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ABSTRACT
Statistical matching consists in estimating the joint characteristics of
twovariables observed in twodistinct and independent sample surveys,
respectively. In a parametric setup, ranges of estimates for non identifi-
able parameters are the only estimable items, unless restrictive assump-
tions on the probabilistic relationship between the non jointly observed
variables are imposed. These ranges correspond to the uncertainty due
to the absence of joint observations on the pair of variables of interest.
The aimof this paper is to analyze the uncertainty in statisticalmatching
in a non parametric setting. Ameasure of uncertainty is introduced, and
its properties studied: this measure studies the “intrinsic” association
between the pair of variables, which is constant and equal to 1/6 what-
ever the form of themarginal distribution functions of the two variables
when knowledge on the pair of variables is the only one available in the
two samples. This measure becomes useful in the context of the reduc-
tion of uncertainty due to further knowledge than data themselves, as
in the case of structural zeros. In this case the proposedmeasure detects
how the introduction of further knowledge shrinks the intrinsic uncer-
tainty from 1/6 to smaller values, zero being the case of no uncertainty.
Sampling properties of the uncertainty measure and of the bounds of
the uncertainty intervals are also proved.

1. Introduction and setting

The data deluge we are experiencing in these last years allows researchers to give an answer

Q1

to questions never addressed in the past by exploiting information already available in exist-
ing data sources without setting up new surveys, hence reducing costs and improving timeli-
ness. Anyway, the usual statistical inference tools are not always suitable, and methodological5
advances are sometimes necessary. This is the case of the statistical matching problem: instead
of constructing a new, complete survey containing a couple of variables of interest, statistical
matching tackles the case of data integration of two already existing samples, drawn from the
same population, and composed by non overlapping sets of units (i.e. the same unit is not
observed in both the surveys). Each sample owns information on just one of the variables of10
interest, so that these variables are not jointly observed, as described in Table 1.

From a methodological point of view, a first example of this approach has been consid-
ered in Anderson (1957), where the case of a three-variate (X,Y,Z) normal distribution with
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Table . General statistical matching problem,A and B are two independent sample surveys, the objective
is to learn something on the relationship (or on the distribution) of theY and Z r.v.s, even if they are never
jointly observed.

Sample Y1 ... YQ X1 ... XP Z1 ... ZR

yA11 ... yA1Q xA11 ... xA1P
... ...

A yAa1 ... yAaQ xAa1 ... xAaP
... ...

yAnA1
... yAnAQ

xAnA1
... xAnAP

xB11 ... xB1P zB11 ... zB1R
... ...

B xBb1 ... xBbP zBb1 ... zBbR
... ...

xBnB1
... xBnBP

zBnB1
... zBnBR

observations as in Table 1 is considered. In that paper, the maximum likelihood estimators
(MLEs) of the unidentifiable parameters are studied. In practice, Table 1 setup has been met 15
in many other situations, shortly listed in the sequel.

� Okner (1972), probably the first statistical matching application, aimed at reconstructing
a unique file with both income subject to tax (say Z) from a sample B of individual tax
returns and a total money income concept (say Y , which includes non taxable transfer
payments but excludes taxable realized capital gains) from the sampleA observed by the 20
Census Bureau Current Population Survey. The study of economic variables observed
in distinct sources is a ubiquitous goal, because of the difficulties in observing different
economic phenomena by means of a unique survey. One of the latest examples is in
Tonkin and Webber (2012), where the authors “statistically match expenditures for the
HouseholdBudget Survey (HBS)with income andmaterial deprivation containedwithin 25
EU Statistics on Income and Living Conditions (EU-SILC)”.

� Advertisers and media planners study customers’ behavior by fusing information
describing people’s characteristics, product and brand usage, and media exposure. Such
information enablesmedia planners andmarketing researchers to pursue such objectives
as increasing sales by formulating the right campaign and selecting the most appropri- 30
ate media for it. An example is the fusion of the Broadcasters Audience Research Board
(BARB, say A in the framework of Table 1) and the Target Group Index (TGI, say B) in
the United Kingdom, see Adamek (1994).

� Official statistics is a context where the necessity to cut costs and the increasing infor-
mative needs push the National Statistical Institutes toward the massive use of data inte- 35
gration methods. Examples are in Gazzelloni et al. (2007), aiming at studying jointly
variables observed in the Italian Labour Force Survey and in the Time Use Survey, in
D’Orazio et al. (2006b), chapter 7, where there is the description of the reconstruc-
tion of the Social Accounting Matrix useful for the National Accounts objectives, and
in Torelli et al. (2008) describing the use of statistical matching techniques for jointly 40
estimating contingency tables of pairs of variables observed in a structural and in an
economical survey on farms, respectively. All these examples are compliant with Table 1
structure.

� Microsimulation is an increasingly important tool in economics, consisting of an
accounting model which processes each individual and family in a country, calculates 45
taxes and transfers using legislated or proposed programs and algorithms, and reports
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on the results. Microsimulation models usually give a high degree of control over the
inputs and outputs to the model and can allow the user to modify existing tax/transfer
programs or test proposals for entirely new programs. These models need very complete
databases, containing information on household and personal characteristics ranging50
from income and personal properties to health, housing, education conditions. In order
to obtain such databases sometimes researchers consider statistical matching of two or
more sample surveys as in Table 1 (see Wolfson et al. , 1989).

A problematic feature of a problem as depicted in Table 1 is that the model (X,Y,Z) is not
generally identifiable given the sample observations in A

⋃
B. This problem was first noted55

in Sims (1972), whose criticism on Okner (1972) focused on the fact that his computations
were based on a specific model assumption for (X,Y,Z): the conditional independence of
Y and Z given X (CIA henceforth). The CIA assumption produces an identifiable model for
A

⋃
B, but this model (and hence the CIA itself) cannot be tested on the basis of available

data sets. Kadane (1978) further showed the lack of identification of the model for the case60
of a three-variate normal distribution, stating that the unidentifiable parameter in this case
is only the correlation coefficient ρyz|x of Y and Z given X , and that this correlation is free to
move from −1 up to 1. Anyway, the pairwise correlation ρyz between Y and Z is not free to
move in the same interval, because of the presence of the common variable X . This aspect is
investigated in a number of papers: Rubin (1986) applies the multiple imputation methodol-65
ogy to explore the set of possible values of ρyz, an idea further developed in Raessler (2002) in
a proper Bayesian framework, and studied in Reiter (2012) as far as the validity of the standard
multiple imputation variance estimator for assessing sampling variability in data fusion given
specification of the imputation models is concerned; Moriarity and Scheuren (2001) use con-
sistent estimates of the estimable parameters for establishing intervals for ρyz (although the70
use of coherent estimates, as the ones obtained through maximum likelihood, could allow
the possibility to avoid unpleasant situations as negative definite variance and covariance
matrices).

The previous framework was extended at first in D’Orazio et al. (2006a, b). The interval
of values taken by non identifiable parameters was termed uncertainty. Uncertainty corre-75
sponds to the set of distributions plausible according to a criteria (e.g. the maximum likeli-
hood approach) given the available data A

⋃
B. This kind of uncertainty, due to the lack of

joint observations on Y and Z, can be reduced when knowledge related to the association of
Y and Z is also included. D’Orazio et al. (2006a, b) use knowledge usually considered for edit-
ing purposes for microdata, while proving it useful also for estimation purposes in statistical80
matching, as the structural zeros. The authors also consider other kinds of additional knowl-
edge, as the one given in terms of possible orderings between probabilities of the (Y,Z) or
(Y,Z|X ) joint distribution. With both these kinds of constraint, uncertainty shrinks and the
CIA is not included among the plausible solutions any more. D’Orazio et al. (2006a) further
study the case of categorical r.v.s, a relevant case in many applied settings.85

Final extensions have been defined in Conti et al. (2012, 2013). Conti et al. (2013) extend
the results in D’Orazio et al. (2006a) for the case of categorical ordered r.v.s. In this case,
uncertainty can be stated in terms of the whole probability distributions of Y and Z, as the
joint cumulative distribution function of (Y,Z), leading to bounds of cell probabilities of the
(Y,Z) contingency table that are shorter than the ones that can be obtained as in D’Orazio90
et al. (2006a). Uncertainty restriction by means of the availability of structural zeros is also
studied. Conti et al. (2012) formally define uncertainty in different inferential settings, i.e.
in parametric and non parametric frameworks. The non parametric framework is especially
important in order to overcome the usual assumption of normality of the three r.v.s, an aspect
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useful in applications. For instance, economic r.v.s as household income and consumption 95
can be modeled in a non parametric setup without assuming normality or categorizing the
distribution.

The aim of this paper is to analyze further the uncertainty in statistical matching in a non
parametric setting. The paper is organized as follows. In Section 2 the concept of uncertainty
in statisticalmatching is discussed. In Section 3, starting from results in Conti et al. (2012), the 100
model uncertainty in a non parametric setting is investigated, and the role of Fréchet classes
is stressed. In Section 4 the non parametric estimation of Fréchet bounds is analyzed. A first
important original result consists in defining confidence regions for the Fréchet class. This is
the first time that uncertainty due to lack of joint information onY andZ and sampling uncer-
tainty are studied together in a statistical matching problem outside the Bayesian framework 105
(Reiter, 2012). Another important advance is the definition of an overall intrinsic measure
of uncertainty for non identifiable models (Section 5). This intrinsic measure of uncertainty
does not depend on the support and form of the marginal distributions of Y and Z, but only
on the lack of joint observations. For this reason, this measure is always equal to 1/6 when
only A

⋃
B is the available source of information. Whenever additional information in terms 110

of a structural zero or other restrictions are introduced, such an intrinsic measure of uncer-
tainty decreases, zero being the case of absence of uncertainty (i.e. unidentifiable parameters
become identifiable given (A

⋃
B) and the imposed logical restrictions). Section 6 focuses on

the introduction of structural zeros in this non parametric setting, i.e. restrictions on the sup-
port of the joint distribution of (Y,Z) given X . For each constraint an estimator is proposed 115
and its asymptotic behavior is studied.

2. The kind of uncertainty affecting statistical matching

In a parametric setting the main consequence of the lack of identifiability is that some param-
eters of the model for (X,Y,Z) cannot be estimated on the basis of the available sample
information. In practice, in a parametric setting the estimation problem cannot be “point- 120
wise”. In fact, only ranges of values containing all the pointwise estimates obtainable by each
model compatible with the available sample information can be detected. Such intervals are
uncertainty intervals. Uncertainty in a statistical matching problem is a special case of esti-
mation problems for general partially identifiable models (e.g. not assuming a specific miss-
ing data mechanism) as in Manski (1995), Horowitz (2000), Chernozhukov et al. (2007), and 125
references therein for general inferential problems on a partially observed sample. Also in
those cases, estimation is not pointwise, but consists of ranges. Another context character-
ized by parameter uncertainty is the case of categorical data (e.g. k-way contingency tables)
where upper and lower bounds on cell counts induced by a set of released margins play an
important role in the disclosure limitation techniques; see Dobra and Fienberg (2001). In 130
that context, for each suppressed cell we get an uncertainty interval called “feasibility inter-
val”. Such an interval should be sufficiently wide in order to ensure adequate confidentiality
protection.

Statistical matching is also related to the so-called “ecological inference” problem; see King
(1997), Cross and Manski (2002). An important difference is that in ecological inference 135
marginal distribution functions come from population counts, and are not sample-based.

The first papers tackling the problem of assessing how uncertain some parameters
are in statistical matching problems are Kadane (1978), Rubin (1986), Moriarity and
Scheuren (2001), Raessler (2002). Assuming that (X,Y,Z) is a three-variate normal r.v. with
parameters 140
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θ =

⎡⎢⎣
⎛⎜⎝μx

μy

μz

⎞⎟⎠ ,

⎛⎜⎝ σ 2
x σxy σxz

σxy σ 2
y σyz

σxz σyz σ 2
z

⎞⎟⎠
⎤⎥⎦

the only non estimable parameter is σYZ, whose range of plausible values given what has been
observed (i.e. given the estimates of the other estimable parameters) can be determined by
imposing that the determinant of the covariance matrix is not smaller than 0. As a result, the
correlation coefficient betweenY andZ can assume values only in the interval with extremes:

ρ̂xyρ̂xz ±
√(

1 − ρ̂2
xy

) (
1 − ρ̂2

xz

)
Cell frequencies θyz of the (Y,Z) contingency table, given estimates θ̂y|x and θ̂z|x from A145

and B, respectively, and on θ̂x from A
⋃

B, for any x, y, z, can be obtained by means of the
Fréchet bounds, D’Orazio et al. (2006a):

max
{
0; θ̂y|x + θ̂z|x − 1

} ≤ θyz|x ≤ min
{
θ̂y|x; θ̂z|x

}
(1)

Raessler andKiesl (2009), focusing again on normal distributions, combine the restrictions
relative to the non negativity of the variance matrix and the Fréchet bounds.

Evaluation of the uncertainty in a statistical matching problem is also used for valida-150
tion purposes. Raessler (2002) evaluates for the normal multivariate models the length of
the uncertainty intervals for unidentifiable parameters in order to define a measure of the
reliability of estimates under CIA. When uncertainty intervals are “short”, the parameter esti-
mates obtained under the different models compatible with the available sample information
slightly differ from the ones estimated under the CIA. Let θk, k = 1, . . . ,K, be the uniden-155
tifiable parameters in a parametric model on (X, Y, Z). Raessler (2002) defines an overall
measure of uncertainty as

� = 1
K

∑(
θ̂

(U )

k − θ̂
(L)

k

)
(2)

where θ̂
(U )

k and θ̂
(L)

k are the estimated lower and upper extrema of the uncertainty intervals of
θk, k = 1, . . . ,K, in (1). The attention to the estimates under the CIA is justified by the fact
that when (X, Y, Z) aremultinormal, estimates under the CIA are themidpoint of the uncer-160
tainty interval of the inestimable parameters, usually the correlation coefficients between Y
and Z. For other parametric models this property of the estimates under the CIA does not
hold. D’Orazio et al. (2006a) in the case of categorical data and in D’Orazio et al. (2006b) for
general parametric models show that the uncertainty measure (2) is generally too wide. Fur-
thermore, they consider a maximum likelihood approach, and a related general measure of165
uncertainty given by the (hyper)volume of the likelihood ridge (in this case called “uncer-
tainty space”). Formally, the parameter estimate which maximizes the likelihood function is
not unique; the set ofmaximum likelihood estimates is called likelihood ridge. Statistical anal-
ysis of the likelihood ridge determines the “central” (or better,middle) point in the uncertainty
interval for each parameter. Furthermore, unlike the Bayesian approach, in a likelihood-based170
approach it becomes important to include all the information that can reduce the uncertainty
space. The best kind of information is given by structural zeros betweenY and Z.
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3. Uncertainty in a non parametric setting

Uncertainty in a non parametric setting is still described by a class of models, or better, by a
class of distributions, for (X, Y, Z). If compared to the parametric case (eithermultinormal or 175
multinomial), there are twomain sources of trouble. First of all, since the class of distributions
for (X, Y, Z) are not identified by a finite number of parameters, we need a technical tool to
describe them. In the second place, in order to measure, to quantify uncertainty, we need to
“summarize” the class of all possible distributions for (X, Y, Z) with a single number. An
even more important problem is the quantification of the uncertainty in the presence of aux- 180
iliary information on the model. This kind of information is frequently used, for instance, in
imputation and editing (see Luzi et al., 2007).

The problem of describing uncertainty in a non parametric setting is shortly outlined in
Ridder and Moffitt (2007), Kiesl and Raessler (2008), Raessler and Kiesl (2009). The basic
ideas on how to describe and measure uncertainty under auxiliary information are presented 185
in Conti et al. (2013), although they have studied in detail discrete distributions, the con-
tinuous case being outlined in Conti et al. (2012). Unfortunately, some cases of considerable
practical interest (for instance,Y = income and Z = consumption expenses) are not covered
by the methodologies developed in the above-mentioned papers.

In the present paper, we aim at studying how to describe and measure uncertainty (again, 190
under auxiliary information) in a full generality, without additional restrictions onY and/orZ.
The starting point consists in observing that the naturalway to describe classes of distributions
consists in using the notion of Fréchet class. As a consequence, a measure of uncertainty is
nothing more than a suitable functional that quantifies “how large” is such a class.

Consider a three-dimensional r.v. (X,Y,Z). Its joint distribution function (d.f.), denoted 195
by F(x, y, z), can be written as

dF(x, y, z) = dQ(x)dH(y, z |x) (3)

where Q(x) is the marginal d.f. of X and H(y, z |x) is the d.f. of (Y, Z) given X . In what
follows, the r.v.s Z andY will be assumed continuous, and the matching variable X is discrete.

Then, conditionally on X we have a set of plausible statistical models, namely the Fréchet
class of all distribution functionsH(y, z|x) compatible with the univariate d.f.sG(z|x), F(y|x). 200
For every (y, z) the pair of inequalities

Lx(F(y|x),G(z|x)) ≤ H(y, z|x) ≤ Ux(F(y|x),G(z|x))
holds, where the bounds

Lx(F(y|x),G(z|x)) = max(G(z|x) + F(y|x) − 1, 0)

Ux(F(y|x),G(z|x)) = min(G(z|x), F(y|x))
are themselves joint d.f.s with margins G(z|x) and F(y|x). The set of d.f.s

Hx = {H(y, z|x) : Lx(F(y|x),G(z|x)) ≤ H(y, z|x) ≤ Ux(F(y|x),G(z|x))} (4)

is the Fréchet class of marginal d.f.s G(z|x), F(y|x).
In the present case all the d.f.s belonging to the Fréchet class (4) are compatible with the 205

available information, namely they may have generated the observed data. Note that even if
F(y|x), G(z|x) were perfectly known, it will not be possible to draw certain conclusions on
the model.
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Taking the expectation w.r.t. the distribution of X , we obtain the unconditional Fréchet
class210

H = {H(y, z) : Ex[Lx(F(y|x),G(z|x))] ≤ H(y, z) ≤ Ex[Ux(F(y|x),G(z|x))]} (5)

As remarked in Ridder and Moffitt (2007), the Jensen inequality implies that the Fréchet
class (5) is narrower than the “naive” Fréchet class

{H(y, z) : max(F(y) + G(z) − 1, 0) ≤ H(y, z) ≤ min(F(y), G(z))} (6)

that does not use the common information X available on A and B, respectively.
We stress that the lower bound of the Fréchet class (4) corresponds to themaximal negative

association betweenY and Z, givenX ; this comes true if and only if (iff)Y is a strictly decreas-215
ing function of Z (and vice versa), given X . Similarly, the upper bound of the Fréchet class (4)
corresponds to the maximal positive association between Y and Z, given X ; this comes true
iff Y is a strictly increasing function of Z (and vice versa), given X . As a consequence, in the
absence of any further information about relationships betweenY and Z, the Fréchet class (4)
is “maximally wide”.220

4. Non parametric estimation of Fréchet bounds

If X is a categorical variable, and if each category is observed in B as well as in A, the natural
estimator of the Fréchet class (4) is given by

[max(ĜnB (z|x) + F̂nA (y|x) − 1, 0), min(ĜnB (z|x), F̂nA (y|x))] (7)

where ĜnB (z|x) and F̂nA (y|x) are the empirical distribution functions (e.d.f.s) of G(z|x) and
F(y|x), respectively. More specifically, consider the indicator function of a set D225

I(x∈D) =
{
1 if x ∈ D

0 otherwise

and let nA,x, nB,x be defined as

nA,x =
nA∑
i=1

I(Xi=x), nB,x =
nB∑
i=1

I(Xi=x)

The conditional d.f.s ofY , Z given X can be estimated by

F̂nA (y|x) = 1
nA,x

nA∑
i=1

I(Yi≤y,Xi=x), ĜnB (z|x) = 1
nB,x

nB∑
i=1

I(Zi≤z,Xi=x) (8)

As a consequence, the unconditional Fréchet bounds (5) can be estimated by[∑
x

p̂(x) max(ĜnB (z|x) + F̂nA (y|x) − 1, 0),
∑
x

p̂(x) min(ĜnB (z|x), F̂nA (y|x))
]

(9)

where

p̂(x) =
(
nA,x + nB,x

nA + nB

)
(10)

is an estimate of P(X = x).230
According to the empirical likelihood approach as discussed by Owen (1991), the e.d.f.s

(8) are non parametric maximum likelihood estimators (NPMLEs) of F and G, respectively.
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Then, for the invariance property ofMLE in the non parametric setting the estimators (7) and
(9) represent the NPMLEs of Fréchet classes (4) and (5), respectively.

In order to display the sampling variability associatedwith the Fréchet class estimator (7), it 235
is necessary to construct a confidence region, i.e. a pair of functions with a prespecified prob-
ability of containing the true Fréchet class. A confidence band can be constructed from the
confidence bands for F(y|x) and G(z|x), respectively, from the Kolmogorov–Smirnov statis-
tic.

Conditionally onX , large sample (1 − α) confidence bands for F(y|x) andG(z|x) are given 240
by

FnA,x =
(
F̂nA (y|x) − kα√nA,x

, F̂nA (y|x) + kα√nA,x
; y ∈ R

)

GnB,x =
(
ĜnB (z|x) − kα√nB,x

, ĜnB (z|x) + kα√nB,x
; z ∈ R

)
respectively, where kα is the 1 − α-quantile of the Kolmogorov–Smirnov distribution (i.e. the
distribution of the supremum of the modulus of a Brownian bridge).

Define now

Ĥ(y, z|x) = max
{
ĜnB (z|x) − kα√nB,x

+ F̂nA (y|x) − kα√nA,x
− 1, 0

}

Ĥ(y, z|x) = min
{
ĜnB (z|x) + kα√nB,x

, F̂nA (y|x) + kα√nA,x

}
A confidence region for the Fréchet class (4) is then 245

Hx
n = {

H(y, z|x) : Ĥ(y, z|x) ≤ H(y, z|x) ≤ Ĥ(y, z|x)} (11)

A lower bound for the confidence level of the region (11) can be easily evaluated. In fact,
it is possible to write

P(Hx ⊂ Hx
n) = P({Ĥ(y, z|x) ≤ Lx(F(y|x),G(z|x))}, {Ĥ(y, z|x) ≥ Ux(F(y|x),G(z|x))})

≥ P((F(y|x) ⊂ FnA,x))P((G(z|x) ⊂ GnB,x))

= (1 − α)2

Analogously, it is possible to define a confidence region for the “naive” Fréchet class (6)
from the (1 − α) confidence bands for the margins F(y) and G(z), respectively.

5. Measures of uncertainty for non identifiable models 250

In view of the Fréchet bounds (4), the interval[
Lx(F(y|x),G(z|x)), Ux(F(y|x),G(z|x))] (12)

summarizes the pointwise uncertainty (w.r.t. x, y, z) about the statistical model under con-
sideration. As a pointwise measure of uncertainty, it is then intuitive to take the length of the
interval (12), i.e. Ux(F(y|x),G(z|x)) − Lx(F(y|x),G(z|x)). We have a different measure of
uncertainty for every triple x, y, z. Of course, if the model is identifiable, then the interval (12) 255
reduces to a single point, with length zero.
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The problem is now to summarize all pointwise measures of uncertainty into a unique,
overall measure. If T (x, y, z) is a weight function onR3, as an overall measure of uncertainty
we may take the average length:∫

R3

[
Ux(F(y|x),G(z|x)) − Lx(F(y|x),G(z|x))] dT (x, y, z) (13)

As far as the weight function T is concerned, a “natural” choice consists in taking260

dT (x, y, z) = dQ(x) d[F(y|x)G(z|x)]
With such a choice, the overall uncertainty measure (13) becomes

�(F,G) =
∫
R

{∫
R2

[
Ux(F(y|x),G(z|x)) − Lx(F(y|x),G(z|x))] d[F(y|x)G(z|x)]

}
dQ(x)

=
∫
R

�x(F,G) dQ(x)

= Ex [�x(F,G)] (14)

where

�x(F,G) =
∫
R2
[Ux(F(y|x),G(z|x)) − Lx(F(y|x),G(z|x))] d[F(y|x)G(z|x)] (15)

is the uncertainty measure about the considered statistical model, conditionally on X = x.
Relationships (14) and (15) show that the unconditional uncertainty measure can be

expressed as a weighted mean of conditional uncertainty measures.265
As it is often the case when dealing withmultivariate distribution functions, the use of cop-

ulas simplifies matters, as shown, for instance, in Nelsen (1999). Let H be a d.f. with margins
F and G, respectively. Then there exists a copulaCx such that for all (z, y)

H(y, z|x) = Cx(F(y|x),G(z|x)) (16)

From Sklar’s theorem, if F and G are continuous then Cx(·, ·) is unique, and it is equal
to H

(
F−1(y|x), G−1(z|x)). From an intuitive point of view, the copula (16) represents the270

“intrinsic” association between Y and Z, disregarding their marginal d.f.s. In other words,
knowledge of (i) the copula (16) and of (ii) the marginal d.f.s F(y|x), G(z|x) allows one
to reconstruct the joint d.f. H(y, z|x). In matching problems the marginal d.f.s F(y|x) and
G(z|x) can be estimated on the basis of sample data; the “actual uncertainty” only involves
the association expressed by the copula (16). The copula version of the Fréchet bounds (4) is275
given by {

Cx(u, v ) : Wx(u, v ) ≤ Cx(u, v ) ≤ Mx(u, v ), ∀ u, v ∈ I
}

(17)

Conditionally on x, both U = F(Y |x) and V = G(Z|x) do have uniform distribution in
(0, 1), regardless of the shapes of F and G. Furthermore, Wx(u, v ) = max(0, u + v − 1)
andMx(u, v ) = min(u, v ) are themselves copulas; they represent perfect dependence, either
negative or positive. As a consequence, the uncertainty measure (15) becomes the volume280
between the surfacesMx(u, v ) andWx(u, v ):

�x(F,G) =
∫ ∫

I2
[Mx(u, v ) −Wx(u, v )] dudv (18)
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Then, the larger�x(F,G) the more uncertain the data generating statistical model. The mea-
sure �x(F, G) does not depend on F and G, as shown in Proposition 1, whose proof is
straightforward.

Proposition 1. �x(F,G) = 1/6 for any F and G, and for every x. 285

The value�x(F,G) = 1/6 represents the uncertainty achieved when no external auxiliary
information beyond knowledge of margins F(y|x) and G(z|x) is available. As an easy con-
sequence of Proposition 1, also the unconditional uncertainty measure computed as in (14)
takes the value 1/6. Proposition 1 tells us that when the only available information are sample
data, then the uncertainty measure is equal to 1/6, independently of the marginal d.f.s F(y|x) 290
and G(z|x). This is in accordance with intuition, because on the one hand uncertainty only
depends on the maximal and minimal values of the copula Cx(u, v ), and not on the marginals
F(y|x) and G(z|x), and on the other hand, sample data do not provide any information on
Cx(u, v ). When no extra-sample auxiliary information on Cx(u, v ) is available, the minimal
and maximal values ofCx(u, v ) are max(0, u + v − 1) and min(u, v ), respectively, indepen- 295
dently of the sample data. In a sense, this is the case of maximal uncertainty. Proposition 1
simply establishes that the maximal uncertainty is 1/6.

This situation seems to contradict what happens when (X, Y, Z) are jointly normally dis-
tributed, as in Raessler (2002). In that case, uncertainty affects the correlation coefficient ρyz.
Uncertainty bounds for the correlation coefficients are determined by the condition that the 300
correlation matrix of (X, Y, Z) must be positive definite. In this case, the uncertainty space
restricts continuously to a single value when ρyx or ρzx go continuously to 1 (or −1).

6. The use of constraints for the reduction of model uncertainty

The main goal of the present section is to evaluate the effect on the model uncertainty due to
the availability of auxiliary, extra-sample information in form of logical constraints, i.e. con- 305
straints on the support of the d.f. H(y, z|x). Intuitively speaking, they “forbid” some specific
parts of the support ofH(y, z|x). More precisely, a logical constraint implies thatH(y, z|x) is
forced to give zero probability to some specific parts ofR2. In this way they imply, as expected,
a smaller degree of uncertainty since somemodels for (X,Y,Z)must be excluded from the set
of plausible distribution functions. In other terms, some models for (X,Y,Z) become illog- 310
ical because they give positive probability to “forbidden” parts of R2, and must be excluded
from the set of plausible distribution functions. This means that the Fréchet bounds can be
improved by logical constraints. As a consequence, the statistical model for the data becomes
less uncertain. Clearly, the reduction of the model uncertainty depends on how informative
the imposed constraints are. 315

The use of logical constraints goes back to D’Orazio et al. (2006a), where the important
case of structural zeros in contingency tables is dealt with. The idea was then extended to
general discrete distributions with ordered categories in Conti et al. (2013). The extension to
continuous variates requires considerable changes in defining logical constraints, as well as
the use of completely different techniques to study their effect. This is done in the sequel of 320
the paper.
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6.1. Constraint ax ≤ f (Y, Z) ≤ bx given X

The kind of constraints we consider is ax ≤ f (Y,Z) ≤ bx given X = x, where f (Y,Z) is a
monotone function ofY (Z) for each Z (Y ).

In other terms, the constraint ax ≤ f (Y,Z) ≤ bx tells us that the support ofH(y, z |x) is a325
subset (either proper or improper) of {(y, z) : ax ≤ f (y, z) ≤ bx}.

Let γy(·) and δz(·) be the inverse functions of f (Y,Z) for fixed y and z, respectively. With-
out loss of generality, suppose that f (y, z) is an increasing function of y for fixed z and a
decreasing function of z for fixed y. Then, we have

H(y, z|x) = P(Z ≤ z,Y ≤ y |x)
= P(Z ≤ z,Y ≤ y, f (Y,Z) ≤ bx, f (Y,Z) ≥ ax|x)
= P(Z ≤ z,Z ≤ γy(ax),Y ≤ y,Y ≤ δz(bx)|x)
= P(Z ≤ (z ∧ γy(ax)),Y ≤ (y ∧ δz(bx))|x)
= H(z ∧ γy(ax), y ∧ δz(bx)|x) (19)

Hence, the Fréchet bounds (4) now become330

Kx
+(y, z) = Ux(G(z ∧ γy(ax)|x), F(y ∧ δz(bx)|x))

= min(G(z ∧ γy(ax)|x), F(y ∧ δz(bx)|x))
= min(G(z|x),G(γy(ax)|x), F(y|x), F(δz(bx) |x)) (20)

Kx
−(y, z) = Lx(G(z ∧ γy(ax)|x), F(y ∧ δz(bx)|x))

= max(0,G(z ∧ γy(ax)|x) + F(y ∧ δz(bx)|x) − 1)

= max(0,G(z|x) ∧ G(γy(ax)|x) + F(y|x) ∧ F(δz(bx)|x) − 1) (21)

and the whole class becomes smaller than (4).
To be more explicit, the introduction of a constraint of the form ax ≤ f (Y,Z) ≤ bx mod-

ifies the support of the joint d.f. H(y, z |x), which now becomes a subset of {(y, z) ∈ 	2 :
ax ≤ f (y, z) ≤ bx}. As a consequence, all the d.f.s in the Fréchet class (4) that do not satisfy
this condition are now impossible, since they are not compatible with the constraint itself.335
Hence, the Fréchet class (4) becomes the set of all bivariate d.f.s having marginal d.f.s F(y |x),
G(z |x) and such that

{H(y, z |x) : Kx
−(y, z) ≤ H(y, z |x) ≤ Kx

+(y, z)} (22)

The conditional measure of uncertainty for the “constrained Fréchet class” (22) is now
given by

�x
c (F, G) =

∫
R2

(
Kx

+(y, z) − Kx
−(y, z)

)
d[F(y |x)G(z |x)] (23)

where c represents the constraint ax ≤ f (Y, Z) ≤ bx. The corresponding unconditional mea-340
sure of uncertainty is then given by

�c(F, G) =
∑
x

p(x) �x
c (F, G) (24)

As it clearly appears from (20) and (21), the measure of uncertainty �x
c (F, G) depends on

the marginal d.f.s F(y |x) and G(z |x). The same holds for �c(F, G).
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Of course, the whole approach can be also developed in terms of copula. Let u = F(y |x)
and v = G(z |x), so that z = G−1(v ) and y = F−1(u). The copula version of the Fréchet 345
bounds (20) and (21) is

Vx(u, v ) ≤ Cx(u, v ) ≤ Nx(u, v ) (25)

where

Nx(u, v ) = min(v,G(γF−1(u)(ax)), u, F(δG−1(v )(bx)))

Vx(u, v ) = max(0, v ∧ G(γF−1(u)(a)x) + u ∧ F(δG−1(v )(bx)) − 1) (26)

The conditional uncertainty measure �x
c (F,G) is then

�x
c (F,G) =

∫ ∫
I2
[Nx(u, v ) −Vx(u, v )]dudv (27)

and the corresponding unconditional uncertainty measure is

�c(F,G) = Ex
(
�x

c (F,G)
) =

∑
x

p(x)�x
c (F,G) (28)

6.2. Estimation of the uncertaintymeasure under constraints 350

The uncertainty measures (23) and (24) can be easily estimated on the basis of the available
data. Using the notation introduced in Section 3,

K̂x
+(y, z) = min

{
F̂nA (y |x), F̂nA (δz(bx) |x), ĜnB (z |x), ĜnB (γy(ax) |x)} (29)

K̂x
−(y, z) = max

{
0, min(F̂nA (y |x), F̂nA (δz(bx) |x))

+min(ĜnB (z |x), ĜnB (γy(ax) |x)) − 1
}

(30)

As “natural” estimators of (23) and (24), we consider

�̂x
c =

∫
R2

(
K̂x

+(y, z) − K̂x
−(y, z)

)
d[F̂nA (y |x) ĜnB (z |x)] (31)

�̂c =
∑
x

p̂(x) �̂x
c (32)

In the next proposition, we show the consistency and asymptotic normality of the estima-
tors (31) and (32). 355

Proposition 2. Assume that γy(ax) and δz(bx) are continuous functions of y and z, respectively,
and that nA/(nA + nB) → α as nA, nB go to infinity, with 0 < α < 1. Then

�̂x
c

a.s.→ �x
c (F, G) as nA, nB → ∞ (33)

�̂c
a.s.→ �c(F, G) as nA, nB → ∞ (34)

Proof. See Appendix A. �

The estimators (31) and (32) possess an asymptotic normal distribution, under suitable 360
conditions. In order to write its asymptotic variance, which possesses rather a complicate
form, we need to introduce some further symbols. Define the sets

Tx
1 = {

(y, z) : Kx
+(y, z) = G(z |x)} , Tx

2 = {
(y, z) : Kx

+(y, z) = G(γy(ax) |x)}
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Tx
3 = {

(y, z) : Kx
+(y, z) = F(y |x)} , Tx

4 = {
(y, z) : Kx

+(y, z) = F(δz(bx) |x)}
Sx0 = {

(y, z) : Kx
−(y, z) = 0

}
, Sx1 = {

(y, z) : Kx
−(y, z) = F(y |x) + G(z |x) − 1

}
Sx2 = {

(y, z) : Kx
−(y, z) = F(δz(bx) |x) + G(z |x) − 1

}
Sx3 = {

(y, z) : Kx
−(y, z) = F(y |x) + G(γy(ax) |x) − 1

}
Sx4 = {

(y, z) : Kx
−(y, z) = F(δz(bx) |x) + G(γy(ax) |x) − 1

}
and the functions

τ x
1 (y, z) =

{
I((y,z)∈Tx

3 ) − I((y,z)∈Sx1 ) − I((y,z)∈Sx3 )

}
(35)

τ x
2 (y, z) = {

I((y,z)∈Tx
4 ) − I((y,z)∈Sx2 ) − I((y,z)∈Sx4 )

}
(36)

τ x
3 (y, z) = {

I((y,z)∈Tx
1 ) − I((y,z)∈Sx1 ) − I((y,z)∈Sx2 )

}
(37)

τ x
4 (y, z) =

{
I((y,z)∈Tx

2 ) − I((y,z)∈Sx3 ) − I((y,z)∈Sx4 )

}
(38)

βx(J; a, b) = min(J(a |x), J(b |x)) − J(a |x) J(b |x); J = F, G (39)

Ax(y, z) = Kx
−(y, z) − Kx

+(y, z) (40)

In the next proposition, the asymptotic normality of �̂x
c is stated.

Proposition 3. Assume that γy(ax) and δz(bx) are continuous functions of y and z, respectively,365
and that nA/(nA + nB) → α as nA and nB go to infinity, with 0 < α < 1. Then√

nA,x nB,x

nA,x + nB,x
(�̂x

c − �x
c (F, G))

w→ N(0, V (F,G; x)) as nA, nB → ∞ (41)

where

V (F,G; x) = (1 − α)V1(F,G; x) + αV2(F,G; x) (42)

with

V1(F,G; x) =
∫
R4

G(z1 |x)G(z2 |x) βx(F; y1, y2) dAx(y1, z1) dAx(y2, z2)

+
∫
R4

τ x
1 (y1, z1) τ x

1 (y2, z2)βx(F; y1, y2) d[F(y1 |x)G(z1 |x)] d[F(y2 |x)G(z2 |x)]

+
∫
R4

τ x
2 (y1, z1) τ x

2 (y2, z2)βx(F; δz1 (bx), δz2 (bx)) d[F(y1 |x)G(z1 |x)]

×d[F(y2 |x)G(z2 |x)]

+ 2
∫
R4

G(z1 |x) τ x
1 (y2, z2)βx(F; y1, y2) d[Ax(y1, z1) d[F(y2 |x)G(z2 |x)]

+ 2
∫
R4

G(z1 |x) τ x
2 (y2, z2)βx(F; y1, δz2 (bx)) dA

x(y1, z1) d[F(y2 |x)G(z2 |x)]

+ 2
∫
R4

τ x
1 (y1, z1) τ x

2 (y2, z2)βx(F; y1, δz2 (bx)) d[F(y1 |x)G(z1 |x)]d[F(y2 |x)G(z2 |x)]
(43)
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and

V2(F,G; x) =
∫
R4

F(y1 |x) F(y2 |x) βx(G; z1, z2) dAx(y1, z1) dAx(y2, z2)

+
∫
R4

τ x
3 (y1, z1) τ x

3 (y2, z2)βx(G; z1, z2) d[F(y1 |x)G(z1 |x)] d[F(y2 |x)G(z2 |x)]

+
∫
R4

τ x
4 (y1, z1) τ x

4 (y2, z2)βx(G; γy1 (ax), γy2 (ax)) d[F(y1 |x)G(z1 |x)]

×d[F (y2 |x)G(z2 |x)]

+2
∫
R4

F(y1 |x) τ x
3 (y2, z2)βx(G; z1, z2) d[Ax(y1, z1) d[F(y2 |x)G(z2 |x)]

+2
∫
R4

F(y1 |x) τ x
4 (y2, z2)βx(G; z1, γy2 (ax)) dA

x(y1, z1) d[F(y2 |x)G(z2 |x)]

+2
∫
R4

τ3(y1, z1) τ x
4 (y2, z2)βx(G; z1, γy2 (ax))d[F(y1 |x)G(z1 |x)] d[F(y2 |x)G(z2 |x)]

(44)

Proof. See Appendix A. 370�

As far as the unconditional measure of uncertainty (24) is concerned, the asymptotic nor-
mality of (32) can be obtained. Specifically, let p(x) be the vector of elements p(x)s, as x ranges
in the support of X , and let p̂(x) be the corresponding vector of estimates p̂(x)s. Let further
� be the squared matrix of elements 375

σ (x, t ) =
{
p(x) (1 − p(x)) if t = x

−p(x) p(t ) if t �= x

as x, t range in the support of X . Finally, denote by �x
c (F, G) the vector of conditional uncer-

tainty measures �x
c (F, G), again as x ranges in the support of X . The following result holds.

Proposition 4. Under the conditions of Proposition 3, we have√
nA nB

nA + nB
(�̂c − �c(F, G))

w→ N(0, T (F,G)) as nA, nB → ∞ (45)

where

T (F,G) = α(1 − α) �x
c (F, G)

′
� �x

c (F, G) +
∑
x

p(x)V (F,G; x) (46)

and V (F,G; x) is given by (42). 380

Variances (42) and (46) are awkward, and need to be estimated in order to make opera-
tional Propositions 3 and 4. The simplest way to estimate (42) and (46) consists in resorting
to bootstrap. In practice, in the present case bootstrap works as follows.

1. Generate from F̂nA (y |x) a sample of size nA.
2. Generate from ĜnB (z |x) a sample of size nB. 385
3. Use samples generated in steps 1 and 2 to compute the “bootstrap version” �̃x

c of �̂x
c .
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Steps 1–3 are repeatedM times, so that theM bootstrap values �̃x
c,m, m = 1, . . . , M, are

obtained. Let �x
c,M be their average, and S2xM be their variance:

�
x
c,M = 1

M

M∑
m=1

�̃x
c,m, S2xM = 1

M − 1

M∑
m=1

(�̃x
c,m − �

x
c )

2

As an estimate ofV (F,G; x), we may take

V̂ x
M =

(
nA,x nB,x

nA,x + nB,x

)−1

S2xM (47)

From (47) it is also easy to construct an estimate of the variance (46). It is actually enough to390
replaceV (F,G; x) by V̂ x

M , and p(x), �x
c (F, G) by their sample estimates p̂(x), �̂x

c .
The above results are useful to construct point and interval estimates of the uncertainty

measures �x
c and �c. They are also useful to test the hypothesis that the Fréchet class with

lower and upper bounds (20) and (21), respectively, is “narrow enough”, when the constraint
ax ≤ f (Y, Z) ≤ bx is considered. To clarify this point, let us concentrate on the conditional395
uncertainty measure �x

c (similar considerations hold for the unconditional uncertainty mea-
sure �c). Let ε be a “small” real number (for instance, ε = 0.01, or less), and consider the
hypothesis problem {

H0 : �x
c (F,G) ≤ ε

H1 : �x
c (F,G) > ε

(48)

Intuitively speaking, the null hypothesis postulates that the constraint ax ≤ f (Y, Z) ≤ bx
makes the Fréchet class narrow, and hence “close” to identifiability. In this case, the whole400
Fréchet class can be replaced by one of its bivariate d.f.s, which can be adopted as an approx-
imation of the “true” joint d.f. of Y , Z (given X). The narrower the Fréchet class (namely,
the smaller �x

c ), the smaller the bias introduced by this approximation. As a consequence of
Proposition 3 and (47), a test for the hypothesis problem (48), with an asymptotic significance
level γ , consists in accepting H0 whenever405

�̂x
c ≤ ε + zγ

(
nA,x nB,x

nA,x + nB,x

)−1/2 √
S2xM

where zγ is the γ th quantile of the standard normal distribution.

6.3. Examples

Example 1. A kind of constraint frequently occurring in practice is Y ≥ Z, given X . For
instance, this is the case of Okner (1972) where Y plays the role of total income and Z plays
the role of income subject to taxation. The constraintY ≥ Zmeans that, for each given x, the410
support of (Y, Z) is (a subset of) the half-plane below the straight line z = y, i.e. it is (a subset,
either proper or improper of) {(y, z) ∈ R2 : y ≥ z}.

The constraint Y ≥ Z is equivalent to assume that, for each real y, the region {(u, v ) :
u ≤ y, y < v ≤ z} does have null probability, conditionally on X . On the other hand, these
relationships turn out to be equivalent to415

H(y, z |x) = H(y, min(y, z) |x) (49)

for each y and z.
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Relationship (49) modifies the Fréchet bounds in (4). The new Fréchet bounds can be
obtained from the theory developed in Section 6.1. Set f (Y,Z) = Y/Z with ax = 1 and
bx → ∞, from the results (20) and (21) we obtain the following new Fréchet bounds (4):

Kx
+(y, z) = min(G(z|x) ∧ G(y|x), F(y|x))

= min(F(y|x),G(z|x),G(y|x)) (50)

Kx
−(y, z) = max(0,G(z|x) ∧ G(y|x) + F(y|x) − 1) (51)

According to (23) the conditional uncertainty measure is then 420

�x
Y≥Z(F,G) =

∫
R2

(
min(F(y|x),G(z|x),G(y|x))

−max(0,G(z|x) ∧ G(y|x) + F(y|x) − 1)
)
d[F(y |x)G(z |x)] (52)

The value of (52), of course, depends on the marginal d.f.s F(y |x) and G(z |x). Finally, the
unconditional uncertainty measure is obtained from (52) by averaging w.r.t. the distribution
of X .

Example 2. Assume that there exist constants ax and bx such that ax ≤ Y/Z ≤ bx. For instance,
in business surveys, X could be the type of activity, Y the total sales, and Z the number of 425
employees. For the sake of simplicity, assume further that bothY and Z are positive r.v.s. The
constraint introduced above means that, for each given x, the support of (Y, Z) is in between
the two straight lines z = y/bx and z = y/az, i.e. is (a subset either proper or improper of) the
cone {(y, z) : y ≤ 0, y/bx ≤ z ≤ y/ax}.

The constraint ax ≤ Y/Z ≤ bx is equivalent to say that all regions of the form {(u, v ) : u ≤ 430
y, y/ax ≤ v < z} and {(u, v ) : bxz < u ≤ y, v ≤ z} do have null probability, for each y, z.

Again, the relationships illustrated above modify the Fréchet bounds in (4). The new
Fréchet bounds can be obtained from the theory developed in Section 6.1. Let f (Y,Z) = Y/Z,
γy(ax) = y/ax, δz(bx) = bxz, and from the results (20) and (21) we obtain the following
Fréchet bounds (4): 435

Kx
+(y, z) = min

(
G

(
z ∧ y

ax
|x
)

, F(y ∧ bxz|x)
)

= min
(
G(z|x) ∧ G

(
y
ax

|x
)

, F(y|x) ∧ F(bxz|x)
)

= min
(
G(z|x),G

(
y
ax

|x
)

, F(y|x), F(bxz|x)
)

(53)

Kx
−(y, z) = max

(
0,G

(
z ∧ y

ax
|x
)

+ F(y ∧ bxz|x) − 1
)

= max
(
0,G(z|x) ∧ G

(
y
ax

|x
)

+ F(y|x) ∧ F(bxz|x) − 1
)

(54)

From (53) and (54), it is possible to compute both conditional and unconditional uncertainty
measures that now depend on the marginal d.f.s F(y |x) and G(z |x).
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7. Simulation study

In this section we perform a simulation experiment in order to evaluate the effects on model
uncertainty due to introduction of logical constraints. The simulation involves the following440
steps.

1. A sample A composed by nA i.i.d. records has been generated according to a bivari-
ate normal distribution (X,Y )with mean vectorμxy = (0, 20) and covariance matrix
given by

�xy =
(

1 0.5
0.5 1

)
2. A sample B composed by nB i.i.d. records has been generated according to a bivari-445

ate normal distribution (X,Z) with mean vector μxz = (0, 22) and covariance matrix
given by

�xz =
(

1 0.8
0.8 1

)
3. The continuous variable X has been discretized by partitioning the range of observed

values x = xA ∪ xB into k = 4 intervals according to the hth percentiles of data, for
h = 25 − 75(25). As a consequence, the discretized variable will assume the values x,450
for x = 1, 2, 3, 4.

4. Conditionally on x (for x = 1, 2, 3, 4) the pointwisemeasure of uncertainty in (x, y, z)
is estimated by

�̂yz|x = min(ĜnB (z|x), F̂nA (y|x)) − max(ĜnB (z|x) + F̂nA (y|x) − 1, 0) (55)

where F̂nA (y|x) and ĜnB (z|x) are the empirical distribution functions of F(y|x) and
G(z|x), respectively. Let nA,x and nB,x be the number of units such that x = j in sam-455
ples A and B, and denote by y = (y1,x, . . . , ynA,x) and z = (z1,x, . . . , znB,x) the corre-
sponding sample values of Y and Z, respectively. Then for x = j we obtain nA,xnB,x

pointwise uncertainty measures (55).
5. Conditionally on x (for x = 1, 2, 3, 4), the uncertainty measure when no external aux-

iliary information is available is obtained by averaging the nA,xnB,x pointwise uncer-460
tainty measures (55). Formally

�̂x = 1
nA,xnB,x

∑
y∈y

∑
z∈z

�̂yz|x (56)

6. The overall unconditional uncertainty measure is a weighted mean of conditional
uncertainty measure (56)

�̂ =
∑
x

�x= j p̂(x) (57)

where p̂(x) = nA,x+nB,x
nA+nB

.
7. Suppose that the constraint regarding the statisticalmodel for (X,Y,Z) isY ≥ Z. Con-465

ditionally on x and under the constraintY ≥ Z, the pointwise uncertainty measure in
(x, y, z) is estimated by

�̂yz|x
c = K̂x

+(y, z) − K̂x
−(y, z)
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where the subscript c represents the constraint and K̂x
+(y, z) and K̂x

−(y, z) are given
by (50) and (51), respectively.

8. Conditionally on x the estimator of conditional uncertainty measure under the con- 470
straintY ≥ Z is given by

�̂x
c = 1

nA,xnB,x

∑
y∈y

∑
z∈z

�̂yz|x
c (58)

9. The overall unconditional uncertaintymeasure under the constraintY ≥ Z is obtained
as a weighted mean of conditional uncertainty measures (58)

�̂c =
∑
x

�̂x
c p̂(x) (59)

where p̂(x) = nA,x+nB,x
nA+nB

.
10. Steps 1–9 have been repeated 500 times and for sample sizes nA = nB = n = 1000. 475
Given n, for each sample s (for s = 1, . . . , 500) and for each category x (for x = 1, 2, 3, 4)

denote by �̂x,s,�̂s, �̂x,s
c , �̂s

c the uncertainty measures (56)–(59), respectively.
As for the conditional uncertainty measure estimates (56) their mean over simulation runs

is

�
x = 1

500

500∑
s=1

�̂x,s (60)

while 480

� = 1
500

500∑
s=1

�̂s (61)

represents the corresponding overall uncertainty.
Analogously, if we refer to the conditional uncertaintymeasure estimates (31), we have that

the mean over simulation runs is given by

�
x
c = 1

500

500∑
s=1

�̂x,s
c (62)

while

�c =
500∑
s=1

�
s
c (63)

is the corresponding overall uncertainty under the constraint Y ≥ Z. Finally, given 485
Propositions 3 and 4 and resorting to bootstrap confidence intervals for the uncertainty mea-
sures �x

c (F,G) and �c(F,G) have been constructed. Furthermore, the hypothesis (48) both
for the conditional and unconditional uncertainty measures�x

c (F,G) and�c(F,G) has been
tested.

7.1. Simulation results 490

The uncertaintymeasure� is equal to 1/6 = 0.166. The introduction of the constraintY ≥ Z
reduces the model uncertainty for (X,Y,Z) to �c ∼= 0.0154.

In Table 2, conditionally on x, the uncertainty measures�
x and�

x
c given by (60) and (62),

respectively, are reported for x = 1, . . . , 4. Last column in Table 2 reports the percentage of
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Table . Uncertainty measures as the category x = j varies.

x �
x

�
x
c % of support reduction

 . . 
 . . 
 . . 
 . . 

sample observations that does not satisfy the constraint Y ≥ Z. In other words, last column495
represents in percentage terms the effect of the constraint on the support reduction of the
joint distribution of (Y,Z) given X .

Clearly, the larger the reduction of support induced by the constraint the larger is the effect
of constraint on model uncertainty, that is more informative is the constraint. As Table 2
shows, the larger reduction regards the category x = 4 and the smaller regards the category500
x = 1, with a percentage equal to 98% and 92%, respectively.

In order to construct interval estimates for the uncertainty measure �x
c (F,G) we resort to

bootstrap. From sample s = 1, M = 500 bootstrap replications have been drawn and the M
bootstrap estimates �̃x

c,m,m = 1, . . . ,M, theirmean�
x
c,M , variance S2xM , and variance estimate

V̂ x
M given by (47) have been computed.505
Conditionally on x, the results are reported in Table 3 where in f x and supx represent the

lower and the upper endpoints of the 1 − γ = 0.95 confidence interval, respectively.
The hypothesis H0 : �x

c (F,G) ≤ ε against H1 : �x
c (F,G) > ε with an asymptotic signifi-

cance level γ = 0.05 has been tested. Conditionally on x = 1, the hypothesis H0 is accepted
for ε = 0.05. Conditionally on x = 2, the hypothesisH0 is accepted for ε = 0.01. Condition-510
ally on x = 3 (x = 4), the hypothesis H0 is accepted for ε = 0.005.

Similar considerations hold for the unconditional uncertainty measure �c(F,G). The
estimate of the asymptotic variance T (F,G) is 0.0016, where α = 0.5. The estimate of
�c(F,G) over the bootstrap replications is 0.016. The confidence interval is (0.0134, 0.0205).
Given γ = 0.05, the hypothesis H0 : �c(F,G) ≤ ε against H1 : �c(F,G) > ε is accepted for515
ε = 0.02.

Table . Confidence interval for�x
c (F,G) as the category x varies.

x �
x
c,M nA,x nB,x V̂ x

M inf x supx

 .   . . .
 .   . . .
 .   . . .
 .   . . .

Table . Bounds ofH(y, z|X = 1) for some percentiles of theY and Zmarginal distributions.

   

Y |Z Lx (y, z) Ux(y, z) Lx (y, z) Ux (y, z) Lx (y, z) Ux(y, z) Lx (y, z) Ux(y, z)

  .  .  . . .
  .  . . . . .
  . . . . . . .
40 . . . . . . . .
 . . . . . . . .
 . . . . . . . .
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Table . Bounds ofH(y, z|X = 1)under the constraintY ≥ Z for somepercentiles of theY andZmarginal
distributions.

   

Y |Z Kx−(y, z) Kx+(y, z) Kx−(y, z) Kx+(y, z) Kx−(y, z) Kx+(y, z) Kx−(y, z) Kx+(y, z)

  .  .  .  .
  .  .  .  .
  .  .  .  .
  .  .  .  .
  .  .  .  .
 . . . . . . . .

Conditionally on x = 1, Tables 4 and 5 report the bounds (Lx−(y, z),Ux
+(y, z))and

(Kx
−(y, z),Kx

+(y, z)) corresponding to some percentiles of Y and Z marginal distributions,
respectively.

Note that, if the point (y, z) does not satisfy the constraint Y ≥ Z (as for y = 10th, 20th, 520
30th, 40th, 50th percentiles of Y marginal distribution and for z = 10th, 20th, 30th, 40th
percentiles of Z marginal distribution) then the conditional bounds (Kx

−(y, z),Kx
+(y, z))

are shorter than (Lx(y, z),Ux(y, z)). As a consequence, the pointwise uncertainty measure
becomes smaller. On the other side, if the point (y, z) satisfies the constraint Y ≥ Z, as hap-
pens for y = 80th percentile of Y marginal distribution and for z = 10th, 20th, 30th, 40th 525
percentiles of Z marginal distribution, then the bounds (Kx

−(y, z),Kx
+(y, z)) are the same as

(Lx(y, z),Ux(y, z)).

Figure . Density estimate of overall uncertainty measure under the constraintY ≥ Z.
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Finally, in Figure 1 the Kernel density estimate of the overall conditional uncertainty mea-
sure �̂c (Proposition 4) under the constraintY ≥ Z is shown. Such an estimate has been com-
puted using the 500 values �̂c given by (32). Note that the uncertainty measure distribution530
tends to a normal distribution. The bandwidth selection rule is given by Sheather and Jones
(1991).

8. Conclusions

The first statistical matching procedures (e.g. Okner , 1972) were based on intrinsic non para-
metric methods of imputation, as those belonging to the hot-deck class. Anyway, contrary to535
what happens in the parametric Gaussian case (as in Kadane, 1978; Moriarity and Scheuren,
2001; Raessler, 2002) or in the categorical case (as in D’Orazio et al., 2006a), there has never
been a discussion of how uncertain the statistical matching results are when a non parametric
setup is considered. This paper addresses this issue, defining appropriate measures of uncer-
tainty in a non parametric framework and properties of uncertainty width estimators use-540
ful for confidence intervals and tests. Furthermore, emphasis is given to the possibility to
reduce uncertainty when logical constraints between the never jointly observed variables are
introduced.
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A. Appendix

Proof of Proposition 2. First of all, the inequality

|�̂x
c − �x

c (F, G)| ≤ A1 + A2 (A.1)

holds, where

A1 = sup
y,z

∣∣K̂x
+(y, z) − Kx

+(y, z)
∣∣ + sup

y,z

∣∣K̂x
−(y, z) − Kx

−(y, z)
∣∣

A2 =
∣∣∣∣∫R2

(Kx
+(y, z) − Kx

−(y, z)) d[F̂nA (y |x) ĜnB (z |x)] − �x
c (F, G)

∣∣∣∣
FromGlivenko–Cantelli theorem and the continuity assumption on γy(ax), δz(bx), it is not630

difficult to see that

sup
y

∣∣F̂nA (y |x) − F(y |x)∣∣ a.s.→ 0, sup
z

∣∣F̂nA (δz(bx) |x) − F(δz(bx) |x)∣∣ a.s.→ 0 (A.2)

sup
z

∣∣ĜnB (z |x) − G(z |x)∣∣ a.s.→ 0, sup
y

∣∣ĜnB (γy(ax) |x) − G(γy(bx) |x)∣∣ a.s.→ 0 (A.3)

as nA and nB go to infinity. Hence, taking into account the definition of K+, K−, K̂+, K̂−, we
have

A1
a.s.→ 0 as nA, nB → ∞

In the second place, from the strong law of large numbers it is immediate to see that∫
R2

(Kx
+(y, z) − Kx

−(y, z)) d[F̂nA (y |x) ĜnB (z |x)] a.s.→ �x
c (F, G) as nA, nB → ∞

which also implies thatA2 tends a.s. to 0 as nA and nB increase. As a consequence, (33) follows.635
Result (34) follows from (33) and the strong law of large numbers applied to p̂(x)s. �
Proof of Proposition 3. The asymptotic normality (41) is deduced from some basic results
on empirical processes. A survey is in Gaenssler and Stute (1979). As well known (see, for
instance, Billingsley, 1968, pp. 144–145), as nA and nB go to infinity, the two sequences of640
(independent) empirical processes(

Wx
1nA (y); y ∈ R

)
= (√

nA,x(F̂nA (y |x) − F(y |x)); y ∈ R
)

(
Wx

2nB (z); z ∈ R
) = (√

nB,x(ĜnB (z |x) − G(z |x)); z ∈ R
)

converge weakly to independent Gaussian processes (Wx
1 (y); y ∈ R) and (Wx

2 (z); z ∈ R)),
with null mean functions and covariance kernels min(F(y1 |x), F(y2 |x)) − F(y1 |x) F(y2 |x)
and min(G(z1 |x), G(z2 |x)) − G(z1 |x)G(z2 |x), respectively.

Furthermore, from Skorokhod’s representation theorem there exist versions W̃x
1nA , W̃

x
2nB ,645

W̃x
1 , W̃x

2 of Wx
1nA , W

x
2nB , W

x
1 , Wx

2 , respectively, defined on an appropriate probability space
(�̃, F̃, P̃), such that

W̃x
1nA

d= Wx
1nA, W̃x

2nB
d= Wx

2nB ∀ nA,x, nB,x ≥ 1; W̃x
1

d= Wx
1 , W̃x

2
d= Wx

2

and

sup
y

∣∣∣W̃x
1nA (y) − W̃x

1 (y)
∣∣∣ → 0, sup

z

∣∣∣W̃x
2nA (z) − W̃x

2 (z)
∣∣∣ → 0 as nA, nB → ∞, a.s. − P̃

(A.4)
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In order to prove (41), consider first the term√
nA,xnB,x

nA,x + nB,x

(∫
R2

K̂x
+(y, z) d[F̂nA (y |x)ĜnB (z |x)] −

∫
R2

Kx
+(y, z) d[F(y |x)G(z |x)]

)
= I1 + I2 (A.5)

where 650

I1 =
√

nA,xnB,x

nA,x + nB,x

∫
R2

K̂x
+(y, z) d[F̂nA (y |x)ĜnB (z |x) − F(y |x)G(z |x)]

I2 =
√

nA,xnB,x

nA,x + nB,x

∫
R2

(
K̂x

+(y, z) − Kx
+(y, z)

)
d[F(y |x)G(z |x)]

In a similar way, it is possible to write√
nA,xnB,x

nA,x + nB,x

(∫
R2

K̂x
−(y, z) d[F̂nA (y |x)ĜnB (z |x)] −

∫
R2

Kx
−(y, z) d[F(y |x)G(z |x)]

)
= I3 + I4 (A.6)

where

I3 =
√

nA,xnB,x

nA,x + nB,x

∫
R2

K̂x
−(y, z) d[F̂nA (y |x)ĜnB (z |x) − F(y |x)G(z |x)]

I4 =
√

nA,xnB,x

nA,x + nB,x

∫
R2

(
K̂x

−(y, z) − Kx
−(y, z)

)
d[F(y |x)G(z |x)]

The proof can be split into four steps.
Claim 1. As nA and nB tend to infinity, we have

I1
w→ √

1 − α

∫
R
Wx

1 (y) dF(y |x) + √
α

∫
R
Wx

2 (z) dG(z |x)

−√
1 − α

∫
R2

G(z |x)Wx
1 (y) dKx

+(y, z)

−√
α

∫
R2

F(y |x)Wx
2 (z) dKx

+(y, z) (A.7)

An integration by parts (see, for instance, Hildebrandt , 1963, p. 127) shows that 655

I1 =
√

nA,xnB,x

nA,x + nB,x

∫
R

(F̂nA (y |x) − F(y |x)) dK̂x
+(y, +∞)

+
√

nA,xnB,x

nA,x + nB,x

∫
R

(ĜnB (z |x) − G(z |x)) dK̂x
+(+∞, z)

−
√

nA,xnB,x

nA,x + nB,x

∫
R2

{
ĜnB (z |x) (F̂nA (y |x) − F(y |x))

+F(y |x) (ĜnB (z |x) − G(z |x))} dK̂x
+(y, z)

=
√

nB,x

nA,x + nB,x

∫
R
Wx

1nA (y) d
(
F(y |x) + n−1/2

A,x Wx
1nA (y)

)
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+
√

nA,x

nA,x + nB,x

∫
R
Wx

2nB (y) d
(
G(z |x) + n−1/2

B,x Wx
2nB (z)

)
−
√

nB,x

nA,x + nB,x

∫
R2

(G(z |x) + n−1/2
B,x Wx

2nB (z))W
x
1nA (y) dK̂x

+(y, z)

−
√

nA,x

nA,x + nB,x

∫
R2

F(y |x)Wx
2nB (z) dK̂

x
+(y, z)

d=
√

nB,x

nA,x + nB,x

∫
R
W̃x

1nA (y) d
(
F(y |x) + n−1/2

A,x W̃ x
1nA (y)

)
+
√

nA,x

nA,x + nB,x

∫
R
W̃x

2nB (z) d
(
G(z |x) + n−1/2

B,x W̃ x
2nB (z)

)
−
√

nB,x

nA,x + nB,x

∫
R2

(
G(z |x) + n−1/2

B,x W̃ x
2nB (z)

)
W̃x

1nA (y) dK̃x
+(y, z)

−
√

nA,x

nA + nB

∫
R2

F(y |x)W̃x
2nB (z) dK̃

x
+(y, z)

=
√

nA,x

nA,x + nB,x

∫
R
W̃x

1 (y) dF(y |x) +
√

nB,x

nA,x + nB,x

∫
R
W̃x

2 (z) dG(z |x)

−
√

nB,x

nA,x + nB,x

∫
R2

G(z |x)W̃x
1 (y) dK̃x

+(y, z)

−
√

nA,x

nA,x + nB,x

∫
R2

F(y |x)W̃x
2 (z) dK̃x

+(y, z) + Rem1 (A.8)

where K̃x
+(y, z) is defined exactly as K̂x

+(y, z), except that F̂nA (·|x) and ĜnB (·|x)
are replaced by their P̃ versions F(·|x) − n−1/2

A,x W̃ x
1nA (·), G(· |x) + n−1/2

B,x W̃ x
2nB (·),

respectively, and

|Rem1| ≤ 2

{
sup
y

∣∣∣W̃x
1nA (y) − W̃x

1 (y)
∣∣∣ + sup

z

∣∣W̃x
2nB (z) − W̃x

2 (z)
∣∣} (A.9)

Now, nA,x/(nA,x + nB,x) and nB,x/(nA,x + nB,x) converge a.s. to α and 1 − α,
respectively. Furthermore K̃x

+(y, z) converges pointwise to Kx
+(y, z) as nA and660

nB go to infinity, a.s.-P̃. Since W̃x
1 and W̃x

2 possess a.s. continuous and bounded
trajectories, from the Helly–Bray theorem it follows that∫

R2
G(z |x)W̃x

1 (y) dK̃x
+(y, z) →

∫
R2

G(z |x)W̃x
1 (y) dKx

+(y, z)

∫
R2

F(y |x)W̃x
2 (z) dKx

+(y, z) →
∫
R2

F(y |x)W̃x
2 (z) dKx

+(y, z)

a.s.-P̃, as nA and nB tend to infinity. Furthermore, from (A.9) it follows that Rem1

tends to zero a.s.-P̃, as nA and nB increase. Hence, in view of (A.8) convergence
(A.7) is proved.665
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Claim 2. As nA and nB tend to infinity, we have

I2
w→

∫
R2

{√
α
(
I((y,z)∈Tx

1 )Wx
2 (z) + I((y,z)∈Tx

2 )Wx
2 (γy(ax))

)
+√

1 − α
(
I((y,z)∈Tx

3 )Wx
1 (y) + I((y,z)∈Tx

4 )Wx
1 (δz(bx))

)}
d[F(y |x)G(z |x)]

(A.10)

Define

I2 j =
√

nA,xnB,x

nA,x + nB,x

∫
R2

I((y,z)∈Tx
j )

(
K̂x

+(y, z) − Kx
+(y, z)

)
d[F(y |x)G(z |x)],

j = 1, . . . , 4 (A.11)

As (y, z) is in Tx
1 , we have(

K̂x
+(y, z) − Kx

+(y, z)
) = min

{
F̂nA (y |x), F̂nA (δz(bx) |x),

ĜnB (y |x), ĜnB (γy(ax) |x)} − G(z |x)
= min

{
F̂nA (y |x) − G(z |x), F̂nA (δz(bx) |x) − G(z |x),

ĜnB (z |x) − G(z |x), ĜnB (γy(ax) |x) − G(z |x)}
Due to the consistency of the e.d.f., the terms F̂nA (δz(bx) |x) − G(z |x) and
ĜnB (y |x) − G(z |x), ĜnB (γy(ax) |x) − G(z |x) converge a.s. to positive constants 670
for every (x, y) in Tx

1 . When multiplied either by √nA,x or by
√nB,x, they tend

to infinity a.s. Hence,√
nA,xnB,x

nA,x + nB,x

(
K̂x

+(y, z) − Kx
+(y, z)

)
I((y,z)∈Tx

1 )

w→ √
αWx

2 (z)I((y,z)∈Tx
1 )

(A.12)

as nA and nB tend to infinity. From this result, it follows that

I21
w→ √

α

∫
R2

Wx
2 (z)I((y,z)∈Tx

1 ) d[F(y |x)G(z |x)] (A.13)

as nA and nB go to infinity. In the same way, it can be shown that

I22
w→ √

α

∫
R2

Wx
2 (γy(ax))I((y,z)∈Tx

2 ) d[F(y |x)G(z |x)] (A.14)

I23
w→ √

1 − α

∫
R2

Wx
1 (y)I((y,z)∈Tx

3 ) d[F(y |x)G(z |x)] (A.15)

I24
w→ √

1 − α

∫
R2

Wx
1 (δz(bx))I((y,z)∈Tx

4 ) d[F(y |x)G(z |x)] (A.16)

as nA and nB increase. From (A.14) to (A.16), the conclusion (A.10) easily 675
follows.
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Claim 3. As nA and nB tend to infinity, we have

I3
w→ √

1 − α

∫
R
Wx

1 (y) dF(y |x) + √
α

∫
R
Wx

2 (z) dG(z |x)

− √
1 − α

∫
R2

G(z |x)Wx
1 (y) dKx

−(y, z)

− √
α

∫
R2

F(y |x)Wx
2 (z) dKx

−(y, z) (A.17)

Claim 4. As nA and nB tend to infinity, we have

I4
w→

∫
R2

{√
α
(
I((y,z)∈Sx1 ) + I((y,z)∈Sx2 )

)
Wx

2 (z)

+ √
α
(
I((y,z)∈Sx3 ) + I((y,z)∈Sx4 )

)
Wx

2 (γy(ax))

+ √
1 − α

(
I((y,z)∈Sx1 ) + I((y,z)∈S34 )

)
Wx

1 (y)

+ √
1 − α

(
I((y,z)∈Sx2 ) + I((y,z)∈Sx4 )

)
Wx

2 (δz(bx))
}
d[F(y |x)G(z |x)]

(A.18)

Claims 3 and 4 are proved by the same technique used in Claims 1 and 2, respectively.
Taking into account that680 √

nA,x nB,x

nA,x + nB,x

(
�̂x

c − �x
c (F, G)

) = I1 + I2 − I3 − I4

and that linear functionals ofGaussian processes have normal distribution, from (A.7), (A.10),
(A.17), (A.18), result (41) easily follows. �
Proof of Proposition 4. Let

J1 =
√

nA nB
nA + nB

(∑
x

p̂(x)
(
�̂x

c − �x
c (F, G)

))
(A.19)

685

J2 =
√

nA nB
nA + nB

∑
x

�x
c (F, G)

(
p̂(x) − p(x)

)
(A.20)

so that √
nA nB

nA + nB

(
�̂c − �c(F, G)

) = J1 + J2 (A.21)

Now, it is not difficult to see that the two statistics J1 and J2 are asymptotically independent.
Furthermore, the statistics √

nA,x nB,x

nA,x + nB,x

(
�̂x

c − �x
c (F, G)

)
as x ranges in the support of X , are asymptotically independent, too. As a consequence of
Proposition 3, and taking into account that690
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p̂(x) a.s.→ p(x) as nA, nB → ∞√
nA nB
nA,xnB,x

√
nA,x + nB,x

nA + nB
a.s.→ p(x)−1/2 as nA, nB → ∞

it is not difficult to prove that

J1
w→ N

(
0,

∑
x

p(x)V (F,G; x)
)

as nA, nB → ∞ (A.22)

In the second place, the random vector
√
nA + nB (̂p− p) tends in distribution to a (sin-

gular) multinormal variate, with null mean vector and covariance matrix �. Hence,

J2
w→ N(0, α(1 − α) �x

c (F,G)T � �x
c (F,G)) (A.23)

From (A.22) and (A.23), result (45) follows. � 695
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