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ABSTRACT
Along the years, Parallel Discrete Event Simulation (PDES) has been

enriched with programming facilities to bypass state disjointness

across the concurrent Logical Processes (LPs). New supports have

been proposed, offering the programmer approaches alternative to

message passing to code complex LPs’ relations. Along this path we

find Event & Cross-State (ECS), which allows writing event handlers

which can perform in-place accesses to the state of any LP, by simply

relying on pointers. This programming model has been shipped

with a runtime support enabling concurrent speculative execution

of LPs limited to shared-memorymachines. In this paper, we present

the design of a middleware layer that allows ECS to be ported to

distributed-memory clusters of machines. A core application of

our middleware is to let ECS-coded models be hosted on top of

(low-cost) resources from the Cloud. Overall, ECS-coded models no

longer demand for powerful shared-memory machines to execute

in reasonable time. Thanks to our solution, we retain indeed the

possibility to rely on the enriched ECS programming model while

still enabling deployments of PDES models on convenient (Cloud-

based) infrastructures. An experimental assessment of our proposal

is also provided.

CCS CONCEPTS
• Computing methodologies→ Discrete-event simulation; •
Theory of computation → Shared memory algorithms; • Soft-
ware and its engineering→ Distributed memory;
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1 INTRODUCTION
For a long time, the literature on Parallel Discrete Event Simulation

(PDES) has been focused on improving the runtime behavior of

PDES systems under its traditional programming model [12], where

interactions between concurrent simulation objects—also known as

Logical Processes (LPs)—were expressed only via event exchange.

Along this path, we can find solutions oriented to load balancing [2,

4, 8, 14], to the optimization of rollback management in case of

speculative processing [5, 9], and to the effectiveness of platform-

level data structures and algorithms [15].

More recently, also thanks to significant changes in hardware

platforms occurred since the time PDES was born, new trends of

research emerged. Specifically, the possibility to rely on multi-core

machines offering shared-memory support has given rise to new

programming approaches for PDES, together with their transparent

runtime support. These new programming approaches improve,

on the one hand, the expressiveness and flexibility of model imple-

mentation while, on the other hand, they improve the execution

performance when compared to explicit event scheduling to imple-

ment interactions among LPs.

Along this research pathwe find solutions enabling the sharing of

subset of LP attributes [7], making them accessible while processing

any event, or solutions oriented to let the concurrent execution of

events share global data across multiple cores [17]. These proposals

enable the programmer to store data produced/updated by the

execution of some event in such a way that these same data can be

directly accessed when later (or concurrently) processing another

event—with no need for any explicit data passing at the application

software level. Lines of code can be therefore reduced, together

with the volume of messages that need to be exchanged at the level

of the PDES platform.

A highly-flexible programming approach still based on the ex-

ploitation of shared-memory support is referred to as Event & Cross-
State (ECS) [18]. It allows the programmer to write event handlers

that can access any memory location belonging to the state of any

LP via pointers. Accesses are supported in both read andwrite mode,

thus providing a very expressive way to implement the event logic.

Indeed, any event can observe the current state of the overall model

or can update any of part of it. This is possible even though the

runtime system manages the LPs concurrently, thus enabling the

concurrent execution of multiple event handlers at the same time.

https://doi.org/10.1145/3200921.3200929
https://doi.org/10.1145/3200921.3200929
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Figure 1: Traditional PDES vs Parallel ECS-based Execution
Times (Log Scale on y-axis).

Correctness of read/write operations—namely causal consistency

of the operations on the basis of data/timestamp dependencies—

are transparently supported via the integration of both operating-

system and user-space facilities. Also, ECS is conceived to work

with speculative-processing runtime environments, thus enabling

the exploitation of parallelism while processing independent event

execution paths on multi-core systems.

To illustrate the power of ECS, we report in Figure 1 the execution

time of a traditionally-coded robot exploration model (based on

explicit event exchange), and of the same model coded and run on

top of ECS. Both implementations have been run on the same PDES

speculative platform, namely ROOT-Sim [23], with or without ECS

support. The core parameter that has been varied between 100 and

1000 is the number of robots (marked as ’R’), each modeled by a

different LP. The number of cells forming the region of interest,

still modeled by different LPs, is set to 4096. The plot shows the

execution time while varying the number of threads used to run

the model between 8 and 32. All experiments are carried out on

an HP ProLiant G7 machine with 32 physical cores and 64 GB of

RAM. The results show that, independently of the number of robots

and the number active worker threads, ECS-based runs provide

a performance increase with respect to traditional PDES, which

ranges from 19% to 58%. Also, event handlers in the ECS case require

25% less lines of C code
1
. However, one limitation of ECS is related

to the fact that its runtime support targets a single shared-memory

machine. Therefore, if some scale up of the computing power is

required to run more demanding models in reasonable time, the

user is forced to resort to a single higher-end multi-core machine.

In this paper we tackle the following question: “can we run ECS-
based models on top of clusters of low-cost resources (i.e., with limited
parallelism) like spot instances from the Cloud?”. Enabling this kind

of deploy would allow programmers to still access via pointers any

LP state in read/write mode, and would allow end users to run large

models without the need for a costly shared-memory machine. A

distributed memory cluster made up by low cost (virtual) machines

would in fact suffice.

1
Models source code is available at https://github.com/HPDCS/ROOT-Sim/ on the

models branch.

We respond positively to such a question by providing innova-

tive operating-system and platform-level capabilities, which make

ECS a distributed middleware enabling such a seamless execution

on top of distributed-memory systems. Essentially, we provide

an innovative memory-management support for Linux on x86_64
systems based on new kernel-level facilities, which virtualizes a

unique address space on top of a distributed memory system. At

the same time, the innovative middleware facilities transparently

track per-thread read/write accesses onto this address space in

order to trigger the execution of middleware-level tasks. They (re)-

materialize memory pages associated with the state of a simulation

object at the correct simulation time on the (remote) node were

the event performing the access is running. In other words, our

memory-management system implements a lease-based mechanism
where some operating system pages—and its content related to a

given virtual-time instant along model execution—is granted for

use to (and materialized on) a given node for a while, depending

on model execution’s trajectory and overall state accesses.

It is important to note that our ultimate goal is not to improve

performance when running ECS-based models in the Cloud, com-

pared to traditional PDES models run on the same Cloud platforms.

Rather, our aim is to enable ECS-based programming in the Cloud,

with direct benefits in terms of simplification of the programmer’s

job, while still guaranteeing adequate runtime performance.

Our innovativemiddleware has been integratedwithin theROOT-
Sim PDES environment [23], and is available for download. In this

paper we also report experimental results showing the feasibility

of our approach with real-world simulation models.

The remainder of this paper is structured as follows. In Section 2

we discuss related work. Section 3 introduces our reference PDES

system organization. The facilities offered by the ECS distributed

middleware are presented in Section 4. Experimental results show-

ing the viability of our solution are provided in Section 5.

2 RELATEDWORK
In the recent years, a lot of research effort has been spent to enable

PDES systems to fruitfully exploit (low-cost) resources from the

Cloud (or virtualized environments in general) to run large models.

Someworks have been targeted at studying the effects of hypervisor

configurations on the runtime dynamics of PDES systems [25, 26],

particularly on the side of virtual machine (VM) scheduling and

cross-VM communication. These studies have targeted both conser-

vative and optimistic PDES, as the basis to determine whether the

Cloud can represent a fruitful infrastructure for complex and large

scale PDES simulations. The exploitation of distributed resources,

such as Cloud (spot) resources, is a central target also for our work.

However the main difference between what we propose and the

previous literature studies is that the latter are still bound to the

traditional PEDS programming model. In particular, the considered

PDES platforms adhere to the paradigm in which the model de-

veloper is forced to reason about LP data separation and cannot

implement rely to in-place cross-LP state access. Rather, we tar-

get more innovative programming paradigms, such as ECS. We

therefore target an orthogonal goal, which nonetheless is of similar

relevance.



Full state partitioning as in traditional PDES—with event han-

dlers only accessing the state of a single LP—is a programming

model leading to deployment of PDES systems which have been

shown to be capable of exploiting extreme-scale distributed infras-

tructures and supercomputing-oriented facilities [1]. Such plat-

forms are not the central target of our proposal. However, en-

abling ECS to run on distributed-memory systems opens the way

to exploiting differentiated classes of computing clusters (including

higher-end ones) in conjunction with the innovation in the offered

programming model—which breaks disjointness in the accesses to

the LP states by event handlers.

As for the enrichment of the programming facilities in PDES

systems, the literature shows solutions oriented to enabling data

sharing across LPs. The approach in [3] discusses how LP state

sharing might be emulated by using a separate LP hosting the

shared data and acting as a centralized server. There, also the no-

tion of version records is introduced, where multi versioning is used

to maintain shared data in order to cope with read/write operations

occurring at different logical times while avoiding unneeded roll-

backs. This is an approach similar to the one proposed in [16], where

a theoretical presentation of algorithms to implement a Distributed

Shared Memory mechanism is provided, and one of the provided

algorithms proposes to implement variables as multi-version lists

where write operations install new version nodes and read oper-

ations find the most suitable version. The above approaches are

different from what we propose given that instead of mapping ac-

cesses to message-passing, we support in-place access to LP state

buffers. Retrieving actual operating system pages is fully transpar-

ent to the application and is demanded to the innovative distributed

ECS middleware we present. Also, we do not limit sharing to a par-

ticular memory portion (such as the state image of the centralized

server), since any memory buffer representing a portion of the

whole simulation model state can be accessed. Contextually, we

provide the support for application-transparent distributed deploy

of the PDES system entailing such sharing facilities, thus not limit-

ing the support for state sharing to shared memory machines. This

overcomes the limitation of the original ECS runtime support [18],

which was bound to a single shared-memory machine.

In [10], the notion of state query is introduced, according to

which any LP needing the value of a portion of the state that belongs

to a different LP can issue a query message to it and then waits for

a reply containing the suitable value. If this value is later detected

to be no longer valid, an anti-message is sent so as to invalidate the

query. Again, this approach relies on message passing, and is not

transparent to the application programmer, who needs to embed

the usage of query messages within the application code.

The work in [13] proposes to integrate the support for shared

state in terms of global variables, by basing the architecture on [6].

Although this proposal supports in-place read/write operations as

we do (i.e., LPs directly access the only copy of the data, avoiding a

commit phase at the end of the execution of an event), it provides

no transparency, as the application-level code must explicitly reg-

ister LPs as readers/writers on shared variables. Also, it does not

scale to distributed memory clusters of machines—like Cloud based

clusters. Our proposal avoids all these limitations, by also allowing

the sharing of dynamically-allocated buffers within the LP state,

for which pre-declaration of the potential need to access cannot

be raised at startup—hence intrinsically leading actual access to be

determined as a function of the specific execution trajectory while

running the application.

The issue of transparency has been tackled in [17], where shared

data are allowed to be accessed by concurrent LPs without the need

for pre-declaring the intention to access. This has been achieved

via user transparent software instrumentation, in combination with

a multi-version scheme, either allowing the redirection of read

operations to the correct version of the data (on the basis of the

timestamp) or forcing rollbacks of causally inconsistent reads. This

solution is targeted at the management of global variables. Instead,

our proposal is suited for data sharing of dynamically allocated

memory chunks logically incorporated within the state of each

individual LP, while still providing parallelism and synchronization

transparency. Further, that proposal is limited to shared memory

machines, while our primary focus in this paper is to port the ECS

enriched programming model onto distributed memory clusters.

The work in [7] proposes a framework targeted at multi-core

machines and based on Time Warp, where so called Extended Logi-

cal Processes (Ex-LPs), defined as a collection of LPs, have public

attributes that are associated with variables which can be accessed

by LPs in other Ex-LPs. The work proposes to handle the accesses

to shared attributes by relying on a specifically targeted Transac-

tional Memory (TM) implementation, where events are mapped to

transactions and the actual implementation of the TM is based on

[13]. One core difference between our proposal and the one in [7]

is that the latter requires a-priori knowledge of the attributes to be

shared, which need to be a-priori mapped to TM managed mem-

ory locations. Rather, our proposal allows for sharing any memory

area within the heap, without the need for a-priori knowledge of

whether some sharing on a specific area can occur. This increases

the level of transparency. In fact, the programmer is allowed to let

any LP that takes control touch any valid memory location within

the global simulation state without the need for any particular care,

just like it occurs in sequential-style programming and related se-

quential execution scenarios. Overall, we “transactify" the access to

memory chunks across different concurrent LPs without the need

to mark data portions subject to transactional management by the

programmer. Further, as a second core difference, the work in [7]

does not support cross-LP accesses on distributed-memory systems,

which is the primary target of our work to enable exploiting clusters

from the Cloud.

Finally, our proposal has relations with approaches that bridge

shared and distributed memory programming in general contexts.

Among them, we mention PGAS (Partitioned Global Address Space)

[22]. However, these solutions do not cope with virtual time-based

speculative synchronization, thus not enabling the local material-

ization of remote data versions complying with timestamp-ordered

accesses. In other words, our solution is already specialized to spec-

ulative PDES, while the others would require additional modules to

be designed in order to accomplish the same objective. As for PGAS,

another difference stands in that it relies on compiler-based instru-

mentation to intercept memory accesses, and to detect whether

they refer to remote data. On the contrary, we rely on kernel level

facilities operating at the granularity of individual operating sys-

tem pages, which avoids paying the cost of running instrumented

software at all the accesses.
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3 REFERENCE SYSTEM
A high-level schematization of our reference PDES system is de-

picted in Figure 2. Simulations are supported by a set of (possibly

non-homogeneous) processing units, scattered across any number

of machines (i.e., computing nodes). On each computing node, any

number of simulation kernel instances can be running. These in-

stances are developed according to the symmetric multi-threaded

paradigm [24], where shared memory is used to support intra-

kernel synchronization. Distributed communication is supported

by some network interconnection.

According to this organization, a symmetric simulation kernel

instance spawns, at simulation startup, a number of concurrent

worker threads which is the same as the number of processing

units assigned to the kernel instance. Each of these worker threads

is stuck to a single processing unit for the whole lifetime of the

simulation run. The simulation model’s LPs are then assigned to the

worker threads according to some binding rule. This LP binding en-

sures that, for a certain interval of wall-clock time, only one worker

thread can schedule events destined to one LP. The binding can be

recomputed either periodically or depending on runtime parame-

ters, in order to evenly distribute the workload of the simulation

on the available computing power.

Therefore, in the most general setting, our reference system

model is made up of the following elements:

• A number K of simulation kernel instances (forming up the

KernelSet ), which are scattered across the available comput-

ing nodes.

• Each simulation kernel instance k ∈ KernelSet runs a set of
concurrent worker threads, denoted as TSetk . These worker
threads rely on shared memory for their internal communi-

cation and synchronization tasks.

• At any wall-clock time instant, a worker thread t ∈ TSetk is

in charge of CPU-dispatching events for a set of bound LPs,

denoted as LPSett . As mentioned before, at any time instant,

one LP is managed only by one worker thread. Therefore,

LPSeti ∩ LPSetj = ∅ ∀i, j i , j.

Given the distributed nature of the simulation system, at any

time an LPi discriminates between a set of local LPs, namely all the

LPs bound to any worker threadw ∈ TSetk such that LPi ∈ LPSett
and t ,w ∈ TSetk , and a set of remote LPs, in any other case.
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4 DISTRIBUTED-MEMORY ECS
4.1 Basics
Similarly to the original proposal in [18], our distributed ECS archi-

tecture is based on two orthogonal facilities which are transparently

offered by the simulation platform. On the one hand, while simula-

tion events are being executed, the platform is able to detect that the
running LP is accessing the state of another LP, possibly hosted by

a remote simulation kernel instance. At the same time, the platform

is able to enforce a (distributed) protocol to synchronize the Local
Clocks of the LPs involved in an ECS synchronization, so as to

allow them to observe a consistent view on the simulation state.

In our organization, cross-state access detection is provided by

innovative kernel-level facilities, which let different worker threads

of the platform share the same logical pages although with dif-

ferent access privileges. Therefore, a page fault upon accessing

the simulation state of a different LP is the initiation of an ECS

synchronization, as it will be later discussed. At the same time, LP
synchronization is enforced by relying on a (distributed) communi-

cation protocol, based on the notion of control messages. A control

message is a message exchanged across two different LPs, in a way

completely similar to event transfer. Nevertheless, with one single

exception, control messages are not incorporated into the receiver’s

event queue, as they are associated with ephemeral state transitions

which must not be replayed upon a rollback operation, and must

be purely handled at the level of the PDES platform.

Correctness of the whole simulation is guaranteed by two facts:

i) the execution of an event by a LP can be suspended; ii) every
LP is always in an execution state according to the state machine

depicted in Figure 3, which allows the PDES platform to correctly

interpret the system events and control messages which target

every LP.

As for point i) above, we rely on User-Level Threads (ULT),

namely CPU contexts which can be saved and restored at any time

instant by a worker thread t ∈ TSetk . In particular, to give control

to a LP, the worker thread in charge of it changes its CPU context,

allowing the execution of the event to take place in an isolated

environment, which has also its own stack. In this way, whenever

the simulation platform takes back control, it might determine that

the event’s execution has to be temporarily suspended, and it de-

schedules the running LP (i.e., it restores the CPU context related

to the worker thread running in platform mode). Later, the worker
thread can decide to resume the execution of the suspended event,
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and this is done by simply restoring the LP’s CPU state. Having a

separate stack for every LP within a single worker thread (which

has its own system stack) ensures the correctness of the preëmp-

tive event execution. For a thorough technical description of the

approach used to realize this facility in an application-transparent

manner, we refer the reader to [19].

With respect to point ii) above, the state machine reported in

Figure 3 has three different types of states: blocked states (gray-
shaded) are associated with a LP which has been descheduled while

executing an event, thanks to the ULT facility; ready states (white-
colored) are associated with LPs which can be activated, either

to start processing a new event, or to resume the execution of a

preëmpted event; running states, which are associated with LPs

currently executing an event. This organization allows to imple-

ment the smallest-timestamp first scheduling strategy [12] of each

worker thread quite easily, given that only LPs in a ready state

can be activated. The transitions across the different states are re-

lated to two main kind of events: some are associated with the

aforementioned cross-state access detection, others with the actual

LP synchronization. We will thoroughly describe these transitions

later.

4.2 Memory Management
In order to support cross-state access detection, the runtime envi-

ronment must enforce a memory management policy which allows

in a simple way to map the memory chunks destined for usage

by a LP—via the invocations to the traditional malloc library—to
a given memory addresses range. This is particularly important

given that we must discriminate between memory accesses which

target the simulation states of different LPs, which can be either

local or remote.

Indeed, the goal is to detect at runtime what LP’s state is being

targeted by a memory access by relying on pure address-space map-

ping. When the simulation is started up according to the distributed

systemmodel described in Section 3, there are multiple (distributed)

processes living in separate virtual address spaces. We therefore

need an agreement across the different kernel instances to map

LPs states to the same virtual address ranges. Given that we target

full transparency towards the application-level programmer, who

is allowed to rely as well on dynamic memory allocation, such an

agreement could be impossible or over-costly at runtime.

Address Space of K1 Address Space of K2
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...

...

LP1 Memory
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LP3 Memory
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Figure 5: LP Memory Map Organization

We have therefore resorted, in a way similar to what has been

proposed in [21], to a deterministic memorymapmanager. In particu-
lar, according to the original shared-memory tailored ECS proposal

in [18], each LP is associated with a 1 GB memory stock, or a multi-

ple of this memory unit. As illustrated in Figure 5, the base address

of this stock is deterministically computed by every simulation

kernel instance. In this way, all simulation kernel instances map

LP stocks to a same contiguous region of the virtual address space,

where the stocks are uniquely associated with an address range

which does not overlap.

Given that a simulation-kernel instance manages a pre-defined

set of LPs, thanks to its worker threads, at simulation startup these

memory stocks are delivered to a fine-grained memory manager,

such as the one presented in [20], which ensures that the simulation

model’s memory requests can be served thanks to traditional APIs,

such as malloc or new.
Overall, this organization delivers memory buffers in a non-

anonymous way—although transparently with respect to the ap-

plication—where the buffers destined to serve memory requests

by a LP are guaranteed to fall within a memory stock located in

a contiguous virtual address region reserved to host the state of

that specific LP. In the case of remote LPs, the virtual addresses are

initialized and never used to serve memory requests, by all kernels

which do not host such LPs (these are the grey regions in Figure 5).

4.3 Kernel-Level Support
Cross-state access detection is ultimately supported by a close

interaction with ad-hoc operating system’s facilities offered by a

custom Loadable Kernel Module (LKM). This module offers two

different levels of interaction: explicit interaction is supported by

a set of ioctl commands, to let worker threads notify the kernel

when a given LP is starting to process an event; implicit interaction
allows the kernel to notify the userspace runtime environment

whenever a LP is accessing the state of a different LP.

4.3.1 Explicit Interaction. When the module is loaded, it creates

the single-access device file /dev/ecs. Upon simulation startup,

the simulation kernel opens this file to let the module know that its

threads must be managed according to the below-described logic,

and relies on the SET_VM_RANGE ioctl command to tell the module

what is the range of virtual addresses associated with the LPs.
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For the sake of clarity, we report in Figure 4 how a virtual address

is mapped to a physical address on x86_64 systems. The CR3 control
register keeps a pointer to a first-level paging table. From this table,

it is possible to traverse four different levels of indirection, until a

physical page is located in memory. The (virtual) linear address is

decomposed into five different fields, which determine the offset at

each level of the chain where the pointer to the next level is found.

The last displacement is the offset within the physical page, into

which the memory access is falling.

The memory map depicted in Figure 5 is allocated so that the

page table respects an important invariant. We allocate LPs’ mem-

ory stocks so that the whole GB (or the set of GBs) of memory is

aligned to one single entry in the Page Directory Pointer (PDP)

table. In this way, any access to any physical page related to the

simulation state of a LP can be immediately mapped to the actual

LP thanks to the PDP entry used in the virtual-to-physical address

resolution. Therefore, thanks to the enforced deterministic mem-

ory allocation scheme, the payload of the SET_VM_RANGE ioctl
command is simply the initial address of the first memory stock

reserved for LP0, and the total number of bytes reserved for the

states of all the LPs.

To actually determine when a LP is accessing the state of a dif-

ferent LP, worker threads inform the kernel module what is the LP

which will be activated for event execution via another ioctl com-

mand named SCHEDULE_ON_PGD. This command activates a kernel-

level logic implemented in the module which installs a sibling page
table on the CR3 register of the CPU core running the worker thread.

In particular, the invocation of the SCHEDULE_ON_PGD command

puts in place the policy illustrated in Figure 6. The sibling page

table is constructed by relying on a cloned PML4 table associated

with the virtual memory of the whole process—this can be easily

retrieved by the module from current->mm->pgd—and by a clone

of the PDP tables which point to the simulation state of any LP,

be it local or remote. These cloned PDP tables are zeroed in the

entries reserved for the LP states, except for the entry associated

with the currently-scheduled LP (notified via the ioctl call) so that
whenever an access is made towards a different LP’s simulation

state, it generates a memory fault.

Having different sibling PML4 tables associatedwith the different

concurrent worker threads leads to the possibility to concurrently

dispatch and execute different LPs—this is done by having each

worker thread opening the access to the stocks associated with the

Algorithm 1 ECS Page Fault Kernel Handler

1: procedure FaultHandler(pt_regs* r eдs )
2: if current →mm = NULL then ▷ F1
3: DoPageFault( )

4: return
5: if current → pid is not registered then ▷ F2
6: DoPageFault( )

7: return
8: tarдet ← ReadCR2( )

9: if PML4(tarдet ) not in LP range then ▷ F3
10: DoPageFault( )

11: return
12: else
13: if PDP(tarдet ) = NULL then ▷ F4
14: f ault_type ← Major
15: else
16: if GetPteStickyBit(tarдet ) then ▷ F5
17: f ault_type ← Minor
18: SetPresenceBit(tarдet )
19: else
20: if ¬GetPresenceBit(tarдet ) then ▷ F6
21: DoPageFault( )

22: if GetPdeStickyBit(tarдet ) then
23: f ault_type ← Minor ▷ F7
24: SetPageStickyFlag(tarдet )
25: else
26: return
27: else ▷ F8
28: f ault_type ← AccessChanдe
29: SetPagePrivilege(tarдet , WRITE)

30: Switch to the original Page Table ▷ F9
31: Copy to userspace fault information

32: Push on userspace stack r eдs → ip
33: r eдs → ip ← EcsHandler ▷ F10

LP it is currently dispatching—while still having the possibility to

determine whether any of the dispatched LPs is confining its mem-

ory references within its own stocks. The assumption underlying

this type of organization is that, when there is the need for opening

access to a given stock, the corresponding memory management

information is already present in the associated PDP entry of the

original page tables. This is not guaranteed by simply validating

virtual memory addresses via mmap, which leaves memory into the

empty-zero state. To overcome this problem, when we initialize

the memory map depicted in Figure 5, beyond calling mmap, we
also explicitly write a null byte into one single virtual page of the

stock. In this way, the Linux kernel traps the access to empty-zero

memory and allocates the whole chain of page tables for managing

the pages within the stock (although a single one of these pages is

really allocated). This guarantees the existence of the PDP entry

associated with the stock, to be filled into the corresponding sibling

PDP entry upon dispatching the LP owning the stock. We note

that relying on more traditional facilities, such as mprotect would

not be viable. Indeed, this would setup policies which are enforced

for the whole process, while our approach allows different threads

within the same process (the simulation kernel) to observe different

memory access privileges, at a negligible cost.



4.3.2 Implicit Interaction. In order to let the userspace runtime

environment know when a LP is accessing a different LP’s simula-

tion state, we have to intercept the artificial memory faults which

are generated by the sibling page table installed in the CR3 register

of every CPU core. To this end, when the LKM is loaded, it changes

the IDT table (directly accessible via the IDT register) in order to

make the pointer to the page-fault handler point to an ad-hoc ECS

fault handler (rather than the original do_page_fault function

within the Linux kernel) implemented within the module. This ad-

hoc ECS fault handler is the core of the detection of a cross-state

access, and its pseudocode is reported in Algorithm 1.

Once the ECS fault handler is activated, it first checks whether

the handler is activated to resolve a minor page fault (F1) or if the
fault is associated with the thread of a non-registered process (F2),
i.e., a process which did not open the /dev/ecs device file. In both

cases, it calls the traditional kernel’s fault handler and then returns,

as the fault has been resolved elsewhere. If the thread is registered

with the LKM—it is a thread running within the PDES system—we

retrieve from the CR2 control register the tarдet address of the
memory fault. We first check whether this address belongs to a

PML4 entry which keeps LPs memory stocks (F3) because, in the

negative case, this is a memory fault at the level of the simulation

platform which must be resolved via the traditional DoPageFault

kernel facility.

We then discriminate what kind of access the LP is making to

other LPs. In particular, if the PDP entry associated with the target

address is zeroed (F4), this means that we are accessing the simula-

tion state of a different LP for the first time. This is the case thanks

to the fact that upon scheduling a LP, the SCHEDULE_ON_PGD ioctl
command explicitly clears all PDP entries pointing to the memory

stocks reserved for different LPs. We refer to this situation as an ECS
Major Fault. In this case, we give back control to the simulation plat-

form by modifying the instruction pointer’s value to make it point

to the EcsHandler platform function (F10), which will be later

described. Before doing this (F9), we copy to userspace (in a per-

thread buffer) all the information related to the fault (namely the

fault type, the faulting memory target, and the address of the fault-

ing instruction), we switch to the original page table by reinstalling

into CR3 the original PML4 address found at current->mm->pgd,
and we push on userspace stack the original value of the instruction

pointer, to let the execution flow be eventually resumed.

The userspace ECS handler, discussed in details in Section 4.5,

starts a (distributed) synchronization protocol across the involved

LPs, to let them observe a consistent snapshot. When synchro-

nizing towards a remote LP, the LKM has to determine what are

the memory pages accessed both in read and write mode, to fetch

this content from the remote process hosting the LP. To this end,

the userspace handler eventually invokes a LKM facility via the

SET_PAGE_PROTECTION ioctl command. The logic associated with

this command is similar in spirit to what an invocation of mprotect
would do on the stock. As said, we cannot rely on it as it would

modify the memory view for all threads.

Conversely, we exploit the organization of a Page-Table Entry

(PTE), which is depicted in Figure 7, in the original memory view.

In particular, we scan all PTE entries which can be reached starting

from the PDE entry associated with the given remote LP towards

which the scheduled one is synchronizing. All non-null PTE entries,

Figure 7: Page-Table Entry (4KB Page)

which are thus associated with an actual materialized page, have the

presence bit (bit 0) set to 1, to indicate that the Page Base Address is
a valid (physical) base pointer for the page. We explicitly force the

presence bit to zero, thus generating an additional artificial memory

fault whenever such a page (installed by the userspace handler) is

accessed. To discriminate whether a fault is artificial or not, due to

the above-described scheme, before clearing the presence bit we

set bit 9 in the same PTE entry. This is a programmer’s available
bit that we use as a sticky bit—a bit which can be exploited by

the LKM to implement additional facilities not supported by the

processor firmware. While performing this action, we similarly set

one available bit in the PDE entry, to mark the whole memory stock

as associated with a remote LP.

Eventually, the LP which initiated the ECS synchronization is

re-scheduled, the sibling page table is loaded into the CR3 register
of the core where the worker thread is currently running on, and

the cleared presence bit will generate a memory fault. This condi-

tion is reflected in Algorithm 1 at points F5, F6, and F7. The fault
handler first determines whether the page is already materialized,

possibly due to a previous execution of an ECS synchronization,

by checking if the sticky flag in the associated PTE is set (F5). In
this case, the presence bit is set back to 1, and an ECS Minor Fault

is delivered to the userspace handler, to start the retrieval of the

remote pages actually involved in the memory access. Conversely,

if the sticky bit is not set, we have to materialize the page if and

only if the presence bit in the PTE is not set (F6). In this case, we

call the original do_page_fault kernel handler. We now discrim-

inate again whether this is a memory fault related to the access

to non-materialized pages of local vs remote LPs, by checking the

sticky bit in the PDE entry which was previously set. In this case

(F7), we activate the userspace handler notifying an ECS Minor

Fault to retrieve the remote pages, only after having set as well the

sticky bit in the PTE entry, to realign the page table to a consistent

state according to the logic of the fault handler.

The check at F6 is important, as it covers as well an additional

case. When a LP accesses a remote page in read mode, we explicitly

prevent the possibility to access the local copy of the page installed

by the userspace handler in write mode by setting bit 1 of the

associated PTE to zero. This bit (see Figure 7) is the read/write bit
which, when set to zero, generates a memory fault when the page

is accessed in write mode. In this case (F8) we explicitly set back

this bit to 1, enabling the possibility to write the page, and deliver

an ECS Access Change Fault to the userspace handler. This is an

important aspect, as we will later show how this can optimize the

finalization of the ECS protocol, in terms of write back actions of
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dirty pages towards the node that hosts the master copy of the LP

state involved in ECS accesses.

As an additional note, if the target LP involved in ECS is hosted

by the the same machine where the source LP resides, the target

LP has its operating system pages already locally mapped in the

address space. Hence no write-back policy of dirty pages toward

the original node needs to be put in place. I this case the sibling

page tables setup unleashes full read/write access to the target LP

state—based on the SCHEDULE_ON_PGD ioctl command issue at the

PEDS platforms level—thus saving the costs for managing read vs

write faults.

Further, our solution is able to handle both 4KB page size (which

exactly relies on all the 4 levels of paging we described above)

and large pages, namely 2MB pages. In the latter case, the sibling

chain that maps a 2MB page will only entail 3 levels of page-tables,

namely PML4/PDP/PDE. In fact, our custom fault handler, while

traversing the original chain of page-tables, is able to determine

whether the target page is a large one or not, and to setup the sib-

ling page-tables’ chain accordingly. We exploited swapoff/swapon
services natively offered by Linux in order to temporarily avoid

asynchronous modifications of the original page-tables’ chain due

to page swapping by the kswapd daemon, which would otherwise

interfere with our management of the page-table entries.

4.4 The LP Synchronization Protocol
Before entering in the details of the userspace ECS handler, we

discuss the (distributed) protocol to synchronize two LPs when-

ever a cross-state access is detected. Synchronization is supported

by control-message passing among the involved nodes. The basic

scheme is depicted in Figure 8.

Cross-state accesses must be supported in such a way to ensure

that the state snapshot observed by the event-handler is consistent,

although generated by a speculative execution. Hence, the LPs

whose states are accessed while processing an individual event

all need to figure as aligned (in logical time) to the timestamp of

the event. This is achieved by encapsulating the cross-state access

within an atomic action that is, in its turn, based on an ad-hoc

synchronization protocol triggered on demand, if and only if a

cross-state access is detected.

The synchronization starts by having LPx at which the cross-

state access is detected send a rendezvous start control message

ervx tagged with a system-wide unique mark
2
towards the des-

tination LPy . LPx ’s execution is then suspended, thanks to the

above-mentioned ULT facilities, and it enters the Wait For Synch
state described in Section 4.1. Once this control message is received

and incorporated into the destination LP’s event queue, LPy will

eventually reach this event either thanks to forward execution of

events in the queue, or due to a rollback operation if ervx is a strag-

gler message. The logic associated with the processing of ervx is

that LPy is put in the Wait for Unblock state and sends back to LPx
a rendezvous ack control message ervax . Once ervax is delivered at

LPx , it moves LPx to the Ready for Synch state, which eventually

leads LPx to be reactivated. The id of LPy is added to the Cross-State
Dependency table of LPx (CSDx ), which is passed as an argument

of the SCHEDULE_ON_PGD ioctl command to determine what PDP

entries should be opened for access in the sibling page table tem-

porarily installed in the CR3 register of the core running the worker
thread.

At this point, LPx and LPy are aligned to the same logical time

instant, and LPx can access the state of LPy . In case LPy is remote,

these accesses will generate additional page faults. These will be

associated with additional control messages, as discussed later in

Section 4.5. This scheme can be iterated multiple times, so that

within the execution of a single event, LPx can synchronize with

any number of LPs. The same rendezvous mark is used to track the

synchronization, so that in case any of the LPs undergoes a rollback

operation, all synchronized LPs can be rolled back as well
3
. The

ECS synchronization terminates when LPx completes the execu-

tion of the currently-scheduled event. At this time, it sends to all

synchronized LPs a rendezvous unblock message eubx , so that all LPs

can now start again executing independently.

By the above description, the materialization of a cross-state

access leads to a non-persistent relation between two or more LPs.

In fact, given that cross-state synchronization is operated on a per-

event basis, after the finalization of the event that led to cross-state

accesses, the involved LPs start again executing alone along their

own simulation trajectories. However, in general contexts, a cross-

state access by the application code could be the evidence that two

(or more) LPs are actually starting to execute in a synergistic way,

in terms of overall simulation model execution trajectory.

4.5 Userspace ECS Management
When the LKM notifies the runtime environment that two LPs have

to be ECS-synchronized, the handler depicted in Algorithm 2 is

activated. This handler performs different actions depending on

the type of ECS fault which is notified by the LKM.

The ECS Major Fault case (H1) is associated with the initiation

of the (distributed) protocol described in Section 4.4. First, a system-

wide unique mark is generated, and a rendezvous start message is

sent to the LP keeping the portion of the simulation state which

is being accessed by the currently-scheduled event. The id of the

target LP is delivered by the LKM, as it is uniquely associated

with the PDP entry related to the faulting memory address. The

running LP then enters the Wait for Synch state, and the target LP

2
These marks are fastly generated by relying on the Cantor Pairing Function using

the global id of the LP and a local monotonic counter.

3
For a thorough description of the rollback strategy and all its implications on liveliness

and correctness of the approach, we refer the reader to [20].



Algorithm 2 Userspace ECS Handler

1: procedure EcsHandler(type , inf o)
2: if type = Major then ▷ H1
3: ECS_mark ← generate_mark( )

4: Send(RENDEZVOUS, inf o .tarдetLP , currentLVT )
5: LP_state ←WAIT_FOR_SYNCH

6: CSD ← CSD ∪ {inf o .tarдetLP }
7: Deschedule( )

8: else if type = Minor then ▷ H2
9: disasm ← Disassemble(inf o .r ip)
10: write_mode ← disasm .write
11: paдe_addr ← BaseAddr(inf o .tarдet )
12: paдes ← PgCount(inf o .tarдet , disasm .span)
13: if write_mode then
14: AddToWriteList(paдe_addr , paдes )
15: else
16: AddToReadList(paдe_addr , paдes )
17: Send(PAGE_LEASE, inf o .tarдetLP , currentLVT )
18: LP_state ←WAIT_FOR_PAGE

19: Deschedule( )

20: else if type = AccessChanдe then ▷ H3
21: paдe_addr ← BaseAddr(inf o .tarдet )
22: AddToWriteList(paдe_addr , 1)

is added to the CSD of the running LP. Finally, the running LP is

descheduled thanks to the ULT facilities described before. In this

way, the running LP will never be activated until the rendezvous

ack is received, as previously described.

The ECS Minor Fault case (H2), which is associated only with

the access to the simulation state of a remote LP, has to first iden-

tify what kind of operation is being executed on the shared state,

namely a read or a write operation. This information is only kept

in the low-level assembly instruction which has triggered the ECS

synchronization. Therefore, we rely on in-place dynamic disassem-

bly of such an instruction, which can be immediately found in the

model’s address space by looking at the address which caused the

memory fault. Again, this information is delivered to the userspace

handler by the LKM, together with a snapshot of the relevant CPU

registers as observed by the faulting instruction.

The disassembler
4
provides several relevant pieces of informa-

tion regarding the faulting instruction. Among these, we can deter-

mine whether the instruction is accessing in read or write mode,

and the size of the memory access. The latter information is used in

conjunction with the target memory address where the instruction

has faulted, as notified by the LKM, to determine the base address of

the first (remote) page which has to be transferred to the local node,

and the number of pages. This information is sent to the destination

LP as an additional control message, named PAGE_LEASE, before
putting the LP in the blocked Wait for Page state. Once this control
message is received at the target LP. Since the target LP is already

in a blocked state, we are actually acquiring a lease on the pages,

having the LP which originated the ECS synchronization keep a

temporary master copy of the content of that portion of the state.

These pages can be safely installed into the local address space,

4
In our implementation, we have used the x86 disassembler provided by hijacker,

which is available at https://github.com/HPDCS/hijacker.
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Figure 9: Page Touch Lists

thanks to the non-overlapping organization of the memory map

manager depicted in Figure 5.

To keep track of what pages have been leased by a LP, we main-

tain two page-touch lists. One list is associated with pages accessed

in read mode, which we refer to as read list, while the other (the
write list) is associated with pages accessed in write mode. The two

lists keep as well the id of the LP the original page belongs to, as

depicted in Figure 9. This is due to the fact that during the execution

of an event, a LP is allowed to synchronize with any number of

LPs, thus we must keep track of the ownership of each page. To

reduce the complexity of this management, each node in the list

is associated with a PTE entry, where a bitmap of 512 bits (one for

each page) is used to determine whether the corresponding page

has been locally acquired or not.

When accessing a page in read mode, the LP has already acquired

a lease on it and a copy of the page content is already installed

in the local address space. Since the underlying operating system

has granted access in read mode only, once the event handler ac-

cesses the same page in write mode, a new fault is detected. Nev-

ertheless, this latter fault can be resolved locally. When activating

the userspace handler for an ECS Access Change Fault (H3), the
LKM has already upgraded the access privilege to write mode. The

userspace has only to move the page from the read list to the write

list, in the corresponding PTE node.

The two lists are used as well upon the finalization of an event

involved in an ECS synchronization. Once the event’s execution

is completed, the runtime environment has to send a rendezvous

unblock control message, in order to notify the synchronized LPs

that they can resume their normal execution. The semantic of this

event is augmented by adding to it a payload which is composed

of all the pages for which a lease in write mode has been acquired

during the execution of the event. This allows the destination ker-

nel instances to update the content of the simulation state of the

involved LPs according to a write-back scheme, just before giving

back control to them. In this way, the states are reconciliated, and

every LP in the system can observe a simulation state snapshot

which is consistent with the logic of the event handler just executed

at the ECS originating LP.

4.6 Memory Reclaim
Due to our organization, the amount of pages materialized on a

local node for remote LPs is always increasing. We have devised a

simple memory reclaim policy which entails to periodically reset

the memory map organization described in Section 4.2.

This operation is supported by having one single worker thread

at each node invoke a sequence of munmap/mmap for every mem-

ory stock associated to remote LPs. In this way, we instruct the

underlying operating system to release all memory pages which

have been materialized during the execution of remote cross-state

https://github.com/HPDCS/hijacker


synchronizations. It is fundamental to execute this operation in

isolation, i.e. when no other thread has any operation related to a

remote ECS still pending. In our implementation, we have resorted

to a periodic check, with a period of around 30 seconds, where all

threads notify through shared variables whether they have pending

remote synchronization, and an additional shared variable is used

to delay the initiation of a remote ECS if a memory reclaim phase

is in progress.

5 EXPERIMENTAL ASSESSMENT
5.1 Testbed Platform
Our ECS distributed middleware has been integrated in the ROOT-
SIM open source PDES platform [23], which is used as the testbed

PDES system in our experimental study. This platform offers to

the users the possibility to run on a fully shared memory machine,

or on a cluster of distributed memory machines. In the latter case

communication between remote nodes exploits MPI. This same

layer has been exploited in the ECS distributed middleware in

order to implement both the message exchange protocol that makes

threads running on different nodes coordinate with each other, and

the actual transfer of virtual pages associated with the LPs’ state

from one node to another.

We have run experiments on a cluster of virtualized nodes, com-

posed of Virtual Machines equipped with AMD Opteron 2.6 GHz

vCPUs, that have been deployed on a private Cloud infrastructure.

The VMs are hosted by the VMware Workstation hypervisor (ver-

sion 10.0.4 build-2249910) hosted on top of a HP ProLiant server

equipped with 100 GB of RAM and 8 AMD Opteron 6376 CPUs run-

ning at 2.6 GHz. Each one has four cores (for a total of 32 physical

cores). We have installed Debian 6.0.7 with Linux kernel 3.2. Each

VM has 8 GB of memory, and we run experiments with single-vCPU

and dual-vCPU configurations of the VMs, thus overall mimicking

different configurations of a cluster of mid-range computing nodes.

All the available vCPUs are used by ROOT-Sim to carry out the

simulation.

5.2 Benchmark Applications
To assess the viability of our proposal we provide data related to

two different simulation models, each of which is presented in this

section.

5.2.1 Multi-robot Exploration. As first benchmark application,

we use the same multi-robot exploration and mapping simulation

model that has been used for the experiments whose outcomes

have been presented in Figure 1. This model has been developed

according to the results in [11], and is based on a group of robots

set out into an unknown space, with the goal of exploring it. The

map of the explored space is constructed by relying on the notion

of exploration frontier. By keeping a representation of the explored

world, the robot is able to detect which is the closest unexplored

area it can reach, computes the fastest way to reach it and continues

the exploration. The overall space to be explored is bi-dimensional,

and is partitioned into adjacent hexagonal regions, where obstacles

are setup in order to limit the freedom of robot move. Each region is

such that the evolution of a specific phenomenon, such as wind or a

fire event, is modeled via proper simulation events occurring at the

LP modeling the region. This kind of model is useful for mimicking

a scenario where an open space is modified by, e.g., an accident and

the robots are used to explore it for, e.g., rescue activities.

The robots explore independently of each other until one coin-

cidentally detects another robot in its proximity. Whenever two

robots enter a proximity region they verify the goodness of their

position hypothesis by creating a rendez-vous point, and trying to

meet again there. If the hypothesis is verified, they exchange the

data acquired during the exploration, thus reducing the exploration

time and allowing for a more accurate decision of the actions to be

taken. Additionally, if the robots actually meet in the rendez-vous

point, it means that the estimation of their respective position is

correct. Therefore, they can form a cluster and start exploring the

environment in a collaborative way.

In an implementation of this model based on the traditional PDES

paradigm—relying on disjointness of the accesses to the LPs’ states

by the event-handler—the discovery of the presence of a nearby

robot requires that LPs modeling the robots communicate to each

other their current position, or they have to notify their individual

positions to specific LPs (i.e., the regions). In either case, explicit

cross-LP exchange of simulation events is requested. The same is

true for the exchange of knowledge on the exploration process

across robots.

On the other hand, the ECS programming model allows for a

completely transparent synchronization of the LPs involved in any

mutual state update, which therefore simplifies the development

process of the simulation model. In fact, as already hinted in Section

1, ECS-based coding of this model saves up to 25% of C-based code

lines in event handlers. More in detail, each LP modeling a region

instantiates in its private simulation state—by relying on a standard

call to malloc()—a presence bitmap. Each bit is associated with

a specific robot, and its value is associated with the robot being

in the region or not. By relying on a fast bitmap scan, each robot

is able to discover which robots are present in the region. This is

done by relying on a code block where the modeler is not required

to rely on any platform-specific API—rather he simply exploits

pointer-based access to whatever region’s state when processing

an event at a robot, namely the region entrance event. The event-

handler can access the region bitmap to detect other robots and to

indicate it is currently standing into that region. Also, the robot can

acquire information about the environment by directly reading this

information from the region state, still thanks to ECS support. If

one robot is found to already be in the cell, then the newly entering

robot simply “merges” its view of the environment. This can be

easily done by still relying on direct access to the other robot’s

state.

In our simulations the model was configured to have 484 LPs

modeling individual regions, and their evolution along simulation

time, and 4 LPs modeling the robots exploring the overall space.

5.2.2 Data-Grid. As second benchmark application, we rely on

a data-grid simulation. It is based on distributed/replicated cache

servers, each keeping a subset of the whole set of keys in the entire

data-set. Particularly, we consider a model where atomicity of the

distributed updates is ensured by running the 2-Phase-Commit

(2PC) protocol across the nodes keeping keys that belong to the

write set of the transactional operations. In thismodel, the simulated
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transaction coordinator needs to schedule the arrival of a prepare
request event to the involved sites—those keeping the replicas of

the data it locally handles—which needs to carry information about

the write set. These sets may entail hundreds of data-item keys—

numerical IDs in our implementation—and are populated at the

coordinator while simulating the execution of the transactional

task. They are therefore instantiated by the transaction-coordinator

LP within its local state. For this model we consider two different

implementations, one not relying on ECS, which transmits the write

set as the payload of the prepare request—for this configuration the

programmer is in charge of explicitly coding the pack/unpack of

the write set—and another one based on ECS, where the write sets

are directly accessed via pointers by the involved simulated nodes

(hence the prepare request event only needs to carry the pointer

indicating where to find the information related to the simulated

2PC phase).

We simulated a data-grid system with 256 nodes (with degree of

replication 2 of each ⟨key,value⟩ pair in the data-grid), with closed-

system configuration in terms of number of clients (and hence

number of transactions) running within the system. Particularly,

we set the number of active concurrent clients continuously issuing

transactions to 256—embedded into the simulation logic of each

cache server. This configuration resembles scenarios where the 256
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Figure 13: Execution Time Results for the Data-Grid Model
with Dual-vCPU VMs

clients operate as front end servers (co-located with the simulated

data-platform nodes) with respect to end-client applications. Also,

we set the amount of keys touched in write mode by transactional

tasks to the order of 1000, while each cache server keeps 100000

items.

5.3 Results
In Figure 10 we report the variation of the execution time (average

over 10 runs) for themulti-robot model while varying the number of

VMs up to 10—in the single-vCPU configuration. The data show that,

with this model, the distributed ECS version has a good scalability

up to 7/8 VMs, which tends to diminish for larger VM counts. In

fact, up to 8 VMs the execution time with ECS is no more than

15% worse than the one without ECS, and the speedup over the

sequential execution, shown in Figure 11, is essentially linear up

to 7 VMs. On the other hand, with larger VM counts the non-ECS

version scales slightly better, as expected. However, this improved

scalability comes at the cost of more code lines, motivated by the

need for coding the model in pure data separation across the LPs.

In Figure 12 we show the execution time results for the data-grid

model, with variation of the number of VMs up to 16—in single-

vCPU configuration. The data are essentially aligned with those



observed with the multi-robot model with the only difference that

ECS allows scaling down the execution time also with larger VM

counts. In fact, although showing overhead with respect to the non-

ECS version, its reduction in the execution time does not flatten.

One motivation stands in the fact that the data-grid model has less

frequent LP interactions, with respect to the robot-explore model,

which occur only upon the simulated 2PC phase involving multiple

data accesses by a transactional task—the individual accesses are in

fact simulated locally by each individual LP. Further, while in the

multi-robot model cross-LP accesses under ECS have a read/write

profile—involving page write-back—in the data-grid model they are

mostly read accesses that only inspect the write-set involved in the

2PC kept by the LP simulating the transaction coordinator.

In Figure 13 we show the variation of the execution time for

the data-grid model when using VMs equipped with dual-VCPS. In

this case each simulation kernel instance has two threads and the

interaction across LPs based on cross-LP state accesses are some-

times served by an individual machine within the same address

space—rather than from a remote one via page transfers. In such

a deployment the distance between the ECS and the non-ECS ver-

sion is reduced, meaning that with our distributed ECS middleware,

infrastructure-level investments related to clusters of more power-

ful VMs pay-off in terms of improved reduction of the execution

time. Overall, competitive tradeoff between infrastructure costs

and performance can be achieved while still getting the benefits

from the more expressive programming model offered by ECS, as

compared to the traditional one relying on disjoint LP state accesses.

On the other hand, as discussed in the introduction section, moving

to significantly more powerful shared-memory machines—possibly

hosted in the Cloud—can even lead ECS to provide, together with a

more expressive programming support, improvements in the actual

performance of the PDES system.

6 CONCLUSIONS
We have presented a middleware-level architecture that allows the

expressive ECS programmingmodel for PDES—originally conceived

only for shared-memory machines—to be deployed on distributed-

memory clusters. The core target of this work is to enable models

coded according to ECS to be efficiently ran on top of (low-cost)

Cloud resources. Experimental results with two different real-world

simulation models, deployed on a cluster of up to 16 VMs hosted on

a private Cloud, show the viability of our proposal, and its effective-

ness in fruitfully exploiting increasingly powerful virtual resources.

Overall, our proposal allows to improve the actual tradeoffs be-

tween the achievable runtime performance, the infrastructure-level

investments, and the simplification of code development—the latter

thanks to an expressive PDES programming support.
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