
Machine Learning-based Thread-Parallelism Regulation in

Software Transactional Memory

Diego Rughetti, Pierangelo Di Sanzo, Bruno Ciciani

DIAG - Sapienza Università di Roma

Francesco Quaglia
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Abstract

Transactional Memory (TM) stands as a powerful paradigm for manipulating shared data in con-

current applications. It avoids the drawbacks of coarse grain locking schemes, namely the potentially

excessive limitation of concurrency, while jointly providing support for synchronization transparency

to the programmers, which is achieved by embedding code-blocks accessing shared data within trans-

actions. On the downside, excessive transaction aborts may arise in scenarios with non-negligible

volumes of conflicting data accesses, which might significantly impair performance. TM needs there-

fore to resort to methods enabling applications to run with the maximum degree of transaction

concurrency that still avoids thrashing. In this article we focus on Software TM (STM) implementa-

tions, and present a machine learning-based approach that enables the dynamic selection of the best

suited number of threads to be kept alive along specific phases of the execution of STM applications,

depending on (variations of) the shared data access pattern. Two key contributions are provided

with our approach: (i) the identification of the well suited set of features allowing the instantiation of

a reliable neural network-based performance model and (ii) the introduction of mechanisms enabling

the reduction of the run-time overhead for sampling these features. We integrated a real implemen-

tation of our machine learning-based thread-parallelism regulation approach within the TinySTM

open source package and present experimental data, based on the STAMP benchmark suite, which

show the effectiveness of the presented thread-parallelism regulation policy in optimizing transaction

throughput.

Keywords: concurrency, transactional memory, performance prediction, performance optimization
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1 Introduction

Over the last decade multi-core systems have become mainstream computing platforms so that off-the-

shelf desktop and laptop machines are nowadays equipped with multiple processors and/or CPU-cores.

Consequently, great interest has came out on easy to manage abstractions able to simplify the job of

developing concurrent applications accessing shared data.

While the traditional coarse-grained locking approach represents a simple management solution, it is

prone to excessive reduction of concurrency. Thus it typically does not allow scalability on medium-to-

high end multi-core systems. On the opposite side, fine grain locking is more complex to manage, and not

suited for enabling adequate productivity by the programmers. Transactional Memory (TM) is a shared

data management paradigm that allows the exploitation of parallelism—hence avoiding the drawbacks of

coarse grain locking—while jointly providing synchronization transparency to the programmer, which is

not allowed by hand-made fine grain locking.

TM allows the programmer to mark code blocks accessing shared data as transactions, whose atomicity

and isolated execution is transparently ensured by hardware or software support. In the former case we

talk about Hardware TM (HTM), a support offered by some modern processors families, such as the Intel

Haswell [1]. It manages a transactional code block by having any of its updates temporarily buffered

at the level of the caching system, and flushed out of the cache only upon a successful commit (e.g.

when no other core has concurrently updated/read data that is written by the transaction). A core

advantage of HTM is the minimal overhead for managing transactional data accesses, given the reliance

on processor firmware. However, HTM implementations still suffer from significant limitations, such as

the impossibility to manage transactions with data sets exceeding the cache capacity1.

Software TM (STM) [2] is the counterpart software implementation of the TM paradigm. In STM, the

management of transactional data accesses is purely demanded from a software layer, which encapsulates

memory operations in such a way that any update is installed (made visible to other threads) in a

controlled manner, e.g. upon the successful commit of a transaction. Various STM implementations exist,

based on differentiated strategies for handling transaction concurrency [3, 4, 5, 6, 7]. Such an approach

does not require any transaction-oriented hardware support and avoids the limitations of current HTM

implementations. Particularly, by avoiding transaction aborts that are not directly related to conflicting

data accesses (e.g. aborts caused by limited cache capacity).

However, the STM paradigm still requires to be complemented with methods and techniques aimed

at avoiding excessive incidence of aborts (namely thrashing). They are caused by data conflicts across

concurrent transactions, which is an issue that anyway affects also HTM. In fact, data conflicts may lead

to unacceptably reduced operations/tasks throughput and to poor energy efficiency caused by the squash

of non-committable transactional work.

In this article we address the problem of STM throughput optimization by introducing a Machine

Learning (ML)-based approach [8]. We introduce a neural network-based model able to predict the

variation of the transactions’ throughput as a function of the number of threads used for running the ap-

plication. The model is exploited at run-time by a thread-parallelism regulation system that dynamically

selects the best suited thread concurrency level (via threads’ suspension/resume), say the one avoiding

both under-parallelism and over-parallelism in the current phase of the application execution. The for-

mer can prevent full exploitation of the available hardware resources, while the latter can originate the

1This problem is exacerbated by the fact that an HTM transaction is forced to abort also by conflicting cache-line

accesses by multiple CPU-cores sharing the same cache hierarchy path.
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aforementioned transaction trashing phenomena, just depending on the (dynamic) data access pattern

by the application.

As for methodological contributions, our proposal does not only target the identification of a reference

set of features to be taken into account while building the neural network-based throughput predictor.

Rather, we also present a technique for dynamically shrinking the features’ reference set, thus generating

reduced subsets of actual features to by run-time sampled in order to correctly characterize the workload

and fill the neural network-based predictor in input. This allows reducing the overhead incurred in by

thread-parallelism regulation.

To evaluate the effectiveness of our proposal, we integrated the thread-parallelism regulation archi-

tecture within TinySTM [4], a popular open source STM layer written in C language, and we carried

out an extensive experimental study based on the STAMP benchmark suite [11]. We compared our

ML-based proposal with other literature techniques targeting the reduction of the incidence of aborts in

STM. The experimental data show the higher effectiveness and robustness of our approach in optimizing

the performance of STM applications in face of differentiated (and dynamic) workload profiles.

The reminder of this article is organized as follows. In Section 2 we discuss related work. A recap on

the core ML method we use, namely neural networks, is provided in Section 3. The ML-based thread-

parallelism regulation approach is presented in Section 4. Experimental results are reported in Section

5.

2 Related Work

An approach targeting the reduction of the incidence of aborts in TM applications is transaction schedul-

ing. It is based on serializing transactions in order to avoid (highly likely) conflicting ones to execute

concurrently. Solutions oriented to HTM are faced with the problem of identifying transaction’ data ac-

cess patterns, since memory accesses within transactions are not under the control of any software layer

and, at the current state of HTM technology, cannot be directly audited. In [12], this problem is tackled

via a probabilistic technique aimed at inferring potential conflicts, which is used to serialize transactions

accordingly via locking mechanisms. The Adaptive Thread Scheduling (ATS) proposal in [13] exploits the

notion of Contention Intensity (CI), which quantifies the incidence of aborts (as a simple—dynamically

computed—ratio between aborted and executed transactions). If CI oversteps a given threshold value,

then transactions are serialized via a lock-based mechanism. Although this approach has been proposed

for (and evaluated with) STM applications, it can still be useful for HTM contexts since it does not rely

on any data access pattern information.

Most of the transaction scheduling techniques specifically tailored for STM applications make use

of information on data access patterns or conflicts’ materialization, e.g., as gathered by the STM layer

at run-time. The proposal in [14] assigns transactions to a same thread (thus sequentializing them)

if they are recognized to access the same data portions, a target that is achieved by also exploiting

indications provided by the application programmers. A similar technique of partitioning and serializing

the transactions across different queues (managed by different threads) has been presented in [15], where

the move of transactions across the queues is based on cross transactions’ conflicts detected by the STM

layer at run-time. A kind of specialization of this approach for the case of long running transactions,

whose aborts may negatively impact resources’ usage at a larger extent, has been presented in [16]. In [17]

the authors present Shrink, a scheduler that serializes a transaction when a potential conflict with other

running transactions is predicted. The prediction leverages on the estimation of expected read/write
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sets, carried out on the basis of the history of processed transactions. To reduce the run-time overhead,

Shrink activates the serialization mechanism only when the fraction of aborted transactions along an

execution interval exceeds a given threshold. A different approach has been recently taken in [18], where

the decision on whether to serialize transactions is based on an analytical performance model relying on

Markon-chain formalisms. This model does not require knowledge on the data access pattern in order to

be instantiated at run-time. Rather it only needs to be filled with simple parameters, such as the average

time spent for executing aborted work, and the abort probability as observed when running with a single

parallelism degree.

Compared to all the above proposals, we follow the orthogonal approach of thread-parallelism regula-

tion, rather than transaction scheduling. Thus, we control the degree of concurrency across transactions

by controlling (and dynamically adjusting) the overall level of thread-parallelism. One advantage from

this approach is that thread suspension (in phases where the degree of parallelism needs to be shrunk

for a while) can be operated by relying on different schemes, including those based on operating system

blocking services. Instead, most of the literature transaction schedulers rely on busy waiting (e.g., via

spin-locking) since the wait phase of a serialized transaction needs to be very short (especially for very

fine grain applications), thus being typically not compatible with temporized waits supported by the op-

erating system. Overall, as opposed to these approaches, thread-parallelism regulation has the potential

to also provide improvements in energy efficiency. Further, except for the approach in [18], all the above

proposals do not directly estimate (or model) the wasted time due to aborted transactions (vs the level

of concurrency), while they only indirectly attempt to reduce the wasted time according to heuristics,

e.g. threshold-based schemes. Rather, our ML-based performance model predicts such wasted time, and

drives changes in the level of concurrency on the basis of the prediction.

As for literature studies targeting the determination of the well suited level of thread parallelism in

TM applications, we find model based solutions, as well as heuristic approaches. In [19], an analytical

modeling approach has been proposed to evaluate the performance of STM applications as a function of

the number of concurrent threads and a set of workload profile parameters. Such an approach is targeted

at building mathematical tools allowing the analysis of the effects of the contention management scheme

on performance. This approach requires detailed knowledge on the conflict detection and management

scheme used by the target STM, which is instead not required by the ML-based approach we propose.

The work in [20] presents an analytical model that takes as input a workload characterization of

the application expressed in terms of transaction profiles, contention probability and hardware resources

consumption. The model predicts the application execution time as function of the number of concurrent

threads sustaining the application. However, the prediction is a representation of the average system

behavior over the whole lifetime of the application. Hence, differently from our proposal, no ability to

capture run-time variations (with consequent dynamic adaptation of the level of concurrency) is envisaged.

The proposal in [21] is targeted at evaluating scalability of STM systems. It relies on the usage

of different types of functions (such as polynomial, rational and logarithmic functions) to estimate the

performance of the application when considering different amounts of concurrent threads. The estimation

process is based on measuring the speed-up of the application over a set of runs, each one executed with

a different number of concurrent threads. Measurements are then used for calculating the parameters of

a set of alternative interpolating functions, so as to select the best one that can be used to predict the

speed-up of the application vs the number of threads. Differently from our proposal, this approach has

the limitation of not taking into account the workload profile of the application. Hence the prediction

may prove unreliable when the profile changes along different application execution phases.
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The solutions in [22, 23] rely on the usage of parametric analytical expressions capturing the relation

between thread-level parallelism and throughput of STM applications. The main objective of these works

is to provide meta-models that can be promptly instantiated for thread concurrency adaptation with spe-

cific workloads. However, as shown by the results reported there in, the level of precision of these models

needs to be refined via alternative (non-analytical) modeling strategies if extreme optimization of per-

formance is targeted. In this work we take the orthogonal path of modeling the application performance

(vs the degree of thread parallelism) via pure ML techniques.

Approaches based on hill climbing heuristics have been presented in [24, 25, 26], which dynamically

increases or decrease the number of concurrent threads (or transactions) in STM applications. They

determine whether the trend of increasing/decresing the concurrency level has positive effects on trans-

actions’ throughput, in which case the trend is maintained. Differently from our proposal, no direct

attempt to capture the relation between the actual transaction profile and the achievable performance

(depending on the level of parallelism) is done.

As for pure ML proposals, the work in [27] presents a classification-based approach for selecting the

suited level of thread parallelism in HTM applications. The employed classification algorithms are based

on input/output data specifically devised to account for HTM peculiarities (such as transaction aborts

due to cache capacity), which are not proper of the STM context. In our proposal we provide a ML-

based performance model which is specifically suited for STM, and which takes into account transaction

data access profiles (which is not viable in HTM due to difficulties/costs for auditing transactional data

accesses that are directly handled by the processor firmware). Also, we introduce an innovative approach

for dynamically shrinking the set of features to be run-time sampled in order to re-evaluated the machine

learning model and to regulate thread concurrency. This aspect is not addressed by the proposal in [27].

In [28] ML techniques are used to select the best performing conflict detection and management

algorithm at run-time. Specifically, an application is profiled while running with different algorithm

implementations, and the collected data are used by learning algorithms to decide the specific implemen-

tation to be used along the execution of the application. In [29], ML is used to select the most suitable

thread mapping, i.e., the placement of application threads on different CPU-cores in order to get the

best performance. The goals of both these works are different with respect to our one, since we focus on

the regulation of the overall concurrency level while running STM applications. Ideally, such different

techniques could be combined together.

Finally, in [30] the authors address the issue of multidimensional dynamic optimization of TM systems.

This is achieved via the construction of a TM environment that makes different contention management

policies (and implementations) coexist, while jointly controlling at run-time the level of concurrency. In

this work the run-time decisions are taken on the basis of recommendation schemes and Bayesian opti-

mization techniques. Our work differs from this proposal because we enable thread-parallelism regulation

via ML by jointly exploiting a technique where the set of input features to be sampled an filled in input

to the ML-based performance model is dynamicaly adapted to the actual workload.

3 Recap of Neural Networks

A Neural Network (NN) is a ML method [8] that can approximate various kinds of functions, including

real-valued and discrete-valued ones. Inspired to the neural structure of the human brain, NN consists

of a set of interconnected processing elements which cooperate to compute a specific function, so that,

provided a given input, NN can be used to estimate the output of the function. Each processing element
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calculates a (simpler) function, called transfer function. Different types of processing elements have been

designed, each one calculating a specific transfer function. Commonly used ones are:

• perceptron—an element that takes a vector of real valued as input, calculates a linear combination

of them and then outputs the value 1 if the result is greater that a given threshold, the value -1

otherwise. More formally, perceptron elements carry out the computation expressed by the following

equation:

o(x⃗) = sign(w⃗ · x⃗) (1)

where (x⃗) is the perceptron input vector and (w⃗) is the weight vector.

• linear unit—an element that takes a vector of real valued as input, and outputs the weighted sum

of the input plus a bias term. More formally:

o(x⃗) = (w⃗ · x⃗) (2)

where (x⃗) is the linear unit input vector and (w⃗) is the weight vector.

• sigmoid unit—it is similar to perceptron, but relies on a smoothed, differentiable threshold func-

tion. So the output of this element is a non-linear, differentiable function of its inputs. The sigmoid

processing element computes its output as:

o(x⃗) =
1

1 + e−(w⃗·x⃗) (3)

where (x⃗) is the sigmoid unit input vector and (w⃗) is the weight vector.

In order to approximate a function f via NN, a learning algorithm is used to compute the weights

associated with the edges that connect the network processing elements. The learning algorithm exploits

a set {(i,o)} of samples, called training set, where, for each sample (i,o), it is assumed that o = f(i)+ δ,

where δ is a random variable (also said noise). Essentially, each sample provides the training algorithm

with information on the relation between the input and the output of the function f to be approximated.

A learning algorithm usually works according to an iterative procedure, where it performs the following

computation at each iteration step. For each sample (i,o) in the training set, it takes the output associated

with the input i as computed by NN and then compares it with the output o kept by the sample, thus

determining the error. Then, the algorithm modifies the weights associated with the edges interconnecting

NN elements with the aim at minimizing the overall error for the whole training set. The iterative

procedure can be stopped after a number of steps have been executed or when the error falls below

a given threshold. Various learning algorithms have been proposed [9, 10]. The design of a learning

algorithm can be tailored to the NN topology and to the specific type of computation NN is intended for.

In order to approximate arbitrarily complex real valued functions, as we do in this study, a multi-layer

non-acyclic sigmoid-based neural network can be used ([31, 32, 33]), which once fixed the set of elements

and interconnection edges can be trained by relying on the commonly used Back-propagation algorithm

[34]. Basically, this algorithm computes the weights by exploiting gradient descent in the attempt to

minimize the mean squared error between NN computed outputs and the output values kept by training

set samples.
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4 Machine Learning-based Thread-Parallelism Regulation

4.1 Application and Performance Model

In our approach we assume that concurrent threads running the application can be paused or resumed,

so that the number of concurrent threads can be dynamically changed to optimize the concurrency level

along the application lifetime. We consider a very general scenario where the execution flow of any

thread is allowed to alternate transactions and non-transactional code (ntc) blocks, which run outside

of transactional context. The length of ntc blocks might be arbitrary, so that our performance model

also captures cases where threads iteratively execute subsequent transactions with no (or minimal) non-

transactional work in between them.

Any transaction starts with a begin operation and ends with a commit operation. When running

a transaction, the thread can both (A) perform read/write accesses to shared data objects, and (B)

execute operations that do not access shared data objects (e.g. they access local variables within the

thread stack). Read/written shared data objects are included in the transaction read-set (write-set). If a

conflict between two concurrent transactions occurs then one of the conflicting transactions is aborted and

re-started. Right after the thread commits a transaction, some ntc block is allowed to start, which ends

right before the execution of the begin operation of the subsequent transaction along the same thread.

A core challenge when predicting the performance of STM applications is the estimation of the ex-

pected transaction execution time, i.e. the elapsed time between the first execution of the begin operation

and the successful commit operation of a transaction. This time interval is affected by the so-called wasted

time, i.e. the time spent for aborted executions of the same transaction. Transactions’ wasted time may,

in its turn, depend on several factors, including workload profile (namely the length of transactions and

the data access pattern) and run-time system parameters (e.g. number of concurrent threads and code

processing speed). Further, both workload profile and run-time system parameters could change along

the application lifetime, so that the (expected) wasted time could change over time too.

In order to build a performance prediction model to be used for dynamic thread-parallelism regulation

and performance optimization, we exploit a function instantiated via NN, whose input parameters rep-

resent the set of input features we consider as relevant and representative of the relation between wasted

time and workload profile/system settings. The function is as follows:

wtime = f(rss, wss, rwa, wwa, ttime, ntctime, k) (4)

where:

• wtime is the average per-transaction wasted time;

• rss is the average read-set size of transactions;

• wss is the average write-set size of transactions;

• rwa (read-write conflict affinity) is an index providing an estimation of the likelihood that an object

read by a transaction could also be written by another transaction;

• wwa (write-write conflict affinity) is an index providing an estimation of the likelihood that an

object written by a transaction could also be written by another transaction;

• ttime is the average execution time of a committed transaction run (i.e. the average execution time

of a transaction run which is not aborted);
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• ntctime is the average execution time of ntc blocks, namely the average time a thread spends

executing instructions between two subsequent transactions;

• k is the number of concurrently running threads.

As a note, the input parameters rwa and wwa to the function f represent probability values, hence

being constrained in the interval [0, 1].

For each input parameter to f , once keeping fixed the others, we can devise the following expectations:

• rss and wss can directly affect the abort probability. Particularly, the greater the number of shared

objects a transaction reads (writes), the higher is the probability that other concurrent transactions

update (at least) one of these objects, thus leading to higher likelihood of conflicts.

• rwa and wwa can directly affect the abort probability too. Particularly, the higher the probability

to read/write some shared object, the higher the probability for a transaction to experience conflicts

with concurrent writing transactions updating the same object, which leads to transaction aborts.

• ttime can directly affect the wasted time, since long-running transaction instances are expected to

give rise to larger wasted time than short-running ones, if aborted. Furthermore, longer transac-

tions are expected to impact the abort probability also because of the longer length of so-called

vulnerability windows [35], i.e. long-running transactions are expected to be more prone to be hit

by some conflict. Overall, the average wasted time likely increases in scenarios where the average

time for a successful transaction run is longer.

• ntctime can directly affect the abort probability, possibly leading to a reduction of transactions’

wasted time. Particularly, the longer the execution time of ntc blocks, the lower the likelihood that,

while running some transaction along any thread, other concurrent threads also execute within

transactional context.

• k can directly affect the abort probability and the wasted time since transactions’ concurrency just

depends on thread level concurrency.

As we hinted, the above tendencies refer to the scenario where an individual input parameter to

the function f changes, with all the others being fixed. However, in real/complex workloads multiple

input parameters to f might simultaneously change over time. Hence, the objective of our NN based

modeling approach is the one of providing a function, which we refer to as fNN . It approximates f and

is able to capture complex effects on transactions’ wasted time due to combined variations of all its input

parameters. As we shall discuss in Section 4.3, the correlation and the variation of these parameters

can be exploited in order to further improve the thread-parallelism regulation support operating at run-

time, particularly by reducing its overhead. However, the approach we propose is intended to be a

general one, so that it must be possible to instantiate the performance model independently of the actual

parameters’ correlation in the specific workload (or workload phase). To this end, we build fNN via the

exploitation of a training set formed by (i,o) samples such that i = (rsts, ws
t
s, rw

t
a, ww

t
a, t

t
time, ntc

t
time, k

t)

and o = (wt
time), where we use the apex t to indicate that the involved quantities refer to training-phase

data, rather than on-line data.
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Figure 1: The thread-parallelism regulation architecture

4.2 The ML-based Thread-Parallelism Regulation Architecture

As schematized in Figure 1, our thread-parallelism regulation architecture relies on three building blocks,

namely: a Statistics Collector (SC), a Neural Network (NN) and a Control Algorithm (CA). We consider

the application lifetime as sliced into intervals, which we refer to as sampling intervals (or equivalently

observation windows) where SC collects samples of the workload profile. At the end of each sampling

interval, SC makes an estimation of the average values of the parameters: rss, wss, ttime and ntctime.

Further, to estimate rwa and wwa, SC initially estimates the probability distribution function of read

and write operations over the whole set S of shared data objects, in the form of histograms. After, rwa is

estimated by calculating the dot product between the probability distribution functions of read and write

operations, while wwa is estimated by calculating the dot product of the distribution function of write

operations with itself. The estimated values of all the above parameters are assumed to be representative

of the expected application behavior in the immediate future.

After, SC assembles the vector of estimates (rss, wss, rwa, wwa, ttime, ntctime) and passes it to CA.

Then, for each k such that 1 ≤ k ≤ maxthreads, where maxthreads is the maximum admitted number

of concurrent threads, CA generates the vector vk = (rss, wss, rwa, wwa, ttime, ntctime, k) and passes it

as input to NN in order to compute the wasted time prediction wtime,k = fNN (vk). Once the set of

predictions P = {wtime,k|k ∈ [1,maxthreads]} is available, CA determines the number opt of concurrent

threads which is expected to maximize the application throughput. Specifically, opt corresponds to the

value of k in the interval [1,maxthreads] for which the transactions’ throughput, calculated as

thrk =
k

wtime,k + ttime + ntctime
(5)

is maximized. Hence, during the subsequent sampling interval, CA keeps active opt threads. Note that

in Equation 5 the quantity (wtime,k + ttime+ntctime) corresponds to the predicted average time between

the commit operations of two consecutive transactions along any thread when there are k active threads.

Another point to note is that the vector (rss, wss, rwa, wwa, ttime, ntctime), produced by SC at the

end of a sapling interval, is estimated on the basis of measurements collected while the application runs

with a given number of concurrent threads, say the one that has been selected at the end of the last

sampling interval.

Therefore, using this vector as it is does not account for the fact that, while carrying out NN based
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predictions via the fNN function receiving vk in input, ttime and ntctime may depend, in their turn, on

the value of k. This dependence can arise because of different thread contention dynamics on system

level resources (e.g. contention on system hardware) when changing the number of concurrent threads

running the application. As an example, per-thread cache efficiency may change depending on the number

of concurrent threads operating on a given shared-cache level, thus impacting the CPU time required for

specific code blocks, either transactional or non-transactional. To cope with this issue, we further refine

our thread-parallelism regulation approach by basing it on correction functions. Once estimated the value

of ttime and ntctime when running with i threads (which we denote as ttime,i and ntctime,i respectively),

these functions allow predicting the corresponding values when supposing a different number of threads.

This leads CA to fill NN with input vectors vk where the average processing latency of a successful

transaction and the average processing latency of a ntc block will account for the specific concurrency

level k targeted by the prediction. Also, the final throughput prediction carried out by CA for the different

values of k will be actuated via the formula:

thrk =
k

wtime,k(ttime,k, ntctime,k) + ttime,k + ntctime,k
(6)

Overall, the finally achieved performance model in Equation 6 determines the expected transaction

wasted time when also considering contention on hardware resources (not only shared data) while varying

the number of concurrent threads.

The correcting functions aimed at determining (predicting) the values ttime,k and ntctime,k, once know

(or estimated via sampling) the values of these same parameters when running with thread concurrency

level i ̸= k, are instantiated in our approach by exploiting the same data set used to train NN. Specifically,

via curve fitting, we determine the application specific function expressing the variation (vs the level of

thread concurrency) of the number of clock-cycles the CPU-core spends waiting for data or instructions

to come-in from RAM storage, which we refer to as stall cycles. The expectation is that the number of

stall cycles scales (almost) linearly vs the number of concurrent threads used for running the application,

with a pendency factor that is application specific. To support our claim, we report in Figure 2 and

in Figure 3 data related to two different STM-based applications from the STAMP benchmark suite,

namely Intruder and Vacation, while varying the number of threads running these benchmarks in the

range between 1 and 16. More in detail, the plots show the variation of the ratio between the stall cycles

and the total amount of cycles for running the applications while varying thread level concurrency. These
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data have been gathered by running these benchmarks on top of TinySTM and a HP ProLiant server

equipped with two AMD OpteronTM6128 Series Processor, each one having eight CPU-cores (for a total

of 16 cores), and 32 GB RAM, running Linux SUSE Enterprise 10.4 (kernel version 2.6). The reported

statistics have been collected via the perf tool, which marks the stall cycles as Stalled-Cycles-backend.

By the curves the close-to-liner scaling is fairly evident, hence, once determined the scaling curve (so the

pendency factor) via regression, which we denote as sc, we have that:

ttime,k = ttime,i ×
sc(k)

sc(i)
ntctime,k = ntctime,i ×

sc(k)

sc(i)
(7)

where:

• ttime,k is the estimate of the expected CPU time (once known/estimated ttime,i) for a committed

transaction if the application runs with level of thread concurrency set to k;

• ntctime,k is the estimate of the expected CPU time (once known/estimated ntct,i) for a non-

transactional code block in case the application runs with level of thread concurrency set to k;

• sc(k) (resp sc(i)) is the value of the correction function for level of thread concurrency set to k

(resp i).

4.3 Reducing the Sampling Overhead: Dynamic Feature Selection

In this section we discuss an improvement aimed at reducing the run-time overhead for sampling the

workload profile. The sampling overhead is caused by the need for tracing the application execution

and producing the set of statistically computed values {rss, wss, rwa, wwa, ttime, ntctime} to be passed

from SC to CA. We remark that this set includes all the features we have identified as relevant (say the

reference ones) for characterizing the application execution profile in our ML-based approach.

We now define an approach where, depending on the current execution profile of the application (which

may change over time), the set of features to be sampled can be dynamically shrunk, or enlarged again

towards the maximum cardinality. In all the execution phases where the parallelism regulator works with

a shrunk features’ set, the run-time overhead for the sampling process is reduced, with additional benefits

on performance—beyond the ones achievable by dynamically controlling thread-level parallelism to the

well suited value. More in detail, the samples for estimating the features in the above reference set need to

be taken by performing work along the critical path of the thread that is currently running a transaction.

Hence, avoiding the sampling of a few features removes that work. As an example, if the rwa feature

needs to be estimated, then it implies that when a thread executes an access to transactional data, some

meta-data need to be updated along that same thread to reflect such an access onto, e.g., histograms

used to finally estimate rwa. Details on how this process is actually carried out in our implementation

are provided in Section 5.1.

The idea of dynamically shrinking the features’ set is based on noting that:

A: the values of some feature may show small variance along a given execution interval, and/or

B: the values of some feature may be statistically correlated (also including the case of negative corre-

lation) to the values of other features along a given execution interval.

Particularly, we can expect that (significant) variations of wtime, if any, do not depend on any feature

exhibiting small variance along the current observation interval. On the other hand, in case of correlation
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across a (sub)set of different features, the impact of variations of these values on wtime is expected to

be assessable by observing the variation of any individual feature in that (sub)set, an approach known

as Correlation-based Feature Selection (CFS) [36] in the ML literature. If the above scenarios occur, we

can build an estimating function for wtime which, compared to the f function in Equation 4, relies on a

reduced number of input parameters.

For the reference set {rss, wss, rwa, wwa, ttime, ntctime}, it comes natural to think about the following

expectations for the correlation of subsets of the input features:

• the size of the transaction read-set/write-set may be correlated to the transaction execution time.

In fact, the number of read/write operations executed by the transaction contributes to the actual

transaction execution time. If this reveals true, ttime and rss (or alternatively wss) can be excluded;

• read-write and write-write conflict affinities may exhibit correlation. In fact, these two indexes are

both affected by the distribution of write operations executed by transactions. If this reveals true,

rwa or wwa can be excluded.

Further, depending on the actual application logic, generic sub-sets of the reference features might

result correlated along a given execution interval, even if they are not naturally identified as potentially

correlated with each other. Also, still depending on the application logic, any of the features in the refer-

ence set {rss, wss, rwa, wwa, ttime, ntctime} may exhibit small variance along a given execution interval,

thus being candidate to be excluded from sampling.

To determine at what extent such an expectation materializes, and to observe whether the scenarios

in points A and B can anyhow materialize independently of the initial expectation, we have performed

a set of experiments still relying on the STAMP benchmark suite, and report in Table 1 data related to

the observed correlation among the different features for all the applications from STAMP. All data refer

to serial execution of the STAMP applications, carried out on the same multi-core platform that we have

described in Section 4.2.

We note that serial execution is adequate for the purpose of this experimental study, which is only

tailored to determine workload features that are essentially independent of the degree of execution par-

allelism. Specifically, given that correlation and variance are computed over feature-samples, each one

representing an average value (over a set of individual samples taken along a sampling interval entail-

ing 4000 transactions in this experiment), for the only parameters that can be potentially affected by

hardware contention (e.g. bus-contention) in case of actual parallelization, namely ttime and ntctime,

the corresponding spikes (if any) would be made irrelevant by the aggregation of the individual samples

within the window related average.

Data in Table 1 confirms that our rationale can find justification in the actual behavior of STM-

based applications, considering the execution patterns provided by the STAMP benchmark suite as a

reliable/reasonable representation of typical applications’ dynamics. In fact, we can observe that the

correlation between rwa and wwa is higher than 0.8 for 4 out of 8 applications of the STAMP suite, the

correlation between rss and ttime is higher than 0.8 for 3 out of 8 applications, the correlation between

wss and ttime is higher than 0.8 for 2 out of 8 applications. Further, as reported in Table 2, we observed

a reduced variance for rwa and/or wwa for many of the applications, and reduced variance for rss and/or

wss in a few cases.

We have also carried out an experimental study aimed at assessing at what extent shrinking the set of

input features to be sampled would allow reducing the overhead. This study is still based on the STAMP
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Ssca2

ttime ntctime rss wss rwa wwa

ttime 1 - - - - -

ntctime 0,259 1 - - -

rss -0,166 0,190 1 - - -

wss -0,166 0,190 1 1 - -

rwa -0,024 -0,638 -0,136 -0,136 1 -

wwa -0,001 -0,629 -0,210 -0,210 0,992 1

Intruder

ttime ntctime rss wss rwa wwa

ttime 1 - - - - -

ntctime 0,781 1 - - - -

rss 0,914 0,940 1 - - -

wss 0,577 0,924 0,848 1 - -

rwa 0,516 -0,377 -0,540 -0,330 1 -

wwa 0,023 -0,350 -0,269 -0,559 0,322 1

Genome

ttime ntctime rss wss rwa wwa

ttime 1 - - - - -

ntctime 0,012 1 - - - -

rss 0,352 0,902 1 - - -

wss -0,742 0,492 0,158 1 - -

rwa -0,584 -0,202 -0,397 -0,422 1 -

wwa 0,040 -0,027 -0,009 -0,049 0,064 1

Kmeans

ttime ntctime rss wss rwa wwa

ttime 1 - - - - -

ntctime 0,141 1 - - - -

rss 0,434 0,194 1 - - -

wss -0,524 0,106 0,481 1 - -

rwa -0,245 -0,729 0,072 0,177 1 -

wwa -0,072 -0,723 0,090 0,008 0,968 1

Yada

ttime ntctime rss wss rwa wwa

ttime 1 - - - - -

ntctime 0,705 1 - - - -

rss 0,860 0,619 1 - - -

wss 0,828 0,617 0,946 1 - -

rwa -0,417 -0,183 -0,508 -0,552 1 -

wwa -0,400 -0,173 -0,491 -0,542 0,999 1

Vacation

ttime ntctime rss wss rwa wwa

ttime 1 - - - - -

ntctime 0,989 1 - - - -

rss 0,507 0,520 1 - - -

wss 0,345 0,315 -0,487 1 - -

rwa -0,167 -0,179 0,811 0,657 1 -

wwa -0,572 -0,535 0,262 -0,954 -0,483 1

Labyrinth

ttime ntctime rss wss rwa wwa

ttime 1 - - - - -

ntctime 0,993 1 - - - -

rss 0,992 0,991 1 - - -

wss 0,992 0,992 0,999 1 - -

rwa -0,521 -0,500 -0,495 -0,492 1 -

wwa -0,332 -0,277 -0,273 -0,267 0,714 1

Bayes

ttime ntctime rss wss rwa wwa

ttime 1 - - - - -

ntctime 0,141 1 - - - -

rss 0,434 0,194 1 - - -

wss -0,524 0,106 0,481 1 - -

rwa -0,245 -0,729 0,072 0,177 1 -

wwa -0,072 -0,723 0,090 0,007 0,968 1

Table 1: Features’ correlation for STAMP applications

suite, run on top of TinySTM. We have experimentally evaluated the sampling overhead while varying (a)

the number of concurrent threads (between 1 and 16), and (b) the set of selected input features. Given

that the reported data are related to performance aspects, this time it is worth providing some details

on how the sampling process has been implemented. We used the CPU-time sampling facilities natively

offered by TinySTM to determine wtime, ttime and ntctime. In addition, the evaluation of rss and wss

as been based on instrumenting TinySTM code by including counters within the transactional context

meta-data. Further, in order to compute the access distribution of read/write operations for determining

rwa and wwa, we added a read counter and a write counter to each element of the transaction lock array

in TinySTM. At the end of the commit phase of a successfully committing transaction, the read/write

counter for each lock associated with an item in the read/write set of the transaction is incremented.

In our experiments, the sampling overhead has been evaluated as the additional time required to

complete the execution of the benchmark application when sampling is active along any thread, compared

to the time required for executing the application with no active sampling. The platform used for the

experiments is still the HP ProLiant multi-core machine presented in detail in Section 4.2. Sampling

overhead data for all the applications from STAMP are reported in Figures 4-11. For completeness, we

include graphs for both relative and absolute overhead values.

One important observation we can make when analyzing the results is that, once fixed the set of
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Ssca2 Intruder Genome Kmeans

tt 1, 14 · 105 1, 24 · 107 6, 05 · 107 5, 07 · 105

ntct 2, 27 · 104 1, 19 · 107 1, 09 · 106 1, 65 · 106

rss 1, 5 · 10−3 142 945 0,134

wss 1, 3 · 10−3 4,311 0,958 7,61

rwa 2, 87 · 10−10 1, 25 · 10−5 7, 46 · 10−10 3, 34 · 10−4

wwa 1, 03 · 10−10 1, 17 · 10−3 4, 95 · 10−4 4, 16 · 10−4

Yada Vacation Labyrinth Bayes

tt 7, 01 · 106 8, 82 · 106 3, 24 · 1012 5, 07 · 105

ntct 7, 38 · 104 2, 57 · 105 1, 04 · 107 1, 65 · 106

rss 33 770 70 0,134

wss 1,914 7,5 173 7,614

rwa 4, 60 · 10−6 4, 16 · 10−13 4, 02 · 10−7 3, 34 · 10−4

wwa 2, 44 · 10−5 1, 76 · 10−10 2, 04 · 10−7 4, 16 · 10−4

Table 2: Features’ variance for STAMP applications
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Figure 4: Sampling overhead for Intruder

input features to sample, for several of the tested benchmarks the percentage overhead caused by the

instrumenting code used to take samples tends to scale down while the number of concurrent threads

is increased. This behavior is related to a kind of throttling effect that manifests when any active

thread is involved in the sampling process, since threads issue transactions with reduced rate because

of delays associated with sampling activities along thread execution. In particular, when the degree of

concurrency is increased, the throttling effect tends to reduce the number of transaction aborts, which

tends to reduce the overhead observed when running with the sampling process active, compared to

the case of no active sampling. This is a typical behavior for parallel computing applications entailing

optimistic processing and rollback actions [37], as is the case of STM applications. This phenomenon

is not observed for reduced values of the number of threads, which leads to reduced contention levels,

hence to reduced abort probability, for which non-significative positive effects can be achieved thanks to

throttled executions.

The scale down of the percentage overhead with higher numbers of concurrent threads also ap-

pears when sampling the full reference set of input features. As an example, the results in Figure

11 (left) show how for Yada the percentage overhead when sampling the whole reference set of features

{rss, wss, rwa, wwa, ttime, ntctime} is of the order of about 80% when running with up to 4 threads, while

it decreases to about 15% when running with 16 threads. However, the most significant reduction of
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Figure 5: Sampling overhead for Bayes

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In
st

ru
m

en
ta

tio
n 

C
os

t %

Concurrent threads

Instrumentation cost vs
the set of input features

ttime.ntctime.wss.rss.wwa.rwa
ttime.ntctime.wss.rss

ttime.ntctime

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In
st

ru
m

en
ta

tio
n 

C
os

t (
se

c.
)

Concurrent threads

Absolute instrumentation cost vs
the set of input features

ttime.ntctime.wss.rss.wwa.rwa
ttime.ntctime.wss.rss

ttime.ntctime

Figure 6: Sampling overhead for Genome

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5 6 7 8 9 10111213141516

In
st

ru
m

en
ta

tio
n 

C
os

t %

Concurrent threads

Instrumentation cost vs
the set of input features

ttime.ntctime.wss.rss.wwa.rwa
ttime.ntctime.wss.rss

ttime.ntctime

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In
st

ru
m

en
ta

tio
n 

C
os

t (
se

c.
)

Concurrent threads

Absolute instrumentation cost vs
the set of input features

ttime.ntctime.wss.rss.wwa.rwa
ttime.ntctime.wss.rss

ttime.ntctime

Figure 7: Sampling overhead for Ssca2
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Figure 8: Sampling overhead for Vacation
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Figure 9: Sampling overhead for Kmeans
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Figure 10: Sampling overhead for Labyrinth
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Figure 11: Sampling overhead for Yada

the overhead is observed in scenarios where the set of input features for which sampling is active has

been shrunk. For example, as shown for the Intruder benchmark in the left graph of Figure 4, when

shrinking the monitored features from 6 to 4 or 2, we get up to 90% reduction of the overhead for lower

values of the number of concurrent threads (namely up to 6). This is highly relevant when considering

that the optimal degree of parallelism for Intruder has been shown to be around 5-6 when running on

the hardware platform used in this study (we refer the reader to Section 5 for actual performance data

showing this tendency). In other words, the optimal parallelism degree can be achieved with a number

of concurrent threads that does not allow the overhead due to sampling to be negligible if no optimized

scheme for shrinking the set of input features to be sampled is provided.

4.3.1 Shrinking vs Enlarging the Set of Input Features

As pointed out, some features of the reference set may be discarded at run-time because of low variance

and/or high correlation. However, given that the application execution profile may vary over time,

variance and correlation of excluded features may change so that they become again relevant to estimate

wtime. As an example, two generic features x and y which exhibited correlation in some time in the past,

such that one of them was excluded from the set of input features, may successively start behaving in an

uncorrelated manner. Hence, the excluded feature should be re-included within the set.

Detecting this type of scenarios, in order to support the dynamic enlarging of the feature-set, cannot

be based on run-time input features analysis (e.g. correlation analysis), since the feature that was excluded

from the sampling process shows a behavior which is currently unknown. Hence, no fresh statistical data

for that feature are available to detect whether variance and/or correlation with other features have

changed.

To overcome this problem, our proposal relies on evaluating the accuracy of the wasted-time prediction

by the ML-based performance model on the basis of the real wasted time (as observed at run-time at

the end of a sampling interval). If the accuracy is detected to be low, the input feature set is enlarged

towards the maximum in order to recover to a good workload characterization scenario. The index we

have selected for determining the quality of the prediction is the weighted root mean square error (WRMS)

of the predicted wasted time vs the corresponding real (measured) value.
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Figure 12: The thread-parallelism regulation architecture entailing dynamic feature selection capabilities

4.3.2 The Dynamic Feature Selection-based Thread-Parallelism Regulation Architecture

To support dynamic selection of the relevant features, our approach relies on a set of NN instances (not

a unique instance as instead it occurs in the baseline architecture presented in Section 4.2), each one able

to manage a different feature-set and properly trained with that set. These NN instances can be trained

in parallel (e.g. during the early phase of application processing). Then a so-called Parameter-Scaling-

Algorithm (PSA) implemented within an additional module integrated in the architecture is exploited for

dynamically scaling-up/down the set of features (also referred to as parameters in the final architecture)

to be taken into account for concurrency regulation along the sub-sequent execution window. Thus PSA

is aimed at determining the NN instance to be used in relation to the selected set of input features. The

schematization of the architecture entailing dynamic feature selection capabilities is shown in Figure 12.

To select the best suited NN instance, and hence the sub-set of features that can be considered as

reliably representative of the workload actual behavior, PSA periodically (i.e. at the end of the observation

window) performs the following tasks: (1) It evaluates the quality of the prediction by the currently in use

instance of NN (representative of the currently in use set of features) via the estimation of WRMS; (2) It

analyzes the statistics related to the currently monitored features, to determine variance and correlation.

If the calculation of WRMS in point 1 gives rise to a value exceeding a specific threshold, then PSA

enlarges the set of input features to the full set of features, which from now on we will refer to as

maxSet = {rss, wss, rwa, wwa, ttime, ntctime}. It then issues commands to SC, CA and NN in order to

trigger their internal reconfiguration, leading to work with maxSet. This means that any query from

CA during the subsequent observation window is answered by the NN instance trained over maxSet.

On the other hand, if the WRMS value computed in point 1 does not exceed the threshold value, the

analysis in point 2 is exploited to determine whether the currently used (sub-)set of features can be

shrunk (and hence to determine whether a scale-down of the set of sampled parameters can be actuated).

In particular, if the variance observed for a given feature is lower than a given threshold, the feature
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is discarded from the set to be exploited in the next observation window. Then, for each couple of not

discarded features, PSA calculates their correlation and, if it oversteps another threshold, one of them is

discarded too. The non-discarded features form the optimized (shrunk) set of parameters to be exploited

for concurrency regulation in the subsequent observation period, which we refer to as minSet. Then,

similarly to what done before, PSA issues configuration commands to SC, CA and NN in order to trigger

them for operating with minSet.

5 Experimental Assessment

In this section we present the results of an experimental study aimed at assessing the effectiveness of our

ML-based thread-parallelism regulation architecture. We still relied on applications from the STAMP

benchmark suite. As hinted, we implemented our architecture by integrating it with TinySTM, and

we run all the experiments on top of the same HP ProLiant multi-core machine we have described in

Section 4.2. The relevant details of our implementation are provided in Section 5.1 (2). We present the

results for all the STAMP benchmarks, which show very differentiated workloads. They span from low

to high percentage of time spent executing transactions (vs non-transactional code blocks), and from

low to high incidence of data contention, according to differentiated transaction profiles. Further, we

run each STAMP application with different configurations of its input parameters, which represent an

additional factor affecting the workload profile and, consequently, the optimal level of thread-parallelism.

As an additional note, each individual application, in any specific configuration of its input parameters,

can generate transactions with varying execution profiles (e.g., non minimal variance of their execution

time), as explicitly assessed in [11]. This is an important aspect since our proposal is based on a core

performance model—the one in Equation 5—which exploits average values of the involved parameters.

Therefore testing our solution with multiple workloads, each one entailing variance of the execution profile

of transactions, increases the level of robustness of the experimental analysis.

5.1 Implementation Details

In our implementation we exploited TinySTM version 1.0 for Unix systems. We used the stopwatch facil-

ities natively offered by TinySTM to determine wtime, ttime and ntctime and we instrumented TinySTM

code to take samples to evaluate rss and wss, in a similar scheme to the one used for the experimentation

in Section 4.3. In order to compute the access distribution of read/write operations, which determine

wwa and rwa, we added a read counter and a write counter for each element of the lock vector. At the

end of the commit phase of a successfully committing transaction, the read/write counter for each lock

associated with an item in the read/write set of the transaction is incremented. Clearly, along sampling

intervals where the set of features to be sampled is shrunk, the code block that is used to take samples

of discarded features is not activated along that thread, which occurs by simply checking boolean condi-

tions. Such conditions are restored to the value “true” each time the corresponding feature is reinserted

in the set of the ones to be sampled. This occurs (if needed) at the beginning of a new sampling interval,

according to the specifications provided in Section 4.3.2.

Along any sampling interval, samples produced by all the threads are gathered by a single thread,

which we name master thread. This choice permits not to affect system scalability as thread synchroniza-

2The source code is available for free download at the URL http://www.dis.uniroma1.it/∼ hpdcs/AML-STM.zip.
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tion mechanisms are avoided at all within the added sample collection/aggregation modules (3). Actually,

the master thread is randomly selected among the active threads at the beginning of each sampling inter-

val. At the end of each sampling interval, the master thread calculates the aggregated statistics (including

feature variance and correlation) and then exploits the NN instance to calculate (along its own critical

path) the number opt of concurrent threads which is expected to maximize the throughput according

the approach depicted in Section 4. Finally, it keeps active opt threads out of the maximum number of

maxthread threads during the next sampling interval.

In our implementation, the activation/deactivation of threads is based on a shared array withmaxthread

elements. The master thread sets to 1 (0) the elements associated with the threads which have to be

deactivated (activated). The slave threads (namely the remaining maxthread − 1 threads) check their

corresponding value before executing a new transaction, by trapping into a polling phase while the value

is 1. In this way, the application level software is never interrupted because of a thread deactivation, thus

leading any transaction to safely run up to its commit/rollback point.

Finally, our implementation of the NN instances embedded within our thread-parallelism regulation

architecture consists of acyclic feed-forward full connected networks [8] that have been coded by leveraging

on FANN open source libraries (version 2.2.0) [38].

5.2 Evaluation Methodology

We evaluated the effectiveness of our ML-based thread-parallelism regulation architecture starting from

its baseline configuration relying on fixed set of input features to the NN-based performance model. Then

we focused on assessing the optimization based on dynamic feature selection.

For any STAMP application, we initially performed an off-line sampling process to build the training

sets for all the NN instances we exploited with either fixed or dynamic set of input features. The samples

used to populate the training sets have been collected in a set of runs where, for each run, we randomly

selected the configuration of the input parameters within the parameter domains of each application. We

refer to these configurations as training configurations. We identified the domain of each input parameter

on the basis of the values suggested by the authors of STAMP (see [11] for details). For each run of an

application, we randomly selected the number of concurrent threads between 1 and 16. We remark that

the machine we used in our experimental study is equipped with 16 CPU-cores, and literature results show

that it is generally not convenient to use more threads than the available CPU-cores in the underlying

machine for running STM applications [39], which is the reason why we focused on the interval 1-16.

Once built the NN instances, we evaluated the ML-based thread-parallelism regulation architecture

using various configurations of input parameters for each application. We refer to these configurations

as test configurations. To assess the effectiveness of our proposal over a wide range of workload profiles,

we also used test configurations whose values of the application input parameters correspond to extreme

values of the domains of all the parameters. To clarify how we selected training and test configurations,

in Figure 13 we show an example for the case of an application with three input parameters, which we

name a, b and c. The cube we show represents the overall domain of these three parameters. Hence, the

vertices of the cube represent the configurations defined by the extreme values of each input parameter’s

domain. As depicted in the figure, training configurations differ from test configurations, thus making our

experimental study more robust. In particularly, the set of selected test configurations include the ones

3We recall that the study on sampling overhead in Section 4.3 was only aimed at assessing the additional cost spent

along the critical path of threads while gathering samples, not for aggregating samples into a coherent stream.
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Figure 13: Example of the selection of training and test configurations for an application with three input

parameters
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Figure 14: Average wasted transaction execution

time: training set vs. predicted.
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Figure 15: Average wasted transaction execution

time: measured vs. predicted.

associated with the vertices of the cube, which represent border cases with respect to the configurations

used to train the NN instances.

5.3 Details on the Training Process

For each STAMP application, we trained the associated NN instances using 800 samples randomly selected

over a set of 10.000 samples that we collected during the execution of 64 runs of the application, carried

out with different input configurations of the application, as explained above. Each sample averages

the values collected over a sampling interval whose duration was determined by the execution of 4000

subsequent committed transactions along a thread. To limit the number of outliers, we filtered out

samples stemming from sampling intervals in which more than the 99% of the transaction runs have

been aborted. Note that, when moving towards such an abort probability, the transaction response

time grows very fast and may exhibit very high variability. Reasonably, we can assume that when the

transaction abort probability reaches 99% the throughput is never optimal, thus these samples can be

straightforwardly discarded without affecting the reliability of the construction of the ML-based model

at the core of our architecture.

To train the NN instances we used a back-propagation algorithm [34, 40, 41]. We observed that a

number of hidden layers equal to one was a good thread-off between prediction accuracy and learning

time. The number of hidden nodes for which the NN instances provided the best approximations was
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between 4 and 16, depending on the application. Further, during our experiments, we observed that

values between 0.0 and 0.2 were good for the learning coefficient and the momentum, respectively. The

iterations of the back-propagation algorithm (across all the scenarios) have been no more than 2500,

and the algorithm execution time was less than 10 seconds on a desktop machine equipped with an

Intel R⃝CoreTM2 Duo P8700 and 8 GB RAM. On the other hand, the on-line computation by the NN

instances has been observed to take the order of a few microseconds on the target machine we used for

the final performance tests.

In Figure 14 we provide some graphical details about the results of the off-line training process. The

results refer to the Intruder application (from STAMP) and to the case of maxSet input features, which

we use as a reference example. The data points represent the normalized wasted transaction execution

time over the training samples collected by running the application with a number of threads varied in

the interval between 8 and 16. In the same figure, the dotted line represents the wasted transaction

execution time calculated by the NN instance (i.e the output values by fNN ), showing how it interpolates

the values of the training samples. In Figure 15, we show data points representing the wasted transaction

execution time over a larger set of samples that have not been used in the training process. As we can

see, even for these samples, the trained NN instance shows good interpolation capability. Particularly,

we note that with, e.g., 16 threads there are few samples in the training set (see Figure 14). In spite of

this, Figure 15 shows that the trained NN instance well represents the average value of the samples that

are out of the training set, even for the case of 16 threads.

To finally quantify the accuracy of the NN based performance model, we have measured the provided

WRMS with the different NN instances across different configurations (e.g. number of threads used to run

the applications) and we have consistently achieved values of the order of 5%. We recall that WRMS is a

core parameter we exploit for dynamically shrinking/enlarging the feature set to be sampled as discussed

in Section 4.3.1.

5.4 Experimental Results with Fixed Set of Input Features

In this section we present experimental results for assessing our ML-based thread-parallelism regulation

architecture, referred to as ML-TPR, in the scenario with fixed set of input features (i.e. maxSet). We

compare ML-TPR with the native implementation of TinySTM (which is devoid of scheduling support),

and with three different scheduling techniques proposed in literature that have been integrated within

TinySTM, thus sharing the same code base: (a) Adaptive Thread Scheduling [13], which we refer to as

ATS-STM, (b) Shrink [17], we refer to as Shrink-STM, and (c) Probe-STM. ATS and Shrink have been

already described when discussing related work (see Section 2). Probe-STM is an implementation of

the hill climbing-based concurrency regulation approach exploited in [24, 26, 42] (see again Section 2 for

indications on this approach). We note that in literature there not exist other techniques that use ML with

the specific goal of regulating thread-level parallelism. In fact, the ML-based approach presented in [28]

targets the orthogonal problem of mapping threads to different processors and CPU-cores. We selected

the above techniques in our comparative analysis since they are representative of literature alternative

approaches to ML (hence to our proposal) and target either thread-parallelism regulation or transaction

scheduling, thus covering a relatively wide set of techniques for STM optimization. They have also been

used as reference approaches in comparison studies on STM optimization (e.g. [24, 26]).

A for the configuration parameters of ATS and Shrink, we set their values according to the suggestions

provided by the authors in [13] and [17], respectively.
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Figure 16: Execution time results with Intruder

In the experiments we varied the number of threads allowed to run the application, between 2 and

16, the latter value corresponding to the number of physical CPU-cores in the underlying architecture.

Since the native version of TinySTM does not use any scheduling policy (possibly blocking threads),

while ML-TPR and the other scheduling techniques can temporarily block threads, for these techniques

the number of threads reported on the x-axis is an upper bound of the number of threads that actually

run along the application execution (say maxthreads for ML-TPR).

For each application, we report results achieved with four different configurations of the input pa-

rameters, including two configurations corresponding to the vertices of the cube (see Section 5.2) where

ML-TPR achieved the worst and the best performance with respect to TinySTM. Each reported through-

put value is computed as the average over 20 runs. Although not explicitly reported for readability of

the plots, we observed that the 95% confidence interval across samples was within the 10% of the average

throughput value.

5.4.1 Results

In Figure 16, we present the results for Intruder. In all the configurations, the execution time with

TinySTM decreases while increasing the number of concurrent threads up to 4-6. However, beyond these

parallelism levels, it drastically increases. Conversely, ML-TPR avoids such a drastic performance loss.

In more details, when the number of concurrent threads is less than the optimum value for TinySTM (e.g.

8 threads for Configuration 1 ), ML-TPR achieves similar performance to TinySTM (or slightly worse,

just due to the overhead for sampling the application at run-time). At worst, namely with Configuration

3 and 2 concurrent threads, the execution time with ML-TPR is 18% higher than the one of TinySTM.

However, as soon as the level of allowed thread concurrency increases, the performance provided by

TinySTM constantly degrades, while ML-TPR gives rise to execution times that are always close to the
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Figure 17: Execution time results with Genome

minimum value (i.e. the peak performance) achieved by TinySTM. Further, ML-TPR provides very good

performance also in the two configurations of the application input corresponding to the vertices of the

cube, say Configuration 3 and Configuration 4. As mentioned, this is important in terms of robustness

of our approach, because of the distance between these configurations and those that have been used

for the training process of the NN at the core ML-TPR. In general, in all the configurations, as soon

as there are 8 or more concurrent threads, the performance achievable by TinySTM rapidly degrades

(up to a factor 2.8x). This phenomenon is avoided by ML-TPR, which prevents over-parallelism in all

the scenarios where the maximum number of admitted threads exceeds the optimal level of parallelism

for that specific workload profile. Compared to the other techniques, ML-TPR clearly performs better.

Indeed, these techniques do not efficiently contrast the performance loss while the number of concurrent

threads increases. Probe-STM performs similarly to ML-TPR with Configuration 3, but it is less efficient

in the other scenarios.

Execution time results with Genome are shown in Figure 17. With Configurations 1, 2 and 4 (the

latter being a vertex configuration of the cube), the execution times with ML-TPR up to 4-6 threads

are slightly worse than the ones achieved with TinySTM. At worst, i.e. for Configuration 3 (which is

the other vertex configuration of the cube), the difference is of the order of 19%. With more threads,

while the performance with TinySTM degrades, ML-TPR again effectively contrasts the performance loss

caused by transaction aborts and retries, and ensures an execution time comparable to, or better than,

the minimum one provided by TinySTM. Overall, the overhead induced by ML-TPR pays off any time

we enable the application to run with no under-parallelism, which is anyway a suboptimal configuration

to be avoided. As for the other scheduling techniques, we observe that this time all of them scale quite

well when enabling up to 16 concurrent threads, just like ML-TPR does.

In Figure 18 we show the results with Kmeans. Similarly to what happens with other benchmark
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Figure 18: Execution time results with Kmeans
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Figure 19: Execution time results with Ssca2
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applications, ML-TPR ensures relevant performance benefits over all the other tested solutions (in all the

configurations) when the number of enabled concurrent threads is greater than the value giving rise to

the peak performance of TinySTM. The only exception is Configuration 4, namely a vertex configuration

of the cube, where TinySTM and all the other techniques scale well up to 16 concurrent treads. With this

configuration, ML-TPR shows a relevant overhead at lower thread counts. With 2 concurrent threads, the

difference in the execution time is about 30% unfavorable to ML-TPR. However, as pointed out before,

the overhead caused by ML-TPR robustly pays off at parallelism levels that are close to (or beyond) the

optimal one, even for such border configuration of the input.

In Figure 19 we show the results with Ssca2. In all the tests we executed with this benchmark

application, no performance degradation phenomenon has been noted while increasing the number of

enabled threads up to 16. The execution time for this application with more than 6 concurrent threads is

essentially flat, meaning that performance is mostly bounded by factors aside of data conflicts. Anyway,

ML-TPR provides performance essentially similar to the one provided by the other techniques, showing

how the overhead by ML-TPR steps down with execution profiles originating less intense accesses to

shared data.
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Figure 20: Execution time results with Vacation

The results with Vacation shown in Figure 20 are quite similar to the ones with Ssca2. The only

difference is the limited scalability of the baseline TinySTM setting (entailing no scheduling support)

with both Configuration 1 and Configuration 4, where the execution time starts increasing after 4-6

enabled concurrent threads. Conversely, all the scheduling techniques scale well up to 16 threads, showing

minimal differences in the execution times. Again, some overhead is manifested by ML-TPR in scenarios

of under-parallelism, such as with 2 threads in Configuration 2 and Configuration 3, an issue that again

disappears as soon as we approach the optimal level of parallelism.

In Figure 21 we show the results with Labyrinth. This benchmark application clearly demonstrates the
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Figure 21: Execution time results with Labyrinth

limitations of the techniques we compare with ML-TPR. In fact, the workload generated by Labyrinth in

3 out of 4 configurations of its input parameters leads these techniques to fail in terms of actual reduction

of the incidence of transaction aborts on performance. Configuration 2 is the only one where the different

solutions show similar performance, except ATS-STM, which gives rise to performance decrease as soon

as the allowed number of threads steps over 4. However, we note that Configuration 2 is such that

scalability is guaranteed even by the baseline TinySTM setting, not employing any scheduling support

for performance optimization. On the other hand, for the other configurations, leading to dynamics much

more affected by data conflicts and consequent transaction aborts, ML-TPR is the only solution constantly

delivering the peak performance. The data also show limitations of Shrink-STM, which performs better

than TinySTM limited to Configuration 1. Probe-STM performs better than TinySTM for any number of

concurrent threads limited to Configuration 1, and Configuration 4 with more than 6 enabled concurrent

threads.

Very similar considerations can be made for the case of Yada, whose results are shown in Figure

22. With this benchmark application, Probe-STM performs better than ML-TPR with reduced thread-

parallelism, still due to the higher overhead by ML-TPR. However, just like the other literature solutions,

Probe-STM does not allow resilience to performance degradation when running with amounts of threads

leading to over-parallelism (say more than 8 threads).

The results with Bayes, which are shown in Figure 23, lead to additional interesting outcomes. In

particular, this application shows very high variability of the execution time as soon as we allow executions

with more than 4-6 concurrent threads. This is especially evident with Configuration 1 and Configuration

2. However, in spite of this behaviour, demonstrating high variability of the incidence of data conflicts,

ML-TPR effectively erases the effects of such variability and ensures the peak performance as soon as

we allow executions with a number of threads sufficiently great to avoid under-parallelism. The only
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Figure 22: Execution time results with Yada
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Figure 23: Execution time results with Bayes
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exception is with Configuration 1, for which the performance trend provided by ML-TPR still looks not

stable.

5.4.2 Results Assessment

By the experimental results we presented so far, we can draw the following main conclusions:

• ML-TPR is able to consistently avoid thrashing and performance degradation phenomena any

time the applications are enabled to run with amounts of threads that stand beyond the optimal

level of parallelism, as determined by varying the level of thread-parallelism in a baseline setting

not including any scheduling support, like TinySTM. Also, except for rare configurations, the ac-

tual performance delivered by ML-TPR corresponds to the peak performance, still as determined

via TinySTM while varying the number of threads. This is important also because the baseline

TinySTM setting includes no overhead for running tasks that are functional to performance opti-

mization. As shown by the experimental outcomes, the overhead in ML-TPR for handling these

tasks plays a negative role mostly limited to scenarios of under-parallelism, which are typically

corner cases when considering the scale up in the core count on modern platforms. In any case,

such an issue is directly tackled by the dynamic feature selection approach that we evaluate in the

next section.

We also note that a static optimization approach where an application, once fixed its input config-

uration, is observed while running with different parallelism levels to identify the best one, could

work well limited to that specific input configuration. In any case, such a static approach would

result unsuited when the workload profile changes because of a different input configuration. In-

deed, to cope with this problem, one would need some method to identify the different phases where

the workload profile actually changes and to keep track of the most suited number of threads for

each execution phase. This would require profiling the application for whichever admissible input

configuration, which is clearly prohibitive. This problem is avoided by our approach.

• With almost all the tested benchmark applications and configurations, ML-TPR performs better

than all the tested techniques based on lightweight heuristic approaches. The data show that the

effectiveness of heuristic-based techniques may vary depending on the workload profile. Conversely,

our ML-based approach shows a more stable behavior, in terms of ability to optimize performance

by regulating the level of threads concurrency in face of differentiated workload profiles. One core

aspect limiting those heuristics is that they aim at “guessing” the optimal scheduling decisions

with no full exploitation of knowledge on the specific application profile. Hence they may lead

anyhow to suboptimal outcomes. Further, for what concerns exploration-based approaches like

Probe-STM, they may require non-minimal steps to converge to the optimal solution, or even fall

in local throughput maxima. Contrarily, our thread-level parallelism regulator can quickly reacts

to workload variations, given that the ML-based performance model can immediately identify the

optimal number of threads once observed the current workload profile. Thus, it allows to directly

“jump” to the optimal parallelism degree for the current phase of the workload profile. Further,

Probe-STM needs to continuously perturb the current parallelism level to discover whether the

application has changed its profile, thus requiring to be run with a different number of threads for

a while. Hence, Probe-STM pays anyhow a cost even in scenarios of extremely stable workload.

In conclusion, although heuristic techniques are quite simple to be implemented, they may provide

uncertain results, as shown by our experimental analysis.
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5.5 Experimental Results with Dynamic Feature Selection

This section is devoted to evaluate the additional benefits achievable via dynamic feature selection of the

input features to the ML-based model at the core of our approach, as presented in Section 4.3. We name

the architecture entailing dynamic feature selection capabilities as ML-TPR-DFS.

We evaluated the performance improvement by ML-TPR-DFS over ML-TPR by replicating all the

experiments we presented in Section 5.4. The experimental outcomes have shown that all the benchmark

applications with at least two couples of correlated features (see Table 1) take advantage by ML-TPR-

DFS4. Indeed, we observed performance improvements for Intruder, Labyrinth, Vacation and Yada.

Further, concerning benchmark applications with a single highly correlated couple of input features, ML-

TPR-DFS provided performance improvement for Ssca2. For brevity, we only report the results for these

benchmark applications, with the configuration of the input parameters that gave rise to the worst case

performance of ML-TPR, i.e. the one for which ML-TPR performed worse than TinySTM with various

levels of thread-parallelism due to its overhead (see Section 5.4). For all the other STAMP applications,

i.e. Genome, Kmeans and Bayes, the execution times with ML-TPR-DFS and ML-TPR were essentially

the same, thus we omit reporting them.

By the plots we report in Figure 24 we see how ML-TPR-DFS allows removing most of the overhead

that led ML-TPR to perform worse that TinySTM in a few configurations. Indeed, the plots show that

the execution times with ML-TPR-DFS at low concurrency are clearly lower than the ones achieved with

ML-TPR. In particular, they are similar to (or lower than) the execution times observed with TinySTM.

Additionally, for all the benchmark applications appearing in this test-set, with the exception of Vacation,

ML-TPR-DFS reduces the execution times also at higher concurrency levels (say up to 16 concurrent

threads) which points to the achievement of a better balance between overhead and effectiveness by

concurrency regulation, on a wider scale of enabled parallelism levels.

As an additional relevant point, in our experimental study we noted that all the applications of the

STAMP suite are characterized by quite static or phase-based workload profiles, with (very) few changes

of the workload during their execution. However, one major strength of ML-TPR-DFS lies in its potential

for detecting dynamic changes of the application profile and adapting the ML-based performance model

(and its weight) consequently. On the other hand, more variable workloads would represent suited test

cases to stress such capabilities, e.g., by inducing frequent and/or continuous shrinking/enlarging of the

set of selected input features to the ML-based performance model.

To cope with this aspect we generated a highly dynamic workload by modifying Vacation. Essentially,

this application emulates a travel reservation system, where customers can reserve flights, rooms and cars.

The fraction of transactions accessing each one of the three types of items is fixed over time. This is

representative of scenarios where the popularity of the different types of items does not change over

time. We modified this feature in order to emulate scenarios where the item popularity can periodically

(and rapidly) change. We note that such variations in the workload profile are likely to happen in real

e-booking or e-commerce systems. Indeed, the volume of accesses to specific sub-sets of items is typically

non-static. Rather, it is likely to react to, e.g., new product launches or promotional sales. To simulate a

highly dynamic workload, we modified Vacation in such a way that the fraction of transactions accessing

car items changes over time according to the curve depicted in Figure 25, and the remaining fraction of

transactions is equally split in two sets accessing flight items and room items, respectively.

To provide the readers with insights on the capabilities of ML-TPR-DFS in scenarios with highly

4We found that a value equal to 0.85 as correlation threshold (i.e. the minimum correlation value for a couple of input

features such that one feature is discarded - see Section 4.3.2) was adequate for all applications of our experimental study.
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Figure 24: Execution time results with Dynamic Feature Selection
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Figure 25: Parameters and throughput variation over time for the modified version of Vacation

variable workloads, we also show (see the middle plot in Figure 25) the variation of the number of input

features to the ML-based model which are selected by ML-TPR-DFS in reaction to variability of the

modified Vacation workload. The results refer to an execution with maxthreads set to the value 8. We

note that, whenever the mix of transactions does not change over time (such as up to the 17th second

of the execution, or between the 22th and the 27th seconds), only two features (ttime and ntctime) are

selected as representative. Conversely, whenever the mix of transactions rapidly changes (e.g. in the

interval between the 17th and the 22nd seconds or between the 27th and 32nd seconds), which leads to

increase the variance and/or un-correlation of some input features, the number of features grows to 4

(including ttime, ntctime, wss, rss). The throughput achieved with both ML-TPR and ML-TPR-DFS

is shown in the bottom of Figure 25, and we see that ML-TPR-DFS achieves a remarkable performance

improvement with respect to ML-TPR.

To compare the execution times of ML-TPR-DFS with both ML-TPR and TinySTM, we show the

results of an experiment where we run the modified version of Vacations using Configuration 1, but with

a larger number (about 3x) of transactions to induce more fluctuations of the workload. The achieved

results are reported in Figure 26, which show that ML-TPR is able to avoid the performance loss of

TinySTM observed with more than 6 enabled concurrent threads. However, with fewer threads the

difference in performance with TinySTM is non-minimal. Further, with more than 6 concurrent threads,

the execution times with ML-TPR do not equate the minimum execution time provided by TinySTM

(i.e. the peak performance we observe with 6 concurrent threads). Conversely, ML-TPR-DFS ensures

execution times equal to or significantly less than TinySTM for any level of enabled thread concurrency.
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Figure 26: Execution time results with the modified version of Vacation

5.6 Additional Considerations on the Presented Approach

In our experimentation, we also explored the possibility to train a single NN by relying on synthetic

workloads with a variety of transaction profiles, with the aim at using the trained NN with other ap-

plications, such as the ones from STAMP. This would in principle avoid the cost of application specific

training. However, the achieved experimental results have shown that the throughput prediction error in

this scenario is subject to large variations when moving from an application to another. Also, in some

cases the error is subject to large fluctuations along the execution of a same application. This suggests

that generating a kind of “meta-workload” to be exploited for training a single NN still able to capture

all possible dependencies between the input and the output parameters for generic applications may be

a very complex, if not unfeasible, process. Another aspect that makes the use of a single pre-trained

NN problematic is related to the actual platform on top of which the final application to be controlled

(in terms of thread-level parallelism) is deployed. When moving an application from a machine to an-

other with a different (hardware) configuration, the optimal thread-level parallelism may change. This

can be due to various factors, such as the presence of different cache levels, and their size, or the type

of the memory architecture (UMA vs. NUMA). In conclusion, our study demonstrates that training a

NN for each single application deployed on a specific machine is a reasonable and effective approach for

thread-level parallelism regulation.

Clearly, the need for application specific training is the intrinsic price of our approach. On the other

hand, we note that the collection of samples to build the training set could be carried out also when the

application has already been activated in its production environment (if not possible in a pre-production

phase). As an example, it could be carried out along the initial lifetime of the real application operations.

This solution might benefit from incremental building of the training set as naturally provided by the

spontaneous evolution of the workload profile along time.

6 Conclusions

In this article we have tackled the problem of optimizing thread-level parallelism in Software Transactional

Memory applications. This has been done via the introduction of a machine learning-based performance

prediction approach that enables the selection of the best suited number of threads to be employed for

running the application along its lifetime, or along phases of its execution. Our proposal also explores

the path of reducing the run-time overhead of the machine learning-based performance predictor, which
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is done via the introduction of a technique that allows the dynamic shrinking/enlarging of the set of

input features to be sampled at run-time in order to characterize the application execution profile. An

ample experimental study is provided, based on data collected running all the applications from the

STAMP benchmark suite on top of a 16-core machine. The study has been targeted at comparing the

performance level provided by our solution, under the different workloads of the STAMP suite, against

various alternative approaches taken from literature. As a further step ahead, it would be interesting

to investigate solutions for on-line (incremental) training and instantiation of the neural networks at

the core of our approach. In our present study we rely on an off-line training phase, where we identify

in-advance to the actual operational phase of the applications the suitable values for some parameters,

such as the number of hidden nodes of the neural networks. On-line training would require some methods

to automatize the estimation of the suitable values of the above parameters, to be carried out at run-

time. This approach will also need to include some method to determine when to automatically stop the

incremental training phase. We plan to investigate this topic as future work along our research path.
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