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Abstract
The intriguing connection between black holes’ evaporation and physics of solitons is opening novel
roads tofinding observable phenomena. It is known from the inverse scattering transform that
velocity is a fundamental parameter in solitons theory. Taking this into account, the study ofHawking
radiation by amoving soliton gets a growing relevance. However, a theoretical context for the
description of this phenomenon is still lacking.Here, we adopt a soliton geometrization technique to
study the quantum emission of amoving soliton in a one-dimensionalmodel. Representing a black
hole by the one soliton solution of the Sine-Gordon equation, we considerHawking emission spectra
of a quantizedmassless scalar field on the soliton-inducedmetric.We study the relation between the
soliton velocity and the black hole temperature. Our results address a new scenario in the detection of
newphysics in the quantum gravity panorama.

1. Introduction

During the last ten years, analogue gravity systems have attractedmajor interest in the scientific community [1].
Thesemodels aim at providing valuable scenarios to test inaccessible features of quantum gravity, as the
Hawking radiation emission by black holes (BHs) [2]. Furthermore, the recent observation of gravitational
waves (GWs) emitted by colliding BHs [3, 4] shaded new light and opened unexplored roads towards the search
for quantum effects in gravity [5], as theHawking’s BH evaporation [6]. Indeed, quantumBHemissionmight be
observed by the concomitantmonitoring of the BH collisions by gravitational and electromagnetic antennas.
However, the collision process changes the originalHawking’s framework.

Originally, Hawking considered quantum fields in a stationary BHbackground, the Schwarzschildmetric,
and discovered that BHs emit thermal radiation and evaporate.His paper appeared exactly one year after a
trailblazing article by Ablowitz, Kaup,Newell and Segur (AKNS), that cast new light on nonlinear waves by
establishing the generalmethod to solve classes of nonlinear field equations [7, 8]. Surprisingly, AKNS classes
generate ametric and define an event horizon (EH). Indeed, it is known in thefield of the nonlinear waves that
integrable systems, which can be solved exactly by the inverse scattering transform (IST), describe a Riemannian
surfacewith constant negative curvature [9, 10].

Recently, Hawking radiation analogues from solitonswere considered in a huge variety of physical contexts,
including light [11–15], ultracold gases [16–19], water and soundwaves [20, 21]. Here, we study the
geometrization of soliton equation by considering a canonicalfield quantization in the classical background of
the Sine-Gordon (SG) solitonmetric. Indeed, the 1+1 dimensional Sine-Gordon (SG) equation

f f f- + =( ) ( )m sin 0 1tt xx
2

is a nonlinearmodel that exhibits a Riemannian surface with constant negative curvature.
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In this frame, the SG equation can be considered theAKNS counterpart of a two dimensional gravitational
theory. Two dimensional theories of gravity are usefulmodels to understand the quantumproperties of higher-
dimensional gravity. These theories capture essential features of higher-dimensional counterparts, and in
particular have black hole solutions andHawking radiation [22–25]. The link between the 1+1 dimensional
gravity and the SGmodel introduces further simplifications since the quantumproperties of this equation have
been largely studied [26, 27]. Aswe shall recall in the next section, the integrability condition of SG equation
determines ametric, with a coordinate singularity, which defines an EH. In particular 1+1 dimensional BHs
can be realized as solitons of the SG equation [28] and it has been shownwith a one loop perturbative
computation that this BH emits thermal radiation [29, 30].

In this paper, we show that SG soliton emits thermal particles with a specificHawking temperature,finding
theway the temperature changes with the velocity of the SG-BH.Afterward, we perform two different kinds of
quantization, one for amassless scalarfield and another for the soliton itself, and obtain theirHawking emission
spectra. In both cases, we discover that an observer on the soliton tail detects a thermal radiationwith a
temperature directly proportional to the soliton speed. Furthermore, we analyze the temperature detected by an
observer at rest by adding aDoppler effect.

Our paper is organized as follows: in section 2we review the geometrization of the SGmodel; we show the
connection between a soliton solution of anAKNS system and ametric on a twodimensional surface. In
section 3we study the BHmetric induced by the SG equation and introduce suitable coordinate systems for the
field quantization. In section 4we quantizemassless scalar fields on the soliton background. In section 5we
quantize the SG soliton following the Faddeev semiclassical quantization [26], and show that the Sine-gordon
BHevaporates. Conclusions are drawn in section 6. A short appendix furnishes aminimalmathematical
background to forms and curvature.

2. Sine-Gordon geometrization

We start reviewing theway integrable nonlinear equations generates surfaces with constant negative curvature
[9]. By considering the SG equation defined in equation (1), we perform the coordinate transformation

c q= + = -( ) ( ) ( )m
x t

m
x t

2
,

2
2

and get

f f=cq ( )sin . 3

As originally stated byAblowitz, Kaup,Newel and Segur [8], for equation (3) the following systemdefines the
scattering problem

=

=
c

q

⎪

⎪

⎧
⎨
⎩

ˆ
ˆ

( )
L

M

V V

V V
, 4

where L̂ and M̂ are 2×2matrices, defining the Lax pair for equation (3).V is a vector. This system corresponds
to the integrable Pfaffian system [31] (see appendix for an introduction to forms and surfaces)

= W = ⎜ ⎟⎛
⎝

⎞
⎠ˆ ( )V

V
V V Vd , , 51

2

where Ŵ is a tracelessmatrix

c q
w w
w wW = + = -( )ˆ ˆ ˆ ( )L Md d , 61 2

3 1

with thematrix elementsωi given by [9]

w l c
l

f q

w f c
l

f q

w f c
l

f q

=- -

=- -

= -

c

c

( )

( )

( ) ( )

1

2
d

1

2
cos d ,

1

2
d

1

2
sin d ,

1

2
d

1

2
sin d , 7

1

2

3

whereλ is the spectral parameter of the SG scattering problem [8]. Following [10], the arclength of the induced
Riemannian surface is written in terms of thematrix elementsωi as follows [9, 31]
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w w w

l c f c q
l

q

= + +

= + +

( ) ( )

( ) ( )

sd 2

d 2 cos d d
1

d . 8

2
2 3

2
1

2

2 2
2

2

Equation (8)defines the constant negative curvaturemetric induced by the ISMassociated to the SG equation (3).
By changing the coordinates set as in the following, wewrite the first fundamental form sd 2 as [9]

f
t

f
x= +⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠ ( )sd sin

2
d cos

2
d , 92 2 2 2 2

which results to be associatedwith a SG equation of the form

f f f- =xx tt ( ) ( )sin , 10

where

x lc l q
t lc l q
= +
= -

-

-

⎧⎨⎩ ( ). 11
1

1

Thus themetric tensor is

= =
tt xt

tx xx

f

f

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ˆ ( )g

g g

g g

sin 0

0 cos
. 12

2
2

2
2

However, sd 2 in equation (9) is not Lorentz invariant and it does not lead to a Schwarzschild-likemetric.
Following [28], in order to obtain aMinkowski-likemetric, we perform aWick rotation t t i and obtain the
elliptic SG (ESG) equation:

f f f+ =xx tt ( ) ( )sin , 13

whose correspondingmetric is

f
t

f
x= - +⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠ ( )sd sin

2
d cos

2
d . 142 2 2 2 2

3. The Sine-Gordon soliton black hole

We show that the one-soliton solution of the ESG equation determines a BHmetric.
Thewell known forward-propagating one-soliton solution of the equation (10) is

f x t g x b t= -( ) { [ ( )]} ( ), 4 arctan exp , 15s

with g b= - -( )1 s
2 1 2 and 0<βs<1 the soliton velocity [32]. The backward-propagating one-soliton

solution gives the same treatise with−1<βs<0, by substitutingβs in−βs inwhat follows. For this reason, we
can choose solution (15)without loss of generality. Equation (15) is also solution of equation (13)with

g b= + -( ) ( )1 . 16s
2 1 2

Weadopt equation (16) hereafter. Substituting equation (15) in equation (14), we have

r t r x= = - +( ) ( ) ( )ds ds d dsech tanh , 17sol
2

1
2 2 2 2 2

with ρ=γ(ξ−βsτ). Following [28], we adopt various coordinate transformations: first from (τ, ξ) to  r( ), ,
with ρ as defined above and

 t
b

g r g r= - -- - -{ [ ( )] } ( )1
tanh tanh . 18

s

1 1 1

Next, we transform  r( ), to ( )r, by

g
r= ( ) ( )r

1
sech . 19

The result of the transformation is the line element

b b= - - - -( ) ( ) ( )ds r d r dr . 20s s
2 2 2 2 2 2 1 2

Equation (20) is themetric of a 1+1 dimensional BHwith EHat rg≔βs. Figures 1 and 2 show the EHpositions
r g= ( )rarcsechg g on the soliton profiles and energy densities  , respectively for different velocitiesβs. The
energy density, atfixed t, is defined as follows [26]:
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 f f= ¶ + -x( ) [ ( )]1

2
1 cos .s s

2

It is now convenient to introduce two new sets of coordinates: themodifiedRegge-Wheeler coordinate, that
we call the slug coordinate in analogywith the tortoise coordinate, as usually reported [2, 5], and theKruskal-
Szekeres coordinates.

We get the slug coordinate *( )r r according to

* b= - -( ) ( )dr r dr, 21s
2 2 1

so that

*
b b b

b
b

= =
+
-

-
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( )r r

r r

r

1
tanh

1

2
ln . 22

s s s

s

s

1

Equation (20) then becomes

* *b= - -[ ( )][ ( ) ] ( )ds r r d dr . 23s
2 2 2 2 2

The slug coordinate is singular at r=βs and it is defined on the exterior of the BHwhen r  ¥ and r→0.
In fact, as r approaches *b r,s goes to+¥, while far away from the BH *r 0 as r→0.

Introducing the slug lightcone coordinates

* * = - = +˜ ˜ ( )u r v r, , 24

wewrite equation (20) as

b= -[ ( ˜ ˜)] ˜ ˜ ( )ds r u v dudv, . 25s
2 2 2

The slug lightcone coordinates are singular and they span only the exterior of the black hole. To describe the
entire spacetime, we need another coordinate system. In order to be consistent with literature, we refer to them
as theKruskal-Szekeres (KS) coordinates . From equations (22) and (24) it follows that

b b b- = + -( ) [ ( ˜ ˜)] ( )r r u vexp . 26s s s
2 2 2

The BHmetric thus becomes

b= + b -[ ( ˜ ˜)] ˜ ˜ ( )( ˜ ˜)ds r u v e dudv, . 27s
u v2 2 s

Figure 1.The Sine-Gordon soliton atfixed time τ=1, varying the velocityβs. The positions of the EHs ρg=mγ(ξg−βs τ) are in
dashed lines.

Figure 2.The soliton energy density at various velocitiesβs, atfixed time τ=1. The positions of the EHs ρg=mγ(ξg−βs τ) are in
dashed lines.

4

J. Phys. Commun. 2 (2018) 055016 LDMVillari et al



In theKS lightcone coordinates, defined as

b b
= = -

b b-
( )

˜ ˜
u

e
v

e
, , 28

u

s

v

s

s s

Equation (27) takes the form

b= +[ ( ˜ ˜)] ( )ds r u v dudv, , 29s
2 2

and it is regular at r=βs. The singularity occurring in the ESG-solitonmetric is, as the Schwarzschild one, a
coordinate singularity, which can be removed by a coordinate transformation. TheKS coordinates, indeed, span
the entire spacetime.

4.Massless scalarfield quantization

Weconsider afield quantization on the classical soliton backgroundmetric.Wefirst analyze amassless scalar
fieldwith the action

òf f f= ¶ ¶ -mn
m n[ ] ( )S g g d x

1

2
, 302

where mng represents the inverse of a generalmetric tensor gμ ν, g is the determinant of gμν and = ( )x x x,0 1 . The
action in equation (30) is conformally invariant, and in terms of lightcone slug coordinates and lightconeKS
coordinates (29) it reads

ò
ò

f f f

f f f

= ¶ ¶

= ¶ ¶

[ ] ˜ ˜

[ ] ( )

˜ ˜S dudv

S dudv

,

. 31

u v

u v

Wewrite the solution of the scalarfield equation in terms of the lightcone slug coordinates

f = +˜ ( ˜) ˜( ˜) ( )A u B v , 32

and in the lightcone KS coordinate as

f = +( ) ( ) ( )A u B v , 33

where ˜A A, and ˜B B, are arbitrary smooth functions. In correspondance of the tail of the soliton, i.e., far away
from the EH, themode expansion of the field is

òf
p

=
W
W

+ +
¥

- W
W
- + W

W
+ˆ [ ˆ ˆ ] ( )˜ ˜d

e b e b
2

left moving. 34i u i u

0

In equation (34) the left moving part is given by the termsweighted by  W ˜e i v in themode expansion. The vacuum
state ñ∣0B , defined by ñ =W

-ˆ ∣b 0 0B , is theBoulware vacuum (BV) and does not contain particles for an observer
located far from the EH.However, as the slug coordinate is singular at horizon, the BV is also singular at the EH.

To obtain a vacuum state defined over the entire spacetime, we expand the field operator in terms of theKS
lightcone coordinates

òf
w
pw

= + +w
w

w
w

¥
- - +ˆ [ ˆ ˆ ] ( )d

e a e a
2

left moving. 35i u i u

0

The creation and annihilation operators w
â determine theKruskal vacuum (KV) state ñ =w

-ˆ ∣a 0 0K . TheKV is
regular on the horizon and corresponds to true physical vacuum in the presence of the BH.

For a remote observer theKV contains particles. To determine their number density, we follow the original
calculations ofHawking andUnruhwith the only difference in the definition of theKS coordinates (see chapters
8 and 9 of [5] for details).

Wefind that the remote observermovingwith the soliton tail sees particles with the thermal spectrum

p
b

dá ñ = á ñ =
W

-W W
+

W
-

-⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

ˆ ∣ ˆ ˆ ∣ ( ) ( )N b b0 0 exp
2

1 0 . 36K K
s

1

If we consider afinite volume quantizationwe can putV=δ(0) [5] andwe obtain the number density

p
b

=
W

-W

-⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( )n exp

2
1 , 37

s

1
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corresponding to the temperature

b
p

= ( )T
2

. 38H
s

Infigure 3, we show the radianceB(Ω)=Ω3nΩ.We observe that for a static soliton (βs=0)we getTH=0. This
resultmay appear in contradictionwith theHawking original work, where he considered the emission froma
static BH.However the result in equation (38) is coherent with the structure of themetric induced by the SG
equation, where the singularity occurs for r=rg=βs and no emission can be observable for rg=0. This
dependence of theHawking radiations on the translation velocity is peculiar of soliton dynamics [33] and it is
related to the structure of the spectral parameter in the IST [7, 8].

4.1.Hawking temperature in the laboratory frame
Unlike the Schwarzschild BH, the ESG soliton is not static, but translates with velocityβs. The frequencyΩ seen
by an observer at rest with respect to the soliton contains aDoppler shift. LettingΩs be the frequency emitted by
the soliton in (36), the frequencymeasured by an observedmovingwith velocity−βswith respect to the soliton,
and located at an angle θswith respect to the soliton direction is

b q

b
W =

-

-
W ( )1 cos

1
. 39o

s s

s

s
2

In the collinear case θs=0, andwe have

b
b

W
W

=
-
+

( )1

1
. 40o

s

s

s

The correspondingHawking temperature is (for smallβs)

b
p

b
b

b
p

b=
-
+

- ( ) ( )T
2

1

1 2
1 . 41H

s s

s

s
s

This calculation also applies to amassive bosonic field, as the number density spectrumdepends only on the
statistics [34]. In the case of a fermionic field the theory is similar, but the number density spectrum follows the
Fermi–Dirac statistics [2].

5. Soliton quantization

Previously we studied the BH evaporation following theworks ofHawking andUnruh in [2, 35]. Now,we
analyze a quantumperturbation of the BHmetric given by the classical soliton solution of the ESG equation, and
we obtain a BH evaporationwithout the interactionwith amassless scalar field.We start from

f f f+ ( ), 42s 1

wherefs is the classical solution in equation (15) andf1 represents aweak field perturbation.We consider the
conformally invariant action

òf f f= ¶ ¶ + -mn
m n

⎡
⎣⎢

⎤
⎦⎥[ ] ( ) ( )S g g d x

1

2
cos , 432

which leads to afield equation

f f¶ ¶ + =mn
m n ( ) ( )g sin 0. 44

Figure 3. Spectral radiance formasslessfields varyingβs.
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The solutions of equations (10), (13) differ for aWick rotation. In otherwords, one passes from the SG soliton to
the ESGone by the transformation

t t b b  - ( )i i, . 45s s

Weperform the inverseWick rotation, i.e., t t -i , b b is s, passing from the ESG to the SG, and substitute
equation (42) into equation (44), hencewe obtain

f f f¶ ¶ + =mn
m n ( ) ( )g cos 0, 46s1 1

wherewe neglect terms f( )O 1
2 . This equation expresses the interaction between amassive particle and the

gravitational field, because theweak quantum fieldf1 obeys a generalized Klein–Gordon equationwith squared
mass f( )cos s depending on the soliton, and thus on themetric. Recalling equation (15), we have

f r f¶ ¶ + =mn
m n { [ ( )]} ( )g cos 4 arctan exp 0. 471 1

For an observer located on the tail of the soliton r  ¥( ), thefield equation reduces to

f f¶ ¶ + =mn
m n ( )g 0, 481 1

while for an observer on the horizon (ρ→ ρg), we have

f r f¶ ¶ + =mn
m n ( ) ( )g F 0, 491 1

with F(ρ) given by

r g b g b g r r+ - - -r r~ ( )∣ ( ) ( )F v1
5

2
5 1 . 50s s g

2 2 2 2 2 2
g

Equation (50) truncated at the order zero in ρ−ρg, i.e., exactly on the horizon, leads to

g b+ ( )F 1
5

2
. 51s

2 2

Due to the inverseWick rotation, even if the action is conformally invariant, the quantization is not
straightforward.Weneed to adapt both the slug and theKS lightcone coordinates in equations (24), (28) to the
rotated system.We obtain

*

* * 

ò b b
b
b

b b

=
¢

+ ¢
=

+
-

= - = +

=- =
b b-

⎛
⎝⎜

⎞
⎠⎟( )

˜ ˜

( )
˜ ˜

r r
dr

r

i i r

i r

u ir v ir

u
e

v
e

2
ln ,

, ,

, . 52

r

s s

s

s

u

s

v

s

0
2 2

s s

Since the action (43) is conformally invariant, we thuswrite the field equation as follows

f f
f f

¶ ¶ + =
¶ ¶ + = - ( )

˜ ˜

F

0 slug lightcone,

0 K S lightcone, 53
u v

u v

1 1

1 1

Equations (53) have exponential solution

f

f

µ

µ w w

-W - +W

- - + ( )

( ) ˜ ( ) ˜

( ) ( )

e

e

,

, 54

i K u i K v

i k u i k v

1

1

K K

k k

with the following dispersion relations,

w

W = +

= + ( )

K

k F

1 ,

. 55

K

k

2

2 2

Fromnowon, we omit theK and k indices.Wewrite the quantumfields as follows

ò

ò

f
p

p
w
w

=
W
W

+

= +w
w w

w
w w

¥

W
- -W - +W

W
+ - -W + -W

¥
- - - + + - - + +

ˆ [ ˆ ˆ ]

[ ˆ ˆ ] ( )

( ) ˜ ( ) ˜ ( ) ˜ ( ) ˜

( ) ( ) ( ) ( )

d
b e b e

d
a e a e

1

2
1

2
, 56

i K u i k v i K u i K v

i k u i k v i k u i k v

0
0

0

where, as in the non interacting case, the annihilation operators W
-

b̂ and w
-â define the Boulware vacuum ñ∣0B and

theKruskal vacuum ñ∣0K , respectively. The operators w
â and W


b̂ are related by the Bogolyubov transformations

ò w a b= -w w w wW
- ¥

W
-

W
+ˆ ( ˆ ˆ ) ( )b d a a . 57

0
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By substituting this in equation (56), wefind

ò òw
a pd=

W¢

W¢
W - W¢w

w
-¥

¥
W + - - - + + -

¥

W¢˜ ˜ [ ( )] ( )[ ( ˜ ˜) ( ˜ ˜) [ ( ) ( )]dudv e e
d1

2 , 58i u v K u v i u v k u v

0

2

hencewe obtain

òa
p w

=
W

w
w w

W
- - + - -W + +W˜ ˜ ( )( ) ( ) ˜( ) ( )
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Seemingly for b wW , we have
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Using now theKS coordinate (52), after lengthy but straightforward calculations, wefind

a
p w b b

b
p w b b

=
W

G
W +
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It follows that a wW and b wW obey the useful relation

a b=w
p b

wW
W

W∣ ∣ ∣ ∣ ( )e . 622 4 2s

Thereforewe can compute the expectation value of the b-particle number operator =W W
+

W
-ˆ ˆ ˆN b b in theKruskal

vacuum [5], and obtain the number density

=
W

-W

-⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( )n

T
exp

2
1 . 63

H

1

This corresponds to an emitted radiationwith twice the frequencywith respect to the simplemassless case, of
which spectral radianceB(Ω)=Ω3nΩ is reported infigure 4.We observe that theHawking temperature is equal
to equation (38) for themassless scalarfield. This is expected since the surface gravity is the same. For amoving
observer with respect to the soliton theHawking temperature, for smallβs, reads

b
p

b
b

b
p

b=
-
+

- ( ) ( )T
2

1

1 2
1 . 64H

s s

s

s
s

Equation (64) provides theHawking temperature of soliton evaporation in this toymodel.

6. Conclusions

Weadopted the geometrization of the ESGmodel and reported on the connection between the one-soliton
solution of the 1+1-dimensional elliptic Sine-Gordon equation and ametric with a Schwarzschild-like
coordinate singularity.We determined the BHmetric and, by suitable coordinate systems, we eliminated the
singularity and obtained a regularmetric on the EH.We quantized amassless scalar field and found the thermal
radiation detected by an observer far away on the BH exterior.We obtained that the temperature is proportional
to the soliton velocity.We analyzed the temperature detected by an observer in the laboratory frame, by a
Doppler effect.We studied also the quantum soliton evaporation, and found the corresponding spectrum.

Our analysis allows to predict theHawking radiation for amoving 1+1 dimensional BH and shows that the
velocity affects the temperature and the corresponding emitted thermal spectrum. In a BH collisional process

Figure 4. Spectral radiance formassivefields varying the soliton velocity.
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one can hence expect a frequency shift of the emitted photon concomitant with the variation of spiraling velocity
of the BHs. The resulting chirp of the emitted photonsmay have a clear and detectable signature in the
electromagnetic spectrum. Analogues of these processesmay be eventually simulated in the long-range
interactions between optical solitons pairs recently observed over astronomical distances [36], or similar optical
experiments [37, 38].

Our resultsmay be extended to anymetric induced byAKNS systems, hence tomany different physical
models to conceive experimentally realizable analogues for studyingHawking evaporation ofmoving black
holes.
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Appendix.Minimal introduction to forms, Pfaff problems and curvature

A1-form W = +X x T td d is a combination of the differentials xd and td , which have to be retained as
elements of a basis.X andT can bematrices with the same size, or also operators. A 2-form is a combination of
the symbols (‘exterior products’) x td d and  = - t x x td d d d . One can obtain a 2-form from a
1-formby the differential operator d:

W =
¶
¶

 +
¶
¶

 = -
¶
¶

+
¶
¶

⎜ ⎟⎛
⎝

⎞
⎠ ( )X

t
t x

T

x
x t

X

t

T

x
x td d d d d d d , 65

which can be kept inmind by letting  =  =x x t td d d d 0, so that terms like ¶ Xx and∂t T do not appear
in Wd .

One can also obtain a 2-formby the exterior productΩ∧Ω again by  =  =x x t td d d d 0

W  W =  +  = [ ] ( )XT x t TX t x X T x td d d d , d d 66

with [X,T] the commutator.
By using forms, the AKNS integrability condition

¶
¶

-
¶
¶

+ =[ ] ( )X

t

T

x
X T, 0, 67

reads as

W - W  W = ( )d 0. 68

For some authors, using forms has the advantage of amore compact notation as the explicit coordinates x and t
do not appear in (68). Equation (68) is referred to a Pfaffian integrability condition, or Pfaff problem.

Forms are directly connected to the curvature of surfaces. If one considers a surface, and a local point vector
P on the surface, let e1 and e2 the orthogonal tangent vectors. For infinitesimalmotion on the surface Pd

s s= + ( )P e ed , 691
1

2
2

whereσ1 andσ2 contain the differentials of the adopted coordinates and are hence 1-form.σ1∧σ2 is the
elemental area on the surface.When onemoves of an amount P ed , 1,2 changes of amounts ed 1,2. One considers
a surface such that w=e ed 1 2 and w= -e ed 2 1whereω depends on the shape of the surface, contains the
differentials of the coordinate systems, and is a 1-formnamed the connection one form. Onefinds the following
equation

w s s= -  ( )Kd 701 2

whereK is theGaussian curvature.ω,σ1 andσ2 are one forms that fix all the properties of the surface. In the
particular caseK=−1, one has from (70)

w s s=  ( )d . 711 2
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By using (71) and considering thematrix 1-form [10]

s w s

w s s
W =

- +

- +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )

( )
( ), 72

1

2
2 1

2
1

1

2
1 1

2
2

onefinds the Pfaff system in equation (68). In otherwords, considering the integrability condition (68), and
retaining the element ofΩ as the forms of a two-dimensional surface, equation (68) implies that the surface has a
constant negative curvatureK=−1.Hence integrability produces pseudospherical surfaces, i.e., surfaces of
constant negative curvature.
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