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Abstract. Perturbing fluids of neutrons and protons (nuclear matter) may lead, as the most
catastrophic effect, to the rearrangement of the fluid into clusters of nucleons. A similar process
may occur in a single atomic nucleus undergoing a violent perturbation, like in heavy-ion
collisions tracked in particle accelerators at around 30 to 50 MeV per nucleon: in this conditions,
after the initial collision shock, the nucleus expands and then clusterises into several smaller
nuclear fragments.

Microscopically, when violent perturbation are applied to nuclear matter, a process of
clusterisation arises from the combination of several fluctuation modes of large-amplitude where
neutrons and protons may oscillate in phase or out of phase. The imposed perturbation leads to
conditions of instability, the wavelengths which are the most amplified have sizes comparable to
small atomic nuclei. We found that these conditions, explored in heavy-ion collisions, correspond
to the splitting of a nucleus into fragments ranging from Oxygen to Neon in a time interval
shorter than one zeptosecond (10−21s). From the out-of-phase oscillations of neutrons and
protons another property arises, the smaller fragments belonging to a more volatile phase get
more neutron enriched: in the heavy-ion collision case this process, called distillation, reflects
in the isotopic distributions of the fragments.

The resulting dynamical description of heavy-ion collisions is an improvement with respect
to more usual statistical approaches, based on the equilibrium assumption. It allows in fact to
characterise also the very fast early stages of the collision process which are out of equilibrium.
Such dynamical description is the core of the Boltzmann-Langevin One Body (BLOB) model,
which in its latest development unifies in a common approach the description of fluctuations in
nuclear matter, and a predictive description of the disintegration of nuclei into nuclear fragments.
After a theoretical introduction, a few practical examples will be illustrated.

This paper resumes the extended analysis of fluctuations in nuclear matter of ref. [2] and
briefly reviews applications to heavy-ion collisions.

1. Introduction

The most catastrophic process which can occur in a nuclear complex is its splitting into clusters
and fragments when undergoing a violent external action. We want to address this process,
which can be probed in a dissipative heavy-ion collision, from the point of view of dynamics,
moving from nuclear matter to nuclei, which are finite open self-bound systems. Nuclear
clusterisation may appear in various forms. Exotic topologies in nuclear astrophysics (stellar
matter), nuclear states explored in low-energy reactions from the recombination and vibrations
of existing cluster structures, low-density regions of the equation of state landscape, where
clusterisation in intermediate-mass fragments and clusters may arise and can be explained in
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violent nuclear reactions. Finally, clusterisation characterises in general Fermi liquids as arising
from ripples produced by phase-space fluctuations [1].

We constructed a microscopic dynamical framework from applying the theory of Fermi liquids
to clusterisation in nuclei (see ref. [2] for a more extended and detailed discussion); within this
framework, we explore how the clusterisation progresses from zero-sound propagation. Two
avenues are mostly followed to describe nuclear processes, molecular dynamics and mean-field
approaches [3]. In mean-field approaches particles evolve independently in their own self-
consistent mean-field. Such treatment, while well suited to describe the collective behaviour, can
not handle clusterisation in its pure mean-field form. On the other hand, molecular-dynamics
approaches rely on a description in terms of product wave functions. The independent-particle
scheme (i.e. mean field) is applied to nucleonic single-particle wavefunctions ψi, so that many-
body correlations in both mean field and scattering can be achieved from the localisation of
ψi (a coherent-state subspace is used in FMD [6] and an even stronger localisation is imposed
in AMD [4, 5] by also fixing the widths of ψi). Such treatment is successful for final-state
correlations, but it may approximate collective behaviour and 0-sound propagation.

To profit from a well suited description of 0-sound propagation, we follow thereafter a mean-
field approach where, in order to describe clusterisation, extensions to handle large-amplitude
dynamics should be explicitly introduced. In particular, correlations beyond the level of kinetic
equations are needed or, in terms of BBGKY hierarchy [7], upper orders beyond two-body
correlations should be recovered in order to access highly non-linear regimes. A technique to
obtain such result in an approximated form consists in applying two treatments in parallel: first,
introducing nucleon-nucleon correlations continuously, second, handling a stochastic ensemble of
several mean-field trajectories to exploit the introduced correlations. In this case, a mean-field

trajectory ρ1 taken at a given time, would split at a successive time into subensembles ρ
(n)
1 :

ρ1 −→ {ρ(n)
1 ;n = 1, . . . , subens.} . (1)

In practice, at the level of kinetic equations, not only collisional correlations should be
introduced, but also a term of vanishing mean which injects fluctuations around the collision
integral intermittently in time. Such term can be exploited as a stochastic source to revive
fluctuations all along a dissipative process. Adding the collisional correlations introduced above
and fluctuations to the mean-field produces a scheme which resembles stochastic TDHF [8, 9]:

i~
∂ρ

(n)
1

∂t
≈ [k

(n)
1 + V

(n)
1 , ρ

(n)
1 ] + Ī

(n)
coll + δI

(n)
coll , (2)

where Ī
(n)
coll and δI

(n)
coll are the average collision contribution and a continuous source of fluctuation

seeds, respectively. The corresponding Wigner transform yields the Boltzmann-Langevin (BL)
equation [10], in terms of an ensemble of distribution function fn,

∂f (n)

∂t
= {h(n), f (n)}+ I

(n)
UU + δI

(n)
UU , (3)

where the ensemble f (n) replaces the ensemble of Slater determinants in Eq. (2) and corresponds
to a Fermi statistics at equilibrium, h(n) is the effective Hamiltonian acting on f (n), and the
residual contributions of Eq. (2) are replaced by corresponding Uehling-Uhlenbeck (UU) terms.

We focus on the BL equation and we solve it in full phase space through the BLOB
approach [11, 12, 2], where nucleon-nucleon correlations are introduced by constructing a
fluctuating collision term which acts on extended equal-isospin phase-space portions for each
single in-medium collision:

∂f (n)

∂t
− {h(n), f (n)} = I

(n)
UU + δI

(n)
UU = g

∫
dpb
h3

∫
W (AB↔CD) F (AB→CD) dΩ , (4)
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where g is the degeneracy factor, W is the transition rate in terms of relative velocity between
the two colliding phase-space portions, and F handles the Pauli blocking of initial and final
states over their full phase-space extensions. The extended size of phase-space portions involved
in the scattering in Eq. (4) should be large enough so that the occupancy variance in h3 cells is
equal to f(1− f), which corresponds to the scattering of two nucleons [13]. For comparison, we
consider a second simplified approach to solve the BL equation, Eq. (3), based on the SMF [14]
treatment, where fluctuations are injected from an external stochastic contribution Uext and
projected on spacial density.

In both cases, in all following calculations, a simplified SKM* effective interaction, with
momentum dependence omitted, is used [15, 16]. A soft isoscalar equation of state with a
compressibility modulus k = 200MeV is used. For test, both asy-stiff (linear) and asy-soft
(quadratic) parametrisations are used for the symmetry energy. All nuclear-matter calculations
employ a periodic box of edge L = 39fm, and the system is initialised with a Fermi-Dirac
distribution at a temperature T = 3MeV. In the collision term, either a free or a constant
nucleon-nucleon cross section σNN is used.

Before carrying on a study on heavy-ion collisions, we require that fluctuation amplitudes
are consistent with analytic expectations from Fermi liquids: for this purpose, we study nuclear
matter in initially homogeneous conditions.

2. Fluctuations in two-component nuclear matter

While unperturbed, the dynamics of a periodic portion of uniform nuclear matter at low
temperature (so that the collision term IUU in the analytic description can be neglected) would
evolve along a mean trajectory f0. Let us introduce perturbations δf q � f0 in two forms:
either neutrons and protons move in phase (isoscalar perturbation, indexed with q = s), so that
δfq = δf s = (fn− f0

n) + (fp− f0
p), or out of phase (isovector perturbation, indexed with q = v),

so that δfq = δfv = (fn−f0
n)− (fp−f0

p) . In a periodic box, this action introduces fluctuations

ρq
k associated with plane waves of wave number k, with a corresponding equilibrium variance

(σq
k)2 (or intensity of response), and with an equilibrium variance of spacial density correlations

(σρq)2 (this latter variance is obtained from the former through an inverse Fourier transform).
If the Boltzmann-Langevin equation is applied to the disturbance δfq, the following scheme

can be established.

• First, if fluctuations are of stable nature, the two equilibrium variances (σq
k)2 and (σρq)2 can

be related to the free-energy density curvature F q(k) through the fluctuation-dissipation
theorem:

(σq
k)2 =

T

F q(k)
; (σρq)2 =

T

∆V

〈 1

F q(k)

〉
k
, (5)

where T is the temperature and ∆V a volume cell in configuration space where (σρq)2 is
calculated.
An application of such scheme to nuclear matter is well suited to investigate the equilibrium
variance of spacial isovector density correlations (σρv)2 as a function of the symmetry
energy. From an analogous application to open system, the isotopic distributions of clusters
emerging from density ripples can be analysed.

• Second, in unstable conditions, both initial fluctuation seeds and intermittent fluctuation
seeds injected at later times can yield an exponential growth of the intensity of response
(σq
k)2 over a growth time τk [17, 18].

An application of such scheme to nuclear matter is well suited to sample zero-sound
propagation and investigate the instability growth rates Γk = 1/τk. Analogous conditions
in open system are suited to investigate the arising of clusterisation.

In the following, these steps are attended to.
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2.1. Relating isovector fluctuations to the symmetry energy

To undertake a simulation on the propagation of isovector fluctuations, it is convenient to isolate
them from the overwhelming effect of isoscalar fluctuations; those latter would in fact completely
dominate the dynamics with their larger amplitude. Scalar terms are therefore suppressed in
the potential so that stable conditions are imposed at any density ρ0.

In this case, the fluctuation–dissipation relation Eq. (5) takes a form where the isovector-
density variance is related to an effective symmetry energy, proportional to the symmetry energy
Esym at zero temperature [19].

(σρv)2 =
T

∆V

〈 1

F v(k)

〉
k
−→ F v

eff =
T

2∆V

ρ0

(σρv)2
=

T

2∆V

ρ0

〈[δρn(r)− δρp(r)]2〉
∝ Esym(ρ0) ,

(6)
This relation can be solved numerically by calculating the isovector variance (σρv)2 in cells of

edge size l, where l should be chosen large enough to minimise surface effects and better sample
the volume symmetry energy (this value is found around l = 2fm).
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Figure 1. SMF calculation of
the effective symmetry energy, scaled
by Ntest, compared to the analytic
expression of the symmetry energy
for different system densities. The
collision term is either activated (and
a free σNN is used) or suppressed
(σNN = 0). Two parametrisations of
the symmetry energy, either asy-stiff
(left panel), or asy-soft (right panel)
are used.

In a first calculation, shown in Fig. 1, where the simplified SMF approach to solve the BL
equation is used, even though the evolution of the effective symmetry energy F v

eff as a function of
density reproduces correctly the shape of the analytic expression for the symmetry energy Esym,
the former and the latter differ of a factor equal to the number of test particles per nucleon Ntest

employed in the numerical sampling of the mean field:

F v
eff ≈ NtestEsym . (7)

The same result is obtained with or without the contribution of the residual term IUU, indicating
that explicit isovector terms are missing in the isovector channel in building fluctuations. This
is not surprising because the residual term is not defined to build nucleon-nucleon correlation
and the corresponding fluctuations. Those latter, even though reflecting the potential employed
in the calculation, develop from initial fluctuation seeds which are related to the numerical noise
in the sampling of the mean-field, which, on its turn, is related to Ntest.

A second calculation, shown in Fig. 2, employs the BLOB approach, where the residual term
is designed to explicitly introduce phase-space fluctuations from nucleon-nucleon correlations. In
this case, the isovector variance is enhanced, but equilibrated nuclear matter is not a favourable
condition to completely recover the large isovector variance of the analytic expectation. In
particular, at small density ρ0 collisional correlations are ineffective, at larger density collisions
become rare and can hardly revive fluctuations and, in addition, the same noise issue already
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Figure 2. Isovector
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observed in the SMF calculation is acting as a smearing contribution [17] with a dependence on
Ntest.

For test purposes, it is instructive to appreciate the effect of increasing the nucleon-nucleon
cross section and, as a consequence, intensifying the nucleon-nucleon collision rate. This action
enhances the effect of the BLOB fluctuating term in reviving nucleon-nucleon collisions, so as
to prevail over the smearing effect of the mean-field noise.

A more consistent (but numerically costly) approach is reducing the numerical noise by
refining the mean-field paving: this action, consisting in simply increasing Ntest, also improves
the results with respect to the SMF approach.

From these results and trends, we can expect that the limits imposed by the conditions of
equilibrated nuclear matter could be actually overcame in out-of-equilibrium conditions, where
nucleon-nucleon collision rates are definitely higher: this situation corresponds to the early stages
of heavy-ion collisions, which are investigated in Sec. 3.1.

2.2. Relating zero-sound propagation to instability growth

To undertake a simulation of zero-sound propagation of collective modes in nuclear matter,
the system should be prepared as initially homogeneous and at low temperature. If the
temperature increases, a transition from zero to first sound may in fact occur [20, 21]. If
unstable conditions are investigated, an amplification of the fluctuation amplitude is expected
to trigger a catastrophic process. Early times are therefore better suited to compare to analytic
expectations. If the zero-sound propagation is correctly sampled, isoscalar fluctuations should
develop spontaneously with the correct amplitude, inducing the arising of a mottling pattern.

The analytic expectation can be defined in a linear-response approximation, assuming small
deviations from a mean trajectory f0; in this case, from the linearised Vlasov equation (where
residual terms are suppressed) expressed as a function of the disturbance wave number k and
frequencies ωk, the corresponding dispersion relation [22, 23] can be extracted by applying self-
consistency, as follows:

ωkfk + k · p
m
fk −

∂f0

∂ε

∂Uk
∂ρ

k · p
m
ρk = 0 −→ 1 =

g

h3

∂Uk
∂ρ

∫
∂f0

∂ε

k · p/m
ωk + k · p/m

dp . (8)

At zero temperature, the eigenmodes fk in the linearised Vlasov equation (left side of the arrow)
depend on states near the Fermi level εF and the integral in the dispersion relation (right side
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Figure 3. Two conditions, corresponding to the spinodal instability (ρ0 = 0.053fm−3) and
Landau damping (ρ0 = 0.14fm−3) are indicated with dots in a sequence of four plots. From left
to right: the equation-of-state landscape; the isoscalar mean-field potential as a function of the
density; the Landau parameter F0 as a function of the density; real (for F0 > 0) and imaginary
(for F0 < 0) roots of the dispersion relation as a function of the Landau parameter F0.

of the arrow) is restricted to the Fermi surface so that, introducing the Landau parameter
F0(k) = (3/2)(ρ0/εF)∂ρUk, the dispersion relation can be written in terms of sound velocity
s = ωk/(kvF) [18, 24]

1 +
1

F0
=
s

2
ln

(
s+ 1

s− 1

)
, (9)

As shown in Fig. 3, instabilities in zero-sound conditions can be tracked by placing the
system in a location of the equation-of-state landscape where the incompressibility χ−1 ≡ ρ∂P∂ρ
is negative. In these conditions, corresponding to the spinodal instability and to F0(k=0) < −1,
the dispersion relation yields imaginary roots [25] which, by replacing s→ iγ, can be put in the

0 0.2 0.4 0.6 0.8 1 1.2 1.4
k [fm-1]

0

0.01

0.02

Γ
k
  
[c

/f
m

]

T=0
T=3MeV

0 0.2 0.4 0.6 0.8 1 1.2 1.4
k [fm-1]

0

0.01

0.02

0.03

Γ
k
  
[c

/f
m

]

BLOB

(3MeV)

681012 λ [fm]

30

40

50

60

80
100

200

σ
=

0

σ = 0.9 0.8        
 0.7 fm

τ
k   [fm

/c
]

σ = 0.9 0.8 0.7 fm

σ
=

0

ρ0=0.053fm-3

le
a
d
in

g
 

w
a
ve

le
n

g
th

leading 
growth 
time
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T = 3MeV and for different values of the Gaussian smearing factor σ. (Right) BLOB calculation
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growth time are indicated. Uncertainties are evaluated from the linear-response fit.
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form

1 +
1

F0(k)
= γ arctan

1

γ
−→ |γ| = |ωk|

kvF
=

1

τkkvF
. (10)

Eq. (10) shows that disturbances of wave number k get amplified with a growth time τk and a
corresponding growth rate Γk = 1/τk.

As shown in the analytic calculations of Fig. 4 (left panel) for zero temperature, the response
intensity at zero sound should present the following evolution of the growth rate Γk as a function
of the k number, or with the corresponding wavelength λ.

• For small k: Γk tends to increase (decrease) linearly with k (λ) because the more matter
has to be relocated, the longer time it takes.

• For large k: small wavelengths λ are excluded as a function of the interaction range. This
ultraviolet cutoff can be described as a Gaussian smearing [27, 26] σ of the mean-field

potential in configuration space U ⊗ g(k) with g(k) = e−
1
2

(kσ)2 which reduces Γk with k.

• The combination of these opposite behaviours produces a maximum which corresponds to
the fastest growing disturbance, i.e. the leading k mode and leading wavelength.

To explore the equation of state (especially in applications to heavy-ion collisions), it is
convenient to have a finite value of T . Still, as mentioned, T should be low in order to avoid
transitions to first-sound. It is possible to introduce a finite temperature T rather than working
at T = 0 through a low-temperature expansion of the chemical potential ν. A reduction of Γk
with T is the result of this action.

These modifications to take into account the ultraviolet cutoff and to introduce a finite
temperature impose to replace F0(k) by an effective Landau parameter [27] F̃0(k, T ) =
(µ(T )/εF)F0g(k) in eq. (10) in order to obtain the analytic response in Fig. 4 for a finite
temperature.

The corresponding numerical calculations employ the BLOB approach to extract the response
intensity σ2

k(t), i.e. the amplitude of the isoscalar fluctuation of a mode k from the Fourier
transform of the space density (see ref. [2] for details). Fig. 5 studies the evolution of the ratio
σ̃2
k(t) = σ2

k(t)/σ
2
k(t = 0).

From the analysis of the response intensity we infer some general results which can be
transposed from nuclear matter to heavy-ion collisions.
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• in unstable (spinodal) conditions, calculated at ρ0 = 0.053 fm−3 fluctuations get rapidly
amplified as expected.

• Even outside of the spinodal instability, in calculations at ρ0 = 0.14 fm−3, which correspond
to Landau-damping conditions, the response intensity reaches significant amplitudes.

• The response intensity saturates rather early due to the combination of large k into small
k. In heavy-ion collisions, a similar effect manifests in the recombination of small emerging
clusters into larger fragments and in an overall mean-field resilience effect (investigated in
detail in ref. [28]).

To the analytic expectation for the growth-rate as a function of k, Fig. 4 (right panel)
overlaps the corresponding numerical calculation obtained with BLOB for the same conditions
and interaction properties, when taking the average over several stochastic dynamical paths,

Γk =
1

2

∂

∂t
ln ≺ σ̃2

k(t) � . (11)

The achieving of a close correspondence between the BLOB calculation and the analytic
expectation, as shown in Fig. 4 ensures that the model succeeds in describing the fluctuation
phenomenology consistently and, in particular, fluctuations develop with the correct amplitude.
After showing that this correspondence is achieved, some quantitative results can be extracted
from the calculation. The leading wavelength ranges between 8 to 9 fm. By analogy to nuclear
matter, we can expect for heavy-ion collisions that fragments and clusters should arise in the
region of Neon. The corresponding separation time in heavy-ion collisions should not only take
into account the growth time of the leading k modes, calculated in Fig. 4, but also the time
needed in the collision to generate a low-density phase where instabilities may develop, and the
overall effect of the kinematics in an open system.

3. Dynamics of clusterisation in open systems, applications to heavy-ion collisions

The composition of the two schemes presented at the beginning of Sec. 2 and applied to open
systems provides an analysis of the isovector and isoscalar properties of clustering in stable and
unstable condition, in connection with analytic expectations from Fermi fluids.

3.1. Spinodal clusters from density ripples at Fermi energies

An analysis which directly corresponds to the above calculations in nuclear matter is dedicated
to the properties of emerging clusters in an open system at low density, produced in a heavy-ion
collision. Even before that clusters separate into well identified blobs of matter in configuration
space, we can track the evolution of potential ripples developing in the bulk since early times. In
analogy to independent fragments, we can attribute to those inhomogeneities a mean radius and
a density averaged over the corresponding potential well in order to obtain mass and element
numbers A′, Z ′. An indicative expectation for isotopic yield distributions may be obtained by
analogy to eq. (5) as

Y ≈ exp[−(δ2/A′)Csym(ρ)/T ] . (12)

These yields of forming fragments reflect the isovector fluctuations. As already argued in
Sec. 2.1, while in equilibrated nuclear matter fluctuations are hard to revive and entertain due
to low collision rates, in open systems fluctuations are initially built out of equilibrium, so
that collision rates are larger. As a consequence, the isovector fluctuations variance results
more consistent with analytic expectations, as illustrated in Fig. 6 (in the frame) for the
system 136Xe+124Sn at 32 AMeV (central collisions), where the isotopic distribution of forming
fragments is calculated with BLOB and compared to the expectation of eq. (12).

8



Figure 6. In the frame, BLOB calculation of the isotopic production in central collisions in
136Xe+124Sn at 32 AMeV. (Left column in the frame) mass distributions of forming isotopes of
C, O and Ne at early times t = 130 and 200 fm/c, before separation into independent fragments.
(Right column in the frame) Distributions of isotopic variances in potential ripples containing N ′

neutrons and Z ′ protons for the most probable configurations for forming clusters in the regions
around C (Z ′ = 6 and A′ = 15) and Ne (Z ′ = 10 and A′ = 24) at t = 200 fm/c. For comparison,
analytic distributions are plotted, as a function of the density measured in the minimum of the
potential ripples ρcentr or averaged over the potential ripples ρwell. The right panel shows the
evolution of the multiplicity of fragments produced in central collisions in 136Xe+124Sn at various
incident energies, calculated with BLOB (colour map) at t = 300 fm/c when fragments separate,
and at the end of the whole decay sequence, calculated by BLOB+Simon (grey contours). The
mean values and distribution widths are compared with experimental data from INDRA [31, 30]
(the bar indicates the variance of the multiplicity distribution).
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the onset of the fragmentation process
at t = 50fm/c, or when the process is
almost achieved at t = 130fm/c.

Fig. 7 extends the study of the isospin content of forming clusters and fragments to the whole
range of sizes produced in the process, and illustrates the corresponding average isospin content
at a very early time (t = 50fm/c), when the system is still rather homogeneous, and at a later
time (t = 130fm/c), when inhomogeneities have been built, as a function of the local density
ρwell associated to the density ripple. The larger neutron enrichment of the more volatile phase
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signs the onset of a distillation process [24].
The right panel of Fig. 6 extends the survey of fragment production to a large incident-energy

range, examining the multiplicity of fragments with Z > 4. In this case, fragments are studied
at t = 300fm/c, when they are completely separated but still highly excited, and at the end of
the full decay sequence (where the Simon transition-state model [29] was employed to complete
the decay with sequential evaporation). The BLOB+Simon calculation yields mean values and
widths which are in agreement with experimental data from INDRA [31, 30]. The transition
from fusion to multifragmentation occurs below 30AMeV and the dominant spinodal mechanism
is gradually replaced by vaporisation beyond 45AMeV [11]. On the other hand, the simplified BL
approach to introduce fluctuations used in SMF results less efficient in building fluctuations, and
does not succeed in describing the transition from fusion to multifragmentation at the correct
incident energy.

3.2. Light systems

heavy-ion collisions and nuclear matter involve anditional clustering processes, where alpha and
light charge particles are formed. Such mechanism, different from dynamical instabilities, would
require the explicit inclusion of further correlations in the present formalism. Light charged
particles related to nuclear clustering have in fact too small size, exceeding the ultraviolet cutoff
of the dispersion relation, so that they can not belong to the unstable multipole modes which
characterise spinodal fragmentation. Solutions for an explicit treatment of cluster formation are
proposed in refs. [32, 5].

The ability of the stochastic approach of BLOB in handling fragment formation and
introducing correlations bejond the level of kinetic equations can be considered a first
approximation to light clusters, which are essentially emerging from dynamical fluctuations.
Blob already takes charge of a fraction of the light cluster production and a sequential-decay
afterburner (Simon [29] was used) adds the missing fraction from the decay of heavier elements.
A comparison with data from ref. [33] is presented in Fig. 8 for the system 12C+12C at 62 AMeV.

At this level of comparison, the production rates of the light masses in the isobaric distribution
seems consistently described. Such production is fed by the most central impact parameters and
fades with periferal configurations, which are related to the heavier side of the mass distribution.
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Figure 8. Clusters and fragment yields
in 12C+12C at 62 AMeV, divided by
the geometric cross section, are shown
as calculated with BLOB till the last
registered split in a time window of 80
to 140 fm/c (BLOB, scaled by 1000) and
after the full decay sequence, for which
the model Simon [29] was employed
(BLOB+Simon). A free σNN and an asy-
stiff form for the symmetry energy are
used. Experimental yields from ref. [33]
for some isotopes named on the plot, are
indicated with dots; data are normalised
so that the sum of d and t yields equals
the corresponding calculated quantity.
Squares are calculations corresponding
to the isotopes that have been measured.
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3.3. Fluctuations and transparency at intermediate energy

The connection between fragment production and hydrodynamic properties like the
characterisation of the flow [34] at intermediate energies is strictly related to the treatment
of fluctuations.

At intermediate energy the inclusion of fluctuations has two antagonist effects: on the one
hand, it enhances the fragmentation of the system, on the other hand it reduces the directed
flow. This effect can be studied in the comparisons of Fig. 9, for the collision 197Au+197Au at 100
AMeV for an impact parameter of 7fm. The simulation is performed with three approaches, SMF
without and with a collision term (constant σNN = 40mb) and BLOB (also withσNN = 40mb) ,
using identical parameters for the mean field as defined in ref. [35]. The SMF approach describes
the outward deflection of the trajectory imparted by the directed flow, which is absent in the
SMF description without collision term. The BLOB approach exhibits a reduced directed flow
with respect to SMF, because it competes with the production of fragments and clusters. This
latter, due to the Langevin fluctuations, results in a large variety of very different fragment
configurations; two of those are shown, one where the fragmentation of the quasi-target and the
quasi-projectile is observed (bottom row in the density map, left), the other where the emitting
source is situated at midrapidity (bottom row in the density map, right).

A quantitative study of the flow is illustrated in the right panel of Fig.9. For a simulation
where the collision rate is identical (due to using the same constant σNN), the larger
fragmentation rate is reflected in a smaller slope for the directed flow as a function of reduced
rapidity. This is a rather general example to spots the main difference between a simplified
description of fluctuations and a BL approach solved in full phase space, when applied to
intermediate energies.

Figure 9. Simulation of the collision 197Au+197Au at 100AMeV for an impact parameter of
7fm, studied at the time t = 140 fm/c and simulated through three approaches: SMF without
collision contribution (top, left in the density map), SMF (top, right in the density map) and
BLOB (bottom row in the density map). The arrows indicate the direction of the target and
projectile; their origins indicate the centres of target and projectile at the initial time t = 0
for the simulation. (Right panel) Directed flow as a function of reduced rapidity for SMF and
BLOB. The corresponding slope at zero reduced rapidity is indicated.
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4. Conclusions

The process leading a fermionic system, like nuclear matter or violent nuclear reactions, to
separate into clusters and fragments is reviewed in some significant steps

Among more possible strategies to address the problem (see introduction), we have chosen to
extend a mean-field description to include fluctuations in a Boltzmann-Langevin framework [2]
and suggested some scheme for testing the transport approach on analytic expectations.

The approach is particularly adapted to describe mean-field inhomogeneities, like the spinodal
decomposition, but also conditions like Landau damping and other collective behaviours. It
reduces to an approximation when the formation of the light clusters should be described because
no explicit cluster contributions are so far treated. For larger clusters and intermediate-mass
fragments in general, the approach yields quantitative predictions for the production of fragments
in a broad range of situations and mechanisms encountered at Fermi energies [11, 36, 37].
To complete the survey, a further application to relativistic spallation has been undertaken
elsewhere [28].
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