation of the cooperation probabilities once the
stable point is reached that result in a higher σ.

The value δp is then a trade-off between R and σ. To
reduce both values the step δp should be variable in a way
that δp is high when the load is changing and smaller when
the load is constant. To mitigate such a drawback, a simple
dynamic tuning adaptation protocol is described in Sec. 6.4.

6.3 Blocking Probability Measurements

We investigate the impact of fair cooperation on the overall
system performance by measuring the blocking probability
as a function of C, number of servers per node as well as
the loads. We fix the number of servers C = 30 and vary the
loads. We consider two sample simulation scenarios both
last for 105 time units and statistics are collected after a
warm-up period of 3 × 104 time units that ensure stable
cooperative probabilities. Each simulation is repeated 10
times with a different random seed.

Exp2.1: We experiment a system of 10 nodes loaded with
ρ1 = 0.9 and 10 nodes with ρ2 = 0.8. Fig. 9 (a) compares
the blocking probabilities of LOCAL and one obtained from
the Erlang B formula (EB), corresponding to nodes working
in isolation. We show that LOCAL reduces the blocking
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Fig. 9: Blocking probabilities in function of the number of
psychical servers.

probability more than a non cooperative scheme, EB. For
example, for the first group and C = 50 the blocking
probability decreases from 5.4 × 10−2 to ≈ 2.8 × 10−3 for
the first group and from 1.8× 10−2 to ≈ 2.6× 10−4 for the
second one. In the case of non cooperation, a node works in
isolation in order to reduce the blocking probability of the
same amount C must be increased from C = 50 to C = 65
in the first case and to C = 64 in the second case, i.e., of
about 30%.

Exp2.2: We now consider a system consisting of 10 nodes
with ρ1 = 0.95, 10 nodes with ρ2 = 0.9, 10 nodes with
ρ3 = 0.85 and 10 nodes loaded withρ4 = 0.8. The plot
in Fig. 9 (b) shows similar results compared to Exp2.1. For
example, for C = 50, the blocking probability in the second
group decreases from 5.4× 10−2 to ≈ 5.5× 10−3 and from
1.8× 10−2 to ≈ 6.1×−4 for the last group .

Exp2.3: In this experiment, we consider two groups of
10 nodes each with C = 30 servers each. The first group’s
load is constant and set to ρ1 = 0.9, whereas ρ2 varies from
0.4 to 0.9. The goal of this experiment is to investigate how
the difference between loads of cooperating nodes affect the
blocking probabilities.

Fig. 10 plots the blocking probability for LOCAL and
the one obtained from the Erlang-B formula. We show that
LOCAL outperforms Erlang-B, for all considered loads, by
10 to 50 ×. This gain ratio while slightly reduced when
ρ2 → 1, the absolute performance difference increases;
note that the y-axis is in log-scale. We also note that when
ρ2 = ρ1 = 0.9, the two groups will have similar load,
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therefore LOCAL assigns the same blocking probabilities of
0.01 which is much smaller than EB’s blocking probability
of roughly 0.1.

Exp2.4: In this last experiment, we consider similar setup
than Exp2.3 while using ρ1 = 0.9 and 0.8. We measure, in
Fig. 11, the cooperation probabilities while varying ρ2 from
0.4 to 0.9. The cooperation probability p2 increases with ρ2

because when ρ2 increases nodes in g2 sees a larger number
of their request to be accepted (if fact, nodes in g1 always
accept requests). And thus, to maintain the equilibrium
their cooperation probabilities increase. Also, the absolute
value of p2 is lower for ρ1 = 0.9 because the requests
towards nodes in g2 increases with ρ1 and thus, the keep the
equilibrium, nodes in g2 have to increase their cooperation
probability w.r.t to ρ1 = 0.8.

6.4 DyLOCAL: LOCAL Enhancement With Dynamic
Tuning
We discuss, in this section, possible enhancement of LO-
CAL by leveraging dynamic tuning of δp in order to reduce
the overall response time R. We refer to this protocol en-
hancement as DyLOCAL.

The key idea of DyLOCAL is motivated by the obser-
vation that when the load changes, the current cooperation
probability, i.e., p varies with several consecutive increases
(or decreases). Thus we propose that, when the previous
condition is detected, we increase the step size linearly over
time until the new cooperation probability value is reached.

More precisely, let us assume for the sake of simplicity,
that under the new load a cooperation probability increases
from p to p′. DyLOCAL operates as follows: the 1st prob-
ability increase is equal to δp, the 2sd consecutive (with
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Fig. 12: Results of Exp3, where the load changes at time
t = 105.

no decrease registered between two consecutive increases)
is equal to 2δp, and for the ist consecutive increase, the
probability change is of i · δp. When p′ is reached (i,e, the
condition of consecutive increases may change), the step
size is reset to δp and DyLOCAL re-operates again as above.
Note that DyLOCAL is a very simple algorithm, optimizing
it is beyond the goal of this paper and will be investigated
in our future work.

To grasp the potential improvement of DyLOCAL over
LOCAL, assume that p = 1 and p′ ≈ 0. Using LOCAL,
R ≈ ∆T 1

δp , whereas with DyLOCAL the responsiveness

R ≈ ∆T
√

2
δp . This last value is obtained by solving:

δp
k∑
i=1

i = δp
k(k + 1)

2
≈ δpk

2

2
= 1

For instance, when δp = 0.005, the responsiveness of LO-
CAL is R = 200∆T , while DyLOCAL’s is R = 20∆T , i.e.,
one order of magnitude shorter response time.

Exp3: We experiment DyLOCAL using the same scenario
in Exp.1.3 with the only difference in the load, which
changes at time t = 105. Fig. 12a shows the cooperation
probabilities pi over time for a representative node of each
of the G = 4 groups (i = 1..4). DyLOCAL registers a shorter
responsiveness of R ≈ 8 × 103 time units, which is indeed
one order of magnitude faster than the one observed for
LOCALwhose response time was R ≈ 8× 104.
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Fig. 12b plots the step size δpi used to tune pi over time.
The steps increased linearly when the load changes (either at
the beginning of the simulation or at t = 105). Once a stable
probability is reached, the step variations becomes smaller
as in LOCAL. The figure shows for example, that when
the simulation starts, at t = 0, only p3 and p4 decreases,
with steps that increase linearly (i.e., p2, p3 change quadrat-
ically). A clear variation in the step sizes is also visible at
t = 104, i.e., when ρ1 decreases from 0.99 to 0.7. Here
p1 decreases quadratically, while all the other probabilities
increase quadratically.

7 CONCLUSION AND FUTURE WORK

In this paper, we have addressed the problem of cooperation
among different providers in the context of fog computing.
We have addressed cooperation fairness so that a win-win
condition can be met. The proposed distributed protocol is
based on the power of two model which sows efficient fair
collaboration that improves the overall system utilization.
Indeed, each provider can improve its service level, in a fair
way and at no cost.

We have first analyzed the problem with a simple model
and then designed a distributed algorithm, LOCAL, whose
performance has been investigated through simulations.
Simulation results have shown that LOCAL registers a
blocking probability outperforming other state-of-the-art
solutions by two order of magnitudes or more.

This is a first step towards proposing a distributed
platform for full cooperative fog computing. In the future,
we plan to study an optimized (or near optimal) cooperation
probability tuning algorithms.
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