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Abstract

The intriguing connection between black holes’ evaporation and physics of solitons is opening novel
roads to finding observable phenomena. It is known from the inverse scattering transform that
velocity is a fundamental parameter in solitons theory. Taking this into account, the study of Hawking
radiation by a moving soliton gets a growing relevance. However, a theoretical context for the
description of this phenomenon is still lacking. Here, we adopt a soliton geometrization technique to
study the quantum emission of a moving soliton in a one-dimensional model. Representing a black
hole by the one soliton solution of the Sine-Gordon equation, we consider Hawking emission spectra
of a quantized massless scalar field on the soliton-induced metric. We study the relation between the
soliton velocity and the black hole temperature. Our results address a new scenario in the detection of
new physics in the quantum gravity panorama.

1. Introduction

During the last ten years, analogue gravity systems have attracted major interest in the scientific community [1].
These models aim at providing valuable scenarios to test inaccessible features of quantum gravity, as the
Hawking radiation emission by black holes (BHs) [2]. Furthermore, the recent observation of gravitational
waves (GWs) emitted by colliding BHs [3, 4] shaded new light and opened unexplored roads towards the search
for quantum effects in gravity [5], as the Hawking’s BH evaporation [6]. Indeed, quantum BH emission might be
observed by the concomitant monitoring of the BH collisions by gravitational and electromagnetic antennas.
However, the collision process changes the original Hawking’s framework.

Originally, Hawking considered quantum fields in a stationary BH background, the Schwarzschild metric,
and discovered that BHs emit thermal radiation and evaporate. His paper appeared exactly one year after a
trailblazing article by Ablowitz, Kaup, Newell and Segur (AKNS), that cast new light on nonlinear waves by
establishing the general method to solve classes of nonlinear field equations [7, 8]. Surprisingly, AKNS classes
generate a metric and define an event horizon (EH). Indeed, it is known in the field of the nonlinear waves that
integrable systems, which can be solved exactly by the inverse scattering transform (IST), describe a Riemannian
surface with constant negative curvature [9, 10].

Recently, Hawking radiation analogues from solitons were considered in a huge variety of physical contexts,
includinglight [11-15], ultracold gases [16—19], water and sound waves [20, 21]. Here, we study the
geometrization of soliton equation by considering a canonical field quantization in the classical background of
the Sine-Gordon (SG) soliton metric. Indeed, the 1 4+ 1 dimensional Sine-Gordon (SG) equation

Gy = P + m*sin(¢) =0 (1)

is anonlinear model that exhibits a Riemannian surface with constant negative curvature.

© 2018 The Author(s). Published by IOP Publishing Ltd
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In this frame, the SG equation can be considered the AKNS counterpart of a two dimensional gravitational
theory. Two dimensional theories of gravity are useful models to understand the quantum properties of higher-
dimensional gravity. These theories capture essential features of higher-dimensional counterparts, and in
particular have black hole solutions and Hawking radiation [22-25]. The link between the 1 + 1 dimensional
gravity and the SG model introduces further simplifications since the quantum properties of this equation have
been largely studied [26, 27]. As we shall recall in the next section, the integrability condition of SG equation
determines a metric, with a coordinate singularity, which defines an EH. In particular 1 + 1 dimensional BHs
can be realized as solitons of the SG equation [28] and it has been shown with a one loop perturbative
computation that this BH emits thermal radiation [29, 30].

In this paper, we show that SG soliton emits thermal particles with a specific Hawking temperature, finding
the way the temperature changes with the velocity of the SG-BH. Afterward, we perform two different kinds of
quantization, one for a massless scalar field and another for the soliton itself, and obtain their Hawking emission
spectra. In both cases, we discover that an observer on the soliton tail detects a thermal radiation with a
temperature directly proportional to the soliton speed. Furthermore, we analyze the temperature detected by an
observer at rest by adding a Doppler effect.

Our paper is organized as follows: in section 2 we review the geometrization of the SG model; we show the
connection between a soliton solution of an AKNS system and a metric on a two dimensional surface. In
section 3 we study the BH metric induced by the SG equation and introduce suitable coordinate systems for the
field quantization. In section 4 we quantize massless scalar fields on the soliton background. In section 5 we
quantize the SG soliton following the Faddeev semiclassical quantization [26], and show that the Sine-gordon
BH evaporates. Conclusions are drawn in section 6. A short appendix furnishes a minimal mathematical
background to forms and curvature.

2. Sine-Gordon geometrization

We start reviewing the way integrable nonlinear equations generates surfaces with constant negative curvature
[9]. By considering the SG equation defined in equation (1), we perform the coordinate transformation

x=%<x+t>, ez%x—n @)

and get
¢x9 = sin ¢. 3)

As originally stated by Ablowitz, Kaup, Newel and Segur [8], for equation (3) the following system defines the
scattering problem

VvV, =1LV
T 4
V) = MV

where [ and M are2 x 2 matrices, defining the Lax pair for equation (3). V is a vector. This system corresponds
to the integrable Pfaffian system [31] (see appendix for an introduction to forms and surfaces)

A (1
dv=Qv, V= (Vz) )]
where € is a traceless matrix
O=Ldv+Nao=(5 “2) ©)

with the matrix elements w; given by [9]

1 1
w = _E)\ dy — o cos(¢) db,

1 1 .
wy = —EQSX dy — Y sin(¢) d6,

1 1 .
w3 = E¢X dy — a sin(¢) d6, 7)

where A is the spectral parameter of the SG scattering problem [8]. Following [ 10], the arclength of the induced
Riemannian surface is written in terms of the matrix elements w; as follows [9, 31]
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ds® = (w2 + w3)* + Qwy)’
= X dy? + 2cos(¢) dy df + % de>. 8)

Equation (8) defines the constant negative curvature metric induced by the ISM associated to the SG equation (3).
By changing the coordinates set as in the following, we write the first fundamental form ds?as [9]

ds? = sin? (%) d7r? + cos? (%) de?, )
which results to be associated with a SG equation of the form
¢££ - ¢7’7‘ = Sin(¢)’ (10)
where
_ —1
E= A+ X 9. (11)
T=Ax— X0
Thus the metric tensor is
s 20
& 8 sm“— 0
§= ( ¢ ) = 2 N (12)
8re 8 0 coszg

However, ds?inequation (9) is not Lorentz invariant and it does not lead to a Schwarzschild-like metric.
Following [28], in order to obtain a Minkowski-like metric, we perform a Wick rotation 7 — it and obtain the
elliptic SG (ESG) equation:

whose corresponding metric is

ds? = —sin? (%) d7? + cos? (%) dé. (14)

3. The Sine-Gordon soliton black hole

We show that the one-soliton solution of the ESG equation determines a BH metric.
The well known forward-propagating one-soliton solution of the equation (10) is

¢(& 7) = 4arctan {exp [y(£ — B}, (15)

with y = (1 — 3%)7'/2and 0 < f3, < 1 thesoliton velocity [32]. The backward-propagating one-soliton
solution gives the same treatise with —1 < [, < 0, by substituting 3, in —(3;in what follows. For this reason, we
can choose solution (15) without loss of generality. Equation (15) is also solution of equation (13) with

y=+ BV (16)
We adopt equation (16) hereafter. Substituting equation (15) in equation (14), we have
ds? = ds>,; = —sech®(p)dr? + tanh?(p)d&?, (17)

with p = v(§ — ;7). Following [28], we adopt various coordinate transformations: first from (7, §) to (7, p),
with p as defined above and

T=71— ﬂi{tanh‘l[v_ltanh(p)] -7 'p}. (18)

S

Next, we transform (7, p) to (7, r) by

r= lsech(p). (19)
0

The result of the transformation is the line element
ds? = (B2 — rHdT? — (B — r¥)ldr2. (20)

Equation (20) is the metricofa 1 + 1 dimensional BH with EH atr, := (3. Figures | and 2 show the EH positions
p, = arcsech(vry) on the soliton profiles and energy densities &, respectively for different velocities 3. The
energy density, at fixed t, is defined as follows [26]:

3
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=1)

9T

Figure 1. The Sine-Gordon soliton at fixed time 7 = 1, varying the velocity 3;. The positions of the EHs p, = m(§; — B;7)arein
dashed lines.

6

—B_=0.1
> —B=0.2
G 4 =
g —B=0.3
2 =04
>
22 B.=0.5
w

% 5

Figure 2. The soliton energy density at various velocities 3, at fixed time 7 = 1. The positions of the EHs p, = my(§; — 5,7)arein
dashed lines.

£ = 2(0c0) + 11 = cos()]

Itis now convenient to introduce two new sets of coordinates: the modified Regge- Wheeler coordinate, that
we call the slug coordinate in analogy with the fortoise coordinate, as usually reported [2, 5], and the Kruskal-
Szekeres coordinates.

We get the slug coordinate r*(r) according to

dr¥ = (87 — r¥~ldr, 1)
so that
r*(r) = itanh‘l(i) = Lln(M) (22)
B B:) 28 \Bs—r
Equation (20) then becomes
ds? = [BF — r> (AT — (dr*)’]. (23)

The slug coordinate is singular at r = (J,and itis defined on the exterior of the BH when p — £ooandr — 0.
In fact, as rapproaches J;, r* goes to +oo, while far away from the BH r* — 0asr — 0.
Introducing the sluglightcone coordinates

=7 — 1% =T+ r* (24)
we write equation (20) as
ds® = [B% — r2(il, ¥))didy. (25)

The slug lightcone coordinates are singular and they span only the exterior of the black hole. To describe the
entire spacetime, we need another coordinate system. In order to be consistent with literature, we refer to them
as the Kruskal-Szekeres (KS) coordinates . From equations (22) and (24) it follows that

B — 12 = (B + r)?exp[B(ii — V)] (26)
The BH metric thus becomes

ds? = [B; + r(i, PP @ Ndiidp. 27)
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In the KS lightcone coordinates, defined as

A i
u = ¢ > V= ¢ b) (28)
Bs Bs
Equation (27) takes the form
ds* = [Bs + r(@1, 7)) dudv, (29)

anditisregularatr = ;. The singularity occurring in the ESG-soliton metric is, as the Schwarzschild one, a
coordinate singularity, which can be removed by a coordinate transformation. The KS coordinates, indeed, span
the entire spacetime.

4. Massless scalar field quantization

We consider a field quantization on the classical soliton background metric. We first analyze a massless scalar
field with the action

SI61 = 5 [[¢"0,60,6F d'x (30)

where g/ represents the inverse of a general metric tensor g,, v, g is the determinant of g, and x = (x°, x"). The
action in equation (30) is conformally invariant, and in terms of lightcone slug coordinates and lightcone KS
coordinates (29) it reads

Stol= [ 0a00ss dads,

Stol= [ 0.00,6 dudy. (31)
We write the solution of the scalar field equation in terms of the lightcone slug coordinates
¢ = A(i) + B(#), (32)
and in the lightcone KS coordinate as
¢ =A(u) + B(v), (33)

where A, A and B, B are arbitrary smooth functions. In correspondance of the tail of the soliton, i.e., far away
from the EH, the mode expansion of the field is

¢ = foo di2 [ehe, + e*iQﬁEJ] + left moving. (34)
0 2470
In equation (34) the left moving part is given by the terms weighted by e**?" in the mode expansion. The vacuum
state |Op), defined by b, |05) = 0, is the Boulware vacuum (BV) and does not contain particles for an observer
located far from the EH. However, as the slug coordinate is singular at horizon, the BV is also singular at the EH.
To obtain a vacuum state defined over the entire spacetime, we expand the field operator in terms of the KS
lightcone coordinates

b= j;oc Zj:_w [e~™4a + e™"a] + left moving. (35)
The creation and annihilation operators 4* determine the Kruskal vacuum (KV) state 4_|0g) = 0. The KV is
regular on the horizon and corresponds to true physical vacuum in the presence of the BH.

For aremote observer the KV contains particles. To determine their number density, we follow the original
calculations of Hawking and Unruh with the only difference in the definition of the KS coordinates (see chapters
8 and 9 of [5] for details).

We find that the remote observer moving with the soliton tail sees particles with the thermal spectrum

1
(No) = <OK|B§;_EQ_|OK> = [exp(zgg] - 1] 5(0). (36)

S

If we consider a finite volume quantization we can put V = §(0) [5] and we obtain the number density

-1
ng = [exp(ng) - 1] , (37)
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Figure 3. Spectral radiance for massless fields varying (;.
corresponding to the temperature
Ty = ﬁ (38)
2

In figure 3, we show the radiance B(2) = 1. We observe that for a static soliton (8, = 0) we get Ty = 0. This
result may appear in contradiction with the Hawking original work, where he considered the emission from a
static BH. However the result in equation (38) is coherent with the structure of the metric induced by the SG
equation, where the singularity occurs for r = 7, = 3;and no emission can be observable for r, = 0. This
dependence of the Hawking radiations on the translation velocity is peculiar of soliton dynamics [33] and it is
related to the structure of the spectral parameter in the IST [7, 8].

4.1. Hawking temperature in the laboratory frame

Unlike the Schwarzschild BH, the ESG soliton is not static, but translates with velocity . The frequency €2 seen
by an observer at rest with respect to the soliton contains a Doppler shift. Letting 2, be the frequency emitted by
the soliton in (36), the frequency measured by an observed moving with velocity — 3, with respect to the soliton,
and located at an angle 6, with respect to the soliton direction is

Q, = 1— ﬁscosﬁst‘

(39)
V1 -6
In the collinear case 8, = 0, and we have
$_ 1=6 (40)
Q, 1+ 5

The corresponding Hawking temperature is (for small (3;)

_B =B B
=155 = (41)

This calculation also applies to a massive bosonic field, as the number density spectrum depends only on the
statistics [34]. In the case of a fermionic field the theory is similar, but the number density spectrum follows the
Fermi—Dirac statistics [2].

5. Soliton quantization

Previously we studied the BH evaporation following the works of Hawking and Unruh in [2, 35]. Now, we
analyze a quantum perturbation of the BH metric given by the classical soliton solution of the ESG equation, and
we obtain a BH evaporation without the interaction with a massless scalar field. We start from

o= ¢+ ¢ (42)

where ¢, is the classical solution in equation (15) and ¢, represents a weak field perturbation. We consider the
conformally invariant action

S[e] = f[%g‘“’@u@yqﬁ + cos(¢)]J—_g d’x, (43)

which leads to a field equation
8"0,0,¢ + sin(¢) = 0. (44)
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The solutions of equations (10), (13) differ for a Wick rotation. In other words, one passes from the SG soliton to
the ESG one by the transformation

T—ir, (s — —if. (45)

We perform the inverse Wick rotation, i.e., 7 — —it, §; — i0;, passing from the ESG to the SG, and substitute
equation (42) into equation (44), hence we obtain

8" 0,0,¢, + cos(¢) ¢, = 0, (46)

where we neglect terms O ((;Sf). This equation expresses the interaction between a massive particle and the
gravitational field, because the weak quantum field ¢, obeys a generalized Klein—Gordon equation with squared
mass cos(¢,) depending on the soliton, and thus on the metric. Recalling equation (15), we have

g"0,0,¢, + cos{4arctan[exp(p)]} ¢, = 0. (47)
For an observer located on the tail of the soliton (p — ©0), the field equation reduces to
§"0,0,0, + ¢, =0, (48)
while for an observer on the horizon (p — p,), we have
§"9.0,¢, + F(p) ¢, = 0, (49)
with F(p) given by
F(lpmy, = 1+ 27182 = 572821 = 7% (p = . (50)

Equation (50) truncated at the order zero in p — Po i€, exactly on the horizon, leads to
5
F~1l+ 572,63. (51)

Due to the inverse Wick rotation, even if the action is conformally invariant, the quantization is not
straightforward. We need to adapt both the slug and the KS lightcone coordinates in equations (24), (28) to the

rotated system. We obtain
. p : )
r*(r) = f —zdr = Lh’l Iﬁs tr s
o B+ 23, i —r

d=T—ir*, 7=T+ ir*

u=— s , v= eﬁsv. (52)
Bs Bs
Since the action (43) is conformally invariant, we thus write the field equation as follows
0:03¢, + ¢, = 0 slug lightcone,
0u0,¢, + Fp, = 0 K — S lightcone, (53)
Equations (53) have exponential solution
¢, o el K= a—iK+007
¢, o eitk—wu—iltwyy (54)

with the following dispersion relations,

O =+K?*+1,
wr = Jk* + F2. (55)

From now on, we omit the K and k indices. We write the quantum fields as follows

o L AR it iR aiK—0)7
¢0:_ \/ﬁ[erl u—i V+erI i+ ]
21 Jo
:L < dw [a;ei(kfw)ufi(ker)v_’_a’fefi(kfw)qui(ker)v]’ (56)
2rJo  Jw -

where, as in the non interacting case, the annihilation operators Z;Q_ and 4, define the Boulware vacuum |0g) and

. ~ ~t .
the Kruskal vacuum |0 ), respectively. The operators 4= and by, are related by the Bogolyubov transformations

55; :v./(; dw (am&; - ﬁg)wﬁ:). (57)
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Figure 4. Spectral radiance for massive fields varying the soliton velocity.
By substituting this in equation (56), we find
1 00 e o oo dqy
f didy ez[Sl(u+v)7K(u7v)efz[w(quv)Jrk(ufv)] — f gy [27‘1’5(9 _ Q/)]Z} (58)
@ —00 0 \/ Q/
hence we obtain
1 Q ~ A5 piu(k—w)—iv(k+w) ,—ii(K—Q)+iv (k+2)
a0 = oo diidve e . (59)
Seemingly for 3, we have
1 Q ~ 5 ,—iu(k—w)+iv(k+w) ,—ii(K—Q)+iv (k+)
Bua = — v\ diidve e ¢ . (60)
v w

Using now the KS coordinate (52), after lengthy but straightforward calculations, we find

Qaw = —21 9e’rﬂ/gse"F(Q’K’“”")1"[1'Q + K]T[iﬂ — k],

TV w A Bs
B = —— S ersic@ap| 2L K p 2 — K] (61)
27V w 3 Os

It follows that avg,, and Bq,, obey the useful relation
lagul* = e*™ 5B, (62)

. . - Ata—
Therefore we can compute the expectation value of the b-particle number operator Ny = by, b, in the Kruskal
vacuum [5], and obtain the number density

—1
ng = [exp (;—Q) — 1] . (63)
H

This corresponds to an emitted radiation with twice the frequency with respect to the simple massless case, of
which spectral radiance B(Q2) = 2’1, is reported in figure 4. We observe that the Hawking temperature is equal
to equation (38) for the massless scalar field. This is expected since the surface gravity is the same. For a moving
observer with respect to the soliton the Hawking temperature, for small 5, reads

_ B 1=8 B
= o155 = (64)

Equation (64) provides the Hawking temperature of soliton evaporation in this toy model.

6. Conclusions

We adopted the geometrization of the ESG model and reported on the connection between the one-soliton
solution ofthe 1 4+ 1-dimensional elliptic Sine-Gordon equation and a metric with a Schwarzschild-like
coordinate singularity. We determined the BH metric and, by suitable coordinate systems, we eliminated the
singularity and obtained a regular metric on the EH. We quantized a massless scalar field and found the thermal
radiation detected by an observer far away on the BH exterior. We obtained that the temperature is proportional
to the soliton velocity. We analyzed the temperature detected by an observer in the laboratory frame, by a
Doppler effect. We studied also the quantum soliton evaporation, and found the corresponding spectrum.

Our analysis allows to predict the Hawking radiation foramoving 1 + 1 dimensional BH and shows that the
velocity affects the temperature and the corresponding emitted thermal spectrum. In a BH collisional process

8
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one can hence expect a frequency shift of the emitted photon concomitant with the variation of spiraling velocity
of the BHs. The resulting chirp of the emitted photons may have a clear and detectable signature in the
electromagnetic spectrum. Analogues of these processes may be eventually simulated in the long-range
interactions between optical solitons pairs recently observed over astronomical distances [36], or similar optical
experiments [37, 38].

Our results may be extended to any metric induced by AKNS systems, hence to many different physical
models to conceive experimentally realizable analogues for studying Hawking evaporation of moving black
holes.
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Appendix. Minimal introduction to forms, Pfaff problems and curvature

Al-form Q = X dx 4+ T dt isacombination of the differentials dx and dt, which have to be retained as
elements of a basis. X and T can be matrices with the same size, or also operators. A 2-form is a combination of
the symbols (‘exterior products’) dx A dtand dt A dx = —dx A dt.One can obtain a 2-form from a
1-form by the differential operator d:

sza—th/\ dx—l—a—de/\ dtz(—a—X—i-a—T)dx/\ dt, (65)
ot O0x ot  Ox
which can be keptin mind by letting dx A dx = dt A dt = 0, so that terms like 9, X and 0, T do not appear
in dQ.
One can also obtain a 2-form by the exterior product Q A Qagainby dx A dx = dt A dt =0

QANQ=XTdx N dt + TX dt A dx=[X, T]dx A dt (66)

with [X, T] the commutator.
By using forms, the AKNS integrability condition

ox oT
— - —+[X,T]=0, 67
5 ox [X, T] (67)

reads as
dQ - QAQ=0. (68)

For some authors, using forms has the advantage of a more compact notation as the explicit coordinates x and t
do not appear in (68). Equation (68) is referred to a Pfaffian integrability condition, or Pfaff problem.

Forms are directly connected to the curvature of surfaces. If one considers a surface, and a local point vector
P on the surface, let e; and e, the orthogonal tangent vectors. For infinitesimal motion on the surface dP

dP = ole; + o2ey, (69)

where o' and o contain the differentials of the adopted coordinates and are hence 1-form. o' A ¢”is the
elemental area on the surface. When one moves of an amount dP, e, changes of amounts de, ;. One considers
asurface such that de; = wejand de, = —we; where w depends on the shape of the surface, contains the
differentials of the coordinate systems, and is a 1-form named the connection one form. One finds the following
equation

dw = —Ko' A o2 (70)

where K is the Gaussian curvature. w, 0 and ¢° are one forms that fix all the properties of the surface. In the
particular case K = —1, one has from (70)

dw = o' A o2 (71)
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By using (71) and considering the matrix 1-form [10]

_12 1 1
S0 2(w+o)

0= , (72)
1 1
S(—w+ah 50°

one finds the Pfaff system in equation (68). In other words, considering the integrability condition (68), and
retaining the element of {2 as the forms of a two-dimensional surface, equation (68) implies that the surface has a
constant negative curvature K = —1. Hence integrability produces pseudospherical surfaces, i.e., surfaces of
constant negative curvature.
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