
Bi-criteria Network Optimization:
Problems and Algorithms

Scuola di dottorato

Dottorato di Ricerca in Ricerca Operativa – XXX Ciclo

Candidate

Lavinia Amorosi
ID number 1200445

Thesis Advisor

Prof. Paolo Dell’Olmo

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Operational Research

2017

Thesis defended on 2018
in front of a Board of Examiners composed by:

Prof. Raffaele Pesenti (chairman)
Prof. Justo Puerto

Bi-criteria Network Optimization: Problems and Algorithms
Ph.D. thesis. Sapienza – University of Rome

© 2018 Lavinia Amorosi. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: April 6, 2018

Author’s email: lavinia.amorosi@uniroma1.it

mailto:lavinia.amorosi@uniroma1.it

Dedicated to
my parents Marcello and Angela

v

Abstract

Several approaches, exact and heuristics, have been designed in order to generate the
Pareto frontier for multi-objective combinatorial optimization problems. Although
several classes of standard optimization models have been studied in their multi-
objective version, there still exists a big gap between the solution techniques and the
complexity of the mathematical models that derive from the most recent real world
applications. In this thesis such aspect is highlighted with reference to a specific
application field, the telecommunication sector, where several emerging optimization
problems are characterized by a multi-objective nature. The study of some of these
problems, analyzed and solved in the thesis, has been the starting point for an
assessment of the state of the art in multicriteria optimization with particular focus
on multi-objective integer linear programming. A general two-phase approach for
bi-criteria integer network flow problems has been proposed and applied to the
bi-objective integer minimum cost flow and the bi-objective minimum spanning tree
problem. For both of them the two-phase approach has been designed and tested
to generate a complete set of efficient solutions. This procedure, with appropriate
changes according to the specific problem, could be applied on other bi-objective
integer network flow problems. In this perspective, this work can be seen as a first
attempt in the direction of closing the gap between the complex models associated
with the most recent real world applications and the methodologies to deal with
multi-objective programming. The thesis is structured in the following way: Chapter
1 reports some preliminary concepts on graph and networks and a short overview of
the main network flow problems; in Chapter 2 some emerging optimization problems
are described, mathematically formalized and solved, underling their multi-objective
nature. Chapter 3 presents the state of the art on multicriteria optimization. Chapter
4 describes the general idea of the solution algorithm proposed in this work for
bi-objective integer network flow problems. Chapter 5 is focused on the bi-objective
integer minimum cost flow problem and on the adaptation of the procedure proposed
in Chapter 4 on such a problem. Analogously, Chapter 6 describes the application of
the same approach on the bi-objective minimum spanning tree problem. Summing
up, the general scheme appears to adapt very well to both problems and can be
easily implemented. For the bi-objective integer minimum cost flow problem, the
numerical tests performed on a selection of test instances, taken from the literature,
permit to verify that the algorithm finds a complete set of efficient solutions. For
the bi-objective minimum spanning tree problem, we solved a numerical example
using two alternative methods for the first phase, confirming the practicability of
the approach.

vi

Highlights

• New mathematical models for emerging problems in Telecommunications sector
and solution analysis; evidence of their multi-objective nature.

• A new two-phase algorithm for bi-objective integer network flow problems
based on a recursive procedure for the second phase.

• Bi-criteria minimum integer cost flow problem and Bi-criteria Minimum Span-
ning Tree Problem solved by the new two-phase algorithm.

• Formal proofs of the completeness of the Pareto frontier generated.

• Generality of the recursive procedure proposed for enumerating the feasible
solutions in the second phase, differently from the most recent works [70] and
[77] which use ad hoc algorithms for the minimum integer cost flow problem
and the minimum spanning tree problem respectively.

• Experimental results on both problems that show the applicability of the
approach.

vii

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisor Prof. Paolo
Dell’Olmo for the continuous support of my Ph.D study and related research, for
his patience, motivation, and knowledge. His guidance helped me in all the time of
research and writing of this thesis. I could not have imagined having a better advisor
and mentor for my Ph.D study.
I wish to thank Prof. Matthias Ehrgott for his ideas and contributions to the two-
phase algorithm for the minimum cost flow problem during my staying in Lancaster
and Prof. Justo Puerto for his help during my staying in Seville and for his advices
and constructive suggestions for the two-phase algorithm for the minimum spanning
tree problem. Without their precious support it would not be possible to conduct this
research.
My sincere thanks also go to Prof. Luca Chiaraviglio, for introducing me to the
emerging optimization problems in Telecommunications and to Prof. Andrea Raith
for providing me the test instances of the bi-objective minimum cost flow problem.
I would like to thank also my friend Dr. Massimo Vespignani for reviewing overnight
the final version of this thesis from Mountain View. Last but not the least, I would
like to thank my family: my parents and my sister for supporting me spiritually
throughout writing this thesis and my life in general.

ix

Contents

Introduction xi

1 Preliminary concepts 1
1.1 Graphs and related definitions . 1
1.2 Network flow problems and main applications 5
1.3 Network simplex method . 12

1.3.1 Fundamentals results . 13
1.3.2 Algorithm scheme . 14

2 Emerging optimization problems in Telecommunication networks 15
2.1 Managing the Energy-Lifetime Trade-off in Backbone Networks . . . 15

2.1.1 Related work . 16
2.1.2 Modeling the device lifetime 17
2.1.3 Mathematical Formulation 17
2.1.4 Experimental Results . 20

2.2 Optimal Sustainable Management of Backbone Networks 22
2.2.1 Problem Formulation . 23
2.2.2 Results . 26

2.3 Optimal Superfluid Management of 5G Networks 27
2.3.1 Architecture Description . 28
2.3.2 5G Model . 30
2.3.3 Performance Evaluation . 34

2.4 Inspired research . 37

3 Multicriteria optimization 39
3.1 Multiobjective linear programming 40

3.1.1 Solving MOLP in Objective Space: Bensons’s algorithm . . . 43
3.1.2 Duality . 46

3.2 Multiobjective integer linear programming 50
3.2.1 Scalarization techniques . 51
3.2.2 Other methods . 54

4 A new two-phase strategy for solving bi-objective integer network
flow problems 57
4.1 Two-phase method for bi-objective combinatorial optimization problems 57
4.2 A recursive procedure for generating all the feasible solutions of a

single objective integer network flow problem 59

x Contents

4.3 Putting things together . 61

5 A new algorithm for the bi-objective integer min cost flow problem 63
5.1 State of the art . 63
5.2 The general idea of the algorithm . 64
5.3 First phase: the dual variant of Benson’s algorithm 66

5.3.1 Benson’s algorithm strategy 67
5.3.2 Main steps . 67

5.4 Second phase: a recursive algorithm for generating all feasible flows . 67
5.4.1 Strategy of the recursive algorithm 68
5.4.2 A special case: degeneracy . 72
5.4.3 Illustrative example . 73
5.4.4 Adaptation of the recursive procedure to the second phase . . 80

5.5 Preliminary Results . 82

6 A new algorithm for the bi-objective minimum spanning tree prob-
lem 89
6.1 State of the art . 89
6.2 Algorithm description . 90
6.3 Finding supported efficient solutions 91

6.3.1 The weighted sum method on the flow formulation 91
6.3.2 Benson’s algorithm on the Kipp-Martin formulation 93

6.4 A recursive algorithm for completing the set of efficient solutions . . 94
6.4.1 Procedure for generating all the spanning trees of a graph . . 95
6.4.2 The recursive procedure adapted to the second phase 98
6.4.3 Illustrative example . 99

7 Conclusions and Further Research 111

xi

Introduction

In many real world applications optimization problems arise where it is required to
deal simultaneously with more than one criteria. Several examples of such problems,
related to different application fields, can be mentioned. In the manufacturing
industry, both maximization of the gain and minimization of the pollution associated
to the production process have to be considered simultaneously. Analogously in the
transport sector energy efficiency and quality of service have to be guaranteed. The
same is true in the health-care system, where quality of service and minimization
of the costs represent the main decision criteria. In finance, maximization of the
profit and minimization of the risk are the primary goals in portfolio selection.
Many other examples could be reported, characterized by two or more objectives
that usually, as in those mentioned above, are in conflict with each other. Such
conflicting relation between criteria, represents the base for the development of the
multi-objective programming. Indeed when more than one conflicting goals have
to be optimized it is not possible to use the same concept of "best" solution as
for a single objective problem. For such a reason a new concept of optimum has
been defined, in order to deal with this class of problems. The first definition of
optimum in the context of multi-criteria economic decision making was by Francis Y.
Edgeworth. Considering two hypothetical consumer criteria, P and π, he asserted
that "It is required to find a point (x, y) such that in whatever direction we take an
infinitely small step, P and π do not increase together but that, while one increases,
the other decreases" (Edgeworth 1881). Pareto was a contemporary of Edgeworth,
and in his most famous theory, "The Pareto Optimum", gave his definition of Pareto
optimality: "The optimum allocation of the resources of a society is not attained so
long as it is possible to make at least one individual better off in his own estimation
while keeping others as well off as before in their own estimation" (Pareto 1906).
This new definition of optimality implies the existence of more than one Pareto
optimal solution (Pareto frontier), equally efficient, for a multi-objective problem.
Such solutions are trade-off solutions for the problem and they are incomparable to
each other. From the concept of Pareto optimality new techniques were developed
for finding the Pareto frontier. As in the single objective case, the complexity of such
methodologies increases when integer or binary decisional variables are considered.
Several approaches, exact and heuristics, were designed in order to generate the
Pareto frontier for multi-objective combinatorial optimization problems. Although
several classes of standard optimization models have been studied in their multi-
objective version, there still exists a big gap between the solution techniques and
the complexity of the mathematical models that derive from the most recent real
world applications.

xii Introduction

In this thesis such aspect is highlighted with reference to a specific application
field, the telecommunication sector, where several emerging optimization problems
are characterized by a multi-objective nature. The study of these problems has
been the starting point for an assessment of the state of the art in multi-criteria
optimization with particular focus on multi-objective integer linear programming.
From the current state of the research, two bi-criteria optimization problems, that
have important applications also in the telecommunication industry, have been
studied: the bi-objective integer minimum cost flow and the bi-objective minimum
spanning tree problems. For both of them a two-phase approach has been designed,
able to generate a complete set of efficient solutions. This algorithm, with appro-
priate changes according with the specific problem, could be applied on a generic
bi-objective network flow problem. The results represent a first attempt in the
direction to close the gap between the complex models associated with the most
recent real world applications and the methodologies to deal with multi-objective
programming.
The thesis is structured in the following way: Chapter 1 reports some preliminary con-
cepts on graph and networks and a short overview of the main network flow problems;
in Chapter 2 some emerging optimization problems are described, mathematically
formalized and solved, underling their multi-objective nature. Chapter 3 presents an
overview on multicriteria optimization. Chapter 4 describes the general idea of a new
solution algorithm proposed for integer network flow problems. Chapter 5 is focused
on the bi-objective integer minimum cost flow problem and on the adaptation of the
procedure proposed in Chapter 4 on this problem. Analogously, Chapter 6 describes
the application of the same approach on the bi-objective minimum spanning tree
problem. For the integer min cost flow problem, the numerical tests performed on
a selection of test instances, taken from the literature, permit to verify that the
algorithm finds a complete set of efficient solutions. For the minimum spanning tree
problem, we solved a numerical example using two alternative methods for the first
phase, confirming the practicability of the approach.

1

Chapter 1

Preliminary concepts

In this chapter the main concepts and definitions that will be used in this work are
presented. In Section 1.1 several basic definitions and results from graph theory
are recalled (taken from [3], [43] and [65]). In section 1.2, an overview of the main
network flow problems and their applications is given (taken from [3] and [64]).
Lastly Section 1.3 contains a short description of the network simplex method (from
[3]).

1.1 Graphs and related definitions

Definition 1 (Directed Graphs). A directed graph G = (N,A) consists of a set
N of nodes and a set A of arcs whose elements are ordered pairs of distinct nodes.
A directed network is a directed graph whose nodes and/or arcs have associated
numerical values (such as costs, capacities, and/or supplies and demands).

1

2 4

3 5

6

Figure 1.1. Example of directed graph

Definition 2 (Undirected Graphs). An undirected graph G = (N,A) consists of a
set N of nodes and a set A of arcs whose elements are unordered pairs of distinct
nodes.

Definition 3 (Tails and Heads). A directed arc (i, j) has two endpoints i and j.
The node i is the tail t(i, j) of arc (i, j) and node j is its head h(i, j). The arc (i, j)
is an outgoing arc of node i and an incoming arc of node j.

2 1. Preliminary concepts

1

2 4

3 5

6

Figure 1.2. Example of undirected graph

Definition 4 (Degrees). The indegree of a node is the number of incoming arcs of
that node and its outdegree is the number of its outgoing arcs. The degree of a node
is the sum of its indegree and outdegree.

Definition 5 (Adjacency List). The arc adjacency list A(i) of a node i is the set
of arcs emanating from that node, that is, A(i) = {(i, j) ∈ A : j ∈ N}. The node
adjacency list N(i) is the set of nodes adjacent to that node; in the case of a directed
graph, N(i) = {j ∈ N : (i, j) ∈ A}.

Definition 6 (Subgraph). A graph G′ = (N ′ , A′) is a subgraph of G = (N,A) if
N
′ ⊆ N and A′ ⊆ A. Moreover a graph G′ = (N ′ , A′) is a spanning subgraph of

G = (N,A) if N ′ = N and A′ ⊆ A.

Definition 7 (Walk). A walk in a directed graph G = (N,A) is a subgraph of G
consisting of a sequence of nodes and arcs i1 − a1 − i2 − a2 − ...− ir−1 − ar−1 − ir
satisfying the property that for all 1 ≤ k ≤ r − 1, either ak = (ik, ik+1) ∈ A or
ak = (ik+1, ik) ∈ A.

1

2

3 5

Figure 1.3. Example of walk

Definition 8 (Path). A path is a walk without any repetition of nodes.

Definition 9 (Directed Path). A directed path is a directed walk without any repe-
tition of nodes.

Definition 10 (Cycle). A cycle is a path i1 − i2 − ... − ir together with the arc
(ir, i1) or (i1, ir).

1.1 Graphs and related definitions 3

Definition 11 (Directed Cycle). A directed cycle is a directed path i1 − i2 − ...− ir
together with the arc (ir, i1).

Definition 12 (Cycle Space). The cycle space of a graph G, denoted by C, is the
smallest set (of undirected arcs or edges) containing the ∅, all cycles in G (where
each cycle is treated as a set of edges) and all unions of disjoint cycles in G.

1

2

3

Figure 1.4. Example of cycle

Definition 13 (Acyclic Graph). A graph is acyclic if it contains no directed cycle.

Definition 14 (Connectivity). Two nodes i and j are connected if the graph con-
tains at least one path from node i to node j. A graph is connected if every pair of
its nodes is connected; otherwise, the graph is disconnected. The maximal connected
subgraphs of a disconnected network are its components.

1

2 4

3 5

6

Figure 1.5. Example of connected graph

1

2 4

3 5

6

Figure 1.6. Example of disconnected graph

Definition 15 (Tree). A tree is a connected graph that contains no cycle.

4 1. Preliminary concepts

Proposition 1 (Tree properties).

• A tree on n nodes contains exactly n− 1 arcs.

• A tree has at least two leaf nodes (i.e., nodes with degree 1).

• Every two nodes of a tree are connected by a unique path.

Definition 16 (Spanning Tree). A tree T is a spanning tree of G if T is a spanning
subgraph of G.

1

2 4

3 5

6

Figure 1.7. Example of spanning tree for the graph in Figure 1.5

Definition 17 (Fundamental Cycle). Let T be a spanning tree of the graph G. The
addition of any non tree arc to the spanning tree T creates exactly one cycle. Any
such cycle is defined a fundamental cycle of G with respect to the tree T .

Definition 18 (Fundamental System of Cycles). Let T be a spanning tree of the
graph G. The fundamental system of cycles of G with respect to T is the set of all
fundamental cycles of G with respect to T.

An important result related to the fundamental system of cycles of a graph G with
respect to a spanning tree T of G, is Theorem 1. It will be useful in Chapter 5 in
order to prove further results.

Theorem 1. Let G be a connected graph and let T be a spanning tree of G. Then
the fundamental system of cycles with respect to G and T forms a basis for the cycle
space C.

Proof. Recall first that such a spanning tree T exists when G is connected. Consider
any fundamental cycle C. This cycle is constructed by adding exactly one edge to
T and finding the cycle that results. Thus no fundamental cycle can be expressed
as the sum of any other fundamental cycles because they will all be missing (at

1.2 Network flow problems and main applications 5

least) one edge. As a result, the fundamental system of cycles must be linearly
independent.
Choose any element C of C and let {e1, ..., er} be the edges of C that do not appear
in T . Further define the fundamental cycle Ci to be the one that arises as a result of
adding ei to T . The quantity C + C1 + ...+ Cr = ∅ if and only if C = C1 + ...+ Cr
because there are no edges in C that are not in C1 + ...+ Cr and similarly no edges
in C1 + ...+Cr that are not in C. It is easy to see that no edge in the set {e1, ..., er}
appears in C + C1 + ...+ Cr because each edge appears once in C and once in one
of the Ci’s and therefore, it will not appear in C + C1 + ...+ Cr. But this means
that every edge in C +C1 + ...+Cr is an edge of T . More specifically, the subgraph
induced by the edges in C + C1 + ...+ Cr is a subgraph of T and thus necessarily
acyclic. Every element of C induces a subgraph of G that has at least one cycle
except for ∅. Thus, C + C1 + ...+ Cr = ∅. Since our choice of C was arbitrary we
can see that for any C we have: C = α1C1 + ... + αkCk where {C1, ..., Ck} is the
fundamental set of cycles of G with respect to T and ∀i = 1, ..., k:

αi

{
= 1 if the non-tree edge of Ci is found in C

0 otherwise

Thus, the fundamental set of cycles is linearly independent and spans C and so it is
a basis. This completes the proof.

Definition 19 (T -exchange/Cyclic-interchange). Let T be a spanning tree of the
graph G. A T -exchange is a pair of arcs e, f where e ∈ T , f /∈ T , and T − e ∪ f is
a spanning tree. The weight of exchange e,f is w(f)− w(e), where w is the vector
of the graph weights associated with the arcs.

We recall a combinatorial result related to spanning trees and cyclic-interchanges
that will be useful in Chapter 6.

Theorem 2. Let G be a connected graph with n vertices and m edges. Starting
from any spanning tree, one can obtain every other spanning tree of G by cyclic
interchanges . Moreover, if T and T ′ are two spanning trees, then one can form tree
T
′ starting from the tree T by at most D(T, T ′) cyclic interchanges, where:

D(T, T ′) ≤ min{n− 1,m− n+ 1}

1.2 Network flow problems and main applications

In this section the main network flow problems are reported together with their
most common applications. To this end the concept of flow network and flow on a
network are introduced.

Definition 20 (Flow Network). A flow network is a directed graph G = (N,A)
with two distinguished vertices s and t called the source and the sink, respectively.

6 1. Preliminary concepts

Moreover, to each arc (i, j) ∈ A is assigned a certain upper bound u(i, j) ≥ 0 and
lower bound l(i, j) ≥ 0.

Definition 21 (Flow). A flow for a network G = (N,A) is a function f : V ×V → R,
which assigns a real number to each arc (i, j). A flow f is called a feasible flow if it
satisfies the following conditions:

(i) l(i, j) ≤ f(i, j) ≤ u(i, j), ∀(i, j) ∈ A.

These are the capacity constraints (if a capacity is ∞, then there is no upper bound
on the flow value on that arc).

(ii) For all i ∈ N − {s, t}, the total flow into i is the same as the total flow
out of i: ∑

j:(j,i)∈A
f(j, i) =

∑
j:(i,j)∈A

f(i, j)

These are called the flow conservation constraints.

Minimum Cost Flow Problem
The minimum cost flow model is the most fundamental among the network flow
problems. This model has several applications: the distribution of a product from
manufacturing plants to warehouses, or from warehouses to retailers; the flow of
raw material and intermediate goods through the various machining stations in a
production line; the routing of automobiles through an urban street network; and
the routing of calls through the telephone system.

Mathematical formulation
Let G = (N,A) be a directed network defined by a set N of n nodes and a set A
of m directed arcs. Each arc (i, j) ∈ A has an associated cost cij that denotes the
cost per unit flow on that arc. It is assumed that the flow cost varies linearly with
the amount of flow. It is also associated with each arc (i, j) ∈ A a capacity uij
that denotes the maximum amount that can flow on the arc and a lower bound lij
that denotes the minimum amount that must flow on the arc. Moreover at each
node i ∈ N is associated an integer number b(i) representing its supply/demand. If
b(i) > 0, node i is a supply (or excess) node; if b(i) < 0, node i is a demand (or
deficit) node with a demand of −b(i); and if b(i) = 0, node i is a transshipment
node. The decision variables in the minimum cost flow problem are arc flows and
are represented by xij ≥ 0 ∀(i, j) ∈ A. The minimum cost flow problem is an
optimization model formulated as follows:

min
∑

(i,j)∈A
cijxij (1.1)

subject to

1.2 Network flow problems and main applications 7

∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A
xji = b(i) ∀i ∈ N (1.2)

lij ≤ xij ≤ uij ∀(i, j) ∈ A (1.3)

where
∑n
i=1 b(i) = 0.

We will refer to the constraint (1.2) as flow conservations constraint. For any node
the first term in the above constraint represents the total outflow of the node (i.e., the
flow emanating from the node) and the second term represents the total inflow of the
node (i.e., the flow entering the node). The flow conservation constraint guarantees
that the difference between outflow and inflow is equal the supply/demand of the
node. If the node is a supply node, its outflow exceeds its inflow; if the node is
a demand node, its inflow exceeds its outflow; and if the node is a transshipment
node, its outflow equals its inflow. The flow must also satisfy the lower bound and
capacity constraints (1.3). The flow bounds typically model physical capacities or
restrictions imposed on the flows operating ranges. In most applications, the lower
bounds on arc flows are zero.

Definition 22 (Augmenting cycle). A cycle W (not necessarily directed) in G is
called an augmenting cycle with respect to the flow x if:

i) by augmenting a positive amount of flow around the cycle, the flow remains
feasible.
ii) the augmentation increases the flow on forward arcs and decreases the flow on
backward arcs in the cycle.

Definition 23 (Incremental/Residual graph). Given a feasible flow x for the min
cost flow problem on the network G = (N,A), the incremental graph is a directed
graph Gx = (N,Ax) with arc costs cx and arcs distinguished as follows:

a+ ∈ A+
x ∀a ∈ A : xa < ua

a− ∈ A−x ∀a ∈ A : xa > la

Let Ax = A+
x ∪A−x , the arcs in Ax have the following relationship with the arcs in

A: for each a+ ∈ Ax t(a+) = t(a), h(a+) = h(a) and cxa = ca; for each a− ∈ Ax
t(a−) = h(a), h(a−) = t(a) and ca− = −ca.

Observation 1. W is an augmenting cycle with respect to a feasible flow x if and
only if W corresponds to a directed cycle in the residual network Gx.

Moreover we recall some well-known results that will be useful in Chapter 5 for
proving further results.

Theorem 3 (Flow Decomposition Theorem). Every path and cycle flow has a unique
representation as a non-negative flow. Conversely, every non-negative flow x can be

8 1. Preliminary concepts

represented as a path and cycle flow with the following two properties:

i) Every directed path with positive flow connects a deficit node with an excess
node.

ii) At most n + m paths and cycles have non-zero flow and at most m cycles
have non-zero flow. If the flow x is integral, then so are the path and cycle flows
which it decomposes.

Proof. The following algorithm finds the set S consisting of at most n+m paths
and cycles with non-zero flow.

S = ∅

while there exists a deficit node i

Follow arcs with positive flows starting from i until either an excess node j is
found or a node is visited twice.

If an excess node j is found

P is the path from i to j
The flow on the path P is flow(P) = min{−b(i), b(j), flow of some arc in P}
S = S ∪ P

If a node k is visited twice

W is the cycle from k to k
The flow on the cycle W is flow(W) = min{flow of some arc in W}
S = S ∪W

end while

while there exists an arc a with positive flow

Follow backward arcs with positive flows starting from a until a node is visited twice.
Let W be the cycle obtained, then flow(W) = min{flow of some arc in W} and
S = S ∪W

end while

end procedure

A deficit node exists if and only if an excess node exists, then after the execu-
tion of the first while block there are no more imbalanced nodes.
At each iteration either one node becomes balanced or the flow of some arc becomes
0, then there are at most n+m iterations and, as a consequence, n+m paths or

1.2 Network flow problems and main applications 9

cycles.
Whenever a cycle is obtained the flow of some arc becomes 0, then there are at most
m cycles.

Consequence of Theorem 3 is Corollary 1.

Corollary 1. If there are no deficit or excess nodes in the network, then a non-
negative flow x can be represented as at most m cycles with non-zero flow.

Another fundamental result that is consequence of Theorem 3 is the so called Aug-
menting Cycle Theorem.

Theorem 4 (Augmenting Cycle Theorem). Let x and x0 be two feasible flows. Then
x equals x0 plus the flow on at most m directed cycles in G(x0). Furthermore the
cost of x equals the cost of x0 plus the cost of the flows on these augmenting cycles.

Proof. For the hypothesis we have:

x = x0 + x
′

where x′ is a flow in the residual network G(x0). Since the residual network G(x0)
does not have deficit and excess nodes, it follows, from Corollary 1, that x′ can be
decomposed in at most m directed flow cycles in G(x0).

Shortest path problem
The shortest path problem is one of the simplest network flow problems. In this
problem the goal is to find a directed path of minimum cost (or length) from a
specified source node s to another specified sink node t, assuming that each arc
(i, j) ∈ A has an associated cost (or length) cij . Some of the simplest applications
of the shortest path problem are to determine a path between two specified nodes
of a network that has minimum length, or a path that takes least time to traverse,
or a path that has the maximum reliability. It can be mathematically formulated
as a minimum cost flow problem defining b(s) = 1, b(t) = −1, and b(i) = 0 for all
other nodes. This basic model has applications in many different fields, such as
equipment replacement, project scheduling, cash flow management, message routing
in communication systems, and traffic flow through congested cities.

Maximum flow problem
The maximum flow problem can be seen like a complementary model to the shortest
path problem. The shortest path problem models situations in which flow implies
a cost but is not restricted by any capacities; in the maximum flow problem flow
doesn’t imply costs but is restricted by flow bounds. The maximum flow problem
consists in finding a feasible solution that sends the maximum amount of flow from a
specified source node s to another specified sink node t. Examples of the maximum
flow problem include determining the maximum flow of petroleum products in a
pipeline network, cars in a road network, messages in a telecommunication network,
and electricity in an electrical network. This problem can be formulated as a mini-
mum cost flow problem in the following way. Let b(i) be equal to 0 for all i ∈ N ,
cij = 0 for all (i, j) ∈ A, and let (t, s) be an additional arc with cost cts = −1 and

10 1. Preliminary concepts

flow bound uts =∞. Then the minimum cost flow solution maximizes the flow on
arc (t, s); but since any flow on arc (t, s) must travel from node s to node t through
the arcs in A, the solution to the minimum cost flow problem will maximize the flow
from node s to node t in the original network.

Assignment problem
The data of the assignment problem are represented by two equally sized sets N1
and N2, a collection of pairs A ∈ N1 ×N2 representing possible assignments, and a
cost cij associated with each element (i, j) ∈ A. In the assignment problem the goal
is to pair, at minimum possible cost, each object in N1 with exactly one object in N2.
Examples of the assignment problem include assigning people to projects, jobs to
machines, tenants to apartments, and medical school graduates to available intern-
ships. Also the assignment problem can be written as a minimum cost flow problem
considering the network G = (N1 ∪N2, A) with b(i) = 1 ∀i ∈ N1, b(i) = −1 ∀i ∈ N2,
and uij = 1 ∀(i, j) ∈ A.

Transportation problem
The transportation problem is a special case of the minimum cost flow problem with
the property that the node set N is partitioned into two subsets N1 and N2 (of
possibly unequal cardinality) so that: (1) each node in N1 is a supply node, (2) each
node N2 is a demand node, and (3) for each arc (i, j) ∈ A, i ∈ N1 and j ∈ N2. The
classical example of this problem is the distribution of goods from warehouses to
customers. In this context the nodes in N1 represent the warehouses, the nodes in
N2 represent customers (or, more typically, customer zones), and an arc (i, j) ∈ A
represents a distribution channel from warehouse i to customer j.

Circulation problem
The circulation problem is a minimum cost flow problem with only transshipment
nodes; that is, b(i) = 0 ∀i ∈ N . A feasible flow x must satisfy the lower and upper
bounds lij and uij imposed on each arc flow variable xij . Since no exogenous flow
is ever introduced to or extracted from the network, all the flow circulates around
the network. The goal is to find the circulation that has the minimum cost. The
design of a routing schedule of a commercial airline provides one example of a
circulation problem. In this setting, any airplane circulates among the airports of
various cities; the lower bound lij imposed on an arc (i, j) is 1 if the airline needs
to provide service between cities i and j, and so must dispatch an airplane on this arc.

Multicommodity flow problems
The minimum cost flow problem models the flow of a single commodity over a
network. Multicommodity flow problems arise when several commodities use the
same underlying network. The commodities may either be differentiated by their
physical characteristics or simply by their origin-destination pairs. Different com-
modities can have different origins and destinations, and commodities have separate
flow conservation constraints at each node. However, the sharing of the common
arc capacities binds the different commodities together. In fact, the essential issue
addressed by the multicommodity flow problem is the allocation of the capacity of
each arc to the individual commodities in a way that minimizes overall flow costs.

1.2 Network flow problems and main applications 11

Multicommodity flow problems arise in many practical situations, including the
transportation of passengers from different origins to different destinations within a
city; the routing of nonhomogeneous tankers (in terms of speed, carrying capability,
and operating costs); the worldwide shipment of different varieties of grains, from
countries that produce grains to those that consume them; and the transmission of
messages in a communication network between different origin-destination pairs.

Minimum spanning tree problem
A spanning tree is a tree (i.e., a connected acyclic graph) that covers all the nodes of
an undirected network G = (V,E) with | V |= n. The cost of a spanning tree is the
sum of the costs (or lengths) of its edges. In the minimum spanning tree problem,
the goal to identify a spanning tree of minimum cost (or length). The applications
of the minimum spanning tree problem are quite diversified and include constructing
highways or railroads spanning several cities; laying pipelines connecting offshore
drilling sites, refineries, and consumer markets; designing local access networks; and
making electric wire connections on a control panel. In its original mathematical
formulation it is not written as a min cost flow problem, but as an integer linear
programming problem like below.

Mathematical formulation (exponential number of constraints)

min
∑

(i,j)∈E
cijxij (1.4)

subject to ∑
(i,j)∈E

xij = n− 1 (1.5)

∑
(i,j)∈E(S)

xij ≤| S | −1 ∀S ⊆ V, S 6= ∅ (1.6)

xij ∈ {0, 1} (1.7)

This formulation is the integer linear program for the problem of minimizing the total
cost (or length) of a spanning tree for the network under consideration. Constraint
(1.5) guarantees that the total number of edges in the spanning tree is equal to
n− 1 as stated in Proposition 1. Constraints (1.6) are called subtour elimination
constraints and ensure that no subgraph induced by S, a generic subset of the
network nodes, contains a cycle. Because of these constraints, this formulation is
an exponential-sized integer linear program. A possible alternative formulation for
the minimum spanning tree problem, with a polynomial number of constraints, can
be obtained representing it as a minimum cost flow problem with additional binary
variables for each edge, representing if the edge is utilized or not, and an additional
constraint which limits the total number of utilized edges to be exactly n− 1 (see
[64]). More precisely, a network flow problem is formulated based on the same
network in which one node is assumed to be a source sending n− 1 units of flow to
all other nodes, each one requiring one unit of flow. It can be easily seen that the
solution of this problem is a spanning tree.

12 1. Preliminary concepts

Mathematical formulation (polynomial number of constraints)
Considering node 1 as source, the following single commodity flow problem is defined:

min
∑
e∈E

cexe (1.8)

subject to ∑
j:(1,j)∈E

f1j −
∑

j:(j,1)∈E
fj1 = n− 1 (1.9)

∑
j:(i,j)∈E

fji −
∑

j:(j,i)∈E
fij = 1, ∀i ∈ V, i 6= 1 (1.10)

fij ≤ (n− 1)xe ∀e = (i, j) ∈ E (1.11)

fji ≤ (n− 1)xe ∀e = (i, j) ∈ E (1.12)∑
e∈E

xe = n− 1 (1.13)

fij , fji ≥ 0 ∀e = (i, j) ∈ E (1.14)

xe ∈ {0, 1} ∀e ∈ E (1.15)

The formulation (6.1) to (6.8) models the minimum spanning tree problem by means
of a single commodity flow problem, taking one node as source of n− 1 units of flow,
while the other nodes are sinks demanding one unit of flow. Two sets of variables are
introduced, the flow variables fij denoting the flow on edge (i, j) (note that although
the arcs are undirected, the flow variables are directed), and the binary variables xe
denoting if the edge e is chosen in solution. Constraints (1.9) and (1.10) model the
flow balances at the nodes. Constraints (1.11) and (1.12) force the flow variables
associated to edges not in solution to be equal to 0. Constraint (1.13) guarantees
that the topology of the solution is a spanning tree. Then, solving this formulation,
one can find the minimum spanning tree of the network.

1.3 Network simplex method

The simplex method is widely used for general linear programming programs and
has specific implementations for network flow problems. In practice the general
simplex method, when implemented without exploiting the underlying network
structure, is not a competitive solution procedure for solving the minimum cost flow
problem. Fortunately, as these problems have a special structure, it was possible
to adapt and interpret the core concepts of the simplex method appropriately as
network operations, producing a very efficient algorithm, that is the network simplex
algorithm. As explained in [3], when the original network has positive lower bound
capacities, it can be transformed into a network with zero lower bound capacities.
Therefore, we assume lij = 0 in the following.
The central concept underlying the network simplex algorithm is the notion of
spanning tree solutions, that is solutions obtained by fixing the flow of every arc
not in the spanning tree either at zero or at the upper bound of the arc and then

1.3 Network simplex method 13

by solving only for the flow on all the arcs in the spanning tree. The procedure
consists in moving from one such solution to another, at each step, introducing one
new non-tree arc into the spanning tree in place of one tree arc. The name network
simplex algorithm derives from the fact that the spanning trees correspond to the
so-called basic feasible solutions of linear programming, and the movement from one
spanning tree solution to another corresponds to the so-called pivot operation of the
general simplex method.

1.3.1 Fundamentals results

As previously mentioned, the network simplex method moves among spanning tree
solutions. This is based on the central result of Theorem 5.

Theorem 5 (Spanning Tree Property). The minimum cost flow problem always has
an optimal spanning tree solution.

A spanning tree solution is characterized by a partition of the arc set A in three
subsets: T , the arcs in the spanning tree; L, the nontree arcs with flow equal to
the lower bound; and U , the nontree arcs with flow equal to the upper bound. The
triple (T, L, U) is called spanning tree structure. At each spanning tree structure
it is possible to associate a spanning tree solution, setting xij = 0 ∀(i, j) ∈ L,
xij = uij ∀(i, j) ∈ U and then solving the flow conservation constraints to determine
the flow values for the arcs in T . A spanning tree structure is feasible if its associated
spanning tree solution satisfies all of the arcs flow bounds. A spanning tree structure
is optimal if its associated spanning tree solution is an optimal solution of the
minimum cost flow problem. Theorem 6 states a sufficient condition for a spanning
tree structure to be optimal.

Theorem 6 (Minimum Cost Flow Optimality Conditions). A spanning tree struc-
ture (T, L, U) is optimal for the minimum cost flow problem if it is feasible and
for some choice of node potentials π, the arc reduced costs cπij satisfy the following
conditions:

• cπij = 0 ∀(i, j) ∈ T

• cπij ≥ 0 ∀(i, j) ∈ L

• cπij ≤ 0 ∀(i, j) ∈ U

The reduced cost cπij = cij − π(i) + π(j) for a nontree arc (i, j) ∈ L denotes the
change in the cost of the flow that can be realized by sending 1 unit of flow from node
i to node j through the arc (i, j) appropriately modifying the flow on the arcs in
the tree path between node i and node j. The network simplex algorithm maintains
a feasible spanning tree structure and moves from one spanning tree structure to

14 1. Preliminary concepts

another until it finds an optimal structure. At each iteration, the algorithm adds
one arc to the spanning tree in place of one of its current arcs. The entering arc
is a nontree arc violating its optimality condition. Because of its relationship to
the primal simplex algorithm for the linear programming problem, this operation of
moving from one spanning tree structure to another is known as a pivot operation,
and the two spanning trees structures obtained in consecutive iterations are called
adjacent spanning tree structures.

1.3.2 Algorithm scheme

The network simplex algorithm maintains a feasible spanning tree structure at each
iteration and successively transforms it into an improved spanning tree structure
until it becomes optimal. The essential steps of the method are described in the
following scheme:

1. Determine an initial feasible tree structure (T, L, U);
Let x be the flow and π be the node potentials associated with this tree structure;
2. while(some nontree arc violates the optimality conditions)
3. select an entering arc (k, l) violating its optimality condition;
4. add arc (k, l) to the tree and determine the leaving arc (p, q);
5. perform a tree update and update the solutions x and π;
6. end while

Each step of this procedure can be implemented in different ways. Moreover,
according with the specific network flow problem under consideration, the network
simplex method can be specialized in several versions (see [3]).

15

Chapter 2

Emerging optimization
problems in Telecommunication
networks

In this chapter new emerging optimization problems on Telecommunication (TLC)
networks are described, mathematically modeled, and solved on a real or realistic
scenarios. These results published in [21], [23], [22] and [5] are significative from
the point of view of the application, but it will be pointed out that the multiple
objective nature of these problems calls for new advances also from the methodological
viewpoint for fundamental problems in multi-objective optimization.

2.1 Managing the Energy-Lifetime Trade-off in Back-
bone Networks

This section contains the main results from an operations research perspective of
the paper [22] published in Transactions on Networking, 2017. During the last few
years, the problem of "green" backbone networks has gained significant importance,
starting from the seminal work of Gupta and Sigh [44]. The goal of green networking
is to exploit the power management policies to reduce the network energy cost. In
particular, a Sleep Mode (SM) is defined: when a SM state is set for a device, the
other devices that remain powered on have to sustain the traffic between source
and destination nodes. In this context, different works (see for example [1], [42],
[24], [17]) have investigated the management of Internet Provider (IP) backbone
networks by adopting SM. The main outcome of these works is that networks with
SM capabilities are able to save energy, due to the fact that the traffic varies between
day and night, resulting in a large number of resources that can be put in SM during
the off-peak hours.
However, the impact of SM on the reliability of network devices is an open issue [82],
[20]. In particular, there are two opposite effects influencing the lifetime of network
devices [20]: the SM duration, which tends to increase the lifetime, and the change
in the power state (from SM to full power and viceversa), which instead decreases
the lifetime. In general, when a network device experiences a failure, the traffic

16 2. Emerging optimization problems in Telecommunication networks

flowing on it may be dropped, resulting in a Quality of Service (QoS) degradation
for users. Additionally, reparation costs are incurred, which may involve even the
replacement of the whole device. In particular, the reparation costs may even exceed
the monetary savings derived from SM [81]. All these facts suggest that the device
lifetime plays a crucial role in determining the efficiency of SM, and the energy
saving may not be the only metric to prove the effectiveness of a SM-based approach.
In [19] a simple model to evaluate the lifetime increase/decrease of network devices
taking into account the SM duration and its frequency, has been proposed. The
model shows that the energy-aware algorithms have an impact on the device lifetime,
which may be positive or negative, depending on the Hardware (HW) components
used to build the device and on the strategy adopted for choosing which devices
should be put in SM. In this context, a natural and interesting problem is related to
the possibility of managing SM while always limiting the impact on the lifetime. In
this section, to this end, a mathematical formulation of the lifetime-aware problem,
over a backbone network, will be described and effectively solved.

2.1.1 Related work

Previous works on green networking are mainly focused on reducing the energy-
consumption of devices (see e.g. [13] and [28] for detailed surveys). To this end,
different approaches have been proposed, ranging from centralized solutions [42], [24],
[17] (i.e., one central controller that decides which elements in the network to put in
SM) to distributed solutions [25], [52], [83] (i.e., each node decides which of its own
devices to put in SM). All these solutions prove the effectiveness of saving energy
by exploiting two main features: i) the fact that current backbone networks are
normally over-dimensioned, and ii) the variation of traffic between peak and off-peak
hours. However, the impact on the device lifetime is not considered. Traditionally,
the node lifetime has been investigated in the context of Wireless Sensors Networks
(WSNs) [15], [57], where each node of a WSN is powered by a battery, and therefore
it is important to prolong the lifetime of the network, i.e., to avoid the case in
which some devices exhaust the battery and then source and destination nodes
become disconnected. In general, there are different constraints that may limit
the application of power management policies in a network. Usually, guaranteeing
protection is one of them [4], [38], [63]. Other constraints include the limitation in
the increase of the path length [2], [84], the network delay [61], or the signal quality
[16].
In this context, two main reasons suggest to include the lifetime: i) a lifetime decrease
may increase the reparation and replacement costs in order to fix the failed devices,
and ii) when a device fails, the QoS may be heavily impacted. According with this
observation a methodology in order to manage the lifetime while allowing devices to
exploit power management primitives is proposed. Such a methodology is based on
the idea that the lifetime-awareness should be integrated in the process of deciding
when and for how long a power state should be applied to a device.

2.1 Managing the Energy-Lifetime Trade-off in Backbone Networks 17

2.1.2 Modeling the device lifetime

Focusing on the links of an IP backbone network, the generic failure rate for a link
at full power is denoted with γon. When SM is applied to the link, the new failure
rate γtot is defined as:

γtot = γon(1− τ s

T
) + γs

τ s

T
+ f tr

NF

where τ s is the total time in SM during time period T , γs is the failure rate in SM
(which is supposed to be lower than γon), f tr is the power switching rate between full
power and SM, and NF is a parameter called number of cycles to failures. The main
assumptions behind such a definition are that failures are statistically independent
from each other, and their effects are additive. In order to evaluate the lifetime
increase/decrease w.r.t. the always on solution (i.e., all links powered on), we define
a metric called acceleration factor (AF) (see [20]), which is the ratio between the
failure rate with SM γtot and the one at full power γon. The AF metric is lower
than 1 if the link lifetime is increased compared to the always on solution. On the
contrary, a value larger than 1 means that the lifetime is decreased compared to the
always on case. More formally the acceleration factor is defined as follows:

AF = γtot

γon
= 1− (1−AF s)τ

s

T
+ χf tr

where AF s is defined as γs

γon , which is always lower than 1 since the failure rate in
SM γs (by neglecting the negative effect due to power state transitions) is always
lower than the failure rate at full power γon. Moreover, χ is defined as 1

γonNF , which
acts as a weight for the power switching rate f tr. The AF is then composed of two
terms: the first one which tends to increase the lifetime (i.e., the longer period of SM
tends to increase this term which is negative), while the second one instead tends to
decrease the lifetime (i.e.,the more often power state transitions occur, the higher
this term is). Moreover, the model is composed by parameters AF s and χ, which
depend solely on the HW components used to build the link, while parameters τ s
and f tr depend instead on the realization of SM.

2.1.3 Mathematical Formulation

The goal of the problem under consideration is to minimize the AF in a network
exploiting link SM. That is, given the set of nodes and links in the network, and
the traffic for each time slot, the objective is the minimization of the average AF
over the whole time period, subject to connectivity and maximum link utilization
for each time slot. More formally, let G = (V,E) be the network topology. Let V be
the set of the network nodes, while E is the set of network links, being | V |= N
and | E |= L, respectively. Let us denote with T the total amount of time under
consideration. T is divided in K time slots of period δT . Moreover, let ts,d(k) ≥ 0
be the traffic demand from node s to node d during slot k. The problem described
above is mathematically modeled as follows:

min 1
L

∑
(i,j)∈E

AFi,j (2.1)

18 2. Emerging optimization problems in Telecommunication networks

The goal is to minimize the average AF of the links in the network. Moreover the
traffic has to be routed in the network for each time slot through the following
demand satisfaction and flow conservation constraints:

∑
j:(i,j)∈E

fs,di,j (k)−
∑

j:(j,i)∈E
f s,dj,i (k) =

ts,d(k) if i = s
−ts,d(k) if i = d

0 if i 6= s, d
∀i, s, d, k (2.2)

where fs,di,j (k) ≥ 0 is the amount of flow from s to d that is routed through link (i, j)
during slot k. The total amount of flow fi,j(k) ≥ 0 on each link for each slot is given
by:

fi,j(k) =
∑
s,d

fs,di,j (k) ∀(i, j) ∈ E, ∀k (2.3)

Let ci,j > 0 be the capacity of the link (i, j) and α ∈ (0, 1] be the maximum link
utilization that can be tolerated, respectively. Moreover, the binary variable xi,j(k),
which takes value of 1 if link (i, j) is powered on during slot k, zero otherwise, is
introduced. The total amount of flow has to be smaller than ci,j , scaled by the
maximum link utilization α. Such a condition is imposed by the following capacity
constraints:

fi,j(k) ≤ αci,jxi,j(k) ∀(i, j) ∈ E, ∀k (2.4)

Note that these constraints impose also the fact that a link has to be powered on
if the flow on it is larger than zero. The link state has to be the same in both
directions (it is assumed that SM can be set only if the links in both directions are
not carrying any traffic):

xi,j(k) = xj,i(k) ∀(i, j) ∈ E, ∀k (2.5)

Then the binary variable zi,j(k), which takes value of 1 if link (i, j) has experienced
a power state transition from slot (k − 1) to slot k, zero otherwise, is defined. The
value of zi,j(k) is set with the following two constraints:{

xi,j(k)− xi,j(k − 1) ≤ zi,j(k)
xi,j(k − 1)− xi,j(k) ≤ zi,j(k)

∀(i, j) ∈ E, ∀k (2.6)

Then the integer variable Ci,j ≥ 0, which counts the total number of transitions for
each link during the whole time period is introduced:

Ci,j =
K∑
k=1

zi,j(k) ∀(i, j) ∈ E (2.7)

Additionally, the variable τ si,j ≥ 0, which instead computes the total time in SM for
each link, is defined:

τ si,j =
K∑
k=1

[1− xi,j(k)]δT ∀(i, j) ∈ E (2.8)

2.1 Managing the Energy-Lifetime Trade-off in Backbone Networks 19

The variable AFi,j ≥ 0 to compute the total AF for each link is given by:

AFi,j = [1− (1−AF si,j)
τ si,j
T

+ χ(i,j)
Ci,j
2] ∀(i, j) ∈ E (2.9)

The variable Ci,j is divided by 2 because a power cycle is always composed by at
least two transitions (i.e., from full power to SM, and then from SM to full power).
The formulation above includes both integer variables and continuous ones. As a
result, it belongs to the class of Mixed Integer Linear Programming (MILP) problems.
For this model, a set of inequalities which depend on the specific structure of our
problem (following a similar procedure to [9]) has been identified. In this way, the
search space was reduced in order to speed up the solution procedure while limiting
the amount of time required to generate such inequalities. A more formal description
of these inequalities is given below.

Valid inequalities

Let B be the set of source nodes in the network and let δ+(B) be the set of the
outgoing edges from B. Then, focusing on the constraints (2.2), (2.3), (2.4) limited
to the edges of the set δ+(B):∑

s:(s,j)∈E
fs,ds,j (k)−

∑
j:(j,s)∈E

fs,dj,s (k) = ts,d(k) ∀s ∈ B, ∀k, ∀d (2.10)

fs,j(k) ≥
∑
d

f s,ds,j (k) ∀j : (s, j) ∈ E, ∀s ∈ B, ∀k (2.11)

fs,j(k) ≤ αcs,jxs,j(k) ∀j : (s, j) ∈ E, ∀s ∈ B, ∀k (2.12)

Lemma 1. Given Eq. (2.10), (2.11), (2.12) the following valid inequalities hold:

∑
(i,j)∈δ+(B)

ci,jxi,j(k) ≥ 1
α

∑
s∈B,d

ts,d(k) ∀k (2.13)

Proof. From constraint (2.10) we can write:∑
s:(s,j)∈E

fs,ds,j (k) ≥ ts,d(k) ∀s ∈ B, ∀k, ∀d (2.14)

If we consider the sum on all destinations we obtain:∑
d

∑
s:(s,j)∈E

fs,ds,j (k) ≥
∑
d

ts,d(k) ∀s ∈ B, ∀k (2.15)

From constraints (2.11) and (2.12) it is also possible to write:∑
d

∑
s:(s,j)∈E

fs,ds,j (k) =
∑

s:(s,j)∈E

∑
d

f s,ds,j (k) ≤

∑
s:(s,j)∈E

fs,j(k) ≤ α
∑

j:(s,l)∈E
cs,jxs,j(k) ∀s ∈ B, ∀k (2.16)

20 2. Emerging optimization problems in Telecommunication networks

Additionally, from constraints (2.15) and (2.16) we obtain:

α
∑

j:(s,l)∈E
cs,jxs,j(k) ≥

∑
s∈B,d

ts,d(k)∀s ∈ B, ∀k (2.17)

or equivalently:

∑
j:(s,l)∈E

cs,jxs,j(k) ≥ 1
α

∑
d

ts,d(k)∀s ∈ B, ∀k (2.18)

If we consider the sum on all sources we can write:

∑
s∈B

∑
j:(s,l)∈E

cs,jxs,j(k) ≥ 1
α

∑
s∈B,d

ts,d(k) ∀k (2.19)

that is:

∑
(i,j)∈δ+(B)

ci,jxi,j(k) ≥ 1
α

∑
s∈B,d

ts,d(k) ∀k (2.20)

The formulation obtained adding the set of valid inequalities (2.13), as shown by
the experimental results in the next section, is an enhanced formulation that speeds
up the solution procedure.

2.1.4 Experimental Results

The reference scenario has been provided by Orange-FT (see [54]). The operator has
provided the topology in terms of nodes and links, link capacities, routing weights,
and the traffic variation over one working day, with a time granularity of one hour
between one traffic matrix and the following one (see [53] for a detailed description
of this scenario). Moreover, the maximum link utilization is set to 50% of the link
capacity, as suggested by the operator.
A time period T equal to four days has been considered. Unless otherwise specified,
six different traffic matrices equally spaced for each day have been used (always
including the peak traffic matrix in the matrix set). Moreover, these matrices were
repeated over the different days. This is a conservative assumption, since the traffic
during weekends may be lower compared to working days, but the obtained results
are representative. Moreover the same HW parameters for the links were assumed,
i.e., all links are deployed with similar devices in terms of HW characteristics.
The original formulation has been solved with CPLEX solver (version 12.6) on a
high performance computing cluster, composed of four nodes, each of them with 32
cores and 64 GB of RAM, for a total computing power of around 1.5 TeraFlops/s.
The average AF, the time required to retrieve the solution, and the optimality gap
were considered as performance metrics. Table 2.1 reports the obtained results
(the optimality gap is expressed in percentage), for different HW parameters AF si,j
and χi,j . Recall that AF si,j is the AF of the device when a SM state is applied
(without considering transitions), while χi,j is the weight for the frequency of power
state changes. Due to the fact that measurements of AF si,j and χi,j values are not

2.1 Managing the Energy-Lifetime Trade-off in Backbone Networks 21

Figure 2.1. Orange-FT network topology

yet available in the literature, a sensitivity analysis w.r.t. both of them has been
preformed. Moreover, a maximum time limit of 24h for retrieving the solution from
the optimization solver has been imposed.

Table 2.1. Optimization Results

AF sleep(i,j) χi,j Objective Gap(%) Time
0.2 0.01 0.71 4.18 24h
0.2 0.05 0.79 2.68 24h
0.2 0.1 0.87 2.4 24h
0.2 0.5 0.94 0 46’ 32”
0.2 1 0.94 0 41’ 18”
0.5 0.01 0.83 1.98 24h
0.5 0.05 0.90 2.21 24h
0.5 0.1 0.96 0.21 24h
0.5 0.5 0.97 0 44’ 32”
0.5 1 0.97 0 22’ 33”
0.8 0.01 0.94 0.65 24h
0.8 0.05 0.99 0 1h 10’
0.8 0.1 0.99 0 1h 36’
0.8 0.5 0.99 0 53’
0.8 1 0.99 0 51’ 20”

In eight out of the fifteen runs we found the optimal solution, in the other cases we
have a gap less or equal to 4.18%.
In Table 2.2 the optimization results of the improved model are shown. As we can
see, the convergence to the optimum is faster with respect to the original model. In
the other cases the gap between the objective function and the lower bound found
within the time limit, is lower.

22 2. Emerging optimization problems in Telecommunication networks

Table 2.2. Optimization Results (with valid inequalities)

AF sleep(i,j) χi,j Objective Gap(%) Time
0.2 0.01 0.71 2.60 24h
0.2 0.05 0.79 1.56 24h
0.2 0.1 0.87 1.36 24h
0.2 0.5 0.94 0 30 ’ 42”
0.2 1 0.94 0 13’ 18”
0.5 0.01 0.83 1.48 24h
0.5 0.05 0.90 1.18 24h
0.5 0.1 0.96 0.03 24h
0.5 0.5 0.97 0 20’ 30”
0.5 1 0.97 0 9’ 28”
0.8 0.01 0.94 0.53 24h
0.8 0.05 0.99 0 22’ 43”
0.8 0.1 0.99 0 23’ 3”
0.8 0.5 0.99 0 12’ 38”
0.8 1 0.99 0 10’ 6”

For low values of AF si,j and χi,j , the problem is very challenging to be solved
optimally: this is due to the fact that the gain in putting devices in SM is high,
while at the same time the penalty for introducing transitions is low. Thus, the only
constraint limiting the AF decrease is the traffic, which imposes to put at full power
different links during peak hours. However, traffic varies during the day, therefore the
set of links in SM is varied too. As a consequence, the solver always tries to maximize
the number of links in SM, resulting in a low average AF and a high time required
to obtain the solution. However, we can see that in all cases, the maximum gap is
always below 2.60%. Moreover, when χi,j is increased, the penalty associated to the
power state changes becomes not negligible. This has an impact on the objective
function (resulting in a higher AF), but also on lower computation time, due to the
fact that the set of links in SM changes less frequently with time. Additionally, when
AF si,j is increased, we can clearly see that the AF tends to increase, since the gain
for putting the devices in SM is lower. However, the AF is always lower than one,
meaning that the lifetime has been increased compared to the solution in which all
links are always powered on. For example, when AF si,j = 0.2 and χi,j = 0.01 [1/h],
the AF is equal to 0.71, resulting in a lifetime increase of almost 30%.
These results show that both the HW and sleep mode parameters play a crucial role
for influencing the lifetime. Moreover, they show that the lifetime of a network can
be effectively managed applying SM policies.

2.2 Optimal Sustainable Management of Backbone Net-
works

This section contains the main results from an operation research perspective of the
paper [5] published in IEEE, International Conference on Optical Networks, 2016.

2.2 Optimal Sustainable Management of Backbone Networks 23

As previously mentioned, even though the reduction of costs in terms of energy
brought by sleep mode approaches has been already recognized and accepted by the
research community, little efforts have been performed so far to understanding what
are the implications of adopting this type of solution in an operator network. In
particular, the transition between sleep mode and full power, applied regularly to
the devices in a network, may dramatically reduce their lifetime [20]. When the
devices decrease their lifetime, they need to be fixed more frequently, thus increasing
the associated reparation/replacement costs [82]. As a result, there is a trade-off
between the amount of energy that can be saved in a network and the maximum
admissible lifetime degradation [21]. Additionally, another effect that has to be
considered when adopting energy-efficient solutions is the impact on the Quality of
Service (QoS) to users. More in depth, if users are served by few network devices,
their experienced QoS may be low compared to the case in which all devices are
always powered on. A user experiencing a low QoS may then decide to migrate to
another operator, thus again representing a loss for its original operator. In this
context, a natural problem that arises is the possibility to trade between network
energy savings, device fixing costs, and user QoS in a backbone network. To this
end a mathematical formulation in which the total sustainability of a backbone
network is maximized, is here proposed. In order to reflect all the aspect above
mentioned the total sustainability is expressed as a metric encompassing electricity
costs, lifetime costs, and users QoS, as shown in the next section.

2.2.1 Problem Formulation

A backbone network composed of source/destination nodes and purely transport
nodes was considered. It was also assumed that the links capacity and the traffic
demand by all source/destination node pairs for each time period are given. The
objective is to maximize the total sustainability of the network, by jointly considering
the users utility, the device fixing costs, and the network energy costs. More in depth,
the users utility is defined as a revenue for the operator to serve users at a given
rate. The higher is the rate for serving users, the higher is also their utility. In this
way, also the QoS for serving the users has been taken into account. By assuming
that time is divided in time slots of fixed duration,the target is the maximization of
the sustainability in each time slot by acting on the power state of each link in the
topology. Each link can be at full power or in sleep mode (SM). More formally, let
G = (V,E) be the graph representing the network infrastructure. Let V be the set
of the network nodes, while E the set of the network links. We assume | V |= N and
| E |= L. Let ci,j > 0 be the capacity of the link (i, j) and α ∈ (0, 1] the maximum
link utilization that can be tolerated. It is assumed that the total period of time
under consideration is divided in time slots of duration δt. Let k be the current time
slot index. The mathematical formulation is then introduced by means of different
set of variables. Focusing on traffic, it is assumed a variable amount of traffic for
each source s and each destination d. Let tsdmin(k) be the minimum amount of traffic
for node pair s− d at time slot k. Similarly, let tsdmax(k) be the maximum amount
of traffic between s and d at time slot k. The continuous variables λsd(k) denote
the actual amount of traffic assigned to pair s− d at k. Additionally, fs,di,j (k) ≥ 0 is
the amount of flow from s to d that is routed through link (i, j) during current time

24 2. Emerging optimization problems in Telecommunication networks

slot k. Similarly, fi,j(k) ≥ 0 is the total amount of flow on link (i, j) during slot k.
Given the previous definitions, the problem is formulated as:

max[Utot(k)− (CE(k) + CR(k))] (2.21)

The goal is to maximize the total sustainability of the system at each time slot k.
The objective function is then given by the difference between the total utility and
the total cost at time slot k. This latter is represented by the sum of the total energy
cost and the total fixing cost at time slot k.

∑
j:(i,j)∈E

f s,di,j (k)−
∑

j:(j,i)∈E
fs,dj,i (k) =

λs,d(k) if i = s
−λs,d(k) if i = d

0 if i 6= s, d
∀i ∈ V (2.22)

The flow conservation constraints guarantee that the traffic is correctly routed in
the network. Moreover the following constraints are imposed on the variable λsd(k):

λsd(k) ≤ tsdmax(k) ∀s, d (2.23)

λsd(k) ≥ tsdmin(k) ∀s, d (2.24)

The total amount of flow on each link is then given by:

fi,j(k) =
∑
s,d

fs,di,j (k) ∀(i, j) ∈ E (2.25)

The total amount of flow is limited to be smaller than the link capacity:

fi,j(k) ≤ αci,jxi,j(k) ∀(i, j) ∈ E (2.26)

where xi,j(k) is a binary variable which takes value one if the link (i, j) is powered
on during slot k, zero otherwise.
Considering the users utility, let Umin and Umax be a minimum and a maximum
utility value, respectively. Moreover, let λsdmin and λsdmax be the minimum and maxi-
mum thresholds for λsd(k). The resulting utility variable Us,d for users requesting
traffic from node s to node d is then computed as:

Us,d =

Umin if λsd(k) ≤ λsdmin

Umin + (Umax − Umin) log2(1 + λsd(k)−λsdmin
λsdmax−λsdmin

) if λsdmin ≤ λsd(k) ≤ λsdmax
Umax if λsd(k) ≥ λsdmax

(2.27)
The previous expression assumes that the user utility scales logarithmically with the
actual amount of served traffic λsd(k). In this way, the increment of users utility

2.2 Optimal Sustainable Management of Backbone Networks 25

experienced at lower rates tends to be rewarded. The total utility variable Utot(k)
at time slot k is then computed as:

Utot(k) =
∑
s,d

Us,d + Utot(k − 1) (2.28)

where Utot(k − 1) is an input parameter representing the utility at previous time
slot k − 1. Focusing on the energy costs, first it is imposed the fact that, if the link
(i, j) is put in SM, also the link (j, i) has to be powered off:

xi,j(k) = xj,i(k) ∀(i, j) ∈ E (2.29)

Then the total energy cost CE(k) at time slot k is computed as:

CE(k) = cKWhδt
∑
i,j

xi,j(k)Pi,j + CE(k − 1) (2.30)

where cKWh is the hourly electricity cost, Pi,j is the power consumption of the link
(i, j) when it is powered on, and CE(k − 1) is the energy cost at previous time slot
k − 1.
Eventually, focusing on the fixing costs, by adopting the same failure model of [20],
let ξi,j(k) be a binary variable which takes value one if the link (i, j) has experienced
a power state transitions from slot k − 1 to slot k, zero otherwise. ξi,j(k) can be set
by the same constraint imposed on the variables zi,j(k) of the model presented in
the Section 2.1.3: {

xi,j(k)− xi,j(k − 1) ≤ ξi,j(k)
xi,j(k − 1)− xi,j(k) ≤ ξi,j(k)

∀(i, j) ∈ E (2.31)

Moreover, let Ri,j(k) ≥ 0 be integer variable counting the number of power state
transitions for the link (i, j) up to time slot k.

Ri,j(k) = ξi,j(k) +Ri,j(k − 1) ∀(i, j) ∈ E (2.32)

where Ri,j(k − 1) is an input parameters storing the number of transitions up to
previous time slot k − 1. Additionally, the continuous variable τi,j(k) , which stores
the total amount of time in SM for the link (i, j) up to time slot k, are introduced:

τi,j(k) = (1− xi,j(k))δt + τi,j(k − 1) ∀(i, j) ∈ E (2.33)

where τi,j(k−1) is the total time in SM for the link (i, j) up to previous time slot
k − 1. Given the number of transitions Ri,j(k) and the total time in SM τi,j(k − 1),
like in the model of Section 2.1.3, the metric AF for the link (i, j) at time slot k is
expressed as:

26 2. Emerging optimization problems in Telecommunication networks

AFi,j(k) = [1− (1−AF si,j)
τi,j(k)
T (k) + χ(i,j)

Ri,j(k)
2] ∀(i, j) ∈ E (2.34)

where AF s(i,j) and χ(i,j) are hardware input parameters, and T (k) is the amount of
time from the first time slot to time slot k . The total fixing costs CR(k) at time
slot k are then computed as:

CR(k) = Crδt
∑
i.j

AFi,j(k)θoni,j + CR(k − 1) (2.35)

where Cr is the hourly cost for fixing a link, θoni,j is the failure rate for a link always
powered on, and CR(k − 1) are the fixing costs up to previous time slot k − 1.
The resulting model is a mixed integer non-linear programming model, that has
been converted into a mixed integer linear programming formulation by means of a
linear approximation of the logarithmic function.

2.2.2 Results

The scenario on which the model has been tested is the same described in Section
2.1.4. The network is composed of 38 nodes and 72 bidirectional links. Additionally,
the traffic between each node pair and the amount of capacity installed on each link
are provided in the scenario. The network is dimensioned to satisfy a maximum
link utilization equal to 50% of the link capacity (during the peak hour). Moreover,
the information about variation of traffic over time is also provided. More in depth,
a daily traffic profile (which is repeated across a set of 20 days), and a time slot
granularity of 4 hours, i.e., there are 6 time slots in a day, were considered. Focusing
on power consumption, the same model of [54] has been used. Moreover, the power
consumption of a link is assumed to be negligible when it is put in sleep mode.
Eventually, a cost of electricity cKWh equal to 0.16 [USD/kWh] has been assumed
(see [20]). As regards the parameters related to the fixing costs, AF s(i,j) has been
set equal to 0.5, since it is assumed that the lifetime when the device is in SM
is doubled compared to the case in which it is always powered on. Focusing on
the other hardware parameter χ(i,j), initially its value has been set equal to 0.001.
Recall that this parameter acts as a weight for the number of power state transitions.
With this setting, the impact of power state transition is assumed to be not so high,
i.e., the device can sustain hundreds of transitions before introducing a significative
lifetime decrease. Additionally, the failure rate for a link always powered on θoni,j is
set to 1/87600 [1/h] like in [20], which corresponds to a lifetime equal to 10 years.
Eventually, the fixing cost is equal to 190 kUSD in accordance to [20]. Focusing on
the user utility, λsdmin has been set equal to 0.0003 Gbps ∀s, d, λsdmax = 2.92 Gbps
∀s, d, Umin = 0.033 USD and Umax = 114 USD, respectively. With this setting, the
users utility is larger than the energy costs during the peak hour (which justifies
the deployment of the network), while it is lower than the energy costs during the
off-peak hour and with all the links powered on (which justifies the application of
energy-saving techniques).

2.3 Optimal Superfluid Management of 5G Networks 27

Figure 2.2. Total Sustainability vs. Time

On this scenario the model presented has been implemented in CPLEX (version 12.6)
and tested. Moreover, the following comparisons have been also considered: i) only
minimization of energy costs (i.e., a classical energy-saving approach), and ii) only
maximization of users utility (i.e., a solution in which all devices are always powered
on). In these two latter cases, the total sustainability is then computed off-line at
the end of the optimization process. Figure 2.2(a) reports the sustainability vs. time
for the three formulations. Interestingly, the minimization of energy-costs tends to
decrease the sustainability, i.e., at the end of the considered 20 days period the total
sustainability is negative, meaning that the operator has paid a high cost rather than
achieving a revenue. This is due to two main reasons: i) the lifetime degradation
triggered by frequent full power/sleep mode transitions, and ii) the fact that the
revenue for serving the users is not considered. Moreover, the maximization of users
utility tends to have an almost constant and negative sustainability. This is due to the
fact that this solution does not consider the energy costs, resulting in an electricity
waste. Eventually, the proposed approach, targeting the whole sustainability (i.e.,
users utility, device fixing costs, and energy costs), always brings a revenue for
the operator, resulting in a final sustainability of more than 150000 USD. In the
following, the impact of increasing the fixing costs has been investigated, by setting
a value of χ = 0.1 (Figure 2.2(b)). Recall that χ is an hardware parameter acting
as a weight for power state transitions in Eq. (2.34), thus potentially increasing
the impact of fixing costs. In this case, the minimization of energy costs tends to
notably decrease the sustainability at the end of the 20 days period. Clearly, the
formulation targeting the maximization of users utility is not influenced by χ, since
no transitions are introduced. Eventually, the maximization of total sustainability
tends to achieve revenues also in this case. This is due to the fact that the fixing
costs, the users utility, and the energy costs are jointly taken into account. According
with these results, the proposed formulation outperforms both a classical approach
based on the maximization of energy savings and a solution always maximizing the
users utility.

2.3 Optimal Superfluid Management of 5G Networks

This section contains the main results from an operation research perspective of the
paper [23] published in IEEE, International NetSoft Conference, 2017. The Internet

28 2. Emerging optimization problems in Telecommunication networks

is becoming an ever increasing pervasive technology. According to different studies,
new services like High Definition (HD) videos, tactile applications (see [36]), Internet
of Things (IoT) (see [10]), and extremely low delay applications will dominate the
scene in the forthcoming years. In addition to this, the number of users will continue
to notably increase, especially from growing economies. As a result, the network
itself will have to evolve from a monolithic architecture towards a converged, flexible,
and high performance solution. To this end, new paradigms, like Network Function
Virtualization (NFV) [56], have been proposed in the last years. Moreover, several
initiatives are currently devoted to the design of 5G networks (see [8]), which are
expected to turn into reality by 2020. In this context a so called superfluid approach
has been defined, meaning that network functions and services are decomposed into
reusable components, denoted as Reusable Functional Blocks (RFBs), which are
deployed on top of physical nodes. RFBs have notable features, including: i) RFBs
chaining, in order to implement more complex functionality and provide the required
service to user; ii) platform independence, i.e., RFBs can be realized via software
functions, and can run on several hardware solutions; and, iii) high flexibility and
performance, thanks to the fact that RFBs can be deployed where and when they
are really needed (hence the superfluid attribute of the architecture). In this context
the main question is if it is possible to efficiently manage a 5G superfluid network
based on RFBs. In order to give an answer to this question, a 5G architecture was
considered to model the needed components in terms of RFBs and the infrastructure
resources in terms of physical nodes and HW features. Then the problem of managing
a set of RFBs in order to serve the users of a 5G network with a high definition
video distribution service was mathematically formulated. Such a model has been
tested on a simple but yet representative case study. The results pointed out that
the proposed approach is a first step towards a more comprehensive solution. In
order to present the obtained mathematical model, Section 2.3.1 gives a description
of the 5G architecture under consideration.

2.3.1 Architecture Description

The 5G network model considered in this work is composed of a set of nodes, a set of
links, and a set of users. The nodes are used to deploy either small cells, macro cells,
or to realize the core network elements of the so called Evolved Packet Core (EPC).
Each node is connected to the rest of the network by means of a path of physical
links. Each user can be connected to the network by means of a cell (either a macro
cell or a small cell). For simplicity, the EPC elements are collapsed in a single site in
the model proposed herein. Figure 2.3 reports an example of the considered physical
system infrastructure, which is composed of different small cell sites, one macro cell
site and one EPC site. In this scenario, each site corresponds to a 5G node. Figure
2.3 reports also the coverage areas of the cells (which are represented by hexagonal
layouts for the sake of simplicity). The service area, i.e., the area where the users
are located, is assumed to be overlapped with the coverage area of the macro cell.
Each 5G node is able to host different RFBs.
An RFB performs specific tasks in the network architecture, such as processing the
video to users, or performing networking and physical layer tasks. In addition, each
RFB consumes an amount of physical resources on the hosting 5G node. As physical

2.3 Optimal Superfluid Management of 5G Networks 29

Macro Cell
EPC

5G-Nodes

Small Cell

Figure 2.3. Example of a 5G physical system infrastructure

resources the processing capacity (that will be simply denoted as capacity further
on) and the memory occupation (in short denoted as memory) have been considered.
The following RFBs types are taken into consideration in this work:

• Mobile Edge Computing (MEC) RFB;

• Base Band Unit (BBU) RFB;

• Resource Radio Head (RRH) RFB.

The MEC RFB module is responsible for providing the HD video distribution service
to users. A practical example of a MEC RFB is a cache serving a set of videos to
users. In general, this module is able to serve an amount of traffic, and consequently
a subset of the users spread over the service area. Clearly, the maximum amount
of traffic that can be served depends on the amount of resources that are made
available to the RFB by the physical node hosting it. The BBU RFB module acts as
an interface between the MEC RFB and the RRH RFB. Specifically, the BBU RFB
exchanges an amount of IP traffic with the MEC module, and a baseband signal
with the RRH one. Similarly to the MEC case, also this module is characterized by
an amount of consumed resources to provide the RFB functionality. Eventually the
RRH RFB module performs physical layer operations. Specifically, the RRH module
handles a set of Radio Frequency (RF) channels with users and the corresponding
baseband channels with the BBU RFB. The amount of resources required by this
module depends on the type of deployed cell (either a small cell or a macro cell). In
this context, the RFBs are organized in logical chains. Specifically, each MEC RFB
is logically connected to a BBU RFB, which, in turn, is connected to a RRH RFB
and consequently to a set of users.
Figure 2.4 reports an example of RFBs chain and the exchanged information between
the modules and the users. In addition, the connection between a pair of RFBs in
the chain can be direct, i.e., both RFBs are located on the same physical 5G node,
or indirect, i.e., the RFBs are located on two separate nodes. Eventually, RRH
RFBs are able to setup a radio link with users, by exploiting the Multi User Multiple

30 2. Emerging optimization problems in Telecommunication networks

RRH BBU MEC

Base Band
Signal

User
Traffic User “A”

MU-MIMO
Radio Links

User “B”

Figure 2.4. An example of RFBs chain

Input Multiple Output (MU-MIMO) technology. Focusing then on the placement
of RFBs in the 5G nodes, the RRH RFBs can be placed only in nodes connected
to the antennas of the Radio Access Network (RAN). On the contrary, BBU RFBs
can be pooled in other nodes. Eventually, MEC RFBs can be potentially deployed
in every node of the network. The key feature of the considered 5G system is that
the RFBs are fully virtualized resources. Specifically, the RFBs can be dynamically
moved across the nodes to satisfy the Key Performance Indicators (KPIs) of the
network operator. In Section 2.3.2 the mathematical model built on this architecture
is described.

2.3.2 5G Model

We assume that each node is composed of Dedicated HardWare (DHW) and Com-
modity HardWare (CHW). More in depth, the DHW part hosts RFB functionalities
requiring intensive and HW specific operations. These operations include the RRH
functions and the BBU functions involving base band processing tasks. On the
other hand, the CHW part of the node is used to host RFB functionalities requiring
basic processing tasks (i.e., processing of IP packets, processing of video traffic),
which are performed by the MEC RFBs and the processing functions of BBU RFBs.
Each RFB then consumes an amount of physical resources on the hosting 5G node.
Focusing on DHW, we assume that the RFBs require purely capacity resources,
while as regards the CHW part of the node, we assume that the resources required by
RFBs are constrained by the maximum utilization of the CPUs and the memories.
Thus, given the users positions in the considered scenario, the 5G nodes positions,
the video requirements, the sets of RFBs, and the RFBs features, the goal is to
maximize different KPIs, subject to RFBs placement constraints, 5G node capacity
constraints, user coverage constraints and user data constraints.
More formally, let N be the set of nodes and let U be the set of users. In addition,
the following sets are introduced: i) set of MEC RFBs types KMEC , ii) set of BBU
RFBs types KBBU , iii) set of RRH RFBs types KRRH . The model is presented first
reporting the constraints related to RRH RFBs, then the BBU and MEC RFBs
constraints and eventually the constraints of the 5G nodes.

max
∑
i,j

ti,j (2.36)

2.3 Optimal Superfluid Management of 5G Networks 31

The first KPI considered in the model is the maximization of user throughput, that
is the maximization of the user performance.∑

i

ui,j = 1 ∀j (2.37)

Constraints (2.37) impose that each user has to be served by one and only one 5G
node, where the binary variable uij takes value 1 if the user j ∈ U is served by node
i, 0 otherwise. A user j can be served by node i only if one RRH RFB of type k
∈ KRRH installed at node i is able to cover user j:

ui,j ≤
∑
k

COVijkrki ∀i, j (2.38)

where COVijk is a binary input parameter taking value 1 if user j is covered by one
RRH RFB of type k ∈ KRRH installed on node i (0 otherwise), and rki is a binary
variable taking value 1 if the RRH RFB of type k is installed on node i (0 otherwise).
Constraints (2.38) impose also that one RRH RFB has to be installed at node i if at
least one user is connected to node i. Moreover, the number of used RRH RFBs has
to be lower than the total number of available RFBs of type k, denoted as NRRH

k .
More formally: ∑

i

rki ≤ NRRH
k ∀k (2.39)

In addition, at most one RRH RFB can be assigned to each node:∑
k

rki ≤ 1 ∀i (2.40)

Moreover, when an RRH RFB is installed at node i (i.e.,rki = 1), the number of
connected users is bounded by the maximum number of terminals for each RRH
type k, which is denoted as Umaxk . More formally, the following constraints hold:∑

j

uij ≤
∑

kUmaxk rki ∀i (2.41)

Each connected user will then receive an amount of RFB capacity δRRHikj by assuming
that the RRH RFB of type k is installed on node i. The total capacity δRRHik

provided by one RRH RFB of type k at node i is then computed as:

δRRHik =
∑

δRRHikj rkiuij ∀i, k (2.42)

δRRHik is then bounded by the maximum capacity that can be handled by the installed
RRH RFB:

δRRHik ≤ Rmaxk ∀i, k (2.43)
Moreover, the user traffic has to be lower than the RFB capacity δRRHikj :

tijrki ≤ δRRHikj ∀i, j, k (2.44)

where tij ≥ 0 is a continuous variable representing the traffic between the node i
and the user j. This variable has to be larger than zero only if the user j is assigned
to the node i, as guaranteed by constraints (2.45):

tij ≤ Quij ∀i, j (2.45)

32 2. Emerging optimization problems in Telecommunication networks

where Q is a very large constant.
An RFB chain composed by one RRH RFB, one BBU RFB, and one MEC RFB
has to be deployed in the network in order to serve the users connected to node i.
Let bkip be a binary variable equal to 1 if one BBU RFB of type k ∈ KBBU placed
at node p is used to serve the RRH RFB at node i, 0 otherwise. If the node i has
installed one RRH RFB of type w, then one BBU RFB has to serve it:∑

k

∑
p

bikp =
∑
w

rwi ∀i (2.46)

In addition, the number of used BBU RFBs is bounded by the number of available
RFBs for each BBU type k, which is denoted as NBBU

k :∑
i

∑
p

bkip ≤ NBBU
k ∀k (2.47)

Focusing on the MEC RFB case, let mkip be a binary variable equal to 1 if one MEC
RFB of type k ∈ KMEC placed at node p is used to serve the users connected to the
RRH RFB at node i, 0 otherwise. The MEC RFB constraint is then expressed as:∑

k

∑
p

mkip =
∑
w

rwi ∀i (2.48)

Clearly, the total number of used MEC RFBs is bounded by NMEC
k , which is the

number of available MEC RFBs of type k:∑
i

∑
p

mkip ≤ NMEC
k ∀k (2.49)

Moreover, each RFB chain has to ensure compatibility between the RRH and BBU
RFBs:

rki
∑
p

bwip ≤ Okw ∀i, k, w (2.50)

where Okw is a binary input parameter, taking value 1 if a RRH RFB of type k and a
BBU RFB of type w are compatible with each others, 0 otherwise. Intuitively, these
constraints should prevent the connection of an RRH RFB designed for a macro cell
with a BBU RFB designed for a small cell, which may otherwise introduce structural
incompatibilities (e.g., not enough resources for the BBU RFB to serve the RRH
RFB). Eventually, the total traffic to each user is bounded by the HD video capacity
provided by the MEC RFB:

tij ≤
∑
p

∑
k

mkpiδ
MEC
k ∀i, j (2.51)

Focusing on the constraints related to the 5G nodes, the capacity used by RRH and
BBU RFBs has to be lower that the one installed on the DHW part:∑

k

rkiδ
RRH
ik +

∑
w

∑
p

bwpiδ
BBU
w ≤ BDHW

i yi ∀i (2.52)

where yi is a binary variable taking value 1 if node i is used, 0 otherwise. Moreover,
the CPU utilization of the MEC RFBs installed at node i is computed as:

CMEC
i =

∑
k

[CMS
ik cik + CMD

ik (
∑
p

mkpi

∑
j

tpj)] ∀i (2.53)

2.3 Optimal Superfluid Management of 5G Networks 33

where CMS
ik and CMD

ik are the static and dynamic terms to compute the CPU
utilization (CMS

ik is the static CPU utilization required by the MEC RFB of type
k and CMD

ik is a constant to transform the traffic from users into dynamic CPU
utilization), and cik is a binary variable, which takes the value one if at least one
MEC RFB of type k is assigned to node i, 0 otherwise. Such a variable is set by
means of the following constraints:∑

p

mkpi ≤Mcik ∀i, k (2.54)

∑
p

mkpi + eik ≥ 1 ∀i, k (2.55)

eik + cik = 1 ∀i, k (2.56)

where M is a very large constant, and eik is a binary variable that is equal to 1
when no MEC RFB of type k is assigned to node i, 0 otherwise. The reason for
introducing the last two constraints is for assuring that cik is strictly set equal to
zero when no MEC RFB of type k is installed in the node. In this way, in fact,
the static amount of capacity CMS

ik is not counted. Similarly, the amount of CPU
consumed by BBU RFBs is computed as:

CBBUi =
∑
k

[CBSik dik + CBDik (
∑
p

bkpi
∑
j

tpj)] ∀i (2.57)

where CBSik and CBDik are the static and dynamic terms to compute the CPU
utilization required by the BBU RFB of type k and dik is a binary variable, which
is computed in a similar way as in the MEC case.∑

p

bkpi ≤Mdik ∀i, k (2.58)

∑
p

bkpi + fik ≥ 1 ∀i, k (2.59)

fik + dik = 1 ∀i, k (2.60)

where fik is a binary variable that is equal to 1 if no BBU RFB of type k is assigned
to the node i, 0 otherwise. The total amount of used CPU resources on the CHW
part is then bounded by the maximum number of CPU resources:

CMEC
i + CBBUi ≤ CCHWi yi ∀i (2.61)

Focusing on the memory resources, the amount of memory consumed by the MEC
RFBs is expressed as:

MMEC
i =

∑
k

[MMS
ik cik +MMD

ik (
∑
p

mkpi

∑
j

upj)] ∀i (2.62)

where MMS
ik is the static memory utilization required by a MEC RFB of type k and

MMD
ik is a constant to obtain the dynamic memory utilization, given the number of

34 2. Emerging optimization problems in Telecommunication networks

connected users. Moreover, the amount of memory consumed by the BBU RFBs is
defined as:

MBBU
i =

∑
k

[MBS
ik dik +MBD

ik (
∑
p

bkpi
∑
j

upj)] ∀i (2.63)

where MBS
ik and MBD

ik are the static and dynamic terms to compute the memory
consumed by a BBU RFB of type k. The total amount of used memory resources is
then bounded by the maximum number of memory resources:

MMEC
i +MBBU

i ≤MCHW
i ∀i (2.64)

The same set of constraints has been implemented also adding another KPI, that is
the minimization of the number of used nodes.This objective aims to: i) limit the
operating expenditures (OPEX) paid by operator (e.g., the node energy costs or the
management ones), ii) efficiently exploit the nodes that are used. Such objective is
expressed as follows:

min
∑
i

yi (2.65)

The latter case has been solved by means the ε-constrained method (described
in Section 3.2.1). In this context such a method consists in maximizing the user
throughput, limiting the number of used nodes by adding the other objective among
the constraints as follows: ∑

i

yi ≤ Nmax
used (2.66)

where Nmax
used is the maximum number of used nodes, which is varied between 1 and

| N |. Section 2.3.3 reports the scenario description on which the presented model
has been tested and the results obtained.

2.3.3 Performance Evaluation

A scenario composed of one macro cell, four small cells, and 260 users requesting
5G services has been considered. Figure 2.5 reports the cells and the user positions.
More in depth, the macro cell is placed in the center of the service area. Each small
cell is placed at a distance of 120 [m] from the macro cell. It is assumed that small
cells may interfere with each others, while the central macro cell may interfere with
a set of neighboring macro cells, placed at the corners of a square centered by the
considered macro cell, with an edge equal to 1000 [m]. Focusing on users, 70% of
them are randomly deployed over the whole service area, while 30% are generated
in a circle of radius equal to 50 [m] centered in each small cell (thus justifying the
small cell deployment).
Focusing on the RFBs, it is assumed a total of 5 RRH RFBs, 5 BBU RFBs, and
5 MEC RFBs. In addition, two types of RRH RFBs, two types of BBU RFBs,
and one type of MEC RFB are assumed. The intuition of having two types of
RRH RFBs and BBU RFBs relies on the fact that the traffic handled by the macro
cell node is in general higher than the one of a small cell. Therefore, the resource
requirements of the associated RFBs may be different, resulting in two different
RFB types. As regards the setting of the rest of parameters the reader is referred to

2.3 Optimal Superfluid Management of 5G Networks 35

−200 −150 −100 −50 0 50 100 150 200
−200

−150

−100

−50

0

50

100

150

200

 [m]

[m
]

Users
Macro Cell
Small Cell

Figure 2.5. Spacial distribution of users and cells defined for the selected scenario

[23]. Moreover the following assumptions have been adopted: i) the network has
to satisfy the amount of traffic generated by users with the RFBs deployed in the
nodes; ii) the resources of each small cell node are set to host at least one RRH
RFB and one BBU RFB for the DHW, and one BBU RFB and one MEC RFB
in the CHW; iii) the macro cell node and the EPC node are designed to pool the
BBU and MEC RFBs from the small cells; and, iv) an amount of spare resources
is always reserved in each node (i.e., to cope with future traffic increases). The
proposed optimization model has been solved over the considered scenario on a high
performance computing cluster, composed of four nodes, each of them with 32 cores
and 64 GB of RAM, for a total computing power of around 1.5 TeraFlops/s using
CPLEX solver (version 12.6). In addition to the peak traffic condition, the case in
which only 10% of users generate traffic has been taken into account. Such a scenario
is identified as off-peak condition. The goal is in fact to assess the performance of
the considered architecture under different traffic conditions. We initially take into
account the amount of traffic tij served to each user.
More in depth, Figure 2.6 reports the Cumulative Distribution Function (CDF) of
the user traffic for the two traffic conditions. The figure reports also the CDFs for
the following cases: i) best node allocation policy, i.e., tij = maxiδ

RRH
ikj ; and, ii)

worst node allocation policy, i.e., tij = miniδ
RRH
ikj . Interestingly, the traffic served

to users during the peak traffic condition is close to one achieved by the best node
allocation, with an average traffic of more than 100 [Mbps] per user. However, a
small subset of users (around 10%) is experiencing very low traffic (i.e., close to 0).
By further investigating this issue, it has been found that such users are close to
the edges of the macro cell, i.e., they are the ones experiencing the worst channels
conditions. To overcome this issue, these users could be potentially covered also by
the neighboring macro cells in a real environment.
In addition, Figure 2.6 reports also the CDF when the off-peak traffic condition is
considered. In this case, the average traffic per user is still higher than 80 [Mbps],

36 2. Emerging optimization problems in Telecommunication networks

Figure 2.6. Cumulative Distribution Function (CDF) of the user traffic

Figure 2.7. RFBs placement over the set of nodes for different traffic conditions

while no user exhibits extremely low traffic conditions. Eventually, the figure re-
ports the CDF of the user throughput for the off-peak traffic condition when the
minimization of used nodes is pursued (i.e., by adopting the ε-constrained method).
In this case, the users are connected to a single node in the network, i.e., the macro
cell. Clearly, this choice has an impact on the throughput, which tends to be
decreased (i.e., the average throughput is less than 50 [Mbps]). Figure 2.7 reports
the RFBs placement over the set of nodes. Focusing on the peak traffic condition
and the maximization of the user throughput (Figure 2.7(a)), all the RRH RFBs
are exploited, in order to maximize the performance to users. In addition, the BBU
and MEC RFBs are all located on the macro cell node. Then, Figure 2.7(b) reports
the off-peak traffic. In this case, the BBU and MEC RFBs tend to be spread over
the nodes. This is due to the fact that the number of used nodes is not taken into
account when the objective function is solely the maximization of the users traffic.
As a result, all the nodes may be potentially exploited even if the number of users is

2.4 Inspired research 37

low. Focusing on the same traffic condition and on the minimization of the number
of used nodes (Figure 2.7(c)), the macro cell node is hosting one RRH RFB of type
2, one BBU RFB of type 2 and one MEC RFB. In this last part we analyze the
utilization of nodes resources consumed by the RFBs when the maximization of the
user throughput is pursued.

Figure 2.8. DHW capacity across the set of nodes

Focusing on the DHW part, Figure2.8(a) reports the amount of used capacity for
the peak traffic condition. As expected, the largest amount of capacity is consumed
by the BBU RFBs, while the RRH RFBs marginally impact the overall capacity.
This is due to the fact that BBU RFBs perform the baseband operations, which
are pretty intensive on the computing resources of the node. Moreover, the total
capacity consumed on the macro cell node is more than 350 [Gbps], i.e., close to 50%
of the installed capacity. On the contrary, the small cell nodes are lightly utilized.
Moreover, Figure 2.8(b) presents the results for the off-peak traffic condition. Even-
tually, the amount of capacity consumed on the small cell nodes tends to promptly
increase, as the BBU RFBs are deployed also on most of them. Nevertheless, the
amount of capacity used on the macro cell node is still higher than 200 [Gbps] (i.e.,
more than 20%).
In conclusion these results show that: i) users are able to achieve very good through-
put in the downlink direction; ii) the RFBs placement is impacted by the number
of users and the considered strategy; iii) the BBU RFBs of the same type and the
MEC RFBs may be efficiently pooled on the same node to better exploit the CHW
and DHW resources.

2.4 Inspired research
In this chapter some emerging optimization problems on telecommunication networks
have been described, mathematically formulated and solved on a real scenario and,
in the latter case, on a realistic simulated scenario. Each one of the problems
considered have been modeled or, let us say, "reduced" to a single objective mixed
integer linear programming problem even thought they have a multi-objective nature.
Indeed, focusing on the optimization criteria, in each of the different problems under
consideration, two objectives have to be aggregated in order to validate the model
and obtain some solutions of practical importance for the real case. In the first
problem two different aspects have been considered: the energy efficiency and the

38 2. Emerging optimization problems in Telecommunication networks

network reliability. According with the considerations given in the introduction to
this problem, these two criteria are in conflict with each other and this means that
a solution, which is optimal for one of the two objectives, could be not optimal
for the other one. On the contrary, several trade-off solutions may exist instead
of a unique optimal solution. In the second problem, two different objectives have
been included: electricity and lifetime costs and users QoS. Also in this case, these
criteria may generate a set of efficient solutions. For the latter problem, as described
in Section 2.3, two different KPIs have been analyzed: the maximization of the
users throughput and the minimization of the number of used nodes. These two
criteria are clearly in conflict and in this case, a multi-objective approach has been
adopted in order to solve the problem, that is the ε-constrained method. Such a
method will be described in details in the following chapter. In general, this method
is not efficient because it consists in adding knapsack constraints to the problem
formulation, keeping only one of the objectives. This change makes the formulation
more complex and often NP-hard even if the original problem is not NP-hard.
Focusing on the formulations previously presented, they are very complex and for
this reason the use of general solution approaches for multi-objective integer (or
mixed integer) programming, like the ε-constrained method, may be very inefficient.
From this observation, it arises the necessity to design ad hoc algorithms in order to
deal with their multi-objective nature and to explore their set of efficient solutions.
In fact, the knowledge of a complete set of efficient solutions of a multi-objective
problem is very important in order to provide a useful decision support tool to the
decision maker.
In literature, as shown in the following chapter, several solution approaches for
multi-objective programming have been developed, but the research in this field
does not yet keep up with the complexity of the formulations derived from real
problems like those presented in this chapter. For such a reason in this thesis two
bi-objective problems, that are a starting point for more complex formulations, have
been considered: the bi-objective integer min cost flow and the bi-objective spanning
tree problems. Also with reference to the telecommunication sector, these problems
represent the basic formulations for the efficient configuration and management of
the TLC networks. A general two-phase framework is proposed in order to determine
a complete set of efficient solutions for such problems. This work represents only
the first step in the direction of reducing the existing gap between the complex
formulations that arise from the real world applications and the current state of the
art of the solution approaches.

39

Chapter 3

Multicriteria optimization

In decision making processes in complex organizational contexts it is often insufficient
to make a decision based on a single criterion and it is more realistic to consider
different goals simultaneously, often in conflict with each other. Indeed, in many
real world problems, different points of view have to be taken into account. Several
examples of that appear in different application fields. In the transportation sector,
efficiency and cost-effectiveness on the one hand and security on the other hand, in
the telecommunications sector, energy saving and reliability should be combined, in
the construction industry cost and environmental impact, while in finance expected
return and risk have to be considered simultaneously. From the necessity to deal
with this type of problems the development of multi-objective optimization and a
new concept of optimal solution follow. Indeed, when considering more objectives
(criteria) in conflict, it is not guaranteed that a solution which is optimal for one
of the criteria is also optimal for the other objectives and it is no longer possible
to use the same concept of optimality as for the single objective case. Then the
definition of Pareto optimal solution or efficient solution is introduced. Such a
solution can not be improved according to a criterion without getting worse at least
one of the others. Generally a multi-objective optimization problem, because of the
conflictive relation between criteria, will have more than one efficient solution, and
among them the decision maker can choose the one that he or she prefers. The
basic form of multi-objective optimization is multiple objective linear programming,
characterized by objectives and constraints which are linear functions and it is
possible to distinguish between the continuous and the integer case. For multi-
objective linear programming it was developed also a duality theory (see [50]),
that is useful for designing dual solution methods (see [34]). Different solution
approaches can be considered distinguishing between continuous and integer case.
Moreover, a classification of the solution methods for multi-objective programming,
more theoretical than practical, is based on the role of the decision maker in the
resolution process. In this context it is possible to distinguish among "a priori mode",
"a posteriori mode" and "interactive mode". In the first case all the preferences are
known at the beginning of the decision making process. In the second case the set
of all efficient solutions is generated and then analyzed according with the decision
maker’s preferences. In the last case the preferences are introduced by the decision
maker during the resolution process and used to drive the search for a satisfying

40 3. Multicriteria optimization

compromise.
In the next sections, definitions, concepts and solution approaches for multi-objective
linear programming in the continuous and integer cases are recalled. An introduction
to the duality theory for multi-objective linear programming is given in section 3.1.2.

3.1 Multiobjective linear programming
A multi-objective linear programming problem can be formulated as follows:

minCx

Ax = b

x ≥ 0

where x ∈ Rn is the vector of decision variables, C ∈ Rp×n is the coefficient matrix
defining the p criteria of the problem, A ∈ Rm×n is the coefficient matrix and b ∈ Rm
is the vector defining the right hand side of the problem constraints. In the context of
multi-objective optimization it is useful to distinguish the feasible set in the decision
space (or decision set) X = {x ∈ Rn : Ax = b, x ≥ 0}, consisting of feasible solutions,
and the feasible set in the objective space (or outcome set) Y = {Cx : x ∈ X},
containing the points associated with the feasible solutions by means of the linear
mapping defined by the problem criteria.

Example 1. This example is a bi-objective linear programming problem in two
variables.

max(−x1 + 2x2, 2x1 − x2)

x1 + x2 ≤ 7

−x1 + x2 ≤ 3

x1 − x2 ≤ 3

x1, x2 ≥ 0

x1, x2 ≤ 4

Figure 3.1 shows the decision space of this problem and figure 3.2 reports the corre-
sponding objective space.

A fundamental concept in multi-objective programming is the definition of
Pareto optimal solution or efficient solution. Indeed, differently from the single
objective case, characterized by a complete order on the outcome set, when multiple
objectives are involved, this set is only partially ordered (see [31]). A new definition
of optimality is introduced, based on the concept of Pareto dominance as defined in
Definition 24.

Definition 24 (Pareto dominance). A feasible solution x ∈ X is dominated by
another feasible solution x′ ∈ X if Cx′ ≤ Cx with strict inequality for at least one
of the objectives.

3.1 Multiobjective linear programming 41

Figure 3.1. Decision space for Example 1

Definition 25 (Efficiency or Pareto optimality). A feasible solution x∗ ∈ X is
efficient or Pareto optimal if there does not exist another feasible solution x ∈ X
such that Cx ≤ Cx∗ with strict inequality for at least one of the objectives. The
corresponding vector y∗ = Cx∗ is called non-dominated.

Definition 26 (Extreme efficient solution). An efficient solution which defines an
extreme point of conv(Y) is called extreme efficient solution.

Definition 27 (Weakly efficiency). A feasible solution x̄ ∈ X is weakly efficient
if there does not exist another feasible solution x ∈ X such that Cx < Cx̄. The
corresponding vector ȳ = Cx̄ is called weakly non-dominated.

Definition 28 (Complete set of efficient solutions). Two feasible solutions x and x′

are called equivalent if Cx = Cx
′. A complete set XE is a set of efficient solutions

such that all x ∈ X \XE are either non-efficient or equivalent to at least one x ∈ XE.

Definition 29 (Pareto or non-dominated frontier). The set of non-dominated vectors
YN is called Pareto or non-dominated frontier.

According with the previous definitions, solving a multi-objective linear programming
problem means finding the set YN or a complete set of efficient solutions denoted by
XE .
The main result is the fundamental theorem of multiple objective linear programming
(see [55]).

Theorem 7 (Fundamental theorem of multiple objective programming). A feasible
solution x∗ ∈ X is efficient if and only if there exists λ > 0 such that λTCx∗ ≤
λTx ∀x ∈ X.

42 3. Multicriteria optimization

Figure 3.2. Objective space for Example 1

As regards solution methods for multi-objective linear programming, three main
classes can be identified. The first one is related to the simplex algorithms, that
are extensions of simplex algorithm for the single objective case to deal with more
objectives. Because of the possibility to have a large number of efficient extreme
solutions, the algorithms of this class can be very slow. The second class consists
of interior point algorithms which, at the current state of the art, do not find all
efficient solutions. The third class includes algorithms that are specific for multi-
objective problems. Such algorithms work in the outcome set of the problem for
finding non-dominated points. Three main motivations can be identified to prefer
the exploration of the outcome set rather than the exploration of the decision set.
The first reason is that the dimension of the outcome set is usually smaller than
the dimension of the decision space. This implies that less computational effort is
required for computing the non-dominated points. The second reason is related to
the decision maker. Indeed, in many practical cases it is not possible for the decision
maker to choose a solution among the huge number of efficient solutions. Eventually
it appears to be easier and more natural to compare the objective values rather than
the decisions leading to them. In this last class of solution algorithms it is possible
to identify a category represented by the dual methods. This is still a relatively new
approach, yet a first attempt to use duality results for designing a dual algorithm
for multiple linear programmes with the goal to speed-up the computation times
was made by Ehrgott et al. in [34]. Such an algorithm, depending on the problem
structure, can be faster than its primal version and it will be presented in Chapter 5.
In section 3.1.1 the primal version of Benson’s algorithm is presented. Preliminary
notions and duality results needed to introduce its dual variant will be reported in
section 3.1.2.

3.1 Multiobjective linear programming 43

3.1.1 Solving MOLP in Objective Space: Bensons’s algorithm

As mentioned above there exist at least three reasons to prefer the generation of the
non-dominated points in the outcome set Y instead of the efficient solutions in the
decision space. The first one is related to the dimension: usually YN has a much
simpler structure and smaller dimension than XE . Indeed YN ⊆ Rp and XE ⊆ Rn
where p is usually much smaller than n. This implies that in general generating all
or portions of YN requires less computational effort than generating all or portions
of XE . The second reason regards the decision maker: in practice it was shown
that the decision maker prefers basing his or her choice looking at the points in YN
rather than in XE . Eventually, another reason is the existence of solutions in XE

that are mapped by C onto a single point in YN . Thus generating points directly
from YN avoids the possibility of redundant calculations of solutions from XE not
useful for the decision maker. In this context the first algorithm able to generate the
set of all efficient extreme points in the outcome set, was proposed by Benson (see
[11]) and it is called Outer Approximation Algorithm. This algorithm is based on
some theoretical results that we will report. The main idea is to consider another
polyhedron Ȳ , opportunely defined, with the characteristic to have the same set of
non-dominated points of Y , for which it is easier to identify the set of all efficient
extreme points. In the following the main theoretical results on which the algorithm
is based are reported (see [11] for more details and proofs).

Prerequisities

Assuming to have a multi-objective linear programming problem where p criteria
(with rank of matrix C equal to q ≥ 1) have to be maximized over X (supposed
nonempty and compact), it is possible to prove Proposition 2.

Proposition 2. The dimension of Y satisfies dimY ≤ q.

The anti-ideal outcome for a multi-objective linear programming problem where p
criteria have to be maximized over X, is defined as:

yAIi = min
y∈Y

yi ∀i = 1, ..., p

Let ŷ ∈ Rp satisfy ŷ < yAI . The polyhedron mentioned before, that is instrumental
in the algorithm, is defined as follows:

Ȳ = {y ∈ Rp : ŷ ≤ y ≤ Cx for some x ∈ X} (3.1)

It is possible to prove that this set is nonempty, bounded in Rp and of dimension p.
Denoting with ȲN , the set of non-dominated points of Ȳ , the first important result
on which is based the algorithm is the following:

Theorem 8. YN = ȲN .

In the Outer Approximation Algorithm, an initial simplex containing Ȳ is built.

44 3. Multicriteria optimization

This construction is based on the following results:

Theorem 9. Let β = max〈e, y〉 with y ∈ Ȳ and e ∈ Rp vector of entries equal to 1.
Let v0 = ŷ and for each j = 1, ..., p let vj ∈ Rp be defined by:

vji =
{

ŷi if i 6= j
β + ŷj − 〈e, ŷ〉 if i = j

The convex hull S of V (S) = {vj | j = 0, ..., p} is a p-dimensional simplex with
vertex set V (S) and S contains Y .

Theorem 10. The simplex S defined in the previous theorem may also be written
as:

S = {y ∈ Rp | ŷ ≤ y, 〈e, y〉 ≤ β}

As the set Ȳ is nonempty and bounded in Rp, it follows that if a point p̄ ∈ int Ȳ
is chosen, starting from the simplex S defined in Theorem 9 , the algorithm will
iteratively generate a finite number of nonempty, compact, polyhedra Sk, k =
0, 1, ...K such that S = S0 ⊃ S1 ⊃ ... ⊃ SK−1 ⊃ SK = Ȳ . At the generic iteration
k, a vertex yk ∈ Sk will be identified such that yk /∈ Ȳ . Subsequently the unique
point wk on the boundary of Y that lies on the line segment joining p̄ with yk will
be identified. Indeed, the next result implies that wk belongs to the weakly non
dominated set of Ȳ , denoted by ȲWE .

Theorem 11. Let p̄ ∈ int Ȳ and suppose that y ≥ ŷ and y /∈ Ȳ . Let w denote the
unique point on the boundary of Ȳ that belongs to the line segment connecting y and
p̄. Then w ∈ ȲWE.

It is possible to prove that Ȳ is a p-dimensional polyhedron with a finite number
of faces and that a set F ⊆ Rp is a face of Ȳ if and only if F coincides with the
optimal solution set Y ∗(α) for the following problem:

max〈α, y〉

y ∈ Ȳ

for some α ∈ Rp. From the definition of Ȳ and the fact that ŷ < Cx ∀x ∈ X it
follows that p of the p− 1-dimensional faces of Ȳ are given by:

Fj = {y ∈ Ȳ | yj = ŷj} ∀j = 1, ..., p

Moreover for each j = 1, .., p either Fj ⊆ ȲWE or ri Fj ∩ ȲWE = ∅, where ri Fj
is the relative interior of Fj . Indeed ŷ ∈ Fj ∀j = 1, ..., p, and ŷ /∈ YWE . From
these observations, it derives that the point w in the last theorem lies in some face
F ⊆ ȲWE of Ȳ that satisfies F 6= Fj ∀j = 1, ..., p. Any such face F coincides with
the optimal solution set Y ∗(α) for some α ∈ Rp such that α > 0, α 6= 0. For finding
such a face F the following result is needed.

3.1 Multiobjective linear programming 45

Theorem 12. Assume that w ∈ ȲWE, and let (u∗T , v∗T) denote any optimal solu-
tion for the dual linear program of the problem Qw:

max t
Cz − et ≥ w (3.2)
Az = b (3.3)
z, t ≥ 0

where u∗ ∈ Rp and v∗ ∈ Rm correspond to constraints 3.2 and 3.3, respectively, of
the problem Qw. Then u∗ ≥ 0, u∗ 6= 0, and w belongs to the weakly efficient face
Y ∗(u∗) of Ȳ . Furthermore, Y ∗(u∗) is given by:

Y ∗(u∗) = {y ∈ Ȳ | 〈u∗, y〉 = 〈b, v∗〉}

The previous theorem provides the basis for building some linear inequality cuts
needed in the Outer Approximation Algorithm as showed in the following scheme.

Algorithm scheme

Initialization Compute a point p̄ ∈ int Ȳ and build the p-dimensional simplex
S0 = S containing Ȳ defined in (3.1). Store both the vertex set V (S0) of
S0 = S and the inequality representation of S0 = S. Set k = 0 and go to
iteration k.

Iteration k k ≥ 0. See steps k1− k4.

Step k1 If ∀y ∈ V (Sk, y ∈ Ȳ is satisfied, then stop. Y = Sk. Otherwise, choose
any yk ∈ V (Sk) such that yk /∈ Ȳ and continue.

Step k2 Find the unique value λk of λ, 0 < λ < 1, such that λyk +(1−λ)p̄ belongs
to the boundary of Ȳ , and set wk = λky

k + (1− λk)p̄.

Step k3 Set Sk+1 = Sk ∩ {y ∈ Rp | 〈uk, y〉 ≤ 〈b, vk〉}, where (ukT , vkT) is any dual
optimal solution to the linear program Qw with w = wk.

Step k4 Using V (Sk) and the definition of Sk+1 given in the previous step, deter-
mine V (Sk+1). Set k = k + 1 and go to iteration k.

Each of the inequalities 〈uk, y〉 ≤ 〈b, vk〉 ∀k ≥ 0 appended to Sk is called an
inequality cut and it is constructed so that Sk+1 cuts off a portion of Sk containing
yk in such a way that Sk ⊃ Sk+1 ⊃ Ȳ . The algorithm proposed by Benson is able
to generate all the efficient extreme points in the outcome set in a finite number of
iterations as reported in Theorem 13.

46 3. Multicriteria optimization

Theorem 13. The Outer Approximation Algorithm is finite and, when it terminates,
Sk = Ȳ , where K ≥ 0 is the final iteration number.
When the algorithm terminates, the set of all efficient extreme points in the outcome
set Y for the original multiple objective linear program, can be easily found by
means of Theorem 14.

Theorem 14. Let K ≥ 0 denote the iteration number in which Sk = Ȳ and the
Outer Approximation Algorithm terminates. Let

E = {y ∈ V (Sk) | y > ŷ}.
Then E is identical to the set of all efficient extreme points of Y .
An improvement of this algorithm was proposed in [34], where it is not necessary
to work with bounded simplices, as in the original version, and check whether a
vertex is non-dominated or not, is superfluous. In the same paper a dual variant of
Benson’s algorithm was proposed. In order to explain this variant, an introduction
to duality theory for multi-objective linear programming is presented in Section
3.1.2.

3.1.2 Duality

In this section the main concepts and results of duality theory for multiple objective
linear programs are reported. This theory is based on the duality relation between
the polyhedral image set of the primal problem (P) and the polyhedral image of
the dual problem (D). Indeed in [50], Heyde and Löhne, show that, there exists an
inclusion reversing one-to-one map between the minimal faces of the primal outcome
set and the maximal faces of the dual outcome set.

Preliminaries

Let C ⊆ Rp be a closed convex cone. An element y ∈ A is called C-minimal
if ({y} − C\{0}) ∩ A = ∅ and C-maximal if ({y} + C\{0}) ∩ A = ∅. A point
y ∈ A is called weakly C-minimal if ({y} − ri C) ∩ A = ∅ and weakly C-maximal if
({y}+ ri C)∩A = ∅, where ri C is the relative interior if C. Considering the following
two special cones:

C = Rp≥ = {x ∈ Rp : xk ≥ 0, k = 1, ..., p}
and

C = K = R≥ep = {y ∈ Rp : y1 = ... = yp−1 = 0, yp ≥ 0}.
We define the weakly Rp≥-minimal elements of A (also named set of weakly non
dominated points of A) and the set of K-maximal elements of A as follows:

wminRp≥A = {y ∈ A : ({y} − intRp≥) ∩ A = ∅}.

wmaxKA = {y ∈ A : ({y}+K\{0}) ∩ A = ∅}.
Let A ⊆ Rp≥ be a convex set. Some useful definitions are reported in the following.

3.1 Multiobjective linear programming 47

Definition 30 (Face). A convex subset F ⊆ A is defined a face of A if for all
y1, y2 ∈ A, and α ∈ (0, 1) such that αy1 + (1− α)y2 ∈ F , it holds that y1, y2 ∈ F .

Definition 31 (Proper face). A face F of A is called proper if ∅ 6= F 6= A.

Definition 32. A point y ∈ A is defined an extreme point of A if {y} is a face of
A.

Definition 33 (Recession direction). A recession direction of A is a vector d ∈ Rp
such that y + αd ∈ A for some y ∈ A and all α ≥ 0.

Definition 34 (Recession cone). The recession cone A∞ of A is the set of all
recession directions A∞ = {d ∈ Rp : y + αd ∈ A for some y ∈ A for all α ≥ 0}.

Definition 35 (Extreme recession direction). A recession direction d 6= 0 is named
extreme if there does not exist recession directions d1, d2 6= 0 with d1 6= αd2 for all
α > 0 such that d = 1

2(d1 + d2).

A polyhedral convex set A is defined by {x ∈ Rp : Dx ≥ f} where D ∈ Rm×p
and f ∈ Rm.

Definition 36 (Supporting hyperplane). The set H = {y ∈ Rp : λT y = γ}, where
λ ∈ Rp and γ ∈ R, is a supporting hyperplane to A if λT y ≥ γ for all y ∈ A and
there is some y0 ∈ A such that λT y0 = γ.

Proposition 3. A polyhedral set A has a finite number of faces.

Proposition 4. A subset F of A is a face if and only if there are λ ∈ Rp and γ ∈ R
such that A ⊆ {y ∈ Rp : λT y ≥ γ} and F = {y ∈ Rp : λT y = γ} ∩ A.

Proposition 5. F is a proper face if and only if H = {y ∈ Rp : λT y = γ} is a
supporting hyperplane to A with F = A ∩H.

Definition 37. The proper (r−1)-dimensional facets of an r-dimensional polyhedral
set A are called facets od A.

Theorem 15 is due to Rockafeller (see [72]).

Theorem 15. A polyhedral convex set A can be represented by a finite set of
inequalities and the set of all extreme points and extreme directions of A.

Let ξ = {x1, ..., xr, d1, ..., dt} be the set of all extreme points and directions of A,
then

A = {y ∈ Rp : y =
r∑
i=1

αix
i +

t∑
j=1

vjd
j with αi ≥ 0, vj ≥ 0, and

r∑
i=1

αi = 1}

For a polyhedral convex set A, the extreme points are called vertices and the set of
all vertices of a polyhedron A is indicated by vertA.

48 3. Multicriteria optimization

Geometric duality

The geometric duality for multi-objective linear programming was developed by
Heyde and Löhne (see [50]). Let A ∈ Rm×n, b ∈ Rm, P ∈ Rp×n and e = {1, ..., 1} ∈
Rp. Consider the multiple objective linear programming problem:

wminRp≥P (X) , X = {x ∈ Rn : Ax ≥ b}

This problem is the primal problem and consists in finding the weakly non-dominated
points of the outcome set P (X). Theorem 7 due to Isermann, assures that a point
y∗ ∈ P (X) is a weakly non-dominated point of P (X) if and only if there exists a
vector w ∈ Rp≥ with eTw = 1 such that wT y∗ is the minimal element of the set
{wT y : y ∈ P (X)}. Any x∗ such that Px∗ = y∗ is therefore an optimal solution
of the linear programme min{wTPx : Ax ≥ b}. The dual multiple objective linear
programme according with the geometric duality is given by:

wmaxKD(U) , U = {(u, λ) ∈ Rm × Rp : (u, λ) ≥ 0, ATu = P Tλ, eTλ = 1}

where K = {y ∈ Rp : y1 = y2 = ... = yp−1 = 0, yp ≥ 0} and D : Rm×Rp → Rp given
by:

D(u, λ) = (λ1, ..., λp−1, b
Tu)T

The dual problem consists in finding the K-maximal elements of D(U). The vec-
tor λ corresponds to the weight vector w in the weighted sum linear programme
min{wTPx : Ax ≥ b}. Considering a fixed λ ≥ 0 : eTλ = 1, the resulting problem
max{ATu = P Tλ, u ≥ 0} is the dual of the weighted sum linear programme with
w = λ. The duality for linear programming ensures that, assuming that X 6= ∅
and λTPx is bounded below over X , the minimal value of the weighted sum linear
programme with w = λ is equal to the maximal value of its dual. Combining this
with the fundamental theorem of Isermann, it is possible to show that y∗ is a weakly
non-dominated point of P (X), if and only if there exist λ∗ ≥ 0 : eTλ∗ = 1 such that
max{bTu : ATu = P Tλ∗, u ≥ 0} has an optimal solution u∗ such that bTu∗ = λ∗y∗.
D(u∗, λ∗) is then a K-maximal point of D(U). Moreover, for any (u, λ) ∈ U defining
a K-maximal point of D(U), u is an optimal solution of the dual of the weighted
sum problem and hence defines a weakly non-dominated point of P (X) via linear
programming duality.
For explaining more in details the geometric duality by Heyde and Löhne, it is
necessary to introduce the extended polyhedral image sets P = P (X) + Rp≥ and
D = D(U)−K, also called respectively upper image and lower image. It is known
that the Rp≥-minimal non-dominated points of P and P (X) as well as the K-maximal
elements of D and D(U) coincide. The geometric duality theory establishes a rela-
tionship between the weakly non-dominated vertices of P and the K-maximal facets
of D and between the weakly non-dominated facets of P and the K-maximal vertices
of D. This is an extension of the well-known duality of polytopes to P and D.

Definition 38 (Duality between polytopes). Two polytopes G and G∗ in Rp are
said to be dual each other if there exists a one-to-one mapping Ψ between the set of
all faces of G and the set of all faces of G∗ such that Ψ is inclusion-reversing.

3.1 Multiobjective linear programming 49

The geometric duality theorem states that there is a similar duality relationship
between P and D. To better explain, the following notation is introduced.
Let ϕ : Rp × Rp → R be a coupling function defined by:

ϕ(y, v) =
p−1∑
i=1

yivi + yp(1−
p−1∑
i=1

vi)− vp

If the values of the primal and dual objective functions are chosen as arguments, for
x ∈ X and (u, λ) ∈ U , the following relationship is obtained:

ϕ(Px,D(u, λ)) = λTPx− bTu

that is the difference between the value of the weighted sum linear programming
problem with w = λ and the value of its dual at u. Using this function, the following
two set-valued maps are defined.

H : Rp → Rp, H(v) = {y ∈ Rp : ϕ(y, v) = 0}

H : Rp → Rp, H∗(v) = {v ∈ Rp : ϕ(y, v) = 0}

H(v) and H∗(y) are hyperplanes in Rp for all v, y ∈ Rp. By means of the definitions.

λ(v) := (v1, ..., vp−1, 1−
p−1∑
i=1

vi)T

λ∗(y) := (y1 − yp, ..., yp.1 − yp,−1)T ,

they can be expressed as:

H(v) = {y ∈ Rp : λ(v)T y = vp},

H∗(y) = {v ∈ Rp : λ∗(y)T v = −yp}.

The map H can be used to define the duality map Ψ : 2Rp → 2Rp . Let F∗ ⊆ Rp,
then

Ψ(F∗) =
⋂
v∈F∗

H(v) ∩ P

Theorem 16 (Geometric duality theorem). Ψ is an inclusion reversing one-to-one
map between the set of all proper K-maximal faces of D and the set of all proper
weakly non-dominated faces of P and the inverse map is given by

Ψ−1(F) =
⋂
y∈F

H∗(y) ∩ D

Moreover for every proper K-maximal face F∗ of D it holds dimF∗ + dimΨ(F∗) =
p− 1.

In the proof of this important result, for which the reader can refer to [50], the
following two pairs of dual linear programming problems play an important role:

min
x∈X

λ(v)TPx X = {x ∈ Rn : Ax ≥ b}

50 3. Multicriteria optimization

max
u∈T (v)

bTu T (v) = {u ∈ Rm : u ≥ 0, ATu = P Tλ(v)}

and
min
x∈S(y)

z S(y) = {(x, z) ∈ Rn × R : Ax ≥ b, Px− ez ≤ y}

max
(u,λ)∈U

(bTu− yTλ) U = {(u, λ) ∈ Rm × Rp : (u, λ) ≥ 0, ATu = P Tλ, eTλ = 1}

Two important consequences of the geometric duality theorem are represented by
the following two corollaries that put in relation K-maximal vertices of D and weakly
non-dominated facets of P respectively weakly non-dominated vertices of P with
K-maximal facets of D.

Corollary 2. The following statements are equivalent
(i) v is a K-maximal vertex of D,
(ii) H(v) ∩ P is a weakly non-dominated facet of P.
Moreover, if F is a weakly non-dominated (p− 1)-dimensional facet of P, there is
some uniquely defined ppint v ∈ Rp such that F = H(v) ∩ P.

Corollary 3. The following statements are equivalent
(i) y is is a weakly non-dominated vertex of P,
(ii) H∗(y) ∩ D is K-maximal facet of D.
Moreover, if F∗ is a K-maximal (p − 1)-dimensional faced of D, there is some
uniquely defined point y ∈ Rp such that F∗ = H∗(y) ∩ D.

3.2 Multiobjective integer linear programming
A multi-objective integer linear programming problem can be formulated as follows:

minCx

Ax = b

x ≥ 0 (integer)

As in the continuous case, x ∈ Zn is the vector of decisional variables, C ∈ Rp×n is
the coefficient matrix defining the p objectives, A ∈ Rm×n is the coefficient matrix
and b ∈ Rm is the vector defining the right hand side of the problem constraints.
Differently from multiple objective linear programming, because of the presence
of integer constraints on the decisional variables, it is not sufficient to aggregate
the objectives through weighted sums to generate the set of all efficient solutions.
This means that in the discrete case, there exist efficient solutions which are not
optimal for any weighted sum of the objectives. These solutions are called non-
supported efficient solutions, while the remaining are called supported efficient
solutions. The set of supported efficient solutions is denoted by XSE , while the set
of non-supported efficient solutions is denoted by XNE = XE\XSE . Their images
in the objective space are denoted respectively by YNN and YSN (see Figure 3.3
for a generic representation in the bi-objective case). Usually there are many more
non-supported than supported efficient solutions (see [79]) and they significantly
contribute to the difficulty of the multiple objective integer linear programming

3.2 Multiobjective integer linear programming 51

problems. Indeed, these problems are in general NP-hard even for those that have
efficient algorithms in the single objective case. Moreover the number of efficient
solutions (and of non-dominated points) for such problems may be exponential in the
problem size. This prohibits the development of any efficient method to determine
all efficient solutions. Even the size of the set of supported efficient solutions may
be exponential, however numerical results show the number of supported efficient
solutions grows linearly with the problem size but the number of non-supported
efficient solutions grows as an exponential function (see [79]). Among the solution
approaches for multiple objective integer linear programming problems it is possible
to distinguish between exact and approximation methods. For the aim of this work,
only the first class of methods will be considered in more details, focusing on the
scalarization techniques in Section 3.2.1, while in the last section only a glimpse will
be given about approximation methods.

Figure 3.3. Example of Objective Space for a Bi-Objective Integer Linear Programme

3.2.1 Scalarization techniques

In this section the main exact solution methods for multi-objective integer linear
programming, based on scalarization, are summarized. A scalarization is a single
objective problem related to the original multiple objective problem with additional
variables and/or parameters, that is usually solved iteratively in order to find
some subset of efficient solutions of the multi-criteria problem under consideration.
Independently of the continuous or discrete nature of the problem, there are some
desiderable properties of scalarizations.

• Correctness: this property assures that the optimal solutions of the single
objective problem are (weakly) efficient for the original multiple objectives
problem.

52 3. Multicriteria optimization

• Completeness: this property guarantees that, solving iteratively the single
objective problem, all efficient solutions can be found.

• Computability: the scalarization should be not harder than single objective
version of the problem (from theoretical and practical point of view).

• Linearity: scalarization has linear formulation.

In the following, some of the most popular scalarizations methods are presented,
reporting for each of them which of these properties are satisfied.

The weighted sum method

Many of the solution methods for multiple objective integer linear programming
combine the multiple objectives into one single objective. The most popular and the
one used first is, as for the continuous case, the weighted sum scalarization. Then
the problem solved is:

minλTCx

Ax = b

x ≥ 0 (integer)

where λ ∈ Rp is such that 0 < λj < 1 ∀j = 1, ..., p and
∑p
j=1 = 1. Varying the

weights it is possible to generate all supported efficient solutions (see [41]). The
most important advantage of this method is that for each λ ∈ Rp the problem is
only as difficult as its single objective version.

The ε-constrained method

Another very popular method, able to find all efficient solutions, is the ε-constrained
method (see [18]), where one of the p objectives (say j-th) is retained for minimiza-
tion and the other p− 1 are turned into constraints:

minCjx

Ax = b

Ckx ≤ εk k 6= j

x ≥ 0 (integer)

All efficient solutions can be found by appropriately specifying the right hand side
values εk (see [32]). The disadvantage of this method is the presence of the upper
bound constraints on the objective values, that are knapsack constraints and this
makes the problem usually NP-hard. In these cases, the scalarized problem is harder
than the single objective version. The computational effort of this method is then
strongly dependent on the problem under consideration.

3.2 Multiobjective integer linear programming 53

Compromise method

Another well known approach is the compromise solution method, where the dis-
tance to an ideal point zI or to an utopian point zU = zI − εe is minimized, with
e = {1,, 1} ∈ Rp and ε > 0. The ideal point is defined according with the
individual minimum value of each objective:

yIj = min yj(x) = minCjx

Ax = b

x ≥ 0 (integer)

Usually the most used distance measure is the Chebychev norm and the problem
becomes:

min pmax
j=1

λj | yj(x)− yIj |

Ax = b

x ≥ 0 (integer)

From a theoretical point of view this method is able to produce the whole set of
efficient solutions (see [32]), but when sum objectives are considered, this kind of
problem is usually NP-complete and for this reason it is rarely used.

Ranking methods

One approach that is successfully used for bi-criteria problems, is represented by
ranking methods. The Nadir point is defined as follows:

yNj = min{yj(x) : yi(x) = yIi , j = 1, 2 : i 6= j}

Ax = b

x ≥ 0 (integer)

The ideal point yI = (yI1 , yI2) and Nadir point yN = (yN1 , yN2) define lower and upper
bounds on the objective values of efficient solutions. Then starting from a solution
with y1(x) = yI1 , and finding second best, third best and so on with respect to the
first objective until yN1 is reached, it is possible to generate the efficient set (see for
example [29]).

The elastic constraint method

As previously mentioned, the disadvantage of the weighted sum method is the
inability to generate all efficient solutions, while the problem of the ε-constrained
method is strictly dependent on the upper bounds on the objective functions, that
are necessary to find non-supported solutions. From these two observations it de-
rives the idea of the elastic constraint method proposed by Ehrgott (see [32]). In
this scalarization technique the ε-constraints are made elastic in order to obtain a
problem easier to solve. Indeed it is allowed to violate the upper bounds on the

54 3. Multicriteria optimization

objective values, introducing a penalty associated with the constraints violation.
The scalarized problem is the following:

minCjx+
∑
k 6=j

µksk

Ax = b

Ckx+ lk − sk = εk k 6= j

sk, lk ≥ 0 k 6= j

x ≥ 0 (integer)
The parameters are the penalty coefficients µk and the right hand side values
εk. Two sets of additional variables are introduced, slack variables lk and surplus
variables sk to turn the upper bound on the objective values into equality constraints.
This method is able to generate all efficient solutions (see [32]) and, if applied
properly, reduces the computational effort required to solve the scalarized problem
to acceptable levels. Indeed, the method of elastic constraints allows as much as
possible the utilization of the structure of the single objective problem, which the
ε-constrained method destroys. Moreover such a method contains as special cases
the weighted sum method and the ε-constrained method.

3.2.2 Other methods

Among the exact approaches for the resolution of multi-objective integer linear
programming problems, it is possible to mention the adaptation of the branch&bound
technique to the multiple objectives case (see for example [45] where an adaptation
of the branch&bound is used to deal with the multi-objective lot sizing problem).
It is well known that such a procedure consists in partitioning the problem into
mutually disjoint subproblems. For each subproblem a bound is computed and the
process continues until an optimal solution is found. The difficulty in the application
of this method to multi criteria integer problems is due to the computation of the
bounds for the subproblems, that are Nadir points. Indeed, these may be difficult to
compute or not effective in discarding a significant number of feasible non-efficient
solutions. For such a reason only few papers examined this solution method.
Another possible exact approach it is represented by the use of single objective
methods for a particular problem adapted to the multi-objective case (see for example
[26] and [48] for adaptations of Prim’s algorithm to its multi-objective version or [30]
and [14] for the out-of-kilter and the network simplex method to multiple objectives
network flow problem).
Eventually, a general framework for the exact solution of multi-objective integer
linear programming problems is the two-phase method. This approach computes
the whole set of efficient solutions in two steps. In the first phase the supported
efficient solutions are found, usually using the scalarization techniques and solving
single objective problems. In the second phase the non-supported efficient solutions
are generated using specific methods according with the problem and the bounds.
Such approach will be illustrated more in details in the next chapter with particular
reference to the bi-objective min cost flow problem and to the bi-objective minimum
spanning tree problem.

3.2 Multiobjective integer linear programming 55

Approximation methods

Before concluding this chapter, in order to give a more complete idea about the
solution approaches to multiple objective integer linear programming, a very short
introduction to the approximation methods is presented.
It is well known that in the single objective case a valid alternative to exact methods
for solving large-scale instances of integer linear programming problems is to design
an approximation method. This is true also in the multi-objective case for which such
methods may represent a good tradeoff between the quality of an approximation of
the efficient solutions set and the time and memory required. Adaptations from the
single to the multiple objective case have concerned genetic algorithms, simulated
annealing (see for example [75]), tabu search (see for example [27]), and the greedy
randomized adaptive search procedure (see for example [40]). In this context the
following two main approaches can be distinguished:

• Methods of local search in objective space. The procedure, starting from an
initial solution, approximates a part of the non dominated frontier correspond-
ing to a given search direction λ. An aggregation of the objectives, often
based on the weighted sum, has the effect to focus the search on a part of the
non-dominated frontier. Such strategy is repeated for several search directions,
in order to approximate the whole non-dominated frontier. According to the
methods, the directions can be defined a priori, interactively, or aleatory. At
each iteration, the search procedure uses only one solution and tries to attract
the solution generated towards the set of efficient solutions along direction λ.
The definition of λ plays an important role on the efficiency of these adaptations.

• Population based methods. Differently from the first approach, in which
only one solution is used to start the procedure for approximating the non-
dominated frontier, in this case all the population contributes to the evolution
process toward the efficient solutions set. Considering a population of solutions,
these methods can search for many efficient solutions in parallel by means
of self adaptation and cooperations. This feature makes the population-base
procedures attractive for solving multiple objective integer linear programming
problems.

57

Chapter 4

A new two-phase strategy for
solving bi-objective integer
network flow problems

This chapter presents a new two-phase solution approach for the bi-objective integer
network flow problem and its specializations. This solution method was introduced
for the first time by Ulungu and Teghem in [78] and consists in generating a complete
set of efficient solutions by means of two steps. The first one provides the supported
efficient solutions, the second one generates a complete set of non-supported efficient
solutions. Indeed, the class of problems under consideration, because of the presence
of integer variables, is characterized by the existence of non-dominated points that
lie in the interior of the convex hull of Y called non-supported non-dominated points.
As explained in Chapter 3, several techniques could be used for the generation of
supported Pareto optimal solutions. On the contrary, as regards those non-supported,
it does not exist an efficient general procedure for their generation because of the
lack of a theoretical characterization of these solutions at the current state of the
art. The prevalent strategy in the bi-objective case, used in the second phase, for
generating them, is the restriction of the exploration area in the outcome set, to the
triangles that can be built considering consecutive pairs of supported non-dominated
points sorted in increasing order according with the first objective. In each of these
triangles, the exploration for finding non-supported non-dominated points, depends
on the specific problem under consideration. This work proposes a general procedure
for implementing this part. This procedure is applicable to a generic bi-objective
integer network flow problem with appropriate specializations according with the
problem under consideration. In Section 4.2 and in Section 4.3 a detailed description
of this procedure will be given.

4.1 Two-phase method for bi-objective combinatorial
optimization problems

As previously mentioned, for combinatorial optimization problems with two or more
objectives, there exist non-dominated points that lie in the interior of the convex

58
4. A new two-phase strategy for solving bi-objective integer network flow

problems

hull of Y . In this context one of the possible strategies for finding a complete set of
Pareto optimal solutions is represented by the so called two-phase approach. This is a
general framework for the exact solution of multi-criteria combinatorial optimization
problems. It consists in generating a complete set of efficient solutions in two steps:
in the first one the supported efficient solutions are generated, in the second one,
using information from the first phase to limit the exploration area in the outcome
set, a complete set of non-supported efficient solutions is found. According with the
specific problem that has to be solved, several standard techniques can be used in
the first phase (for example the weighted sum method, the ε-constrained, or the
lexicographic method, see [32] and [33]). As regards the second phase, focusing on the
bi-objective case, the area to be explored for generating the remaining non-supported
solutions is limited using consecutive pairs of supported points, sorted in increasing
order with respect to the first objective. The deletion of the points dominated by
the pair of supported points under consideration leads to triangles whose vertices
are the two supported points and the corresponding Local Nadir Point. The area
that has to be explored for finding non-supported non-dominated points is therefore
limited to these triangles. In each of them, new feasible points for the bi-objective
problem are generated. Among these solutions the non-dominated are identified.
The procedure applied for this generation depends on the specific problem under
consideration. In [70] a k-best flow algorithm is used for generating feasible flows for
a single objective min cost flow problem, ordered according to their objective value.
At each iteration, starting from the initial optimal flow, the incremental graph is
built. On this graph the minimum cost cycle is found and used for defining the
second best flow. At this point two new networks are identified: one in which the
original optimal flow is infeasible and the second best is optimal and one in which
the original optimal flow is still optimal and the second best flow is infeasible. On
each of these two new networks the same procedure as before is applied. Two new
feasible flows are generated. The minimum among these two will be the third best
flow and so on. In [77] a k-best algorithm is applied for producing in an ordered
manner feasible spanning trees of a graph G = (V,E). Starting from the initial
optimal spanning tree T (the one with minimum cost), a T -exchange of two edges e,
f such that e ∈ T , f ∈ E − T and e, f has the smallest weight possible, is applied.
In this way the second best spanning tree is generated. At the generic iteration
j, for each of the spanning trees generated until the iteration j − 1 (T1,...,Tj−1),
two lists of arcs are created. The first one (IN) is the list containing the arcs in T
that must remain in T and the second one (OUT) is the list of arcs that are out of
T and that must remain out of T . At each iteration a T -exchange e, f such that
e ∈ T − IN , f ∈ E − T −OUT and e, f has the smallest weight possible, among all
the possible T -exchanges applicable on the previous spanning trees generated until
the current iteration, is applied. A new spanning tree is so generated, the one with
the minimum possible deterioration of the objective value.
In the works mentioned above, the procedures applied generate in order the feasible
solutions, but their operating principle is different and strictly related to the specific
problem for which they were designed. In the following section a general procedure
is proposed, able to generate all the feasible solutions for an integer network flow
problem. This strategy is based on the analysis of the reduced costs associated
with the arcs of the network and, by means of appropriate specializations, will be

4.2 A recursive procedure for generating all the feasible solutions of a single
objective integer network flow problem 59

applied to the bi-objective integer minimum cost flow problem and to the bi-objective
minimum spanning tree problem respectively in Chapter 5 and in Chapter 6.

4.2 A recursive procedure for generating all the feasible
solutions of a single objective integer network flow
problem

In this section a new general recursive procedure for generating feasible solutions
for a single objective integer network flow problem is described. This procedure
is based on the analysis of the reduced costs of the network arcs. More in details,
given a network flow problem P (G = (N,A)) with integer flow variables, let x∗
be an optimal basic feasible solution for such a problem. It is well-known that, in
correspondence to an optimal basic feasible solution, a reduced cost is associated to
each arc (variable). The reduced cost of a variable represents the increase of the
objective value if the value of the variable is increased (or decreased) by one unit
(see [12]).
Starting from this observation, the idea of the recursive procedure presented in this
work is to consider the non-zero reduced costs (assuming that x∗ is not degener-
ate) associated to the decision variables of the flow problem, sorting them from
the smallest to the biggest in absolute value. Starting from the smallest one, the
corresponding variable is modified (increased/decreased by one unit). In order to
obtain a new feasible solution by means of this change, it is also necessary to identify
the fundamental cycle that the arc creates with the arcs in the solution tree. On the
arcs in the fundamental cycle, appropriate changes have to be made for having a
new solution satisfying all the problem constraints. These changes depend on the
specific problem and they will be explained in detail in Chapters 5 and in Chapter
6 for two fundamental network flow problems: the min cost integer flow and the
minimum spanning tree problems.
When the arc under consideration is the one with the smallest non-zero reduced
cost in absolute value, the new feasible solution obtained applying this procedure
will correspond to the second best solution. Indeed, the objective value for the new
solution will be equal to the previous one plus the smallest non-zero reduced cost
in absolute value. This means that the increment of the objective function will be
the smallest possible one, that is the new feasible solution will be the second best
one. After the generation of the second best solution, the changes, mentioned above,
on the same arc (the one with smallest reduced cost in absolute value) and on the
arcs of the fundamental cycle that it creates, are made again until all the problem
constraints continue to be satisfied, in order to generate the third best solution,
the fourth best solution and so on. More precisely, for the min cost integer flow
problem, the number of feasible solutions that can be generated in strict ranking
order considering the smallest non-zero reduced cost in absolute value, is equal to
the minimum difference between the original (optimal) flow and the lower bound
(or the upper bound and the original (optimal) flow) among the arc corresponding
to this reduced cost and all the arcs in the fundamental cycle that it creates with
the basis at the optimal basic solution. Considering the minimum spanning tree
problem, this number will be equal to the number of arcs, in the fundamental cycle,

60
4. A new two-phase strategy for solving bi-objective integer network flow

problems

that can be exchanged with the one under consideration.
After the analysis of the smallest non-zero reduced cost in absolute value, the feasible
solutions generated by this procedure will not be in strict ranking order. Indeed,
analyzing the successive non-zero reduced costs, in order not to miss feasible solu-
tions, it is necessary to consider also combinations of arcs associated with different
non-zero reduced costs. More in details, when a new arc (associated with a given
non-zero reduced cost) is examined, a new feasible solution is generated with the
same strategy described above for the second best solution. After that, before
repeating the changes on the same arc, the non-zero reduced costs already analyzed
are again examined in the same order (from the smallest to the current one) to
obtain, if it is possible, new feasible solutions from the current one. For such a
reason, this strategy is designed as a recursive procedure. A pseudocode of this
algorithm is listed below.

INPUT: graph G = (N,A), optimal solution x∗, set of the problem constraints
X, vector of non-zero reduced costs in absolute value c̄∗ = {c∗1, c∗2...c∗K} (sorted from
the smallest to the biggest) where K is the number of non-zero reduced costs, and
the list FS = {x∗} initialized with the optimal basic feasible solution x∗.

find_feasible_solutions(G = (N,A), x∗,X, c̄∗, FS)
1: it = 1
2: while it ≤ K do
3: Let x∗(i,j) be the flow variable in the original optimal basic feasible solution x∗ corresponding to the

element c∗it ∈ c̄
∗ (c∗1 is the minimum non-zero reduced cost in absolute value).

4: Let C∗ be the cycle that the arc (i, j) creates with the arcs belonging to the spanning tree
corresponding to the optimal basic feasible solution x∗.

5: Let M(C∗) be the set of changes to be applied on the fundamental cycle C∗ to obtain a new
solution.

6: if M(C∗) on x∗ satisfy X then
7: xit=change_flow((i, j), C∗)
8: Insert the new feasible solution xit so obtained in FS.
9: find_feasible_solutions(G = (N,A), xit, X, c̄∗it, FS)

10: end if
11: it = it+ 1
12: end while

OUTPUT: Set FS containing all feasible solutions.
Algorithm 1: general recursive algorithm.

The input of this recursive procedure is: the network, the problem constraints,
the optimal basic feasible solution, and the vector of non-zero reduced costs sorted
from the smallest to the biggest in absolute value. The procedure stops when all
the non-zero reduced costs are analyzed. The feasible solutions found by means
of this algorithm are not in strict ranking order, with the exception, as mentioned
above, of those generated considering the smallest reduced cost in absolute value.
However, representing this procedure by means of a tree whose root is the initial
optimal basic solution, as the analysis of the reduced costs is made in order from the
smallest to the biggest one in absolute value, at each branch of the tree certainly the
value of the objective function will get worse. From this observation it is possible
to adapt this procedure in the context of a two-phase method for the generation of
non-supported efficient solutions as described in the following section.

4.3 Putting things together 61

4.3 Putting things together

At this point, after the description of the general recursive procedure for generating
feasible solutions for an integer network flow problem, it is possible to introduce an
adaptation of this algorithm for finding non-supported non-dominated points of a
bi-objective integer network flow problem. In this case, as mentioned in Section 4.1
a possible strategy for finding a complete set of efficient solutions is represented by
the two-phase strategy. Focusing on the second phase, the one by means of which
the non-supported Pareto optimal solutions are identified, it is possible to use this
general recursive procedure for exploring the areas of the triangles obtained, as
explained previously, by means of the supported non-dominated points associated
with the supported efficient solutions given by the first phase. Indeed, even if the
general procedure presented before does not generate the feasible solutions in a strict
ranking order, at each branch, it is sure that the new solution found will be equivalent
or worse than the one from which is generated. This observation permits to apply
this strategy in each triangle, limiting the generation of feasible points by means
of an appropriate upper bound without missing any feasible non-dominated point.
The single objective problem is obtained from the original one defining the weighted
sum of the two objectives. The weights are computed as the differences between
the coordinates, in the objective space, of the two points corresponding to the two
supported efficient solutions from which the triangle is built (see [69]). At each
iteration, once a new feasible solution is determined, a check on the corresponding
point in the outcome set is made. If the point associated with the new solution
is non-dominated by points already generated, and belongs to the triangle under
consideration, the corresponding solution is inserted in the set of efficient solutions.
In the recursive procedure proposed in this work the same check, after the generation
of a new feasible solution, is made. Differently from the previous works, as explained
above, this procedure does not generate the feasible solutions in strict ranking order,
and this check has to be repeated when the exploration of each triangle terminates.
Indeed, during the recursive procedure, a feasible solution, that dominates another
one previously generated, could be produced. For this reason, at the end of the re-
cursive procedure applied in a given triangle, it is necessary to repeat the dominance
check among the points in the objective space associated with the feasible solutions
generated, in order to eliminate potential dominated points.
After the dominance check, if the point belongs to the current triangle, it is used
to update the upper bound for limiting the generation of new feasible points. This
update is made with the same strategy explained in [69]. The point corresponding
to a new feasible non-dominated solution, together with the non-dominated points
already generated in the same triangle, are sorted in increasing order with respect
to the first objective. Consecutive pairs of these points (included the supported
points from which the triangle is built) are considered and the line joining such pair,
parallel to the one joining the two supported points associated with the triangle
under consideration, is built. Among these lines, the new upper bound will be defined
equal to the right hand side of the equation associated with the line that has the
maximum distance from the line joining the two supported points. This strategy is
repeated for each triangle and permits to obtain in the end a complete set of efficient
solutions for the bi-objective integer network flow problem under consideration. A

62
4. A new two-phase strategy for solving bi-objective integer network flow

problems

pseudocode of the second phase adopting such a procedure is showed below.

INPUT: Network G = (N,A)), costs matrix c = (c1, c2), list of extreme efficient
solutions x1, ..., xs.

Two_phase_bflow
1: i = 1
2: E = ∅
3: while (i < s) do
4: Ei = {xi, xi+1}
5: Compute λ1 = y2(xi)− y2(xi+1) , λ2 = y1(xi+1)− y1(xi) and cλ = λ1c1 + λ2c2

6: if E 6= ∅ then
7: for xb ∈ E do
8: if y(xb) ∈ Ti, it is not dominated and not equivalent to any x ∈ Ei then
9: Insert xb in Ei and remove xb from E

10: end if
11: end for
12: ∆ = max{λ1(y1(xi,j+1)− 1) + λ2(y2(xi,j)− 1), j = 0, ..., r}, r + 1 =| Ei |
13: end if
14: else
15: ∆ = µλ = λ1(y1(xi+1)− 1) + λ2(y2(xi)− 1) /* initial value of Delta*/
16: E = find_feasible_solutions[G(N,A), xi+1, X, c̄i+1, E,∆] /*with c̄i+1 vector of non-zero

reduced costs in absolute value associated with xi+1 (sorted from the smallest to the biggest) and
X set of problem constraints*/

17: for xb ∈ E do
18: if y(xb) ∈ Ti, it is not dominated and it is not equivalent to any x ∈ Ei then
19: Insert xb in Ei and remove xb from E
20: end if
21: else
22: Insert xb in E
23: end for
24: i = i+ 1
25: end while

OUTPUT: Complete set E∗ = ∪i=1,...,s−1Ei of efficient solutions.
Algorithm 2: Two-phase algorithm.

63

Chapter 5

A new algorithm for the
bi-objective integer min cost
flow problem

In this chapter we present a new two-phase algorithm for finding a complete set of
efficient solutions for the bi-objective integer minimum cost flow problem described
in [6]. As mentioned in Chapter 3, one of the possible strategies to approach the
multi-objective integer linear programming problems consists in generating Pareto
optimal solutions in two phases (see [78]). In the first phase, only the extreme
non-dominated points, that is vertices of the convex hull of Y, are found. In the
second phase, by means of an exploration in the outcome set, limited by the points
associated with the extreme efficient solutions generated in the first phase, others
non-extreme Pareto optimal, supported and non-supported, solutions are produced.
According with the specific problem under consideration, different methods can be
used for implementing the first phase. As regards the computation of the remaining
efficient solutions in the second phase, an enumerative approach has to be used, as
at current state of the art, a theoretical characterization of these solutions does not
exist.

5.1 State of the art

Most of the works on the exact solution of the bi-objective integer minimum cost
flow problem, consist in two-phase methods (see [47] for a complete review on multi-
objective minimum cost flow problems). As mentioned in Chapter 4, in the first phase
any approach to solve the continuous version of the problem can be used for finding
a complete set of extreme supported efficient solutions. Then the focus of researchers
was mainly on the possible implementations of the second phase. To this end in
[62], Lee and Pulat investigated the structure of the solutions of the bi-objective
integer min cost flow problem and performed an implicit search of the decision
space. More in details, they considered adjacent basic solutions (corresponding to
extreme supported non-dominated points) to generate intermediate solutions by
means of T -exchanges and modifying lower or upper bounds of the arcs. After all the
candidates have been generated, a filtering process is applied to delete dominated

64 5. A new algorithm for the bi-objective integer min cost flow problem

points from the candidate set. According to the authors, this procedure is able to
generate all non-supported efficient solutions, assuming non-degeneracy. In [51] an
extension of this algorithm was proposed for dealing also with degenerate instances
by Huarng, Pulat and Ravindran. In [73], Sedeño-Noda and González-Martín showed
that this algorithm is incorrect, because introducing only two non-basic arcs at a
time, like proposed by Lee and Pulat, it is possible to miss some efficient flows.
Moreover, they presented a left-right approach starting from an efficient solution
that is optimal for the first objective and moving to adjacent solutions in order to
find non-supported efficient flows. In this algorithm also combinations of non-basic
variables are considered. In their numerical tests they showed that the number of
non-supported non-dominated points grows faster than the number of supported
non-dominated points in relation to the size of the networks. In [68] an example of
a network where there exists an efficient solution that is not adjacent to any of the
others efficient solutions, is given to show the incorrectness of the approach proposed
by González-Martín. In [37] Figueira proposed a branch&bound approach to find all
non-dominated points, solving repeatedly ε-constrained problems in which the second
objective function is added to the constraints. In [70] Ehrgott and Raith presented
the most recent two-phase approach. After the generation of the supported extreme
efficient solutions by means of a parametric network simplex, in the second phase an
adaptation of the k-best algorithm by Hamacher (see [46]) is used to generate the
remaining efficient solutions. This algorithm is applied in each triangle that can be
identified considering consecutive pairs of supported extreme non-dominated points
sorted according with the first objective, in increasing order, and the associated local
Nadir point. One of the two efficient solutions, corresponding to the two extreme
non-dominated points, is taken as initial optimal solution for a weighted sum problem
appropriately defined. From this solution the k-best algorithm is applied to generate
the second best flow, the third best flow and so on. At each iteration, the point
associated with the flow generated is computed. A check on this point is made to
verify if it is in the current triangle under consideration and if it is non-dominated.
If both these properties are satisfied, the flow associated with this point is inserted
in the list of the non-supported efficient solutions. The procedure stops when all the
triangles have been explored.

5.2 The general idea of the algorithm

In the first phase, because of the total unimodularity of the coefficient matrix related
to the flow conservation constraints (all parameters and variables are supposed
integer), it is possible to use any methodology for solving the bi-objective continuous
network flow problem. For this reason, in the method proposed in this work, the dual
variant of Benson’s algorithm (see [34] and [49]) is used for generating the extreme
efficient solutions. This latter is a solution approach for generic multi-objective linear
programming problems that will be described in more detail in the next section.
In the second phase, the remaining supported and non-supported non-dominated
points are generated through an exploration of the objective space. In more details,
consecutive pairs of non-dominated extreme points, sorted in increasing order with
respect to the first objective (y1), are considered and the exploration is limited

5.2 The general idea of the algorithm 65

to the triangles that is possible to build using these pairs and the corresponding
Local Nadir Point (see Figure 5.1). Given a triangle, the supported efficient so-
lution corresponding to one of its two vertices, is assumed as an initial optimal
solution for the single objective flow problem obtained taking a combination, that
we will describe in Section 5.4.4, of the two objectives. Starting from this solution
a recursive algorithm, capable to generate all feasible flows of the single objective
problem, is applied, setting the upper bound on its objective function, for limiting
the generation of feasible flows, as in the work by Ehrgott and Raith ([70]). First, all
the equivalent optimal solutions of the single objective problem are generated, that
is all the non-extreme efficient solutions for the original bi-objective problem. Then,
by means of the corresponding points, sorted in increasing order with respect to the
first objective, a further reduction of the area to be explored in the triangle is made.

Figure 5.1. Example of triangles in the objective space

Indeed, it is possible to limit the search for non-supported non-dominated points only
to the new smaller triangles, contained in the initial one, determined by considering
consecutive pairs of these equivalent points and the corresponding Local Nadir
Points (see Figure 5.2). Then, starting from each one of the solutions associated with
these equivalent points, the recursive algorithm is applied for finding feasible flows
corresponding to non-supported non-dominated points. At each call of the recursive
algorithm, if the feasible flow produced corresponds to a "potentially non-dominated"
point that belongs to the triangle under consideration, the upper bound in the
current triangle is updated (see [69]). Then, the dual variant of Benson’s algorithm
is again applied to the network in which the initial equivalent optimal solution, for
the single objective problem, is infeasible and the current feasible flow is optimal. A
new set of efficient extreme points is so generated. Some of these points may lie in
the current triangle, others are located out of the triangle. By means of the points

66 5. A new algorithm for the bi-objective integer min cost flow problem

Figure 5.2. Example of Extreme and Local Nadir points of a given triangle

internal to the current triangle which are non-dominated, it is possible to further
update the upper bound. The extreme points so generated which do not belong to
the current triangle could lie in other triangles not yet explored. For this reason they
are stored and used for possibly improving the upper bound in the next iterations
of the algorithm. By reiterating this procedure in each triangle, it is possible to
improve the upper bounds, further limiting the exploration area in the outcome set
and speeding up the search for finding non-supported efficient solutions.

5.3 First phase: the dual variant of Benson’s algorithm

In this section the solution method used in the first phase for finding the extreme
efficient solutions is described. As mentioned above, the approach proposed for
this part, is the dual variant of Benson’s algorithm (see [34]), that is a method
to solve multiple objective linear programs in the outcome space, constructing a
sequence of approximating polytopes that contain the feasible set in the outcome
space and terminates when all extreme points of the polytope are feasible for the
original problem. Despite the full name, Benson’s algorithm is an exact one. In [34]
a dual variant of this approach is proposed, consisting in the application of Benson’s
algorithm (with some slight modifications), to the dual outcome set, using some
results in the duality for multiple objective linear programs (see [50] and Section
3.1.2). This variant can be used in this context because it needs to solve linear
programming problems that are single objective minimum cost flow problems, hence
the total unimodularity property is preserved and this guarantees that the solutions
will be integer.

5.4 Second phase: a recursive algorithm for generating all feasible flows 67

5.3.1 Benson’s algorithm strategy

In the primal algorithm the upper image P is built, while the dual variant of
Benson’s algorithm constructs the lower image D (see Chapter 2). From D, using
the geometric duality, P can be obtained. It is assumed that the primal feasible
set X of the original multiple objective problem is nonempty and P is Rp=-bounded
from below. The dual variant of Benson’s algorithm first builds a p-dimensional
polyhedral set S0 = {v ∈ Rp : λ(v) = 0, ϕ(Px0, v) = 0} such that D ⊆ S0. As
described in Chapter 3, λ(v) ∈ Rp is the weight vector whose components sum is
equal to 1 and ϕ(Px0, v) : Rp × Rp → R is the coupling function that defines the
gap between the value of the weighted sum linear programming problem and the
value of its dual. At each iteration a vertex sk of Sk−1 not contained in D is chosen
and a supporting hyperplane to D is determined by solving the weighted sum linear
program (P1(vk)), where vk is a boundary point of D on the line segment joining sk
with the interior point d̂ of D. The polytope Sk is defined by intersecting Sk−1 with
the halfspace of the hyperplane containing D until at termination Sk−1 = D.

5.3.2 Main steps

Initialization (k = 0).

(Step i1) Choose some d̂ ∈ int D.
(Step i2) Compute an optimal solution x0 of (P1(d̂)).
(Step i3) Set S0 := {v ∈ Rp : λ(v) = 0, ϕ(Px0, v) = 0} and k = 1.

Iteration steps (k ≥ 1).

(Step k1) If vert Sk−1 ⊆ D stop, otherwise choose a vertex sk of Sk−1 such that
sk ∈ D.
(Step k2) Compute αk ∈ (0, 1) such that vk := αksk + (1− αk)d̂ ∈ maxKD.
(Step k3) Compute an optimal solution xk of (P1(vk)).
(Step k4) Set Sk := Sk−1 ∩ {v ∈ Rp : ϕ(Pxk, v)=0}.
(Step k5) Set k := k + 1 and go to (Step k1).

5.4 Second phase: a recursive algorithm for generating
all feasible flows

In the second phase, for generating the remaining supported and non-supported
Pareto optimal solutions, an exploration in the outcome set is implemented. This
exploration is limited, as mentioned in Section 5.2, to the triangles that can be
obtained considering consecutive pairs of extreme non-dominated points provided
by the first phase and their associated Local Nadir point. At each iteration of the
algorithm, one of these triangle is analyzed, starting from the left, that is, from
the triangle associated with the first two extreme non-dominated points sorted in
increasing order with the respect of the first objective (y1). Then, given the triangle
under consideration at the generic iteration, the flow values associated with the

68 5. A new algorithm for the bi-objective integer min cost flow problem

extreme efficient point on the right of the triangle, are used as initial optimal solution
for the following single objective flow problem:

min
∑

(i,j)∈A
(λ1c

1
(i,j)x(i,j) + λ2c

2
(i,j)x(i,j)) (5.1)

∑
j∈N+(i)

x(i,j) −
∑

j∈N−(i)
x(j,i) = bi ∀i ∈ N (5.2)

0 ≤ x(i,j) ≤ u(i,j) ∀(i, j) ∈ A (5.3)

x(i,j) integer ∀(i, j) ∈ A (5.4)

where N is the set of nodes and A is the set of arcs describing the network, u is
the integer capacity vector, b is the integer demand vector, c1 and c2 are the integer
costs vectors and λ1 and λ2 are the weights associated with each objective. These
weights are defined as in [70]: given the two extreme efficient points that define the
current triangle, yi = (y1(xi), y2(xi)) and yi+1 = (y1(xi+1), y2(xi+1)), the weights
are defined as follows:

λ1 = y2(xi)− y2(xi+1) and λ2 = y1(xi+1)− y1(xi). (5.5)

This definition of weights implies that the single objective flow problem has optimal
solutions xi and xi+1 and also all their convex combinations are optimal. Hence, it
is possible to start from the solution xi+1 (or from the solution xi) and consider
it optimal for the weighted sum problem (5.1)-(5.4). Then, from this solution,
a recursive algorithm, described next in detail, able to generate all the (integer)
feasible flows of the problem is applied. In fact, all the other efficient solutions of the
original bi-objective problem, correspond to flows that are feasible for the network
under consideration and such that the associated points in the objective space are
non-dominated. For this reason a new algorithm that provides all the feasible flows
of a given network, starting from an initial optimal basic feasible solution, has been
designed. This algorithm, differently from the k-best flow algorithm (see [46]), does
not produce feasible flows ordered with the respect of the objective function, but
according to its operating principle, at each iteration generates a feasible flow that
is certainly worse, in term of objective value, than the previous one.

5.4.1 Strategy of the recursive algorithm

The procedure used for generating all the feasible flows for an integer min cost flow
problem, with a single objective, works considering the reduced costs associated
with the arc variables of the initial optimal basic feasible solution. The reduced
costs are sorted from the smallest to the biggest one in absolute value and analyzed
in this order. Given the smallest non-zero reduced cost in absolute value ri,j , the
fundamental cycle C∗i,j that the corresponding arc (i, j) creates with the spanning
tree T ∗ associate with the starting optimal basic feasible solution x∗, is identified.
From the arcs in the fundamental cycle, two distinct sets are generated: the set
CAi,j of the arcs with the same orientation of the arc (i, j) and the set DAi,j of the
arcs with opposite orientation to the arc (i, j). If it is true simultaneously that the
arc (i, j) is empty, the arcs belonging to CAi,j are not saturated and the arcs in the

5.4 Second phase: a recursive algorithm for generating all feasible flows 69

set DAi,j are not empty, then a new feasible flow is obtained increasing by one unit
the flow on the arc (i, j) and on the arcs in CAi,j and decreasing by one unit the
flow on the arcs in DAi,j . Analogously, if it is true simultaneously that the arc (i, j)
is saturated, that arcs belonging to CAi,j are not empty and that arcs in the set
DAi,j are not saturated, a new feasible flow is obtained decreasing by one unit the
flow on the arc (i, j) and on the arcs in CAi,j and increasing by one unit the flow
on the arcs in DAi,j .
At the first iteration of this algorithm, the feasible flow obtained is exactly the
second best flow (see [3]), generated inserting in the basis associated with the initial
optimal basic feasible solution, the arc with smallest (non-zero) absolute value of the
reduced cost. Therefore, the corresponding deterioration of the objective function is
as small as possible. At each iteration one of the bounds of the arc (i, j) is changed
together with its flow: if the arc (i, j) is empty, its lower bound is increased by one
unit, while if the arc (i, j) is saturated, its upper bound is decreased by one unit.
Implementing this change, the new flow is an optimal basic feasible solution, for the
new network, with the same basis as before. By means of this network change it
is possible to reiterate the procedure starting from the new optimal basic feasible
flow until we can change the flows (without violating constraints) on the arc (i, j)
and on the arcs in the fundamental cycle that it creates with the spanning tree
T ∗. In doing so, we can continue this procedure for generating all the other worse
feasible flows, as we can start again from an initial optimal basic feasible solution
to which correspond the same reduced costs. When the flow value of one arc of
the fundamental cycle reaches the value of its bound (lower or upper), the second
non-zero reduced cost in absolute value has to be considered, starting again from the
original network and the original optimal basic feasible solution. Considering the
second non-zero reduced cost in absolute value ri′ ,j′ , the same procedure described
above is applied to generate a new feasible flow. In this case, before changing again
the flow and the bound on the same arc (i′ , j′), in order not to miss feasible solutions
and to obtain the minimum possible deterioration of the objective function, starting
from this new solution, the first non-zero reduced cost in absolute value has to be
considered, until flow values of the arc (i, j) and of the arcs in the fundamental cycle
created by (i, j) in the spanning tree T ∗ do not violate any constraint. Reiterating
this procedure considering all the non-zero reduced costs in absolute value in order
from the smallest to the biggest, and for all their possible combinations, as explained,
all the feasible flows can be identified. Therefore, the resulting algorithm consists in
a recursive procedure that is summarized in the following pseudocode.

INPUT: graph G = (N,A), integer capacities vector k, optimal solution x∗, vector
of non-zero reduced costs in absolute value r̄c∗ = {rc∗1, rc∗2...rc∗K} (sorted from the
smallest to the biggest) where K is the number of non-zero reduced costs, and the
list FS = {x∗} containing at the beginning the initial optimal solution.

70 5. A new algorithm for the bi-objective integer min cost flow problem

find_feasible_flows(G = (N,A), u, x∗, r̄c∗, FS)
1: it = 1
2: while it ≤ K do
3: Let x∗(i,j) be the flow variable in the original optimal basic feasible solution x∗ corresponding to the

element c∗it ∈ c̄
∗ (c∗1 is the minimum non-zero reduced cost in absolute value).

4: Let C∗ be the cycle that the arc (i, j) creates with the arcs belonging to the spanning tree
corresponding to the original optimal solution x∗ in the original network (with capacities vector u).

5: if ((r̄c∗it > 0) && (x∗
(i′ ,j′)

< u(i′ ,j′) ∀(i
′
, j

′) ∈ C∗ : (i, j) and (i′ , j′) have same orientation) &&

(x∗
(i′ ,j′)

> 0 ∀(i′ , j′) ∈ C∗ : (i, j) and (i′ , j′) have opposite orientation)) then
6: Increase by one unit the flow and the lower bound on the arc (i, j) and the flow on the arcs

(i′ , j′) ∈ C∗ such that (i, j) and (i′ , j′) have same orientation, decrease by one unit the flow on
the arcs (i′ , j′) ∈ C∗ such that (i, j) and (i′ , j′) have opposite orientation.

7: Insert the new feasible flow xit so obtained in FS.
8: find_feasible_flows(G = (N,A), uit, xit, r̄c∗it, FS).
9: end if

10: it = it+ 1
11: if ((r̄c∗it < 0) &&(x∗

(i′ ,j′)
< u(i′ ,j′) ∀(i

′
, j

′) ∈ C∗ : (i, j) and (i′ , j′) have opposite orientation) &&

(x∗
(i′ ,j′)

> 0 ∀(i′ , j′) ∈ C∗ : (i, j) and (i′ , j′) have same orientation)) then
12: Decrease by one unit the flow and the upper bound on the arc (i, j) and the flow on the arcs

(i′ , j′) ∈ C∗ such that (i, j) and (i′ , j′) have same orientation, increase by one unit the flow on
the arcs (i′ , j′) ∈ C∗ such that (i, j) and (i′ , j′) have opposite orientation.

13: Insert the new feasible flow xit so obtained in FS.
14: find_feasible_flows(G = (N,A), uit, xit, r̄c∗it, FS).
15: end if
16: it = it+ 1.
17: end while

OUTPUT: Set FS containing all feasible flows.
Algorithm 3: recursive algorithm specialized for the integer min cost flow problem.

Theorem 17. Let us assume that the integer min cost flow problem (5.1)-(5.4) has an
unique optimal (basic) feasible solution x∗ and let T ∗ be the spanning tree associated
with x∗. Procedure find_feasible_flows examines all the feasible combinations of
augmenting cycles generated by the m−n+ 1 fundamental cycles associated with T ∗.

Proof. To prove this we just recall that Step 4 of the procedure find_feasible_flows
examines first the fundamental cycle associated with the arc out of T ∗ with minimum
non-zero reduced cost (in absolute value). Once all augmenting cycles associated
with this fundamental cycle have been produced, it starts the generation of feasible
combination of augmenting cycles in the following manner. The algorithm finds the
fundamental cycle associated with the second non-zero reduced cost (in absolute
value) and generates just one augmenting cycle associated with this fundamental
cycle. Now, differently from the first non-zero reduced cost, the recursive procedure
is called on the new feasible flow so obtained. This means that it attempts to
combine the first augmenting cycle associated with the second non-zero reduced cost
(in absolute value) with the first augmenting cycle associated with the first non-zero
reduced cost (in absolute value). Note that continuing in generating augmenting
cycles associated with the fundamental cycle related to the first non-zero reduced
cost (in absolute value), all the augmenting cycles from the first non-zero reduced
cost (in absolute value) are combined with the current augmenting cycle (in this case
associated with the second non-zero reduced cost in absolute value). Then, when
back on the feasible solution associated with the first augmenting cycle generated
by the second fundamental cycle, the procedure seeks a further augmenting cycle

5.4 Second phase: a recursive algorithm for generating all feasible flows 71

from the second fundamental cycle. If it succeeded, again the recursive procedure is
called from the new feasible flow so generated. It should be clear that by means of
this mechanism, all the feasible combinations of augmenting cycles generated by the
first two fundamental cycles are examined. At the generic stage of the algorithm
non-zero reduced cost k is considered and with the same mechanism all feasible com-
binations of augmenting cycles generated by the fundamental cycles associated with
the first non-zero k− 1 reduced costs (in absolute value) with the augmenting cycles
associated with non-zero reduced cost k are generated. The algorithm continues
generating feasible combinations of augmenting cycles in order of increasing reduced
cost (in absolute value) until all non-zero reduced costs are examined, that is all the
feasible combinations of augmenting cycles, including the whole set of fundamental
cycles, are generated.

In order to prove a direct consequence of Theorem 17 we recall Theorem 1 from
Chapter 1.

Theorem 1
Let G = (V,E) be a connected graph and let T = (V,E′) be a spanning tree of G.
Then the fundamental system of cycles with respect of G and T forms a basis for
the cycle space C.

By means of Theorem 1 it is possible to prove Corollary 4

Corollary 4. Let us assume that the integer min cost flow problem 5.1-5.4 has an
unique optimal (basic) feasible solution x∗ and let T ∗ be the spanning tree associated
with x∗. Procedure find_feasible_flows examines all the feasible combinations of
augmenting cycles starting from x∗.

Proof. The proof is direct consequence of Theorem 17, that guarantees that all the
feasible combinations of augmenting cycles that can be generated by the m− n+ 1
fundamental cycles associated with T ∗ are examined, and Theorem 1.

Theorem 18 assures the correctness of the recursive procedure find_feasible_flows.

Theorem 18. Let us assume that the integer min cost flow problem 5.1-5.4 has an
unique optimal (basic) feasible solution x∗, then the procedure find_feasible_flows,
starting from x∗, can generate all feasible flows.

In order to prove Theorem 18, it is necessary to recall a fundamental result related
to network flows that has been presented in Chapter 1, that is the Augmenting
Cycle Theorem.

Theorem 4
Let x and x0 be two feasible flows. Then x equals x0 plus the flow on at most m
directed cycles in G(x0). Furthermore the cost of x equals the cost of x0 plus the
cost of the flows on these augmenting cycles.

By means of Corollary 4 and Theorem 4 we can now prove Theorem 18.

72 5. A new algorithm for the bi-objective integer min cost flow problem

(Proof Theorem 18). For the hypothesis, the procedure find_feasible_flows starts
from the unique optimal (basic) feasible flow x∗. Let G be the graph of the integer
min cost flow problem and let T ∗ be the spanning tree associated with x∗.
According to Theorem 4, a feasible flow x can be obtained from x∗ plus at most m
augmenting cycles in G.
We shall prove that all flows are generated adding to the initial optimal (basic)
feasible flow x∗ all the possible feasible combinations of augmenting cycles. Indeed
the recursive procedure find_feasible_flows, as stated in Corollary 4, is capable
of generating all feasible combinations of augmenting cycles starting from an optimal
basic feasible flow x∗. Moreover note that the procedure changes only by one unit
at a time the flow value. Hence all possible integer feasible flows are generated.

5.4.2 A special case: degeneracy

It is known that several feasible solutions (flows) could correspond to the same
optimal value of the objective function. In these cases, when computing the reduced
costs associated with the variables at the initial optimal solution under consideration,
some variables not in the basis, will have zero reduced costs. This means that if one
of these variables is inserted in the basis, the value of the objective function does
not change and the new objective value is equivalent to the optimal one. When this
situation occurs, it is necessary to apply the recursive function starting from each
of these multiple optimal solutions to obtain all the other worse feasible solutions.
For finding all the multiple optimal solutions, starting from one of them that is
basic, the same recursive procedure, can be applied, but considering the arcs, out
of the basis, with zero reduced costs instead of those with non-zero reduced costs
in absolute value. Therefore, in the more general case, including degeneracy, the
pseudocode of this procedure is reported below:

INPUT: graph G = (N,A), integer capacities vector u, optimal solution x∗, vector of
the non-zero reduced costs in absolute value r̄c∗ = {rc∗1, rc∗2...rc∗K} (sorted from the
smallest to the biggest), vector of the zero reduced costs r̄c∗z = {rc∗z1, rc∗z2...rc∗zK}
and the lists FS = OPT = {x∗} containing at the beginning the initial optimal
solution.

find_all_feasible_flows(G = (N,A), u, x∗, r̄c∗, FS)
1: for i = 1 to | OPT | do
2: find_feasible_flows(G = (N,A), u, x∗i , r̄c

∗, FS).
3: end for

OUTPUT:Set FS containing all feasible flows.
Algorithm 4: recursive algorithm for the integer min cost flow problem with
degeneracy.

The procedure find_optimal_flows is the one for generating the multiple optimal
solutions that can be pseudocoding in the following way

INPUT: graph G = (N,A), integer capacities vector u, optimal basic feasible
solution x∗, vector of the zero reduced costs r̄c∗z = {rc∗z1, rc∗z2...rc∗zK} and the list
OPT = {x∗} containing at the beginning the initial optimal basic feasible solution.

5.4 Second phase: a recursive algorithm for generating all feasible flows 73

find_optimal_flows(G = (N,A), u, x∗, r̄c∗z , OPT)
1: it = 1
2: while it ≤ zK do
3: Let x∗(i,j) be the flow variable in the original optimal basic feasible solution x∗ corresponding to the

element rc∗zit
∈ r̄c∗z

4: Let C∗ be the cycle that the arc (i, j) creates with the arcs belonging to the spanning tree
corresponding to the original optimal basic feasible solution x∗ in the original network (with
capacities vector u)

5: if (x∗(i,j) == u(i,j)) &&

(x∗
(i′ ,j′)

< u(i′ ,j′)∀(i
′
, j

′) ∈ C∗ : (i, j) and (i′ , j′) have opposite orientation) &&

(x∗
(i′ ,j′)

> 0 ∀(i′ , j′) ∈ C∗ : (i, j) and (i′ , j′) have same orientation)) then
6: Decrease by one unit the flow and the upper bound on the arc (i, j) and the flow on the arcs

(i′ , j′) ∈ C∗ such that (i, j) and (i′ , j′) have same orientation, increase by one unit the flow on
the arcs (i′ , j′) ∈ C∗ such that (i, j) and (i′ , j′) have opposite orientation

7: Insert the new optimal feasible flow xit so obtained in OPT
8: find_optimal_flows(G = (N,A), uit, xit, r̄c∗zit

, OPT)
9: end if

10: if ((x∗(i,j) == l(i,j)) && (x∗
(i′ ,j′)

< u(i′ ,j′)∀(i
′
, j

′) ∈ C∗ : (i, j) and (i′ , j′) have same orientation)

&& (x∗
(i′ ,j′)

> 0 ∀(i′ , j′) ∈ C∗ : (i, j) and (i′ , j′) have opposite orientation)) then
11: Increase by one unit the flow and the lower bound on the arc (i, j) and the flow on the arcs

(i′ , j′) ∈ C∗ such that (i, j) and (i′ , j′) have same orientation, decrease by one unit the flow on
the arcs (i′ , j′) ∈ C∗ such that (i, j) and (i′ , j′) have opposite orientation

12: Insert the new optimal feasible flow xit so obtained in OPT
13: find_optimal_flows(G = (N,A), uit, xit, r̄c∗zit

, OPT)
14: end if
15: it = it+ 1
16: end while
OUTPUT: Set OPT containing all equivalent optimal flows.

Algorithm 5: recursive algorithm for finding all optimal flows.

Theorem 19. Let us assume that the integer min cost flow problem (5.1)-(5.4) has
multiple optimal solutions. Let x∗ be an optimal basic feasible solution and let T ∗
be the corresponding spanning tree, then the procedure find_all_feasible_flows,
starting from x∗, can generate all feasible flows.

Proof. The proof follows the scheme of Theorem 18 with just one difference: instead
of considering only non-zero reduced costs associated with arcs out of T ∗, in this
case, as degeneracy implies the existence of zero reduced costs also for some arcs
out of T ∗, the procedure has to consider also these arcs in order to examines all the
feasible combinations of augmenting cycles, generated by the m−n+ 1 fundamental
cycles associated with T ∗.

5.4.3 Illustrative example

The following example shows the operating principle of the recursive function for
generating all the feasible flows for a directed graph of 6 nodes and 9 arcs. In
this case two different flow solutions correspond to the same optimal value of the
objective function equal to 34. Then, starting from both these two optimal solutions,
the recursive procedure is applied.

Initial optimal solution x∗1 with objective value equal to 34
We consider the arcs of the network in the following order:

74 5. A new algorithm for the bi-objective integer min cost flow problem

1

4

2

5

3

6

[5]
[2]

[1]
[2]

[1]
[4]

[3]

[3]

[1]

1

4

2

5

3

6

1

1

0
2

0
3

2

2
0

{(1, 4); (2, 1); (2, 4); (2, 5); (2, 6); (3, 2); (3, 6); (5, 4); (5, 6)}

Optimal solution x∗1, Dual variables (Potentials) and Reduced costs

x∗ =

1
1
0
2
0
3
2
2
0

π∗ =

1
−1
−5
3
1
1

r̄c∗ =

0
0
0
1
−4
0
0
0
−2

(In this example the reduced costs have been computed assuming positive reduced
costs for saturated arcs and negative reduced costs for empty arcs out of the basis).

Procedure applied on the example

• The variable with minimum non-zero reduced cost (in absolute value) is x∗(2,5).

• Decrease by one unit the flow and the upper bound on the arc (2, 5).

• If this arc entered in the basis, the cycle C would consist in the arcs (2, 1),
(1, 4), (2, 5) and (5, 4).

• Increase by one unit the flow on the arcs (2, 1) and (1, 4), and decrease by one
unit the flow on the arc (5, 4).
Second best flow x1 with objective value equal to 35

– The arc (2, 1) is now saturated.
– Consider the original network and the original optimal solution.

5.4 Second phase: a recursive algorithm for generating all feasible flows 75

1

4

2

5

3

6

2

2

0
1

0
3

2

1
0

– The variable with the second minimum non-zero reduced cost (in absolute
value) is x∗(5,6)

– If this variable entered in basis, the cycle C would consist in the arcs
(2, 1), (1, 4), (3, 2), (3, 6), (5, 4) and (5, 6).

– Increase by one unit the flow and the lower bound on the arc (5, 6).
– Increase by one unit the flow on the arcs (1, 4) and (2, 1) and (3, 2), and

decrease by one unit the flow on the arcs (3, 6) and (5, 4).

New feasible solution x2 with objective value equal to 36

1

4

2

5

3

6

2

2

0
2

0
4

1

1
1

– The arc (2,1) is now saturated.
– Consider the original network and the original optimal solution.
– The variable with the third minimum non-zero reduced cost (in absolute

value) is x∗(2,6)

– If this variable entered in basis, the cycle C would consist in the arcs
(2, 6), (3, 2) and (3, 6).

– Increase by one unit the flow and the lower bound on the arc (2, 6).
– Increase by one unit the flow on the arc (3, 2), and decrease by one unit

the flow on the arc (3, 6).

New feasible solution x3 with objective value equal to 38

1

4

2

5

3

6

1

1

0
2

1
4

1

2
0

– Consider again the variable with minimum non-zero reduced cost (in
absolute value), that is x∗(2,5).

76 5. A new algorithm for the bi-objective integer min cost flow problem

– Decrease by one unit the flow and the upper bound on the arc (2, 5).
– As before, if this arc entered in the basis, the cycle C would consist in

the arcs (2, 1), (1, 4), (2, 5) and (5, 4).
– Increase by one unit the flow on the arcs (2, 1) and (1, 4), and decrease

by one unit the flow on the arc (5, 4).

New feasible solution x3
1 with objective value equal to 39

1

4

2

5

3

6

2

2

0
1

1
4

1

1
0

x∗1

x1 x2 x3

x3
1

Figure 5.3. Solutions tree from the optimal basic feasible solution x∗
1

At this point, all the feasible flows starting from the first optimal basic feasible
solution were generated. Therefore, the recursive procedure can be applied
starting from the second optimal solution.

5.4 Second phase: a recursive algorithm for generating all feasible flows 77

Initial optimal solution x∗2 with objective value equal to 34

1

4

2

5

3

6

0

0

1
2

0
3

2

2
0

Optimal solution x∗2, Dual variables (Potentials) and Reduced costs

x∗ =

0
0
1
2
0
3
2
2
0

π∗ =

1
−1
−5
3
1
1

r̄c∗ =

0
0
0
1
−4
0
0
0
−2

– The variable with minimum non-zero reduced cost (in absolute value) is
x∗(2,5).

– Decrease by one unit the flow and the upper bound on the arc (2, 5).
– If this arc entered in the basis, the cycle C would consist in the arcs (2, 1),

(1, 4), (2, 5) and (5, 4).
– Increase by one unit the flow on the arcs (2, 1) and (1, 4), and decrease

by one unit the flow on the arc (5, 4).

Second best flow x1 with objective value equal to 35

1

4

2

5

3

6

1

1

1
1

0
3

2

1
0

Procedure applied on the example

– Consider again the variable with minimum non-zero reduced cost (in
absolute value), that is x∗(2,5).

– Decrease by one unit the flow and the upper bound on the arc (2, 5).
– As before, if this arc entered in the basis, the cycle C would consist in

the arcs (2, 1), (1, 4), (2, 5) and (5, 4).
– Increase by one unit the flow on the arcs (2, 1) and (1, 4), and decrease

by one unit the flow on the arc (5, 4).

78 5. A new algorithm for the bi-objective integer min cost flow problem

1

4

2

5

3

6

2

2

1
0

0
3

2

0
0

New feasible solution x1
1 with objective value equal to 36

– The arc (2,1) is now saturated.
– Consider the original network and the original optimal solution.
– The variable with the second minimum non-zero reduced cost (in absolute

value) is x∗(5,6)

– If this variable entered in basis, the cycle C would consist in the arcs
(2, 1), (1, 4), (3, 2), (3, 6), (5, 4) and (5, 6).

– Increase by one unit the flow and the lower bound on the arc (5, 6).
– Increase by one unit the flow on the arcs (1, 4) and (2, 1) and (3, 2), and

decrease by one unit the flow on the arcs (3, 6) and (5, 4).

New feasible solution x2 with objective value equal to 36

1

4

2

5

3

6

1

1

1
2

0
4

1

1
1

– Consider again the variable with minimum non-zero reduced cost (in
absolute value), that is x∗(2,5).

– Decrease by one unit the flow and the upper bound on the arc (2, 5).
– As before, if this arc entered in the basis, the cycle C would consist in

the arcs (2, 1), (1, 4), (2, 5) and (5, 4).
– Increase by one unit the flow on the arcs (2, 1) and (1, 4), and decrease

by one unit the flow on the arc (5, 4).

New feasible solution x2
1 with objective value equal to 37

1

4

2

5

3

6

2

2

1
1

0
4

1

0
1

5.4 Second phase: a recursive algorithm for generating all feasible flows 79

– The arc (2,1) is now saturated.
– Consider the original network and the original optimal solution.
– The variable with the third minimum non-zero reduced cost (in absolute

value) is x∗(2,6)

– If this variable entered in basis, the cycle C would consist in the arcs
(2, 6), (3, 2) and (3, 6).

– Increase by one unit the flow and the lower bound on the arc (2, 6).
– Increase by one unit the flow on the arc (3, 2), and decrease by one unit

the flow on the arc (3, 6).

New feasible solution x3 with objective value equal to 38

1

4

2

5

3

6

0

0

1
2

1
4

1

2
0

– Consider again the variable with minimum non-zero reduced cost (in
absolute value), that is x∗(2,5).

– Decrease by one unit the flow and the upper bound on the arc (2, 5).
– As before, if this arc entered in the basis, the cycle C would consist in

the arcs (2, 1), (1, 4), (2, 5) and (5, 4).
– Increase by one unit the flow on the arcs (2, 1) and (1, 4), and decrease

by one unit the flow on the arc (5, 4).

New feasible solution x3
1 with objective value equal to 39

1

4

2

5

3

6

1

1

1
1

1
4

1

1
0

– Consider again the variable with minimum non-zero reduced cost (in
absolute value), that is x∗(2,5).

– Decrease by one unit the flow and the upper bound on the arc (2, 5).
– As before, if this arc entered in the basis, the cycle C would consist in

the arcs (2, 1), (1, 4), (2, 5) and (5, 4).
– Increase by one unit the flow on the arcs (2, 1) and (1, 4), and decrease

by one unit the flow on the arc (5, 4).

80 5. A new algorithm for the bi-objective integer min cost flow problem

New feasible solution x3
1,1 with objective value equal to 40

1

4

2

5

3

6

2

2

1
0

1
4

1

0
0

x∗2

x1

x1
1

x2

x2
1

x3

x3
1

x3
1,1

Figure 5.4. Solutions tree from the optimal solution x∗
2

5.4.4 Adaptation of the recursive procedure to the second
phase

The recursive algorithm described in Section 5.4.1, is used for generating the
remaining efficient solutions in the second phase. In each triangle, starting from
one of the two vertices corresponding to one of the extreme efficient solutions
provided from the first phase, the procedure presented in the previous section
is applied setting an upper bound on the value of the objective function for
the weighted sum problem. For the first triangle this upper bound is defined
(see [70]) as follows:

∆ = λ1(y1(xi+1)− 1) + λ2(y2(xi)− 1) (5.6)
This upper bound is updated during the recursive procedure by means of the
new flows generated. In more details, when a new feasible flow is produced,
the corresponding point in the objective space is computed. If this point is
non-dominated by the other points already stored in the set of non-dominated
points, and belongs to the current triangle, the corresponding flow is inserted
in the list of the "potentially efficient solutions" and is used to update the
upper bound by means of the formula below (see [69]):

∆ = max {λ1(y1(xi,j+1)− 1) + λ2(y2(xi,j)− 1), j = 0, ..., r} (5.7)
where r is the number of efficient solutions found in the triangle under consid-
eration and it is assumed that xi,0, xi,1, ...xi,r+1 are sorted in increasing order

5.4 Second phase: a recursive algorithm for generating all feasible flows 81

with respect to the first objective (xi,0 = xi and xi,r+1 = xi+1 are the two
extreme supported solutions associated with the triangle). Moreover, if these
conditions are satisfied, the network associated with the new flow is used for
generating other points. In more details, the single objective problem on the
new network in which the new flow is optimal, is again solved by means of
the dual variant of Benson’s algorithm. New points are produced. Some of
these may belong to the triangle under consideration and used to update the
upper bound for this triangle. The remaining points may lie on triangles not
yet explored and for this reason are stored and used for updating the upper
bound in the next iterations.
The algorithm terminates when all the triangles are explored by means of this
recursive procedure. The output of the algorithm is a complete set of efficient
solutions. The pseudocode of the whole algorithm is shown below:

INPUT: Network (G, c, l, u) with c = (c1, c2), list of extreme efficient solutions
x1, ..., xs

Two_phase_bflow
1: i = 1
2: E = ∅
3: while (i < s) do
4: Ei = {xi, xi+1}
5: Compute λ1 = y2(xi)− y2(xi+1), λ2 = y1(xi+1)− y1(xi) and cλ = λ1c1 + λ2c2

6: if E 6= ∅ then
7: for xb ∈ E do
8: if y(xb) ∈ Ti, it is not dominated and not equivalent to any x ∈ Ei then
9: Insert xb in Ei and remove xb from E

10: end if
11: end for
12: ∆ = max{λ1(y1(xi,j+1)− 1) + λ2(y2(xi,j)− 1), j = 0, ..., r}, r + 1 =| Ei |
13: end if
14: else
15: ∆ = µλ = λ1(y1(xi+1)− 1) + λ2(y2(xi)− 1) /* initial value of Delta*/
16: E = find_all_feasible_solutions[N,u, xi, r̄ci, E,∆]. /*with r̄ci vector of the non-zero reduced

costs in absolute value associated to xi (sorted from the smallest to the biggest)*/
17: for xb ∈ E do
18: if y(xb) ∈ Ti, it is not dominated and it is not equivalent to any x ∈ Ei then
19: Insert xb in Ei and remove xb from E
20: Eb = Bensolve[Nb]
21: end if
22: end for
23: for xb ∈ ∪bEb do
24: if y(xb) ∈ Ti, it is not dominated and it is not equivalent to any x ∈ Ei then
25: Insert xb in Ei
26: end if
27: else
28: Insert xb in E
29: end for
30: i = i+ 1
31: end while
32: for Ei i = 1, ...s− 1 do
33: Remove potential non-efficient solutions
34: end for

OUTPUT: Complete set E∗ = ∪i=1,...,s−1Ei of efficient solutions.
Algorithm 6: Two-phase algorithm for the bi-objective min cost flow problem.

Theorem 20. The set E∗ = ∪i=1,...,s−1Ei generated by the algorithm Two_
phase_bflow is a complete set of efficient solutions of the bi-objective mini-

82 5. A new algorithm for the bi-objective integer min cost flow problem

mum cost flow problem.

Proof. Without loss of generality we assume 1 ≤ i ≤ s− 1.
Ei contains all efficient solutions in Ti.
Whenever a solution xb is inserted into Ei the following conditions hold:

– its objective vector lies within Ti;
– its objective vector is non-dominated by the objective vector of any x ∈ Ei;
– xb is not equivalent to any x ∈ Ei.

The recursive procedure enumerates all solutions x with cλ(x) ≤ ∆. Among
all enumerated solutions, a complete set of efficient solutions is inserted in
Ei. We shall prove this by contradiction. Assume that, after the recur-
sive procedure stops, there exists an efficient solution xe /∈ Ei within the
triangle Ti that is not equivalent to some x ∈ Ei. The recursion stops as
soon as cλ(x) > ∆. As the solution xe /∈ Ei was not obtained during the
recursive procedure before it was stopped (otherwise xe or an equivalent
would be in Ei), it follows that cλ(xe) > ∆. As it holds | Ei |≥ 2, there-
fore y1(xij) < y1(xe) < y1(xij+1) and y2(xij) > y2(xe) > y2(xij+1) for some
j ∈ {j′ : j′ = 0, ..., r and y1(xij+1)− y1(xij) ≥ 2 and y2(xij)− y2(xij+1) ≥ 2}.
In particular, y1(xe) ≤ y1(xij+1 − 1) and y2(xe) ≤ y2(xij − 1). Consequently
we obtain the following inequalities:

λ1y1(xe) + λ2y2(xe) ≤ ∆

equivalently

cλ(xe) ≤ ∆.

The latter inequality contradicts the existence of an efficient solution xe /∈ Ei
within Ti that is not equivalent to some solution in Ei and that was not obtained
during the recursive procedure.
Ei contains a complete set of efficient solutions within the triangle Ti.
Ei contains a complete set of efficient solutions but it may contain, when
the recursion stops, also some solutions potentially non-efficient. Indeed, it
may occur that a solution x ∈ Ei generated at a given stage of the recursive
procedure dominates a solution previously inserted in Ei. The final step of
the algorithm checks if in Ei some non-efficient solutions exist and remove
them. Then when the algorithm ends Ei contains a complete set of efficient
solutions.

5.5 Preliminary Results

In this section we analyze the complete sets of non-dominated points produced
by the algorithm on some instances taken from the literature. For the first
phase of the algorithm we used the software Bensolve (see [80]), a solver for

5.5 Preliminary Results 83

vector linear programs, which includes the subclass of multiple objective linear
programs. Bensolve is an open source implementation of Benson’s algorithm
and its dual variant. Both algorithms compute primal and dual solutions of
vector linear programs. Bensolve requires the VLP format as input file, that is
an extension of the GLPK LP format to the case of multiple objective linear
programs and vector linear programs. The computational results are provided
through different files. For our purpose we used those in which are written
line-wise the vertices and extreme directions of the upper image, the primal
solutions and the basis information of the primal problem respectively. As
regards the second phase the algorithm has been implemented in C++ by
means of the Xcode (Integrated development environment for macOS Apple
developers). As our main objective was to verify the correctness of the approach,
this first implementation does not use Bensolve in the second phase. The
instances on which the algorithm has been tested, have been selected out of
the set of test instances presented in [70]. We chose randomly two instances
from each of the sets F01-F02 and G01-G02 used in [70]. The sets F01-F02
consist of problem instances generated by NETGEN (see [59]), with some
modifications to include a second objective, with fixed total sum of the supply
equal to 100, maximum arc capacity equal to 50 and maximum arc cost equal
to 100, as summarized in Table 5.1. The sets G01-G02 contains instances with
grid structure, that is graphs that can be drawn as a grid with a given height
h and width w. These instances are characterized, as the sets F01-F02, by
maximum arc capacity equal to 50 and maximum arc cost equal to 100 and
they also have fixed total sum of the supply equal to 100 (see Table 5.2). We
tested the algorithm also on the sets N01-N02 proposed in [70], that is the
first two sets of instances generated by NETGEN varying the total sum of
the supply. However, as the first two sets have the same characteristics of the
sets F01-F02 (same dimensions and total sum of the supply is equal to 100)
here we report only the tests related to the instances randomly selected from
F01-F02.

Table 5.1. NETGEN Instances

Set Name n m Sources Sinks

F01 20 60 9 7
F02 20 80 9 7

Table 5.2. Grid Instances

Set Name h w n m

G01 4 5 20 62
G02 5 8 40 134

84 5. A new algorithm for the bi-objective integer min cost flow problem

4900	

5400	

5900	

6400	

6900	

7400	

7900	

7240	 7740	 8240	 8740	 9240	

(y
2)
	

(y1)	

Figure 5.5. Pareto Frontier for Instance 1-F01

6060	

6560	

7060	

7560	

8060	

8560	

6400	 6900	 7400	 7900	 8400	

(y
2)
	

(y1)	

Figure 5.6. Pareto Frontier for Instance 2-F01

Table 5.3. Summary on the instances from F01-F02

Instance number | YN | | YSN | | YNN | |YSN |
|YNN |

1-F01 190 53 137 0.4
2-F01 200 36 164 0.2

1-F02 204 38 166 0.2
2-F02 197 57 140 0.4

Figures 5.5, 5.6, 5.7 and 5.8 show the Pareto frontier of the instances from
F01 and F02. The non-dominated points corresponding to extreme efficient
solutions, found in the first phase by means of Bensolve, are colored in blue.

5.5 Preliminary Results 85

2250	

2750	

3250	

3750	

4250	

4750	

4000	 4500	 5000	 5500	 6000	 6500	 7000	

(y
2)
	

(y1)	

Figure 5.7. Pareto Frontier for Instance 1-F02

3750	

4250	

4750	

5250	

5750	

6250	

6750	

3500	 4000	 4500	 5000	 5500	

(y
2)
	

(y1)	

Figure 5.8. Pareto Frontier for Instance 2-F02

The remaining non-dominated points, represented in sky blue, have been
generated through the second phase of the algorithm. In this latter set of
points, there are non-supported points but also supported points found during
the recursive procedure applied considering arcs out of the basis with zero
reduced costs. Indeed, in all these instances we are in presence of degeneracy.
In this situation the recursion first generates the multiple solutions of the
single objective problem associated with a given triangle and then the flows
corresponding to worse values of the objective function, as described in Section
5.4.1. As already noticed on averages values in [70], we can make the following
observations from Table 5.3:

– The ratio of supported and non-supported non-dominated points, which
ranges between 0.2 and 0.4 for the instances randomly selected, indicates
that the majority of the non-dominated points are non-supported.

– The ratio of supported and non-supported non-dominated points decreases
when the total number of non-dominated points increases.

86 5. A new algorithm for the bi-objective integer min cost flow problem

– Increasing the number of arcs and fixing the number of nodes, the number
of non-dominated points increases.

6150	

6350	

6550	

6750	

6950	

7150	

7350	

7550	

8200	 8400	 8600	 8800	 9000	 9200	 9400	 9600	 9800	 10000	 10200	

(y
2)
	

(y1)	

Figure 5.9. Pareto Frontier for Instance 1-G01

11100	

11300	

11500	

11700	

11900	

12100	

12300	

12500	

12700	

12900	

13100	

9200	 9400	 9600	 9800	 10000	 10200	 10400	 10600	 10800	 11000	

(y
2)
	

(y1)	

Figure 5.10. Pareto Frontier for Instance 2-G01

Table 5.4. Summary on the instances from G01-G02

Instance number | YN | | YSN | | YNN | |YSN |
|YNN |

1-G01 85 34 51 0.7
2-G01 109 21 88 0.2

1-G02 237 35 202 0.2
2-G02 131 35 96 0.4

Figures 5.9, 5.10, 5.11 and 5.12 show the Pareto frontier of the instances from
G01 and G02. As for the instances from F01 and F02, the non-dominated
points corresponding to extreme efficient solutions, are colored in blue, while

5.5 Preliminary Results 87

11400	

11900	

12400	

12900	

13400	

9900	 10400	 10900	 11400	 11900	

(y
2)
	

(y1)	

Figure 5.11. Pareto Frontier for Instance 1-G02

6700	

7200	

7700	

8200	

8700	

7600	 8100	 8600	 9100	 9600	

(y
2)
	

(y1)	

Figure 5.12. Pareto Frontier for Instance 2-G02

the remaining non-dominated points are represented in sky blue. Looking
at the ratio of supported and non-supported non-dominated points, ranging
between 0.2 and 0.7, we can observe that also for the grid instances selected,
the majority of the non-dominated points are non-supported and that this ratio
decreases when the total number of non-dominated points decreases. Eventu-
ally, for most of the instances here reported, and also for most of the instances
on which the algorithm has been tested at this stage of the implementation, we
can notice that the non-supported non-dominated points are located very close
to the boundary of conv(Y). However, there exist some exceptions in which
non-dominated non-supported points are far from the boundary of conv(Y) as
we can observe in Figure 5.13 representing all the non-dominated points in the
second triangle of the grid instance shown in Figure 5.10.

88 5. A new algorithm for the bi-objective integer min cost flow problem

11600	

11800	

12000	

12200	

12400	

12600	

12800	

13000	

9320	 9370	 9420	 9470	 9520	 9570	 9620	

(y
2)
	

(y1)	

Figure 5.13. Portion of the Pareto Frontier for Instance 2-G01

In conclusion, by means of these tests, it has been verified the exactness of the
approach proposed, so encouraging the possibility to make improvements from
a computational point of view. Then, the next stage will consist in working on
a more efficient implementation also with the use of Bensolve in the second
phase, as described in Section 5.4.

89

Chapter 6

A new algorithm for the
bi-objective minimum
spanning tree problem

In this chapter we present a new two-phase algorithm for determining a
complete set of efficient solutions for the bi-objective minimum spanning tree
problem, described in [7]. In the first phase the extreme efficient solutions are
generated. In the second one the solutions found in the previous phase are
used to limit the exploration area in the outcome set for finding the remaining
non-supported efficient solutions.

6.1 State of the art

Among the exact methods for solving the bi-objective minimum spanning tree
problem proposed in previous works, it is possible to distinguish between gen-
eralizations of algorithms for the single objective case and generic approaches
for the multi-objective combinatorial optimization. In [26] a generalization
of Prim’s algorithm is presented. The idea of this generalization is to build
trees by covering one additional vertex at each iteration by selecting efficient
edges in the subset connecting covered with non-covered vertices. However
in this procedure also non-efficient spanning trees may be generated. In [48]
an enhancement of Corley’s algorithm, consisting in deleting at each iteration
subtrees which are non-efficient, is proposed. The resulting algorithm is also
presented in [31] and used in [85] to evaluate a genetic algorithm able to
approximate the Pareto frontier proposed by the authors. However in [60] is
showed that some efficient spanning trees may be not generated and conse-
quently that also some non-efficient spanning trees may be produced by this
procedure. In [74] a generalization of Kruskal’s algorithm was proposed. Also
in [67] generalizations of Prim’s and Kruskal’s algorithms are considered for
determining the set of efficient spanning trees according with a preference
(binary) relation defined on the set of the graph edges.

90 6. A new algorithm for the bi-objective minimum spanning tree problem

As regards the generic approaches for multi-objective combinatorial optimiza-
tion both two-phase methods and multi-objective Branch&Bound have been
studied. In [71] a two-phase approach for the bi-objective minimum spanning
tree problem is presented, that uses a Branch&Bound algorithm in the second
phase. This algorithm evaluates search nodes according with their ideal point
in order to explore the search area defined by the extreme efficient points
generated in the first phase. From the computational results of this work comes
to light that this approach may not be practical for big instances. In [77] the
authors propose another two-phase approach based on a ranking algorithm,
the k-best algorithm by Gabow [39], applied in the second phase to explore
the triangles identified by the extreme non-dominated points given by the
first phase. They provided also a comparison with the procedure by Ramos
that shows the superiority of their approach in term of computational time
and instances size that are solvable. Moreover, an heuristic enhancement of
the k-best algorithm was proposed that generally speeds-up the running time.
In the most recent work by [76], an improved Branch&Bound algorithm was
proposed and applied on the bi-objective minimum spanning tree problem.
The main idea is to perform the bounding at a given node in the search tree
defining a separating hypersurface in the objective space between the set of the
reachable solutions in the subtree and the set of improving solutions. The first
ones are the solutions that derive from the partial solution of the current node
of the Branch&Bound tree, while the improving ones are the solutions that
are not dominated by the set upper bound. Experimental results show that
this algorithm is able to solve instances with up to 400-500 nodes, exceeding
also the algorithm proposed in [77] in terms of instances size that are solvable.
More recently, in [35], the authors present a comparison among alternative
reinforced formulations and new formulations for the minimum spanning tree
problem, also with more than two objectives, considering a specific form of
aggregation of the criteria, called Ordered Weighted Average operator, in order
to generate supported efficient solutions of the problem. They showed that
an appropriate formulation allows to solve larger instances and with more
objectives than those previously solved in the literature.

6.2 Algorithm description

For the first phase of the algorithm proposed in this work for the bi-objective
minimum spanning tree problem, we selected one of the standard techniques
for multi-objective linear programming problems, that is the weighted sum
method (see [32]). In this context, this method can be used for generating
only the supported efficient solutions because of the integrality constraints on
the decisional variables (see [33]) and for this specific problem it is applied
by means of the single commodity flow formulation of the MST problem,
described in Section 6.3. Another approach that has been tried for generating
supported efficient solutions, is the dual variant of Benson’s algorithm. As
mentioned in Chapter 5, this is a multi-objective linear programming solution
method that can be applied also in the integer case if the integrality property

6.3 Finding supported efficient solutions 91

is satisfied. For this reason, the Kipp-Martin formulation of the minimum
spanning tree problem (see [58]) was considered. This is a linear formulation of
the minimum spanning tree problem that assures the integrality of its (binary)
solutions. In the second phase, as for the bi-objective integer min cost flow
problem, we considered consecutive pairs of non-dominated points associated
to extreme efficient solutions, sorted in increasing order with respect to the
first objective. From each of these pairs, the exploration area is defined by the
triangle whose vertices are the two non-dominated points of the pair and the
corresponding Local Nadir Point. Then, in each triangle, a recursive procedure,
that will be illustrated in Section 6.4.1, is applied, starting from one of the two
extreme efficient solutions associated with that triangle, in order to generate
non-supported efficient solutions. At each call of the recursive algorithm, if the
spanning tree produced corresponds to a non-dominated point that belongs to
the triangle under consideration, the upper bound in the current triangle is
updated (see [69]). The reiteration of this procedure in each triangle generates
a complete set of efficient solutions.

6.3 Finding supported efficient solutions

In this section we describe two alternative approaches for implementing the
first phase of the two-phase algorithm, proposed for the MST problem. The
first one is the weighted sum method which consists in assigning a weight for
each objective and solving the single objective problem given by the weighted
sum of the objectives. As explained in Chapter 3, solving iteratively the single
objective problem, by varying each weight between 0 and 1, it is possible to
generate all the supported efficient solutions of an integer linear multi-objective
problem. The details of this approach are explained in Section 6.3.1 in relation
with the flow formulation of the MST problem. The second method adopted for
the first phase is the dual variant of Benson’s algorithm. To apply it on the MST
problem, it was necessary to consider a different formulation of the problem,
that is the Kipp-Martin formulation which is a linear formulation characterized
by the integrality of the binary solutions. Details on this formulation and its
properties will be given in Section 6.3.2.

6.3.1 The weighted sum method on the flow formulation

As mentioned above, the weighted sum method used in the first phase of the
two-phase algorithm, was applied on the flow formulation of the MST problem
(see [64]) reported below.

Flow formulation of the MST problem

min
∑
e∈E

cexe (6.1)

92 6. A new algorithm for the bi-objective minimum spanning tree problem

subject to ∑
j:(1,j)∈E

f1j −
∑

j:(j,1)∈E
fj1 = n− 1 (6.2)

∑
j:(j,i)∈E

fji −
∑

j:(i,j)∈E
fij = 1, ∀i ∈ V, i 6= 1 (6.3)

fij ≤ (n− 1)xe ∀e = (i, j) ∈ E (6.4)

fji ≤ (n− 1)xe ∀e = (i, j) ∈ E (6.5)∑
e∈E

xe = n− 1 (6.6)

fij , fji ≥ 0 ∀e = (i, j) ∈ E (6.7)

xe ∈ {0, 1} ∀e ∈ E (6.8)

This formulation is characterized by a polynomial number of constraints.
Through this formulation the minimum spanning tree problem is represented
as a single commodity flow problem in which the node 1 is considered as
a source of n − 1 units of flow (6.2) and the rest of the network nodes are
sinks requiring each one one unit of flow (6.3). Each edge e of the network is
represented by a binary variable xe that is equal to 1 if the edge is taken in
solution. The flow fij and fji can be non-zero only if the corresponding edge
is in solution and is limited by the total flow from the source, equal to n− 1
(6.4)-(6.5). Eventually, the total number of edges activated has to be equal
to n− 1 (6.6) to assure that the topological configuration of the solution is a
spanning tree.
The weighted sum method can be applied on this formulation for generating
the supported efficient solutions. The idea of such a procedure consists in
identifying the partition in intervals of the parametric space [0, 1] of the weights
(λ, 1− λ), such that a supported efficient solution of the bi-objective problem
does not change when λ varies within the same interval of the partition. To
this end, the single objective problems obtained considering one objective
at a time, are solved (λ = 1 and λ = 0 respectively). Then the solutions
so obtained are compared. If they are different, two new intervals for λ are
identified splitting in two parts of equal dimension the original one ([0, 1]).
On each of these new intervals the same procedure is repeated: the single
objective problems obtained taking λ equal to each of the extreme values of
the intervals, are solved. If the solutions obtained at the extreme of the single
interval are different a new split is made and so on. This procedure runs
until the dimension of the intervals generated is greater or equal to a given
bound md defined a priori. The pseudocode of the method applied on the flow
formulation for the MST problem is listed below.

Recursive function for implementing the weighted sum method for
the bi-objective MST problem

6.3 Finding supported efficient solutions 93

INPUT FIRST CALL: Network G = (V,E), initial value of λ, initial in-
terval [ex1,ex2] ([0,1] at the first call of the function) and the list of supported
efficient solutions Sol (containing at the beginning the solutions associated
with λ equal to 0 and 1).

weighted_sum_method(G = (V,E), λ, ex1, ex2, Sol)
1: if (ex2 − ex1) ≥ md then
2: solve_model(G = (V,E), λ, Sol)
3: if ((Sol(λ) = Sol(ex1) && (Sol(λ) 6= Sol(ex2)) /*Sol(λ) indicates the solution obtained using the

weights (λ, 1− λ) respectively for the first and the second objective*/ then
4: weighted_sum_method(G = (V,E),1− (ex2−λ)

2 , λ, ex2, Sol)
5: end if
6: if ((Sol(λ) 6= Sol(ex1) && (Sol(λ) = Sol(ex2)) then
7: weighted_sum_method(G = (V,E), (λ−ex1)

2 , ex1, λ, Sol)
8: end if
9: if ((Sol(λ) 6= Sol(ex1) && (Sol(λ) 6= Sol(ex2)) then

10: weighted_sum_method(G = (V,E),1− (ex2−λ)
2 , λ, ex2, Sol)

11: weighted_sum_method(G = (V,E),1− (λ−ex1)
2 , ex1, λ, Sol)

12: end if
13: end if
14: return

OUTPUT: Set Sol containing all supported efficient solutions.
Algorithm 7: weighted sum algorithm.

6.3.2 Benson’s algorithm on the Kipp-Martin formulation

An alternative approach for implementing the first phase, as mentioned in
Section 6.3, is represented by the use of the dual variant of Benson’s algo-
rithm. As described in Chapter 3, this is a solution method for multi-objective
linear programming problems capable to generating all the extreme efficient
solutions, that is, the vertices of the feasible region. In the integer case, this
algorithm can be applied only if the integrality property of the solutions is
guaranteed. In [58] a linear programming formulation for the MST problem,
obtained by adding auxiliary variables, was proposed and it was proved that
this formulation satisfies the integrality property. This means that, solving it
with the dual variant of Benson’s algorithm, it is sure that the solutions so
obtained will be integer, more precisely binary. In this formulation, reported
below, new non-negative variables zkij , associated with triad of nodes, are
introduced together with additional constraints that guarantee the covering of
all nodes without the presence of cycles.

Kipp-Martin formulation of the MST problem

min
∑
e∈E

cexe (6.9)

subject to ∑
e∈E

xe = n− 1 (6.10)

94 6. A new algorithm for the bi-objective minimum spanning tree problem

zkij + zkji = xe k = 1, ..., n, e ∈ γ({i, j}) (6.11)∑
s>i

zkis −
∑
h<i

zkih ≤ 1 k = 1, ..., n, i 6= k (6.12)

∑
s>k

zkks −
∑
h<k

zkkh ≤ 0, k = 1, ...n (6.13)

xe ≥ 0 ∀e ∈ E (6.14)

zkij ≥ 0 ∀k, i, j (6.15)

Constraints (6.11), (6.12) and (6.13) guarantee that the binary solution does
not contain undirected or directed cycles and constraint (6.10) assures that
the binary solution is a spanning tree.

6.4 A recursive algorithm for completing the set of
efficient solutions

In the second phase of the algorithm, for generating the remaining non-
dominated points, we performed an exploration of the outcome set limited
to the triangles that can be obtained considering consecutive pairs of non-
dominated points associated to extreme efficient solutions and their associated
Local Nadir point. At each iteration of the algorithm, one of these triangles is
analyzed, starting from the left, that is, from the triangle associated with the
first two non-dominated points, sorted in increasing order with respect to the
first objective (y1). Then, given the triangle under consideration at the generic
iteration, the spanning tree associated with the extreme efficient solution on
the right of the triangle (represented by the values of the binary variables
associated to the arcs of the network), is used as initial optimal solution for the
single objective minimum spanning tree problem. To be more precise we report
below a standard formulation of the MST problem, however at implementation
level any formulation with the objective function defined as in (6.16) is suitable.

min
∑
e∈E

(λ1c
1
exe + λ2c

2
exe) (6.16)

subject to ∑
e∈E

xe = n− 1 (6.17)

∑
e∈E(S)

xe ≤| S | −1 ∀S ⊆ N, S 6= ∅ (6.18)

xe ∈ {0, 1} ∀e ∈ E (6.19)

where N is the set of nodes and E is the set of edges describing the network,
c1 and c2 are the integer costs vectors and λ1 and λ2 are the weights associ-
ated with each objective. These weights are defined as in [70]: given the two

6.4 A recursive algorithm for completing the set of efficient solutions 95

non-dominated points that define the current triangle, yi = (y1(xi), y2(xi))
and yi+1 = (y1(xi+1), y2(xi+1)), the weights are defined as follows:

λ1 = y2(xi)− y2(xi+1) and λ2 = y1(xi+1)− y1(xi). (6.20)

This definition of weights implies that the single objective MST problem
has optimal solutions xi and xi+1. Hence, it is possible to start from the
solution xi+1 (or from the solution xi) and consider it optimal for the weighted
sum problem (6.16)-(6.19). Then, from this solution, a recursive algorithm,
described in Section 6.4.1, able to generate all the spanning trees of the single
objective MST problem is applied. Indeed, all the other efficient solutions of
the original bi-objective problem, correspond to spanning trees for the network
under consideration such that the associated points in the objective space
are non-dominated. For this reason a new algorithm that provides all the
spanning trees of a given network, starting from an initial optimal solution, has
been designed. This algorithm, differently from the k-best algorithm (see [39]),
does not produce spanning trees in strict ranking order with respect to the
objective function but, according to its operating principle, at each iteration
it generates a spanning tree that is certainly worse than the previous one in
term of objective value.

6.4.1 Procedure for generating all the spanning trees of a
graph

The procedure used for generating all the spanning trees of a graph, works
considering the reduced costs associated with the edge variables of the ini-
tial optimal solution. The reduced costs are sorted from the smallest to the
biggest one in absolute value and analyzed in this order. Given the smallest
non-zero reduced cost in absolute value rc∗e, the fundamental cycle C∗e that
the corresponding edge e creates with the starting optimal spanning tree T ∗ is
identified. The edges in the fundamental cycle are then sorted according with
their costs, from the biggest to the smallest. For each of these edges a new
spanning tree is generated by means of the exchange of the edge e with the edge
under consideration. The order in which the edges in the fundamental cycle
are exchanged with the arc e guarantees that the spanning trees so obtained
are progressively worse with respect to the value of the objective function.
At the first iteration of this algorithm, after the first exchange, the spanning
tree obtained is exactly the second best spanning tree generated inserting in the
initial optimal tree, the edge with minimum non-zero reduced cost in absolute
value and removing from the fundamental cycle so created, the edge with
maximum cost. Therefore, the corresponding deterioration of the objective
function is as minimum as possible. When all the arcs in the fundamental
cycle created by the arc e are exchanged with e, the second non-zero reduced
cost in absolute value has to be considered, starting again from the original
optimal spanning tree, the same from which the second best spanning tree was
generated.
Considering the second reduced cost in absolute value e′ , the same procedure

96 6. A new algorithm for the bi-objective minimum spanning tree problem

described above is applied to generate new spanning trees (their number will be
equal to the number of edges in the fundamental cycle that can be exchanged
with the edge e′). In this case, after each exchange, in order not to miss
feasible solutions and to obtain the minimum possible deterioration of the
objective function, starting from the new spanning tree T ′ obtained, the first
non-zero reduced cost in absolute value has to be considered implementing
again all the possible exchanges of the edge e with the edges in the fundamental
cycle created by e in the current spanning tree T ′ . Iterating this procedure
considering all the non-zero reduced costs in absolute value in order from the
smallest to the biggest, and for all their possible combinations, as explained, all
the spanning trees can be identified. Therefore the resulting algorithm consists
in a recursive procedure that is summarized in the following pseudocode.

Recursive function for finding all spanning trees of a graph

INPUT: graph G = (N,E), costs vector c, optimal solution T ∗, vector of
the non-zero reduced costs in absolute value r̄c∗ = {rc∗1, rc∗2...rc∗K} (sorted
from the smallest to the biggest) where K is the number of non-zero reduced
costs, and the list FT = {T ∗}

find_feasible_trees(G = (N,E), c, T ∗, r̄c∗, FT)
1: it = 1
2: while it ≤ K do
3: Let e be the edge out of T ∗ corresponding to the element rc∗it ∈ r̄c (c

∗
1 is the minimum non-zero

reduced cost in absolute value)
4: Let C∗ be the cycle that the edge e creates with the edges belonging to the spanning tree T ∗
5: Sort by cost (from the biggest to the smallest) the edges of the cycle C∗ different from e
6: for e∗ ∈ C∗ with e∗ 6= e do
7: Add e to T ∗ and remove e∗ from T ∗

8: Add the tree T ′ so obtained to the list FT
9: if it > 1 then

10: find_all_spanning_trees(G = (N,E), c, T ′ , it− 1, FT)
11: end if
12: end for
13: it = it+ 1
14: end while
OUTPUT: Set FT containing all spanning trees of the graph G.

Algorithm 8: recursive algorithm specialized for the minimum spanning tree
problem.

Theorem 21. Let us assume that the minimum spanning tree problem (6.16)-
(6.19) has an unique optimal solution T ∗. Procedure find_feasible_trees
examines all the feasible combinations of T ∗-exchanges.

Proof. To prove this we just recall that Step 4 of the procedure find_feasible
_trees examines first the fundamental cycle associated with the edge out of
T ∗ with minimum non-zero reduced cost (in absolute value). Edges of this
fundamental cycle are sorted by cost (from the biggest to the smallest) and
exchanged one by one in this order with the edge under consideration. Once
all the T ∗-exchanges that can be generated in this manner have been produced,
the procedure starts the generation of feasible combinations of T ∗-exchanges
in the following way. The algorithm finds the fundamental cycle associated

6.4 A recursive algorithm for completing the set of efficient solutions 97

with the second non-zero reduced cost (in absolute value) and sorts its edges
by cost. Then it generates just one T ∗-exchange between the edge under
consideration and the first edge in the fundamental cycle. Now, differently
from what done in the case of the first non-zero reduced cost (in absolute
value), the recursive procedure is called on the new feasible tree so obtained.
This means that it attempts to combine the first T ∗-exchange associated with
the second non-zero reduced cost (in absolute value) with the first T ∗-exchange
associated with the first non-zero reduced cost (in absolute value). Note that
continuing in generating T ∗-exchanges associated with the edge related to the
first non-zero reduce cost (in absolute value), all the T ∗-exchanges from the
first non-zero reduced cost (in absolute value) are combined with the current
T ∗-exchange (in this case associated with the first edge in the fundamental
cycle related to the second non-zero reduced cost in absolute value). Then,
when back on the feasible tree associated with the first T ∗-exchange that can
be generated by the fundamental cycle related to the second non-zero reduced
cost (in absolute value), the procedure seeks a further T ∗-exchange from the
same fundamental cycle. If it succeeded, again the recursive procedure is called
from the new feasible tree so generated. It should be clear that by means of
this mechanism, all the feasible combinations of T ∗-exchanges generated by
the first two fundamental cycles are examined. At the generic stage of the
algorithm non-zero reduced cost k is considered and with the same mechanism
all feasible combinations of T ∗-exchanges generated by the fundamental cycles
associated with the first k − 1 non-zero reduced costs (in absolute value) with
the T ∗-exchanges associated with non-zero reduced cost k are generated. The
algorithm continues generating feasible combinations of T ∗-exchanges in order
of increasing reduced cost until all non-zero reduced costs are examined, that
is until all the feasible combinations of T ∗-exchanges are generated.

In order to prove the correctness of the recursive procedure find_feasible
_trees, we recall Theorem 2 from Chapter 1.

Theorem 2
Let G be a connected graph with n vertices and m edges. Starting from
any spanning tree, one can obtain every other spanning tree of G by cyclic
interchanges. Moreover, if T and T ′ are two spanning trees, then one can form
tree T ′ starting from the tree T by at most D(T, T ′) cyclic interchanges, where:

D(T, T ′) ≤ min({n− 1,m− n+ 1})

Theorem 22. Let T ∗ be the unique optimal solution of the minimum spanning
tree problem (6.16)-(6.19) on the graph G. The procedure find_feasible_trees,
starting from T ∗, can generate all the other spanning trees of the graph G.

Proof. For the hypothesis, the procedure find_feasible_trees starts from
the unique optimal spanning tree T ∗. Let G be the graph related to the
minimum spanning tree problem (6.16)-(6.19).

98 6. A new algorithm for the bi-objective minimum spanning tree problem

According to Theorem 2, any spanning tree T can be obtained from T ∗ by at
most D(T ∗, T) cyclic interchanges with D(T, T ′) ≤ min({n− 1,m− n+ 1}).
Note that the recursive procedure find_feasible_trees, as stated in Theorem
21, generates all feasible combinations of T ∗-exchanges. Hence all the other
spanning trees are produced.

Observation 2. It is worth to observe that in this way it is possible to generate
more than once the same spanning tree.

6.4.2 The recursive procedure adapted to the second phase

The recursive algorithm described in Section 6.4.1, is used for generating the
remaining efficient solutions in the second phase. In each triangle, starting from
one of the two vertices corresponding to one of the extreme efficient solutions
provided from the first phase, the procedure presented in the previous section
is applied setting an upper bound on the value of the objective function for
the weighted sum problem. For the first triangle this upper bound is defined
(see [70]), as follows:

∆ = λ1(y1(xi+1)− 1) + λ2(y2(xi)− 1) (6.21)

This upper bound is updated during the recursive procedure by means of the
new spanning trees generated. In more details, when a new spanning tree is
produced, the corresponding point in the objective space in computed. If this
point is non-dominated and belongs to the current triangle, the corresponding
solution is inserted in the list of the efficient solutions and is used to update
the upper bound by means of the formula below (see [69]):

∆ = max {λ1(y1(xi,j+1)− 1) + λ2(y2(xi,j)− 1), j = 0, ..., r} (6.22)

The algorithm terminates when all the triangles are explored by means of this
recursive procedure. The output of the algorithm is a complete set of efficient
solutions. The pseudocode of the whole algorithm is shown below.

INPUT: Network (G, c) with c = (c1, c2), list of extreme efficient solutions

6.4 A recursive algorithm for completing the set of efficient solutions 99

x1, ..., xs.
Two_phase_btree

1: i = 1
2: E = ∅
3: while (i < s) do
4: Ei = {xi, xi+1}
5: Compute λ1 = y2(xi)− y2(xi+1), λ2 = y1(xi+1)− y1(xi) and cλ = λ1c1 + λ2c2

6: if E 6= ∅ then
7: for xb ∈ E do
8: if y(xb) ∈ Ti, it is not dominated and not equivalent to any x ∈ Ei then
9: Insert xb in Ei and remove xb from E

10: end if
11: end for
12: ∆ = max{λ1(y1(xi,j+1)− 1) + λ2(y2(xi,j)− 1), j = 0, ..., r}, r + 1 =| Ei |
13: end if
14: else
15: ∆ = µλ = λ1(y1(xi+1)− 1) + λ2(y2(xi)− 1) /* initial value of Delta*/
16: E = find_feasible_trees[N, xi+1, c̄i+1, E,∆] /*with c̄i+1 vector of the non-zero reduced costs in

absolute value associated with xi+1 (sorted from the smallest to the biggest)*/
17: for xb ∈ E do
18: if y(xb) ∈ Ti, it is not dominated and it is not equivalent to any x ∈ Ei then
19: Insert xb in Ei and remove xb from E
20: end if
21: end for
22: i = i+ 1
23: end while
24: for Ei i = 1, ...s− 1 do
25: Remove potential non-efficient solutions
26: end for

OUTPUT: Complete set E∗ = ∪i=1,...,s−1Ei of efficient solutions.
Algorithm 9: Two-phase algorithm for the bi-objective minimum spanning tree
problem.

Theorem 23. The set E∗ = ∪i=1,...,s−1Ei generated by the algorithm Two_
phase_btree is a complete set of efficient solutions of the bi-objective minimum
spanning tree problem.

The proof is identical to the proof of Theorem 20 but in this case the solutions
are spanning trees and not flows. This is possible as the strategy used for
generating a complete set of efficient solutions is independent from the specific
network flow problem under consideration, confirming that the approach has a
general applicability.

6.4.3 Illustrative example

In the following example it is shown the operating principle of the recursive
function for generating all the spanning trees of an undirected graph of 6
nodes and 7 edges. Starting from the minimum spanning tree, the recursive
procedure is applied.

Data
G = (V,E)

V = {1, 2, 3, 4, 5, 6}

E = {(1, 2), (1, 4), (2, 3), (2, 5), (3, 6), (4, 5), (5, 6)}

100 6. A new algorithm for the bi-objective minimum spanning tree problem

4

1

5

2

6

329

25

13

17 20

35 10

c = [29, 25, 13, 17, 20, 35, 10]

Initial optimal solution T ∗ with objective value equal to 94

4

1

5

2

6

329

25

13

17

10

6.4 A recursive algorithm for completing the set of efficient solutions 101

Optimal solution and Reduced costs

T ∗ = {(1, 2), (1, 4), (2, 3), (2, 5), (5, 6)} rc∗ =

0
0
0
0
−20
−36
0

Procedure applied on the example

– The edge with minimum non-zero reduced cost (in absolute value) is
(3, 6).

– Add this edge to the spanning tree T ∗.
– The cycle C∗ consists in the edges (2, 5), (2, 3), (5, 6) and (3, 6).
– Remove from T ∗ the edge with maximum cost in the cycle C∗, that is,

the edge (2, 5).

Second best spanning tree with objective value equal to 97

4

1

5

2

6

329

25

13

20

10

– The edge with minimum non-zero reduced cost (in absolute value) is
(3, 6).

– Add this edge to the spanning tree T ∗.
– The cycle C∗ consists in the edges (2, 5), (2, 3), (5, 6) and (3, 6).
– Remove from T ∗ the edge with second maximum cost in the cycle C∗,

that is, the edge (2, 3).

Spanning tree with objective value equal to 100

– The edge with minimum non-zero reduced cost (in absolute value) is
(3, 6).

102 6. A new algorithm for the bi-objective minimum spanning tree problem

4

1

5

2

6

329

25 17 20

10

– Add this edge to the spanning tree T ∗.
– The cycle C∗ consists in the edges (2, 5), (2, 3), (5, 6) and (3, 6).
– Remove from T ∗ the edge with third maximum cost in the cycle C∗, that

is, the edge (5, 6).

Spanning tree with objective value equal to 103

4

1

5

2

6

329

25 17

13

20

– The edge with second minimum non-zero reduced cost (in absolute value)
is (4, 5).

– Add this edge to the spanning tree T ∗.
– The cycle C∗ consists in the edges (1, 2), (1, 4), (2, 5) and (4, 5).
– Remove from T ∗ the edge with maximum cost in the cycle C∗, that is,

the edge (1, 2).

Spanning tree with objective value equal to 100 (T ′)

– The edge with minimum non-zero reduced cost (in absolute value) is
(3, 6).

– Add this edge to the spanning tree T ′ .
– The cycle C ′ consists in the edges (2, 5), (2, 3), (5, 6) and (3, 6).
– Remove from T

′ the edge with maximum cost in the cycle C ′ , that is,
the edge (2, 5).

6.4 A recursive algorithm for completing the set of efficient solutions 103

4

1

5

2

6

3

25 17

13

35 10

Spanning tree with objective value equal to 103

4

1

5

2

6

3

25

13

20

35 10

– The edge with minimum non-zero reduced cost (in absolute value) is
(3, 6).

– Add this edge to the spanning tree T ′ .
– The cycle C ′ consists in the edges (2, 5), (2, 3), (5, 6) and (3, 6).
– Remove from T

′ the edge with second maximum cost in the cycle C ′ ,
that is, the edge (2, 3).

Spanning tree with objective value equal to 107

4

1

5

2

6

3

25 17 20

35 10

– The edge with minimum non-zero reduced cost (in absolute value) is
(3, 6).

104 6. A new algorithm for the bi-objective minimum spanning tree problem

– Add this edge to the spanning tree T ′ .
– The cycle C ′ consists in the edges (2, 5), (2, 3), (5, 6) and (3, 6).
– Remove from T

′ the edge with third maximum cost in the cycle C ′ , that
is, the edge (5, 6).

Spanning tree with objective value equal to 110

4

1

5

2

6

3

25 17

13

20

35

– The edge with second minimum non-zero reduced cost (in absolute value)
is (4, 5).

– Add this edge to the spanning tree T ∗.
– The cycle C∗ consists in the edges (1, 2), (1, 4), (2, 5) and (4, 5)
– Remove from T ∗ the edge with second cost in the cycle C∗, that is, the

edge (1, 4).

Spanning tree with objective value equal to 104 (T ′′)

4

1

5

2

6

329 13

17

1035

– The edge with minimum non-zero reduced cost (in absolute value) is
(3, 6).

– Add this edge to the spanning tree T ′′ .
– The cycle C ′′ consists in the edges (2, 5), (2, 3), (5, 6) and (3, 6).
– Remove from T

′′ the edge with maximum cost in the cycle C ′′ , that is,
the edge (2, 5).

6.4 A recursive algorithm for completing the set of efficient solutions 105

Spanning tree with objective value equal to 107

4

1

5

2

6

325 13

20

1035

– The edge with minimum non-zero reduced cost (in absolute value) is
(3, 6).

– Add this edge to the spanning tree T ′′ .
– The cycle C ′′ consists in the edges (2, 5), (2, 3), (5, 6) and (3, 6).
– Remove from T

′′ the edge with second maximum cost in the cycle C ′′ ,
that is, the edge (2, 3).

Spanning tree with objective value equal to 111

4

1

5

2

6

325

17 20

1035

– The edge with minimum non-zero reduced cost (in absolute value) is
(3, 6).

– Add this edge to the spanning tree T ′′ .
– The cycle C ′′ consists in the edges (2, 5), (2, 3), (5, 6) and (3, 6).
– Remove from T

′′ the edge with third maximum cost in the cycle C ′′ , that
is, the edge (5, 6).

106 6. A new algorithm for the bi-objective minimum spanning tree problem

Spanning tree with objective value equal to 114

4

1

5

2

6

325 13

2017

35

– The edge with second minimum non-zero reduced cost (in absolute value)
is (4, 5).

– Add this edge to the spanning tree T ∗.
– The cycle C∗ consists in the edges (1, 2), (1, 4), (2, 5) and (4, 5)
– Remove from T ∗ the edge with third maximum cost in the cycle C∗, that

is, the edge (2, 5).

Spanning tree with objective value equal to 112 (T ′′′)

4

1

5

2

6

325

25

13

35 10

– The edge with minimum non-zero reduced cost (in absolute value) is
(3, 6).

– Add this edge to the spanning tree T ′′′ .
– The cycle C ′′′ consists in the edges (1, 2), (1, 4), (2, 3) , (4, 5), (5, 6) and

(3, 6)
– Remove from T

′′′ the edge with maximum cost in the cycle C ′′′ , that is,
the edge (1, 2).

6.4 A recursive algorithm for completing the set of efficient solutions 107

Spanning tree with objective value equal to 103

4

1

5

2

6

3

25

13

35 10

20

– The arc with minimum non-zero reduced cost (in absolute value) is (3, 6).
– Add this edge to the spanning tree T ′′′ .
– The cycle C ′′′ consists in the edges (1, 2), (1, 4), (2, 3) , (4, 5), (5, 6) and

(3, 6)
– Remove from T

′′′ the edge with second maximum cost in the cycle C ′′′ ,
that is, the edge (1, 4).

Spanning tree with objective value equal to 107

4

1

5

2

6

329 13

35 10

20

– The edge with minimum non-zero reduced cost(in absolute value) is (3, 6).
– Add this edge to the spanning tree T ′′′ .
– The cycle C ′′′ consists in the edges (1, 2), (1, 4), (2, 3) , (4, 5), (5, 6) and

(3, 6)
– Remove from T

′′′ the edge with third maximum cost in the cycle C ′′′ ,
that is, the edge (2, 3).

108 6. A new algorithm for the bi-objective minimum spanning tree problem

Spanning tree with objective value equal to 119

4

1

5

2

6

329

25

35 10

20

– The edge with minimum non-zero reduced cost (in absolute value) is
(3, 6).

– Add this edge to the spanning tree T ′′′ .
– The cycle C ′′′ consists in the edges (1, 2), (1, 4), (2, 3) , (4, 5), (5, 6) and

(3, 6)
– Remove from T

′′′ the edge with firth maximum cost in the cycle C ′′′ , that
is, the edge (5, 6).

Spanning tree with objective value equal to 122

4

1

5

2

6

329

25

13

35

20

As shown in this example, it is possible to generate, by means of the recursive
procedure, all the spanning trees of a graph. As already mentioned, this
algorithm can be used in the context of a two-phase method in order to gener-
ate a complete set of efficient solutions of a bi-objective minimum spanning
tree problem. Indeed, independently from the presence of one or more than
one objective, keeping the same topology, the feasible solutions, that is the
spanning trees of the graph, will be the same.

6.4 A recursive algorithm for completing the set of efficient solutions 109

For showing how the adaptation of such a procedure works in the two-phase
framework, let assume that the following two different costs are associated
with the arcs of the graph:

c1 = [29, 25, 13, 17, 20, 35, 10],

c2 = [15, 25, 20, 17, 13, 10, 35].

In Table 6.1 all points corresponding to feasible solutions are listed. The
two-phase algorithm finds all non-dominated points. In this example we tested
both strategies (the weighted sum method on the flow formulation and the
dual variant of Benson’s algorithm on the Kipp-Martin formulation) for the
first phase.

Table 6.1. Feasible points

Dominated Non-dominated Type
Obj1 Obj2 Obj1 Obj2

94 112 Supported
97 108 Non-Supported
100 107 Non-Supported
101 105 Non-Supported
103 103 Non-Supported

104 97
104 90 Supported

107 100
107 93

110 85 Non-Supported
111 90
112 105

114 75 Supported
119 98
122 83

As shown in Table 6.1, this example is characterized by 8 non-dominated
points, 3 of them are supported non-dominated points, the remaining 5 have
been found by means of the recursive algorithm applied in the second phase.
The algorithm has been implemented in C++ by means of Xcode as for the
bi-objective min cost flow problem. The supported ones have been generated
by the first phase, implemented with both of the two strategies proposed: the
dual variant of Benson’s algorithm (by means of Bensolve, [80]) applied on the
Kipp-Martin formulation and the weighted sum method applied on the flow
formulation solved, varying the weights, with Gurobi solver (see [66]). In order
to see how the non-dominated points are positioned in the objective space,
Figure 6.1 represents the Pareto frontier.

110 6. A new algorithm for the bi-objective minimum spanning tree problem

94,	112	

97,	108	
100,	107	

101,	105	

103,	103	

104,	90	

110,	85	

114,	75	

70	

75	

80	

85	

90	

95	

100	

105	

110	

93	 98	 103	 108	 113	

(y
2)
	

(y1)	

Figure 6.1. Pareto Frontier for the example

We can observe that the three supported non-dominated points identify two
triangles. In the first one four non-supported non-dominated points are located.
The second one contains the remaining non-supported non-dominated point.
Moreover, we can see that some non-supported non-dominated points are far
from the boundary of conv(Y). The resolution of the numerical test represented
by this example give an experimental confirmation of the correctness of the
algorithm proposed, that, with both methodologies for the first phase, is able
to generate a complete set of efficient solutions for the bi-objective minimum
spanning tree problem. Furthermore, the possibility to use different strategies
for the first phase, it will allow us to select the one more suitable to specific
problem instances we will face in the future.

111

Chapter 7

Conclusions and Further
Research

As seen in Chapter 2, the new trend in optimization problems on telecom-
munication networks requires to deal simultaneously with multiple objectives.
After proposing, implementing, and testing new models on real and realistic
scenarios, it appeared with evidence the necessity to have more powerful tools
for multicriteria integer optimization problems on networks. Hence, for this
reason, after an intensive study of the literature in the area, the thesis focused
on the possibility of designing a quite general method to cope with bi-objective
integer optimization problems on networks. The procedure described in Chap-
ter 4 seems to meet this requirement of generality. To verify if the approach
was applicable we chose two classical bi-objective integer network optimization
problems: the integer min cost flow and the minimum spanning tree problem.
The general scheme adapts very well to both problems and can be easily imple-
mented. For the integer min cost flow problem, the numerical tests performed
on a selection of test instances, taken from the literature, permit to verify that
the algorithm finds a complete set of efficient solutions. For the minimum
spanning tree problem, a numerical example, automatically generated, using
two alternative methods for the first phase, confirm the practicability of the
approach. Further research will be devoted to improving the efficiency of
the implementation of the algorithm, also utilizing Bensolve in the second
phase in order to speed up the whole procedure, as mentioned in Chapter
5. Moreover, an extensive computational study will be performed for both
problems, considering also larger and different instances.

113

Bibliography

[1] B. Addis and al. Energy management through optimized routing and
device powering for greener communication networks. IEEE/ACM Trans-
actions on Networking (ToN), Vol. 22:313–325, 2014.

[2] A. Ahmad and al. Power-aware logical topology design heuristics in
wavelength-routing networks. Proc. ONDM, Bologna, Italy, 2011.

[3] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows.Theory, Algorithms
and Applications. Prentice Hall, 1993.

[4] A. Aldraho and A. A. Kist. Enabling energy efficient and resilient networks
using dynamic topologies. Proc. SustainIT, Pisa, Italy, pages 525–530,
2012.

[5] L. Amorosi and al. Optimal sustainable management of backbone networks.
IEEE, International Conference on Transparent Optical Networks, pages
1–4, 2016.

[6] L. Amorosi and M. Ehrgott. A new two-phase algorithm for the bi-objective
integer min cost flow problem. Department of Statistical Sciences, work
in progress, 2017.

[7] L. Amorosi and J. Puerto. Two-phase strategies for the bi-objective
minimum spanning tree problem. Department of Statistical Sciences, work
in progress, 2017.

[8] J. Andrews and al. What will 5g be? IEEE Journal on Selected Areas in
Communications, Vol. 32:1065–1082, 2014.

[9] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Tsp cuts which do
not conform to the template paradigm. Computational Combinatorial
Optimization, pages 261–303, 2001.

[10] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey.
Computer networks, Vol. 54:2787–2805, 2010.

[11] H. P. Benson. An outer approximation algorithm for generating all
efficient extreme points in the outcome set of a multiple objective linear
programming problem. Journal of Global Optimization, Vol. 13:1–24,
1998.

[12] T. Bertsimas and R. Freund. Data, Models and Decisions: The Funda-
mental of Management Science. South-Western College, 2000.

114 Bibliography

[13] R. Bolla, R. Brischi, F. Davoli, and F. Cucchietti. Energy efficiency in
the future internet: a survey of existing approaches and trends in energy-
aware fixed network infrastructures. IEEE Communications Surveys &
Tutorials, Vol. 13:223–244, 2011.

[14] H. Calvete and M. Mateo. A sequential network-based approach for the
multiobjective network flow problem with preemptive priorities. Multi-
objective programming and goal programming: theory and applications,
Lecture Notes in Economics and Mathematical Systems, Vol. 432:74–86,
1996.

[15] M. Cardei and D. Du. Improving wireless sensor network lifetime through
power aware organization. Wireless Networks, Vol. 11:333–340, 2005.

[16] C. Cavdar and al. Design of green optical networks with signal quality
guarantee. Proc. ICC, Ottawa, Canada, 2012.

[17] J. Chabarek and al. Power awareness in network design and routing. Proc.
of IEEE INFOCOM, Phoenix, USA, 2008.

[18] V. Chankong and Y. Y. Haimes. Multiobjective Decision Making: Theory
and Methodology. Courier Dover Publications, 1983.

[19] L. Chiaraviglio and al. Increasing device lifetime in backbone networks
with sleep modes. Proc. of the SoftCOM, Primosten, Croatia, 2013.

[20] L. Chiaraviglio and al. Is green networking beneficial in terms of device
lifetime? IEEE Communications Magazine, Vol. 53:232–240, 2015.

[21] L. Chiaraviglio, L. Amorosi, and al. Lifetel: Managing the energy-lifetime
trade-off in telecommunication networks. IEEE Communications Maga-
zine, Vol. 54:150–157, 2016.

[22] L. Chiaraviglio, L. Amorosi, and al. Lifetime-aware ISP networks: Optimal
formulation and solutions. IEEE/ACM Transactions on Networking (ToN),
25(3):1924–1937, 2017.

[23] L. Chiaraviglio, L. Amorosi, and al. Optimal superfluid management of
5g networks. Proc. of 3rd IEEE Conference on Network Softwarization
(IEEE NetSoft), 2017.

[24] L. Chiaraviglio, M. Mellia, and F. Neri. Minimizing isp network energy
cost: Formulation and solutions. IEEE/ACM Transactions on Networking
(TON), Vol. 20:463–476, 2012.

[25] A. Coiro, M. Listanti, A. Valenti, and F. Matera. Energy-aware traffic
engineering: a routing-based distributed solution for connection-oriented
ip networks. Computer Networks, Vol. 57:2004–2020, 2013.

[26] H. W. Corley. Efficient spanning trees. Journal of Optimization Theory
and Applications, Vol. 45:481–485, 1985.

[27] G. Dahl, K. Jörnsten, and A. Lokketangen. A tabu search approach to
the channel minimization problem. ICOTA95, Chengdu, China, 1995.

[28] M. Dharmaweera, R. Parthiban, and Y. Sekercioglu. Toward a power-
efficient backbone network: The state of research. Communications
Surveys & Tutorials, IEEE, Vol. 17:198–227, 2014.

Bibliography 115

[29] J. Diaz. Solving multiobjective transportation problems. Ekonomicko
Mathematicky Obzor, Vol. 14:267–274, 1978.

[30] M. Ehrgott. Integer solutions of multicriteria network flow problems.
Investigacao Operacional, Vol. 19:229–243, 1999.

[31] M. Ehrgott. Multicriteria optimization. Springer, 2005.
[32] M. Ehrgott. A discussion of scalarization techniques for multiple objective

integer programming. Annals of Operations Research, Vol. 147:343–360,
2006.

[33] M. Ehrgott and X. Gandibleux. A survey and annotated bibliography on
multiobjective combinatorial optimization. OR Spektrum, Vol. 22:425–460,
2000.

[34] M. Ehrgott, A. Löhne, and S. Lizhen. A dual variant of Benson’s "outer ap-
proximation algorithm" for multiple objective linear programming. Journal
of Global Optimization, Vol. 52:757–778, 2012.

[35] E. Fernández, M. Pozo, J. Puerto, and A. Scozari. Ordered weighted
average optimization in multiobjective spanning tree problems. European
Journal of Operational Research, 260(3):886–903, 2017.

[36] G. Fettweis. The tactile internet: applications and challenges. IEEE
Vehicular Technology Magazine, Vol. 9:64–70, 2014.

[37] J. Figueira. On the integer bi-criteria network flow problem: A branch-
and-bound approach. Technical report, Cahier du LAMSADE, Université
Paris-Dauphine, 2002.

[38] F. Francois, N. Wang, K. Moessner, and S. Georgoulas. Optimizing
link sleeping reconfigurations in isp networks with off-peak time failure
protection. IEEE TNSM, Vol. 10:176–188, 2013.

[39] H. Gabow. Two algorithms for generating weighted spanning trees in
order. Journal on Computing, Vol. 6:139–150, 1977.

[40] X. Gandibleux, D. Vancoppenolle, and D. Tuyttens. A first making
use of grasp for solving moco problems. Technical report,University of
Valenciennes, France, 1998.

[41] A. M. Geoffrion. Proper efficiency and the theory of vector maximization.
Journal of Mathematical Analysis and Applications, Vol. 22:618–630, 1968.

[42] F. Giroire, D. Mazauric, J. Moulierac, and B. Onfroy. Minimizing routing
energy consumption: from theoretical to practical results. Proc. of IEEE
GreenCom, Hangzhou, China, 2010.

[43] J. Gross and J. Yellen. Graph Theory and Its Applications. Taylor &
Francis Group, 2006.

[44] M. Gupta and S. Sigh. Greening of the internet. Proc. of the SIGCOMM,
Karlsruhe, Germany, 2003.

[45] J. Gutiérrez, J. Puerto, and J. Sicilia. The multiscenario lot size problem
with concave costs. European Journal Of Operational Research, 156(1):162–
182, 2004.

116 Bibliography

[46] H. Hamacher. A note on k best network flows. Annals of Operations
Research, Vol. 57:65–72, 1995.

[47] H. Hamacher, C. Pdersen, and S. Ruzika. Multiple objective minimum
cost flow problems: A review. European Journal of Operational Research,
176:1404–1422, 2007.

[48] H. Hamacher and G. Ruhe. On spanning tree problems with multiple
objectives. Annals of Operations Research, Vol. 52:209–230, 1994.

[49] A. Hamel, A. Löhne, and B. Rudloff. Benson type algorithms for linear
vector optimization and applications. Journal of Global Optimization, Vol.
59:811–836, 2014.

[50] F. Heyde and A. Löhne. Geometric duality in multiple objective linear
programming. Journal of Optimization, Vol. 12:836–845, 2008.

[51] F. Huarng, P. Pulat, and A. Ravindran. An algorithm for bicriteria integer
network flow problem. 10th International Conference on Multiple Criteria
Decision Making, Taipei (Taiwan), Vol. 3:305–318, 1992.

[52] F. Idzikowski and al. Dynamic routing at different layers in IP-over-WDM
networks maximizing energy savings. Optical Switching and Networking,
Vol. 8:181–200, 2011.

[53] F. Idzikowski and al. Trend d3.3 final report for the ira energy-efficient
use of network core resources. available on line at: http://www.fp7-
trend.eu/system/files/private/71-wp3/d33-final-report-ira.pdf, 2012.

[54] F. Idzikowski and al. Green horizon: Looking at backbone networks in
2020 from the perspective of network operators. Proc. of IEEE ICC,
Budapest, Hungary, 2013.

[55] H. Isermann. Proper efficiency and the linear vector maximum problem.
Operations Research, Vol. 22:189–191, 1974.

[56] R. Jain and S. Paul. Network virtualization and software defined network-
ing for cloud computing: a survey. Communications Magazine, IEEE, Vol.
51:24–31, 2013.

[57] F. Kerasiotis and al. Battery lifetime prediction model for a wsn platform.
Fourth International Conference on Sensor Technologies and Applications
(SENSORCOMM), pages 525–530, 2010.

[58] R. Kipp-Martin. Using separation algorithms to generate mixed integer
model reformulations. Operations Research Letters, Vol. 10:119–128, 1991.

[59] D. Klingam, A. Napier, and J. Stutz. Netgen: a program for generating
large scale assignment, transportation, and minimum cost flow problems.
Management Science, Vol. 20:814–821, 1974.

[60] J. D. Knowles and D. W. Corne. Enumeration of pareto optimal multi-
criteria spanning trees - a proof of the incorrectness of zhou and gen’s
proposed algorithm. European Journal of Operational Research, Vol.
143:543–547, 2002.

[61] C. Lee and J. Rhee. Traffic grooming for ip-over-wdm networks: Energy
and delay perspectives. IEEE/OSA JOCN, Vol. 6:96–103, 2014.

Bibliography 117

[62] H. Lee and P. Pulat. Bicriteria network flow problems: Integer case.
European Journal of Operational Research, Vol. 66:148–157, 1993.

[63] G. Lin, S. Soh, and K. Chin. Energy-aware traffic engineering with
reliability constraint. Elsevier ComCom, Vol. 57:115–128, 2015.

[64] T. Magnanti and L. A. Wolsey. Optimal trees. Handbooks in Operations
Research and Managament Science, Vol. 7:503–616, 1995.

[65] D. Narsingh. Graph Theory, with Applications to Engineering & Computer
Science. Dover Publications, INC, 2016.

[66] G. Optimization. Gurobi Optimizer Reference Manual. http:
//www.gurobi.com/documentation, 2017.

[67] P. Perny and O. Spanjaard. A preference-based approach to spanning trees
and shortest paths problems. European Journal of Operational Research,
Vol. 162:584–601, 2005.

[68] A. Przybylski, G. X., and M. Ehrgott. The biobjective integer minimum
cost flow problem–incorrectness of Sedeño-Noda and González-Martín’s
algorithm. Computers and Operations Research, Vol. 33:1459–1463, 2006.

[69] A. Raith and M. Ehrgott. A comparison of solution strategies for biob-
jective shortest path problems. Computers & Operations Research, Vol.
36:1299–1331, 2009.

[70] A. Raith and M. Ehrgott. A two-phase algorithm for the biobjective
integer minimum cost flow problem. Computers & Operations Research,
Vol. 36:1945–1954, 2009.

[71] R. M. Ramos, S. Alonso, J. Sicilia, and C. González. The problem of
the optimal biobjective spanning tree. European Journal of Operational
Research, Vol. 111:617–628, 1998.

[72] R. Rockafellar. Convex Analysis. Princeton University Press, 1972.
[73] A. Sedeño Noda and C. González-Martín. An algorithm for the biobjective

integer minimum cost flow problem. Asia-Pacific Journal of Operational
Research, Vol. 20:241–260, 2003.

[74] P. Serafini. Some considerations about computational complexity for
multi objective combinatorial problems. Recent advances and historical
development of vector optimization. Lecture Notes in Economics and
Mathematical Systems. Berlin: Springer-Verlag., Vol. 294:222–232, 1987.

[75] P. Serafini. A simulated annealing for multiobjective optimization prob-
lems. 10th International Conference on Multiple Criteria Decision Making,
Taipei (Taiwan), Vol. 1:87–96, 1992.

[76] F. Sourd and O. Spanjaard. A multiobjective branch-and-bound frame-
work: Application to the biobjective spanning tree problem. INFORMS
Journal on Computing, 2008.

[77] S. Steiner and T. Radzik. Computing all efficient solutions of the biobjec-
tive minimum spanning tree problem. Computers & Operations Research,
Vol. 35:198–211, 2008.

118 Bibliography

[78] E. Ulungu and J. Teghem. The two phases method: an efficient procedure
to solve bi-objective combinatorial optimization problems. Foundations
of Computing and Decision Sciences, Vol. 20:149–165, 1995.

[79] M. Visée, J. Teghem, M. Pirlot, and E. Ulungu. Two-phases method and
branch and bound procedures to solve the bi-obective knapsack problem.
Journal of Global Optimization, Vol. 12:139–155, 1998.

[80] B. Weißing and A. Löhne. The vector linear program solver bensolve
– notes on theoretical background. European Journal of Operational
Research, Vol. 260:807–813, 2017.

[81] P. Wiatr, P. Monti, and L. Wosinska. Energy efficiency and reliability
tradeoff in optical core networks. Proc. of OSA OFC, San Francisco,
USA, 2014.

[82] P. Wiatr, P. Monti, and L. Wosinska. Energy efficiency versus reliability
performance in optical backbone networks. Journal of Optical Communi-
cations and Networking, Vol. 7:A482–A491, 2015.

[83] Y. Yang, D. Wang, M. Xu, and S. Li. Hop-by-hop computing for greenin-
ternet routing. Proc. ICNP, Göttingen, Germany, 2013.

[84] S. Zhang, D. Shen, and C. Chan. Energy-efficient traffic grooming in wdm
networks with scheduled time traffic. IEEE/OSA JLT, Vol. 29:2577–2584,
2011.

[85] G. Zhou and M. Gen. Genetic algorithm approach on multi-criteria mini-
mum spanning tree problem. European Journal of Operational Research,
Vol. 114:141–152, 1999.

	Introduction
	Preliminary concepts
	Graphs and related definitions
	Network flow problems and main applications
	Network simplex method
	Fundamentals results
	Algorithm scheme

	Emerging optimization problems in Telecommunication networks
	Managing the Energy-Lifetime Trade-off in Backbone Networks
	Related work
	Modeling the device lifetime
	Mathematical Formulation
	Experimental Results

	Optimal Sustainable Management of Backbone Networks
	Problem Formulation
	Results

	Optimal Superfluid Management of 5G Networks
	Architecture Description
	5G Model
	Performance Evaluation

	Inspired research

	Multicriteria optimization
	Multiobjective linear programming
	Solving MOLP in Objective Space: Bensons's algorithm
	Duality

	Multiobjective integer linear programming
	Scalarization techniques
	Other methods

	A new two-phase strategy for solving bi-objective integer network flow problems
	Two-phase method for bi-objective combinatorial optimization problems
	A recursive procedure for generating all the feasible solutions of a single objective integer network flow problem
	Putting things together

	A new algorithm for the bi-objective integer min cost flow problem
	State of the art
	The general idea of the algorithm
	First phase: the dual variant of Benson's algorithm
	Benson's algorithm strategy
	Main steps

	Second phase: a recursive algorithm for generating all feasible flows
	Strategy of the recursive algorithm
	A special case: degeneracy
	Illustrative example
	Adaptation of the recursive procedure to the second phase

	Preliminary Results

	A new algorithm for the bi-objective minimum spanning tree problem
	State of the art
	Algorithm description
	Finding supported efficient solutions
	The weighted sum method on the flow formulation
	Benson's algorithm on the Kipp-Martin formulation

	A recursive algorithm for completing the set of efficient solutions
	Procedure for generating all the spanning trees of a graph
	The recursive procedure adapted to the second phase
	Illustrative example

	Conclusions and Further Research

