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Abstract—In this paper we consider the distributed consensus-
based filtering problem for linear time-invariant systems over
sensor networks subject to random link failures when the failure
sequence is not known at the receiving side. We assume that the
information exchanged, traveling along the channel, is corrupted
by a noise and hence, it is no more possible to discriminate with
certainty if a link failure has occurred. Therefore, in order to
process the only significant information, we endow each sensor
with detectors which decide on the presence of link failures. At
each sensor the proposed approach consists of three steps: failure
detection, local data aggregation and Kalman consensus filtering.
Numerical examples show the effectiveness of this method.

Index Terms—Sensor Networks, Kalman filtering, Fault De-
tection.

I. INTRODUCTION

IN recent years the fast technological developments in
the area of sensor networks have attracted a considerable

amount of research on the problem of distributed estimation.
In the context of the ongoing Internet of Things era, dis-
tributed estimation and control, by successfully exploiting the
communication among the nodes of the underlying network,
are currently being adopted to deal with several applications,
e.g. in the domains of telecommunications [4] and intelligent
transportation systems [24]. In particular, the typical scenario
of distributed estimation consists of a group of autonomous
sensors that are deployed in a monitored region and cooperate
in some monitoring task by sharing their local information
via wireless communication links. In this framework the
estimation process is distributed in the sense that no central
elaboration is assumed and each node of the sensor network
utilizes both the local information and the messages from
the neighbors to generate an estimate [5], [12], [13], [15],
[16], [17], [21]. Even if the use of shared information across
neighbors improves the local estimate, there is no guarantee
for the consensus of the estimates across the network. To this
aim, several consensus procedures have been proposed [1],
[2], [3], [16]. In practical applications temporary link failures
are an important issue, due to power constraints, multipath
fading, background noise or external attacks. This problem has
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Italy.

Manuscript received April 19, 2005; revised August 26, 2015.

been widely investigated for centralized estimation algorithms
[22], [6] and in the consensus problem of random networks
[8], [10], [11], [23]. In the context of sensor networks and
distributed consensus algorithms the topology design of the
network in presence of link failures and other communication
constraints is investigated in [9]. The convergence rate of
the consensus in presence of failure is studied in [19], [20].
The recent paper [14] proposes a two-stage Kalman-consensus
filtering approach over unreliable channels when the link
failures are known at the receiving side. In these conditions
sufficient conditions for the boundedness of the estimation
error covariance are provided.

In this paper we consider the distributed consensus-based
filtering problem for linear time-invariant systems over sensor
networks subject to random link failures when the failure
sequence is not known at the receiving side. Our approach
extends the method proposed in [17]-[18] to the case of
unreliable channels by introducing a failure detection strategy
proposed for the case of intermittent observations in [6]-
[7]. At each sensor the proposed approach consists of three
main steps: failure detection provided by some local nonlinear
optimal detectors, local aggregation of data and covariance
matrices and Kalman-consensus filtering fed by the decisions
made by the detectors.

The paper is organized as follows. The problem setting is
formalized in Section II. Section III describes the detection
procedure, which is part of the distributed filtering algorithm
described in Section IV. The performance of the algorithm is
investigated in Section V and conclusions follow.

Notation If A ∈ Rn×n then A> denotes its transpose
and |A| denotes its determinant. If v1, . . . , vn are vectors
in Rn, then v = col(v1, . . . , vn) denotes the vector v =
[v>1 , . . . , v

>
n ]>. Moreover, if v ∈ Rn, then we denote with

diag(v) ∈ Rn×n the diagonal matrix with entries the compo-
nents of v. If A and B are two matrices in Rn×n, then the
direct sum of matrices is denoted by A⊕B and the Kroneker
product with A ⊗ B. We indicate with I the identity matrix
of appropriate dimension. The euclidean norm in Rn×n is
denoted with ‖ · ‖. Finally, given a random variable (r.v.) X
in the probability space (Ω,F ,P), implicit in the rest of the
paper, we denote with E[X] its expectation. We denote with
X ∼ N (µ, σ2) a gaussian r.v. X with mean µ and variance
σ2.
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II. PROBLEM FORMULATION

A. Topology Structure

The topology structure is characterized by an undirected
graph with N nodes G = (V, E), with V = {1, . . . , N} the
set of the nodes of the graph, namely the sensors, and the
edges (i, j) ∈ E correspond to the links among such nodes.
We denote by Ei = {k : (i, k) ∈ E} the set of neighbors of
node i. The number of measurements available at the sensor i
from the neighbors is di = |Ei| and we define Ji = Ei ∪ {i}.

B. Target Plant and measurement models

We consider the class of linear time-invariant systems
described by the following state-space model

xk+1 = Axk + fk, k ≥ 0, (1)

where xk ∈ Rn is the state of the process and fk ∈ Rn is a
stochastic sequence affecting the process at time k. For i ∈ V
and j ∈ Ei, the sensing model of the i-th node is described by

yik = Cixk + gik, (2)

yijk = γijk y
j
k + vijk , (3)

where, at time k, the vector yik ∈ Rm is the measurement of
node i, while the measurement yijk ∈ Rm is the information
available at node i delivered from node j. The sequences
gik ∈ Rm and vijk ∈ Rm are stochastic noise terms affecting
the measurements whilst γijk ∈ {0, 1} is a random variable
modeling the link failure between nodes i and j at time k.

We note that if γijk = 1, then a link failure has not occurred
and node i receives from node j the measurement yjk corrupted
by an additive noise vijk because of the transmission channel.
If γijk = 0, then the information delivered from node j to
node i consists of the pure noise signal vijk . The initial state
x0 and the stochastic sequences {fk}, {gik} and {γijk } satisfy
the following conditions for k ≥ 0:

1) x0 is a zero-mean Gaussian random variable with co-
variance matrix E[x0x

>
0 ] = Σ0,

2) {fk} is a white sequence of zero-mean Gaussian random
vectors with covariance matrix E{fkf>k } = Q,

3) {gik} is a white sequence of zero-mean Gaussian random
vectors with covariance matrix E{gikgik

>} = Ri > 0
with i ∈ V ,

4) {vijk } is a white sequence of zero-mean Gaussian ran-
dom vectors with covariance matrix E{vijk v

ij
k

>
} =

Vij > 0 with i ∈ V and j ∈ Ei,
5) For a fixed integer L ≥ 0 the following joint probability

mass functions are known1{
Pk(γijk , . . . , γ

ij
1 ), for 1 ≤ k ≤ L+ 1

Pk(γijk , . . . , γ
ij
k−L), for k > L+ 1

6) For any i ∈ V , the random quantities x0, {fk}, {gik},
{vijk } and {γijk } are statistically independent ∀j ∈ Ei.

We can assume without loss of generality that Vij = Vji and
γijk = γjik , i.e. a link failure occurring in the channel from

1With a slight abuse of notation, we omit the superscript ij for the
probability mass functions.

node i to node j affects the transmission from node j to node
i too. This is a reasonable but not restrictive assumption for the
methodology we develop in this paper. Moreover, we note that
the joint probability mass function of assumption (5) modeling
the link failures could be different for different links.

In the recent paper [14] as well as in other contributions,
it is assumed that the link failures are known to the receiver.
Consequently, the knowledge of the sequence {γijk } is needed
to implement the filter.

In this paper we assume that the sequence of failures is not
available at the receiving nodes. In the case of a link failure
the observation yijk of (3) consists of a pure noise signal vijk .
Therefore, in order to only process significant information, we
shall endow each sensor with detectors which decide on the
presence of link failures.

C. The ideal distributed filter with known failure sequences

In this paragraph we recall the case of known link failures,
i.e. known {γijk } sequences. It is clear that the information
yijk would be no longer beneficial for estimation purpose if
a failure occurs (namely γijk = 0). Hence, if the sequence
{γijk } were available, the only reasonable choice when γijk = 0
is to reject the measurement yijk since it does not convey
any information on the state process. Consequently, if the
sequences {γijk } are assumed to be known for all i ∈ V
and j ∈ Ei, we can frame the problem as a distributed
filtering problem on a switching (or dynamic) topology with
G(k) = (V, E(k)) where the edge (i, j) ∈ E(k) and the node
j ∈ Ei(k) if and only if γijk = 1. In other words, there is a link
between nodes i and j when γijk = 1, whilst the link is absent
if γijk = 0. In that case, recast with our notation, the author
of [17] and [18] has proposed the following consensus-based
Kalman filtering algorithm for any sensor i ∈ V
Initialization:

x̄i0 = 0, P i0 = Σ0. (4)

Locally aggregate data and covariance matrices ∀j ∈ Ji(k):

uijk = C>j W
−1
ij y

ij
k , Uij = C>j W

−1
ij Cj , (5)

where yiik
.
= yik, Wij

.
= γijk Rj + Vij , γiik

.
= 1 and Vii

.
= 0,

zik =
∑

j∈Ji(k)

uijk , Zik =
∑

j∈Ji(k)

Uij . (6)

Compute the Kalman-consensus estimate:

M i
k =

(
P ik
−1

+ Zik

)−1
, (7)

x̂ik = x̄ik +M i
k

(
zik − Zikx̄ik

)
+ εM i

k

∑
j∈Ei(k)

(
x̄jk − x̄

i
k

)
.

(8)

Update the state of the Kalman-consensus filter:

P ik+1 = AM i
kA
> +Q, (9)

x̄ik+1 = Ax̂ik. (10)

In (8) the scalar ε > 0 is a relative small constant (e.g.
chosen to be of the order of the integration time-step of the
discretization of a continuous-time process [18]). We refer
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to this algorithm as the ideal distributed filter (DF) of [18]
with known failure sequences, since it makes use of the
sequences {γijk } which are not available in reality. In fact, the
time-varying nature of the set Ei(k), and consequently Ji(k),
descends from the fact that the sequence {γijk } is known.
Moreover, since each sensor can reconstruct by itself the
values Wij , and thus Uij , we see that the message broadcasted
at time k to all neighbors by node i is

(
yik, x̄

i
k

)
.

In this paper, a consensus-based Kalman filtering algorithm
is derived from the one reported above when the information
delivered by the nodes is subjected to link failures. For
simplicity, in what follows, we assume that for each node
i and at any time k ≥ 0, the information x̄ik is available
to the neighbors j ∈ Ei with certainty (e.g. travel along a
reliable channel). We stress that in order to detect the link
failures, this assumption is not necessary. In fact, even though
the information x̄ik travel along a faulty and noisy channel,
the proposed methodology can be applied following exactly
the same procedure.

III. OPTIMAL DETECTION OF LINK FAILURES

In this section we consider the problem of detecting the
link failures and we adopt the decision strategy used in [6] for
the problem of intermittent observations. It is clear that each
sensor should be endowed with a number of detectors equal to
the number of links. We note that, even though by assumption
γijk = γjik for all k ≥ 0, the decision γ̂ijk given by the detector
(i, j), i.e. the one deciding for the sequence {γijk }, is different
of the decision γ̂jik given by the detector (j, i). Clearly, a
low probability of error of the detection stage is beneficial
for the subsequent state estimation stage, thus improving the
overall performance. Hence, for any i ∈ V , the sensor i has
di detectors, one for each link j ∈ Ei. In order to detect the
possible link failures with its neighbors, sensor i chooses as
optimal detector for the link with j, the one that guarantees the
minimum probability of error given the available observations
delivered by node j, namely yij1 , . . . , y

ij
k . This is equivalent

to the maximum a posteriori (MAP) probability decision rule
and thus for each i ∈ V and j ∈ Ei we have

γ̂ijk = arg max
γij
k ∈{0,1}

Pk
(
γijk | y

ij
k , . . . , y

ij
1

)
(11)

where Pk
(
γijk | y

ij
k , . . . , y

ij
1

)
is the probability mass function

of γijk at time k conditional on the available observations
delivered by node j.

A direct consequence is that the memory and the complexity
of the MAP detector (11) increase with time. For, in order to
obtain detectors with finite memory, it is sufficient to carry
out the decision on the last L+ 1 measurements, with L ≥ 0,
namely

γ̂ijk = arg max
γij
k ∈{0,1}

Pk(γijk |y
ij
k , . . . , y

ij
k−L), (12)

which is the optimal decision rule used in what follows.

To derive an explicit expression of (12) we first note that
by equation (2), we can rewrite equation (3) as

yijk = γijk Cjxk + γijk g
j
k + vijk

= γijk Cjxk + wijk (γijk ) (13)

where wijk (γijk ) = γijk g
j
k + vijk and thus wijk (γijk )|γijk ∼

N
(

0,Wij(γ
ij
k )
)

with Wij(γ
ij
k ) = γijk Rj + Vij for i ∈ V

and j ∈ Ei. Proceeding similarly to [6], we set

yijk
.
= col(yijk , y

ij
k−1, . . . , y

ij
k−L), (14)

xk
.
= col(xk, xk−1, . . . , xk−L), (15)

γijk
.
= col(γijk , γ

ij
k−1, . . . , γ

ij
k−L), (16)

wij
k (γijk )

.
= col(wijk (γijk ), . . . , wijk−L(γijk−L) (17)

and the diagonal matrix

Γijk = diag(γijk ). (18)

With the positions above, the decision rule (12) becomes

γ̂ijk = arg max
γ̂ij
k ∈{0,1}

Pk
(
γ̂ijk |y

ij
k

)
= arg max

γ̂ij
k ∈{0,1}

∑
γ̂ij
k−1∈{0,1}

∑
γ̂ij
k−2∈{0,1}

· · ·

· · ·
∑

γ̂ij
k−L∈{0,1}

f
(
yijk |γ

ij
k

)
Pk
(
γijk

)
, (19)

where f(yijk |γ
ij
k ) is the probability density function of yijk

conditional on γijk and Pk(γijk ) is the probability mass func-
tion of γijk , namely the joint probability mass function of
γijk , γ

ij
k−1, . . . , γ

ij
k−L which is known by assumption 5 of

Section II-B. To derive f(yijk |γ
ij
k ) note that we have the

following relation

yijk = (Γijk ⊗ Cj)xk +wij
k (γijk ),

with wij
k (γijk )|γijk ∼ N

(
0,W ij(γ

ij
k )
)

, where

W ij(γ
ij
k ) = Wij(γ

ij
k )⊕Wij(γ

ij
k−1)⊕ · · · ⊕Wij(γ

ij
k−L)

=
L⊕
i=0

Wij(γ
ij
k−i). (20)

From the equation above, it follows that yijk conditional on
γijk is Gaussian with

yijk |γ
ij
k ∼ N

(
0, (Γijk ⊗ Cj)Ξk(Γijk ⊗ C

>
j ) +W ij(γ

ij
k )
)
(21)

where Ξk = E
{
xkx

>
k

}
. It is easy to see that the matrix Ξk

has the following structure

Ξk =


Σk AΣk−1 · · · ALΣk−L

Σk−1A
> Σk−1 · · · AL−1Σk−L

...
...

. . .
...

Σk−L(AL)> Σk−L(AL−1)> · · · Σk−L


(22)

where Σh = E{xhx>h }, with h = k − L, . . . , k, can be
computed iteratively as follows

Σk+1 = AΣkA
> +Q.
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Finally, by using (21) and simplifying terms, the decision rule
(19) becomes

γ̂ijk = arg max
γij
k ∈{0,1}

∑
γij
k−1∈{0,1}

∑
γij
k−2∈{0,1}

· · ·

· · ·
∑

γij
k−L∈{0,1}

exp
[
− 1

2y
ij
k

>
Zijk
−1
yijk

]
√∣∣∣Zijk ∣∣∣ Pk(γijk ) (23)

where

Zijk = (Γijk ⊗ Cj)Ξk(Γijk ⊗ C
>
j ) +W ij(γ

ij
k ).

A relevant case is when {γijk } is a Markov chain with initial
probability πij0 = [Pij0 (0), Pij0 (1)] and transition matrix

Πij
k =

[
Pk(0|0) Pk(1|0)
Pk(0|1) Pk(1|1)

]
, (24)

where Pk(α|β) = P{γijk = α|γijk−1 = β}2. The probability
mass function Pk(γijk ) is given by

Pk(γijk ) = πij0

k∏
`=1

Πij
`

[
1− γijk
γijk

]
, (25)

which simplifies in the case of homogeneous chain as

Pk(γijk ) = πij0 Πijk
[
1− γijk
γijk

]
.

With these positions, the probability mass function Pk(γijk ) in
(23) can be written as

Pk(γijk ) =
L−1∏
i=0

Pk−i(γ
ij
k−i|γ

ij
k−i−1)Pk−L(γijk−L)

=
L−1∏
i=0

Πij
k−i(γ

ij
k−i−1 + 1, γijk−i + 1)Pk−L(γijk−L)

(26)

where Πij
k−i(γ

ij
k−i−1+1, γijk−i+1) is the element in the position

(γijk−i−1 + 1, γijk−i + 1) of the matrix Πij
k−i and Pk−L(γijk−L)

is defined as in (25).
The block scheme in Figure 1 represents an example of

information processing towards a node. Note that the proposed
optimal detector applies to both stable and unstable systems.

IV. DISTRIBUTED FILTERING ALGORITHM

We state in this Section the complete algorithm of the
proposed distributed filter with unknown random link failures.
Firstly, we note that the decision rule (12) requires L + 1
measurements and thus, the optimal detectors when k ≤ L
use the available observations until time k, namely

γ̂ijk = arg max
γij
k ∈{0,1}

Pk
(
γijk |y

ij
k , . . . , y

ij
1

)
whereas, when k > L the decision rule (12) should be
used. Hence, we modify the consensus-based Kalman filtering

2As for Pk(·), with a slight abuse of notation, we use Pk(α|β) instead of
Pij
k (α|β).

Transmission Channel
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Fig. 1. Block scheme of the exchanged information towards node 1 in the
example of Section V.

algorithm (4)–(10) of [18] for any i ∈ V as follows
Initialization:

x̄i0 = 0, P i0 = Σ0. (27)

Optimal decisions of link failures ∀j ∈ Ei:

γ̂ijk =


arg max

γij
k ∈{0,1}

Pk(γijk |y
ij
k , . . . , y

ij
1 ), if k ≤ L

arg max
γij
k ∈{0,1}

Pk(γijk |y
ij
k , . . . , y

ij
k−L), if k > L

(28)
Locally aggregate data and covariance matrices ∀j ∈ Ji:

uijk = C>j Ŵ
−1
ij y

ij
k , Uij = C>j Ŵ

−1
ij Cj , (29)

where yiik
.
= yik, Ŵij

.
= γ̂ijk Rj + Vij , γ̂iik

.
= 1 and Vii

.
= 0,

zik =
∑
j∈Ji

γ̂ijk u
ij
k , Ẑik =

∑
j∈Ji

γ̂ijk Uij . (30)

Compute the Kalman-consensus estimate:

M̂ i
k =

(
P ik
−1

+ Ẑik

)−1
, (31)

x̂ik = x̄ik + M̂ i
k

(
zik − Ẑikx̄ik

)
+ εM̂ i

k

∑
j∈Ei

(
x̄jk − x̄

i
k

)
. (32)

Update the state of the Kalman-consensus filter:

P ik+1 = AM̂ i
kA
> +Q, (33)

x̄ik+1 = Ax̂ik. (34)

As before, in (32) the scalar ε > 0 is a relative small constant
(e.g. chosen to be of the order of the integration time-step of
the discretization of a continuous-time process [18]). We note
that the sets Ei and consequently Ji are constant for k ≥ 0,
however the fact that two nodes could be disconnected at some
times is captured by γ̂ijk in (29)–(30). We remark that each
node should run the algorithm (27)–(34) which is scalable in
the number of nodes N . Moreover, each node i should solve
the optimization problem (28) for each of its di neighbors,
thus the complexity of the MAP decision strategy (28) is
O(L2Ldi). We note that, according to the local computational
power of the nodes, the value of L could be node-dependent
and adjusted according to the number of the di neighbors.
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V. SIMULATION EXAMPLE

In this section we provide a simulation example,
with two different scenario of probability distributions
of the link failures, to show the effectiveness of the
proposed approach. The undirected graph is character-
ized by V = {1, 2, . . . , 6} and it contains the edges
E = {(1, 2), (1, 4), (1, 6), (2, 3), (3, 5), (4, 5), (5, 6)}, thus
the nodes {1, 5} have three neighbors and the nodes {2, 3, 4, 6}
have two neighbors. We note that

∑6
i=1 di = 14. We consider

the same continuous-time target dynamics as in [17] (i.e. a
point moving on noisy circular trajectories) given by

ẋt = A0xt + nt, A0 = 2

[
0 −1
1 0

]
(35)

where nt ∼ N (0, Q0), with Q0 = 5 · 10−2. The asso-
ciated discrete-time model has the form (1) where A =
I + εA0 + ε2

2 A
2
0 + ε3

6 A
3
0 and x0 ∼ (0, I), fk ∼ (0, Q) with

Q = εQ0 and ε = 0.015 (≈ 70 Hz). The sensor i performs
noisy measurements given by (2) where gik ∼ (0, R) with
R = 2 · 10−2 for all i ∈ V , Ci = [1, 0] for i = 1, 3, 5 and
Ci = [0, 1] for i = 2, 4, 6. Moreover, at each k ≥ 0, the
sensor i receives the measurements yijk with j ∈ Ei modeled
by (3) where vijk ∼ (0, V ) with V = 2 · 10−3 for all i ∈ V
and j ∈ Ei. For all the links, the random sequences {γijk },
representing the link failures, is modeled as a Markov chain
characterized by the same probability transition matrix and we
consider two scenarios, i.e. for all i ∈ V and for all j ∈ Ei we
have

Π1 =

[
0.05 0.95
0.1 0.9

]
, Π2 =

[
0.15 0.85
0.2 0.8

]
. (36)

We stress that, the matrix Π1 characterizes the event of having
a link failure with a small probability. Nonetheless, we shall
see that these packet losses among nodes, even if small, are
responsible of a not negligible degradation of the performance.
To this end, we compare the proposed approach, i.e. algorithm
(27)–(34), with the algorithm of [18] which does not consider
any packet loss in the transmission, i.e. algorithm (27)–(34)
with γ̂ijk = 1 for all i ∈ V , j ∈ E and k ≥ 0 and the algorithm
of [18] with known sequence of link failures, i.e. algorithm
(4)–(10) which represents an ideal (not implementable) filter
since it makes use of the real values of the sequence {γijk }
(that are not available in reality). We consider a time-horizon
of 150 and 300 independent realizations. We shall compute the
mean square error (MSE), evaluated averaging the arithmetic
mean of the MSE of the nodes over independent realizations
of state and output noise and mode sequences, namely

MSE(k) =
1

300

1

6

300∑
r=1

6∑
i=1

∥∥∥x̂r,ik − xrk∥∥∥2 ,
where xrk and x̂r,ik denote the sample path of the state and
of the estimated state of the sensor i, relative to the r-th
realization of noise and mode sequences at time k.
We consider also an index which measures the disagreement
of estimates (as in [18]) defined as

δ(k) =
1

300

300∑
r=1

(
6∑
i=1

∥∥∥x̂r,ik − µrk∥∥∥2
)1/2

,

where µrk = 1
6

∑6
i=1 x̂

r,i
k . Figure 2 shows the scenario with

Π1, namely the average MSE and the average disagreement
of estimates defined above over the first 25 steps of the
Distributed filter (DF) of [18], the proposed DF where the
detector has memory L = 0 and L = 1, and the ideal DF of
[18] with known sequences of link failures {γijk }. We stress
the fact that the last algorithm, i.e. the ideal DF of [17] with
known {γijk }, is just a theoretical limit of the performance: it
is not implementable in reality since it makes use of the not
available values γijk . We see that, even though the probability
of the link failures described by the matrix Π1 is small, the
proposed approach outperforms the DF algorithm of [18] in
terms of estimation error. Moreover, it provides even much
cohesive estimates. Table I summarizes the results for both
scenarios that run with different probability transition matrices
Π1 and Π2 (36). It shows the averaged MSE and the averaged
disagreement of estimates, i.e. MSE .

= 1
150

∑150
k=0 MSE(k) and

∆
.
= 1

150

∑150
k=0 δ(k), a performance index and the probability

of error, namely

Perr
.
=

1

300

1

150

1

6

1
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300∑
r=1

150∑
k=0

6∑
i=1

∑
j∈Ei

P{γ̂r,i,jk 6= γr,i,jk }

and

αMSE
.
= 102 · (MSE

DF −MSE)

MSE
DF %,

where γ̂r,i,jk and γr,i,jk are the detected and real value of γijk
for the r-th realization of noise and mode sequences at time k,
MSE is the averaged MSE of the used approach and MSE

DF
is

the averaged MSE of the DF of [18] with unknown sequences
of link failures. As the intuition suggests, all the algorithms
performs better in terms of estimation error and disagreement
of estimates when the probability of receiving the message
(γijk = 1) is high: in the scenario with Π1 the probability of
receiving the message is higher than the scenario with Π2,
indeed the MSE and the disagreement of estimates ∆ are
consistent with the intuition above. Moreover, the more Π is
characterized by a high probability of receiving the message
from the neighbors the more all the curves collapse towards
the ideal filter performance, i.e. the ideal DF of [17] with
known {γijk } sequences. We see as, in the scenario with Π1,
the proposed approach with the detectors with memory L = 0
outperforms the DF of [17], it improves the MSE of 44% and
∆ of 34%.

Scenario Π1 MSE 10−2 ∆ 10−2 αMSE Perr 10−2

DF of [18] 2.98 31.8 - 9.5
Proposed DF (L = 0) 1.65 20.9 44.7% 6.3
Proposed DF (L = 1) 1.53 19.1 48.7% 3.6

Ideal DF of [18] 1.47 17.7 50.9% 0

Scenario Π2 MSE 10−2 ∆ 10−2 αMSE Perr 10−2

DF of [18] 6.56 45.9 - 19
Proposed DF (L = 0) 1.67 21.2 74.5% 7.4
Proposed DF (L = 1) 1.56 19.9 75.8% 5.2

Ideal DF of [18] 1.50 18.4 77.1% 0

TABLE I
COMPARISON OF THE DISTRIBUTED FILTER (DF) OF [18], THE PROPOSED

DF WITH L = 0 AND L = 1, AND THE IDEAL DF OF [18].
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Fig. 2. Comparison of the Distributed filter (DF) of [18], the proposed DF where the detector has memory L = 0 and L = 1, and the ideal DF of [18] with
known sequences of link failures {γijk }. It shows the MSE(k)(left) and the disagreement of estimates δ(k) (right) over the first 25 steps. The time-horizon
is 150 and the number of realizations is 300.

The example demonstrates the importance of having a
decision strategy even though the probability of failures among
links is small.

VI. CONCLUSIONS

In this paper we consider the distributed consensus-based
filtering problem for linear time-invariant systems over sensor
networks subject to random link failures when the failure
sequence is not known at the receiving side. Our approach
extends the method proposed in [17]-[18] to the case of
unreliable channels by introducing a failure detection strategy
proposed for the case of intermittent observations in [6]-[7].
For each sensor, the proposed approach consists of three stage:
some local nonlinear optimal detectors, the locally aggregation
of data and covariance matrices and a Kalman-consensus filter
fed by the decisions of the first step. The numerical example
demonstrates the importance of having a decision strategy even
though the probability of failures among links is small. The
performance of the proposed method gets closer to the filter
with known sequences of link failures when the memory L
of the detectors increases. Moreover, a compromise between
computational cost of the detectors and the performance of the
overall distributed filter can be easily achieved by changing the
value L of the carried observations.
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