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Abstract—In this paper, the reduction method is extended to
time-delay systems affected by two mismatched input delays.
To this end, the intrinsic feedback structure of the retarded
dynamics is exploited to deduce a reduced dynamics which is
free of delays. Moreover, among other possibilities, an Immersion
and Invariance feedback over the reduced dynamics is designed
for achieving stabilization of the original dynamics. A chained
sampled-data dynamics is used to show the effectiveness of the
proposed control strategy through simulations.

Index Terms—Delay systems, Sampled-data control, Stability
of nonlinear systems

I. INTRODUCTION

NONLINEAR discrete-time dynamics with input delays
exhibit a strict feedback form over an extended state

space [1]–[7]. Taking advantage of this peculiar cascade struc-
ture, several stabilizing controllers have been proposed. In [8],
Immersion and Invariance (I&I) based controllers have been
designed for discrete-time nonlinear dynamics with input de-
lays while improving prediction-based methodologies. Those
invariance-based strategies are generally easier to deduce than
predictor-based ones. Indeed, the necessity of computing a
prediction of the state trajectories over the delayed window is
weakened by requiring convergence to some suitably shaped
set over which the closed-loop dynamics recovers the ideal
delay-free one.

Those methodologies apply to sampled-data dynamics as
well when affected by a constant input delay. In this sce-
nario, the continuous-time dynamics is controlled through
piecewise constant input signals while measures of the state
are available only at the sampling instants. Accordingly, the
stabilizing sampled-data feedback can be designed over an
extended discrete-time equivalent dynamics which exhibits a
strict-feedback form, too. In this scenario, predictor and I&I-
based control laws are discussed and compared in [9], [10].
Truncated expansions in powers of the sampling period δ are
also proposed to approximate the exact solutions which are
difficult to compute in practice.

A more recent approach concerns reduction-based methods
aimed at reducing the input delayed dynamics to a delay free
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one that is equivalent (from the point of view of stability)
to the original one [11]. Since reduction implicitly relies upon
prediction, stabilization of the reduced dynamics implies stabi-
lization of the delayed one. However, an interesting feature of
reduction stands in the simplification of the design because the
reduced dynamics is by construction free of delays. Moreover,
contrarily to prediction dynamics, the reduced model is not
a delay-free copy of the system dynamics but differs in the
controlled vector fields that come to be explicitly parametrized
by the delay-length so leaving space for a further redesign.

Up to now, the discussion has been referring to single-input
dynamics though extensions to the case of multiple inputs
is straightforward whenever the input channels are uniformly
delayed (i.e., affected by the same delay) as developed in [12].
In continuous time, predictor-based techniques for multi-input
linear time-invariant systems affected by distinct input delays
have been proposed in [13]–[15] with extensions to nonlinear
dynamics in [16].

The aim of this paper is to address this problem in the
nonlinear context when considering dynamics affected by
two distinct input delays. The contribution relies upon the
possibility of extending the reduction method [12] to this class
of dynamics by taking advantage of the feedback structure
underlying the evolutions of the retarded system. First, a state
augmentation is used to make the delayed dynamics uniform
in the action of the delays (i.e., the extended system is affected
by the same delay); then, a modified reduction variable is
exhibited so to transform the input-delayed dynamics into a
delay-free one over the extended state-space. Finally, among
other possibilities, an I&I design procedure is worked out for
stabilizing the reduced dynamics. The cascade structure allows
to conclude that stabilization of the reduced dynamics implies
stabilization of the input-delayed one.

The paper is organized as follows. In Section II, recalls
on the discrete-time reduction method are provided when the
inputs are affected by the same delay. The case of two-channel
time delays systems is studied in Section III by exhibiting
a reduced dynamics which is free of delays. An I&I-based
design procedure over the reduced model is then presented in
Section IV. In Section V, the case of a chained dynamics is
considered as a case of study while Section VI concludes the
paper.

Notations: 0i× j denotes the i× j-dimensional matrix whose
entries are zero, IN stands for the N dimensional identity
matrix while 1 j the column vector whose entries are all ones.
Maps and vector fields are assumed smooth. Given i, j ∈ N



such that j < i, u[k−i,k− j[ denotes the history of the discrete
variable u over the window [k− i,k− j[ (i.e., u[k−i,k− j[ =
{u(k − i), . . . ,u(k − j − 1)}). The symbol ”◦” denotes the
composition of functions. I and Id denote respectively the
identity matrix and the identity operator. Given a vector field
f , L f denotes the Lie derivative operator, L f = ∑

n
i=1 fi(·)∇xi

with ∇xi := ∂

∂xi
while ∇ = (∇x1 , . . . ,∇xn). eL f Id denotes the

associated Lie series operator, eL f := Id+∑i≥1
Li

f
i!

II. RECALLS ON DISCRETE-TIME REDUCTION

Consider the nonlinear discrete-time system

x(k+1) =F(x(k),u(k−N)) (1)

with x ∈ Rn, u ∈ Rp, possessing an equilibrium at the origin
and affected by a discrete delay N ≥ 0 uniformly acting over
each input channel. Invertibility of the function F0(·) = F(·,0)
with respect to the state vector x is assumed.

In [12], it was proven that the problem of finding a stabilizer
for (1) can be settled over a new dynamics that is equivalent
to the original one as far as stability properties are concerned.
For, we introduce the so-called reduction variable

η(k) := F−N
0 (·)◦FN(x(k),u[k−N,k[) (2)

where u[k−N,k[ denotes the history of the control signal and

FN
0 (x) = F0(·)◦ · · · ◦F0(x)︸ ︷︷ ︸

N times

, F−N
0 (x) = F−1

0 (·)◦ · · · ◦F−1
0 (x)︸ ︷︷ ︸

N times

represent the usual N-times composition of the drift term and
the corresponding inverse. Composing N steps ahead the full
dynamics (1), one computes for N ≥ 1

FN(x(k),u[k−N,k[) :=FN−1(·,u[k−N+1,k[)◦F(x(k),u(k−N))

:=F(·,u(k−1))◦ · · · ◦F(x(k),u(k−N))

with F1(x(k),u[k−1,k[) := F(x(k),u(k− 1)). It is a matter of
computations to verify that (2) evolves according to the
reduced dynamics

η(k+1) =Fr(η(k),u(k)) (3)

with Fr(η ,u) := F−N
0 (·)◦F(·,u)◦FN

0 (η).
The reduced dynamics (3) is delay free with the same drift

as (1) but modified controlled vector field. More precisely,
when assuming p = 1 for the sake of simplicity, (3) rewrites
as the N-depending dynamics

η(k+1) =F0(η(k)) (4)

+
∫ u(k)

0
∇u
(
F−N

0 (·)◦F(·,u)◦FN
0 (η(k)))du.

Hence, the problem stands in finding a feedback u(k) =
α(η(k)) stabilizing the equilibrium of (3) so getting in turn
stabilization of (1) in closed loop as, by construction, x(k+
N) = FN

0 (η(k)). In fact, one gets in closed loop the cascade

x(k+1) =FN
0 (η1(k))

η1(k+1) =η2(k), . . . , ηN−1(k+1) = η(k)

η(k+1) =Fr(η(k),α(η(k)))

with η1(k) = F(x(k),α(F−N
0 (x(k)))).

Several strategies aimed at computing the reduction-based
feedback have been discussed in [12] by exploiting the prop-
erties of the time-delay system (1) in free evolution.

III. TWO-CHANNEL TIME-DELAY SYSTEMS

In the sequel we address the problem of stabilizing the time-
delay system

x(k+1) =F(x(k),u1(k−N1),u2(k−N2)) (5)

whose input channels ui ∈ Rpi , i = 1,2 with p = p1 + p2, are
affected by different time delays verifying, after possible index
sorting, N2−N1 = N > 0; F0(·) := F(·,0,0) is assumed to be
invertible over Rn.

The design we propose is based on three steps: first, we
introduce a dynamical extension over the control u2 so to
compensate the mismatch among the two input delays; then,
we extend the reduction method as recalled in Section II
over the extended dynamics; finally, we design one possible
reduction-based feedback based on Immersion and Invariance.

Remark 3.1: The presented results apply to sampled-data
systems affected by entire delays; namely, one considers
continuous-time dynamics of the form

ẋ(t) = f (x(t))+g1(x(t))u1(t− τ1)+g2(x(t))u2(t− τ2)

with ui(t) = ui(kδ ) = ui(k) for t ∈ [kδ ,(k+1)δ [ and τi = Niδ

for some Ni ∈ N (i = 1,2). In that case, for x(k) = x(kδ ), the
discrete-time equivalent model gets the δ -dependent form

x(k+1) =Fδ (x(k),u1(k−N1),u2(k−N2))

= eδ (L f +Lg1u1(k−N1)
+Lg2u2(k−N2)

)x
∣∣
x(k).

A. The dynamical extension

Let us introduce the new state ξ := (ξ1, . . . ,ξN)
> ∈ Rp2N

(with N =N2−N1 being the mismatch between the two delays)
evolving as the linear dynamics

ξ (k+1) =Aξ (k)+Bu2(k)

with ξi(k) = u2(k−N + i−1) for i = 1, . . . ,N and

A =

(
0p2(N−1)×p2 Ip2(N−1)

0p2×p2 0>p2(N−1)×p2

)
, B =

(
0p2(N−1)×p2

Ip2

)
.

Accordingly, the extended delayed system exhibits a cascade
structure affected by both state and input delays of the same
length N1; i.e., when setting ξ1(k−N1) = u2(k−N2)

x(k+1) =F(x(k),u1(k−N1),ξ1(k−N1)) (6a)
ξ (k+1) =Aξ (k)+Bu2(k) (6b)

with ξN(k+1) = ξ1(k+N) = u2(k) for k ≥ 0.



B. The reduced dynamics

Because of the cascade structure of (6), we introduce the
extended reduction variable η>e = (η>, ξ>) composed of two
components: the usual one defined for the x-dynamics (6a)
over the N1-steps delay; a mere copy of the state extension ξ .
Accordingly, one gets

η(k) :=F−N1
0 (·)◦FN1(x(k),u1[k−N1,k[,ξ1[k−N1,k[)

=F−N1
0 (·)◦F(·,u1(k−1),ξ1(k−1))◦ . . .
◦F(x(k),u1(k−N1),ξ1(k−N1)).

By construction, the ηe-dynamics is delay free with respect
to the control variables u = (u1,u2). As a matter of fact, one
computes the extended reduced dynamics as

η(k+1) =Fr(η(k),u1(k),ξ1(k)) (7a)
ξ (k+1) =Aξ (k)+Bu2(k) (7b)

with Fr(η ,u1,ξ1) = F−N1
0 (·)◦F(·,u1,ξ1)◦FN1

0 (η) and a copy
of (6b) which is free of delays itself. Moreover, (7) exhibits a
cascade structure with connection variable ξ1 and unchanged
drift term Fr(η ,0,0) = F0(η).

The following result can be thus given while the proof is
omitted as it follows the lines of [12] by exploiting the strict-
feedforward cascade structure of (7) when suitably intercon-
nected to the original dynamics (5) in closed loop [17].

Theorem 3.1: Consider the two-channel input delayed dy-
namics (5) with invertible drift term F0(·). Any feedback
u = (α1(η ,ξ ),α2(η ,ξ )) achieving Global Asymptotic Stabil-
ity (GAS) of the equilibrium of the reduced model (7) ensures
GAS of the equilibrium of (5).

The cascade structure is the core of the stabilizing design
over the reduced dynamics we shall discuss on in Section IV
among other possibilities.

Remark 3.2: As an alternative reduction design, one might
introduce an artificial delay over the less retarded input chan-
nel u1 so to directly compensate the delay mismatch and
then apply the standard methodology in [12]. However, this
approach induces a dynamical feedback over u1.

C. An alternative differential/difference representation

Assuming for the sake of simplicity p1 = p2 = 1 and follow-
ing [18], one can equivalently describe the dynamics (7) via
the so-called (F0,G)-representation. Denoting by η+

e (u1,u2)
any curve in Rn+N parametrized by (u1,u2), an equivalent rep-
resentation of (7) is provided through two coupled difference-
differential equations over Rn+N as

η
+ = F0(η), η

+ := η
+(0,0) (8a)

ξ
+ = Aξ , ξ

+ := ξ
+(0,0) (8b)

∂η+(u1,u2)

∂u1
= G1(η

+(u1,u2),ξ
+
1 (u1,u2),u1,u2) (8c)

∂ξ+(u1,u2)

∂u1
= 0 (8d)

∂η+(u1,u2)

∂u2
= 0,

∂ξ+(u1,u2)

∂u2
= B (8e)

with G1(η ,ξ1,u1,u2) being a vector field over Rn+N , param-
eterized by (u1,u2) and verifying 1

G1(Fr(η ,u1,ξ1),ξ2,u1,u2) :=∇u1Fr(η ,ξ1,u1). (9)

Thus, for any (k,ηe(k),u1(k),u2(k)), one recovers (7) by
integrating (8c)-(8d) over the interval [0,u1(k)[ and (8e) over
the interval [0,u2(k)[ and initial condition (8a)-(8b) with
ηe = ηe(k); i.e. ηe(k+1) = η+

e (u1(k),u2(k)) with

ηe(k+1) = η
+
e (0,0)+

∫ u1(k)

0
Ge1(η

+
e (u1,0),u1,0)du1

+
∫ u2(k)

0
Ge2(η

+
e (u1(k),u2),u1(k),u2)du2 (10)

with Ge1 = (G1,0), Ge2 = (0,B).
Remark 3.3: The integral form (10) rewrites as (see [18])

ηe(k+1) = η
+
e (0,0)

+
∫ u1(k)

0
Ge1(η

+
e (u1,u2(k)),u1,u2(k))du1

+
∫ u2(k)

0
Ge2(η

+
e (0,u2),0,u2)du2

because by definition the vector fields Ge1(ηe,u1,u2) and
Ge2(ηe,u1,u2) verify the so called compatibility conditions

∇u1Ge2(·,u1,u2)−∇u2Ge1(·,u1,u2)

=
[
Ge1(·,u1,u2),Ge2(·,u1,u2)

]
with

[
Ge1,Ge2

]
= (∇ηe Ge2)Ge1− (∇ηe Ge1)Ge2.

IV. STABILIZATION OF THE EXTENDED REDUCED
DYNAMICS-AN I&I APPROACH

Hereinafter, we discuss the design of a stabilizing controller
for the reduced dynamics (7) by assuming the existence of a
stabilizing feedback when there is no mismatch in the delays
acting over the input channels of (5) (i.e., when N2−N1 = 0).

Assumption 4.1 (Uniform delay): When N = N2−N1 = 0,
there exists a feedback u1 = γ1(η), u2 = γ2(η) which makes
the origin a GAS equilibrium for the ”ideal” reduced-dynamics

η(k+1) =Fr(η(k),u1(k),u2(k)) (11)

computed over the uniformly delayed system (1).
Remark 4.1: Assumption 4.1 can be inferred from the

stabilizability of the delay-free dynamics associated to (5). For
further details the reader is referred to [12].

In the following, we denote γ(·) = (γ1(·),γ2(·)). Under
Assumption 4.1, the existence of a stabilizing feedback over
the multi-delayed dynamics (5) can be proved by defining an
I&I feedback over the extended reduced model (7). For this
purpose, the I&I design over the dynamics (7) proceeds along
the steps sketched below.
Target dynamics - From Assumption 4.1, one deduces the
target dynamics over Rn as

ζ (k+1) =Fr(ζ (k),γ1(ζ (k)),γ2(ζ (k))) (12)

possessing a GAS equilibrium at the origin.

1Because F0(·) admits an inverse, then Fr(·,u1,u2) is smooth enough and
admits an inverse F−1

r (·,u1,u2) for (u1,u2) ∈ R2 sufficiently small.



Immersion mapping - The immersion mapping π : Rn →
Rn+p2N is defined as

π(ζ ) =

(
ζ (k)

π2(ζ (k))

)
=


ζ (k)

γ2(ζ (k))
γ2(ζ (k+1))

. . .
γ2(ζ (k+N−1))


where, for i = 1, . . . ,N

ζ (k+ i) = Fr(·,γ(·))◦ · · · ◦Fr(ζ (k),γ(ζ (k)))︸ ︷︷ ︸
i times

.

The on-the set feedback is thus given by

c(ζ (k)) = (c1(ζ (k)),c2(ζ (k))) = (γ1(ζ (k)),γ2(ζ (k+N)))

so that the following invariance condition is verified(
Fr(ζ (k),c1(ζ (k)),γ2(ζ (k))

Aπ2(ζ (k))+Bc2(ζ (k))

)
= π(Fr(ζ (k),γ(ζ (k)))).

Invariant set - The invariant set is described as the null
set of the mapping φ(η ,ξ ) : Rn+p2N → Rp2N with φ(η ,ξ ) =
col{φ1(η ,ξ ), . . . ,φN(η ,ξ )} and for any i = 1, . . . ,N

φi(η(k),ξ (k)) = ξi(k)− γ2(η(k+ i−1))

with for i = 1, . . . ,N and u1 = γ1(η)

η(k+ i) = Fr(·,γ1(·),ξi(k))◦ · · · ◦Fr(η(k),γ1(η(k)),ξ1(k))

i.e., one sets

M ={(η ,ξ ) ∈ Rn×Rp2N s.t. φi(η ,ξ ) = 0 for i = 1, . . . ,N}.

Accordingly, the off-the-set component is defined over Rp2N

as z = col(z1, . . . ,zN) with zi = φi(η ,ξ ) for i = 1, . . . ,N.
The following result can now be enhanced by showing that

Assumption 4.1 is sufficient to infer I&I stabilizability of the
extended reduced dynamics (7). The proof is omitted as it
follows the lines of [8].

Proposition 4.1: Under Assumption 4.1, any feedback
ψ(ηe,z) : Rn+p2N×Rp2N →Rp making the trajectories of the
closed-loop system

z(k+1) =Az(k)+Bψ2(ηe(k),z(k))

η(k+1) =Fr(η(k),ψ1(ηe(k),z(k)),ξ1(k)))

ξ (k+1) =Aξ (k)+Bψ2(ηe(k),z(k))

bounded for all k≥ 0 with limk→∞ z(k) = 0 and ψ(π(ζ ),0) =
c(ζ ) ensures I&I stabilizability of the reduced dynamics (7).
Accordingly, the origin is a GAS equilibrium for

η(k+1) =Fr(η(k),ψ1(ηe(k),φ(ηe(k))),ξ1(k)) (13a)
ξ (k+1) =Aξ (k)+Bψ2(ηe(k),φ(ηe(k))). (13b)

The I&I stabilizing feedback is given in the theorem below.
Theorem 4.1: Let the system (5) verify Assumption 4.1.

Then, the reduced model (7) is I&I stabilizable with target
dynamics (12) under the I&I feedback u = ψ(ηe,z)

u1(k) = ψ1(ηe(k),z(k)) =γ1(η(k)) (14a)
u2(k) = ψ2(ηe(k),z(k)) =`z(k)+ γ2(η(k+N)) (14b)

verifying ψ(π(ζ ),0) = c(ζ ) and with ` making A+B` Schur.
Proof. The proof follows the lines of the main result in

[9]. It is a matter of computations to verify that by con-
struction of the immersion mapping, invariance of the closed-
loop dynamics is ensured by the choice c1(ζ (k)) = γ1(ζ (k)),
c2(ζ (k)) = γ2(ζ (k+N)). Thus, the associated set is feedback
invariant and the overall design aims at making it attractive
while ensuring boundedness of the extended dynamics

z(k+1) =Az(k)+B(u2(k)− γ2(η(k+N)))

η(k+1) =Fr(η(k),u1(η(k)),γ2(η(k))+ z1(k))

=Fr(η(k),u1(k),γ2(η(k)))+F (η(k),u1(k),z1(k))

ξ (k+1) =Aξ (k)+Bu2(k)

with

F (η ,u1,z1) :=
p2

∑
i=1

∫ zi
1

0
∇viFr(η ,u1,ci

γ2(η)+vi)dvi

with z1 = col(z1
1, . . . ,z

p2
1 ), ci = (1>p2−i+1 01×i−1) and vi =

(z1
1, . . . ,z

i−1
1 ,vi,01×i−1). As a result, I&I stability is ensured

by any feedback of the form (14) making A+B` Schur. /
Remark 4.2: Contrarily to classical prediction methods, the

feedback (14) requires the computation of the trajectories
of the reduced dynamics (7) over N steps ahead by also
minimizing the prediction horizon.

V. A CHAINED DYNAMICS AS AN EXAMPLE

As an example consider the chained dynamics [19]

ẋ1(t) = x2(t), ẋ2(t) = u1(t− τ1), ẋ3(t) = x5(t)

ẋ4(t) = x6(t), ẋ5(t) = u2(t− τ2)

ẋ6(t) =−x3(t)(1+u1(t− τ1))

and let the control be piecewise constant over time intervals
of length δ (the sampling period) with respective delays τi =
Niδ ,Ni ∈ N for i = 1,2.

Remark 5.1: The above system might represent the dynam-
ics provided after suitable coordinates change and feedback as
described in [19].
Setting x = col(x1, . . . ,x6) and x(k) := x(kδ ), one exactly
computes the sampled-data equivalent model as

x(k+1) =Aδ x(k)+Bδ
0 (u1(k−N1),u2(k−N2)) (15)

+Bδ
1 (u1(k−N1))x(k)

with

Aδ =



1 δ 0 0 0 0
0 1 0 0 0 0
0 0 1 0 δ 0
0 0 − δ 2

2 1 − δ 3

6 δ

0 0 0 0 1 0
0 0 −δ 0 − δ 2

2 1


Bδ

0 (u1,u2) =
(

δ 2u1
2 δu1

δ 2u2
2

−δ 4(1+u1)u2
24 δu2

−δ 3(1+u1)u2
6

)>

Bδ
1 (u1) =


03×6

0 0 − δ 2

2 u1 0 − δ 3

6 u1 0
0 0 0 0 0 0
0 0 −δu1 0 − δ 2

2 u1 0

 .



A. A reduced feedback for the uniformly delayed case
Assuming N1 =N2 = 1, we want to solve a steering problem

for the chained dynamics. Basically, we aim at defining a
feedback law so that the full state x(k) reaches a desired
value xd = (x1

d , 0, 0, x2
d , 0, 0)> in exactly one step over

δ (deadbeat). For this purpose, we first rewrite the error
dynamics as ε(k) = x(k)− xd and compute the corresponding
dynamics

ε(k+1) =Aδ [ε(k)+ xd ]+Bδ
0 (u1(k−1),u2(k−1)) (16)

+Bδ
1 (u1(k−1))[ε(k)+ xd ]− xd

possessing an equilibrium at the origin to be stabilized.
Accordingly, we apply our procedure to stabilize (16). By
noticing that Bδ

1 (u1)xd = 0, one defines the reduction as

η(k) :=ε(k)+A−δ Bδ
0 (u1(k−1),u2(k−1))

+A−δ Bδ
1 (u1(k−1))ε(k)

and the corresponding reduced dynamics as

η(k+1) =Aδ
η(k)+A−δ Bδ

0 (u1(k),u2(k)) (17)

+A−δ Bδ
1 (u1(k))Aδ

η(k).

As far as control design is concerned, we first build the
feedback stabilizing (17) in the uniformly delayed case (i.e.,
when N1 =N2) so to guarantee the requirements in Assumption
4.1. For this purpose, we set up a multi-rate strategy of orders
m1 = 2 and m2 = 4 over, respectively, u1 and u2 by setting

u1(t) = u j
1(k), t ∈ [(k+

j−1
2

)δ ,(k+
j
2
)δ [, j = 1,2

u2(t) = u j
2(k), t ∈ [(k+

j−1
4

)δ ,(k+
j
4
)δ [, j = 1, . . . ,4.

At any sampling instant t = kδ by denoting δ̄ = δ

4 and by
dropping the k-argument in the right hand side, the multi-rate
reduced model gets the form

η(k+1) = (Aδ̄ +A−δ̄ Bδ̄
1 (u

2
1)A

δ̄ )2(Aδ̄ +A−δ̄ Bδ̄
1 (u

1
1)A

δ̄ )2
η(k)

+(Aδ̄ +A−δ̄ Bδ̄
1 (u

2
1)A

δ̄ )2(I +A−δ̄ Bδ̄
1 (u

1
1))B

δ̄
0 (u

1
1,u

1
2)

+(Aδ̄ +A−δ̄ Bδ̄
1 (u

2
1)A

δ̄ )2Bδ̄
0 (u

1
1,u

2
2)

+(I +A−δ̄ Bδ̄
1 (u

1
1))B

δ̄
0 (u

2
1,u

3
2)+A−δ̄ Bδ̄

0 (u
2
1,u

4
2)

with six control inputs. Accordingly, one computes the feed-
back ui

1(k) = γ i
1(η(k)) and u j

2(k) = γ
j

2(η(k)) (i = 1,2 and
j = 1, . . . ,4) as the unique solution to η(k + 1) ≡ 0 also
ensuring global exponential stability of (16) when N1 =N2 = 1
and, thus, Assumption 4.1.

B. The double-channel case
Assuming now N1 = 1 and N2 = 2, one computes the

extended reduced model of the error dynamics under multi-
rate sampling as

η(k+1) = (Aδ̄ +A−δ̄ Bδ̄
1 (u
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0 (u
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4)

ξ
j(k+1) =u j

2(k), i = 1,2,3,4.

By applying the I&I procedure in Section IV, one computes
the off-the-set component as z j(k) = ξ j(k)− γ

j
2(η(k)). Ac-

cordingly, for i = 1,2 and j = 1, . . . ,4, the final multi-rate
feedback gets the form

ui
1(k) = γ

i
1(η(k)), u j

2(k) = γ
j

2(η(k+1))+ ` jz j(k), |` j|< 1.

C. Simulations

Simulations of the proposed deadbeat maneuver are re-
ported when applying the I&I reduced feedback and setting
` j = 0 for j = 1,2,3,4 and desired final configuration x>d =
(10,0,0,10,0,0) when starting from the origin. The red solid
lines represent the evolution of the target and the controls when
a uniform delay affects all of the input channels, while the blue
solid lines represent the actual behavior in the multichannel
(MC) case with N1 = 1 and N2 = 2.

The proposed strategy ensures convergence of the dynam-
ical system toward the desired final position in the desired
number of steps while ensuring η(k)≡ 0 in exactly one step
(simulations of this last scenario are omitted for the sake of
space). Furthermore, we note that the proposed feedback still
ensures stability for larger values of the sampling period while
still guaranteeing small control effort.

VI. CONCLUSIONS

In this paper, we show how to extend the reduction approach
to handle time-delay systems affected by two distinct input-
delays. Moreover, we exhibit one among the possible con-
trollers by combining reduction and Immersion and Invariance
arguments for achieving stabilization in closed loop. The
proposed methodology applies to sampled-data delayed dy-
namics under entire delays. Future works are toward different
directions: sampled-data systems under non-entire delays [11];
a comparison with the continuous-time prediction framework
with special emphasis on the cascade like representations
provided by transport PDEs [14], [16] with respect to the
discrete-time one [9]; the specialization of this methodology
to different scenarios where time delays are unavoidable as in
networked systems [20].
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