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Abstract— The paper deals with the stabilisation of strict-
feedback dynamics with a delay on the last component of the
state. It is shown that the Immersion and Invariance approach
provides a natural framework for solving the problem. An
accademic simulated example is provided.

Index Terms— Nonlinear stabilisation, Systems with delays,
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I. INTRODUCTION

Stabilisation under Immersion and Invariance - I&I -,
proposed in [1] for continuous-time dynamics, has been the
object of several investigations in the last decade. Several
extensions and applicatisve results have been developed
which identify a recognized control approach ([2], [3], [4]).
It was extended to the discrete-time domain in [5] in relation
with adaptive control in presence of parameter uncertainties.

More recently, in [6], it has been shown that the I&I
approach provides a natural framework to deal with sampled-
data stabilisation of input-delayed dynamics; while in [7] it
has been fruitfully applied to design sampled-data controllers
for dynamics which exhibit specific structures such as strict-
feedback forms. Exploiting sampling to control systems with
delayed inputs is a well known practice which has found
renewed interest in the current literature ([8], [9], [10], [11],
[12]). The present work follows these lines.

In this paper, the stabilization of a strict-feedback dynam-
ics with delays on the last connecting state is addressed.
More precisely and for simplicity we consider dynamics with
one cascade of the form

ẋ1(t) = f (x1(t))+g(x1(t))x2(t− τ), ẋ2(t) = u(t) (1)

where x1 ∈Rn, x2 ∈R, u∈U ⊆R, f and g are smooth vector
fields on Rn, i. e. C∞, and τ denotes a delay acting on x2,
the connecting state.

The problem is set in the digital context assuming that the
measures of the state are available at the sampling instants
t = kδ , k ≥ 0 and the control is maintained constant over
time intervals of length δ . The sampling period δ is chosen
so that τ = Nδ for a positive N ∈ N+.

The idea developed in the sequel starts by noting that
under a simple coordinates change, the delayed dynamics
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admits a higher but finite dimensional sampled-data equiv-
alent model over which stabilization is reformulated in the
I&I context with target given by the sampling of the delay-
free dynamics. Then the design of the controller is achieved
by driving the dynamics to the invariant manifold with
boundedness of all the extended state trajectories.

The proposed solution combines two previous contribu-
tions of the authors:

• the sampled-data I&I stabilizer discussed in [6] which
naturally identifies the target with the delay-free dynam-
ics;

• the direct sampled-data I&I stabilizing in [7] to define
the immersion mapping and feedback which render
invariant the target manifold.

We note that the same type of state delays on connected
dynamics was studied in [13] according to a continuous-time
backstepping procedure.

This paper is organized as follows: in Section II the class
of system under study is defined and some preliminary results
are given; in Section III the main result is given and specified
in the particular case of δ = τ in Section IV; an academic
example is discussed with some simulations in Section V.

II. PROBLEM SETTLEMENT AND PRELIMINARY RESULTS

We summarize in the following the recurrent assumptions:

A) the sampling period δ , small enough, is a multiple of
the delay τ , i.e. τ = Nδ for a suitable N ∈ N+;

B) the input u(t) is set constant over time intervals of
length δ ; namely, u(t) = uk t ∈ [kδ ,(k+1)δ [;

C) the delay free x1-dynamics of (1) is smoothly stabiliz-
able trough a fictitious continuous-time controller x2 =
γ(x1) and a control Lyapunov function, W : Rn → R,
is assumed known (see [14]);

[L f + γLg]W (x1)< 0 ∀x1 ∈ Rn/{0}.

Accordingly, assuming the I&I framework [1], one defines
for the delay-free dynamics:

• the target dynamics ξ̇ = f (ξ )+g(ξ )γ(ξ );
• the immersion map π(ξ ) =

(
ξ ′ γ(ξ )

)′;
• the implicit manifold z = φ(x) = x2−γ(x1), with z(0) =

x2(0)− γ(x1(0));
• the on-the-manifold control law ϕ(ξ ) = γ̇(ξ ) which

renders invariant the manifold.



Finally, the control law which makes the manifold attractive
with boundedness of the trajectories of the full dynamics

ẋ1 = f (x1)+g(x1)[z+ γ(x1)]

ẋ2 =ψ(x,z)

ż =ψ(x,z)− γ̇(x1)

is set as ψ(x,z) = γ̇(x1)−K(x)z with suitably chosen gain
function K(x).

A. The extended hybrid representation

Consider the continuous-time dynamics (1) and set x3(t) =
x2(t− τ) so moving the delay into the input variable

ẋ1(t) = f (x1(t))+g(x1(t))x3(t), ẋ3(t) = u(t− τ) (2)

so that the approach proposed in [6] can be used. Setting τ =
Nδ and under Assumption A, the hybrid extended dynamics
over Rn+1+N is defined for t ∈ [kδ ,(k+1)δ [ as:

ẋ1(t) = f (x1(t))+g(x1(t))x3(t)

ẋ3(t) = v1
k , v1

k+1 = v2
k , . . . vN

k+1 = uk.
(3)

It results that the control design problem can be set on the
sampled-data equivalent of (3), which is finite dimensional
dynamics, with state extension of order N, strictly related to
the delay length.

B. Sampled-data delay free I&I stabilization

Following [7], Assumption C provides sufficient condi-
tions for the existence of an I&I sampled-data controller
preserving GAS of the equilibrium when τ = 0. Setting
τ = 0, one defines the equivalent sampled-data dynamics
of (1) through integration over the time interval [kδ ,(k +
1)δ [;k ≥ 0, as in [15]. It is provided in the form of a map
parameterized by δ :

x1k+1 = Fδ (x1k,x2k)+
δ 2

2!
ukGδ (x1k,x2k,uk)

x2k+1 = x2k +δuk

(4)

when xk = x(t)
∣∣
t=kδ

. The following proposition summarises
the results in [7], where a complete proof is given.

Proposition 2.1: Consider the nonlinear continuous-time
dynamics in (1) under Assumptions A, B and C in the delay
free case (i.e., τ = 0). Then, its sampled-data equivalent
dynamics (4) is I&I stabilizable with target dynamics

ξk+1 = Fδ (ξk,γ
δ (ξk))+

δ 2

2!
ϕ

δ (ξk)Gδ (ξk,γ
δ (ξk),ϕ

δ (ξk)).

(5)

The mappings γδ (·) and ϕδ (·) are solutions of the two
equalities:

W (ξk+1) = W (ξk)+
∫ (k+1)δ

kδ
L f+gγW (ξ (τ))dτ (6)

γ
δ (ξk+1) = γδ (ξk)+δϕδ (ξk). (7)

We note that the mappings γδ (·) and ϕδ (·) are defined by
their asymptotic series expansions in powers of δ as follows

γ
δ (ξk) = γ0(ξk)+∑

i≥0

δ i

(i+1)!
γi(ξk)

ϕ
δ (ξk) = ϕ0(ξk)+∑

i≥0

δ i

(i+1)!
ϕi(ξk).

Accordingly, both the immersion mapping πδ (ξ ) =(
ξ ′ γδ (ξ )

)′ and the implicit manifold characterisation
φ δ (x) = x2 − γδ (x1) are parameterized by the sampling
period δ . Setting δ = 0, one recovers the continuous-time
solutions (π(·),φ(·),ϕ(·)).

We note that the equality (6) ensures Input Lyapunov
Matching - ILM - at the sampling instants (see [15], [16])
of the closed loop behavior of the function W (·) on the
target dynamics (5).This guarantees that the equilibrium of
(5) is GAS. On the other hand, equality (7) guarantees
the invariance of the manifold. Accordingly, it is implicitly
defined as φ δ (x) = 0. On these bases, the I&I stabilizing
sampled-data feedback u = ψδ (x,z) is designed to drive z
to zero while preserving boundedness of the complete state
trajectories

x1k+1 = Fδ (x1k,x2k)+
δ 2

2!
ukGδ (x1k,x2k,uk)

x2k+1 = x2k +δuk, zk+1 = zk +δuk− γ
δ (x1k+1)+ γ

δ (x1k).

It follows that the equilibrium of the closed-loop x dynamics
is GAS in the delay free case.

III. MAIN RESULT

Consider the continuous-time dynamics (2) (or, equiva-
lently, (1)) and its hybrid representation (3) over Rn+1+N

when τ = Nδ . Its sampled-data equivalent dynamics is
described as

x1k+1 = Fδ (x1k,x3k)+
δ 2

2!
v1

kGδ (x1k,x3k,v1
k)

x3k+1 = x3 +δv1
k , v1

k+1 = v2
k . . . vN

k+1 = uk

(8)

or, in a more compact way, as xe
k+1 = F̄δ (xe

k,uk) with xe =
col(x′1, x3, v1, . . . , vN)′ ∈Rn+1+N . In [6], the authors define
the GAS sampled-data I&I target dynamics as the closed-
loop dynamics (4) under the delay-free feedback ψδ (·, ·),
as defined in Proposition 2.1. Hence, the attractive manifold
is the one where the delay on the input is recovered. An
alternative approach is stated by the following result.

Theorem 3.1: Consider the input-affine continuous-time
dynamics in (1) with state delay τ = Nδ under Assumptions
A, B and C. Let the extended sampled-data dynamics (8) with
equilibrium xe

∗ = col(x′∗, 0′N×1), then it is I&I stabilizable
with target dynamics 5 and γδ (·),ϕδ (·) : Rn→R defined as
in Proposition 2.1.

Proof: To prove the thesis, one has to show that the con-
ditions in Theorem 2.2 in [6] are verified. For this purpose,
suppose γδ (·) and ϕδ (·) defined according to Proposition
2.1 as solutions to the I-LM problem in (6-7) with control
Lyapunov function W : Rn → R+. Consequently, one can
define the extended immersion mapping π̄δ : Rn→ Rn+1+N

π̄
δ (ξk) =

(
ξ ′k γδ (ξk) ϕδ (ξk) . . . ϕδ (ξk+N−1)

)′ (9)



and extended mapping φ̄ δ : Rn+N+1→ RN+1 as

z1k = φ̄
δ
1 (xk,vk) = x3k− γ

δ (x1k)

z2k = φ̄
δ
2 (xk,vk) = v1

k−ϕ
δ (x1k)

. . .

zN+1,K = φ̄
δ
N+1(xk,vk) = vN

k −ϕ
δ (x1,k+N−1)

(10)

where v = col(v1, . . . , vN)′.
By construction, the three instrumental condition for I&I

stabilization are satisfied (see Theorem 2.2 in [6]). More in
detail, the target dynamics ξk+1 = αδ (ξ ) as in (5) has a
GAS equilibrium ξ∗ ∈Rp. Then, the Immersion Condition is
satisfied by the choices (9)-(10) with z0 = φ̄(x0,v0). On these
bases, it is straightforward that the sampled-data feedback
uk = ψ̄δ (xe

k,zk) designed in order to bring z to zero and make
all the trajectories of the dynamics

z1k+1 =z1k +δ [z2k−ϕ
δ (x1k)]+ γ

δ (x1k)− γ
δ (x1k+1)

z2k+1 =z3k . . . zNk+1 = zN+1k

zN+1k+1 =ψ̄
δ (xe

k,zk)−ϕ
δ (x1k+N)

xe
k+1 =F̄δ (xe

k, ψ̄
δ (xe

k,zk)).
(11)

bounded, globally asymptotically stabilizes the equilibrium
of (1).

Remark 3.1: When the system dynamics reaches the in-
variant manifold, the feedback reduces to cδ (·) correspond-
ing to the delay-free stabilizing feedback ϕδ (·) in Propo-
sition 2.1. When N = 0, the delay-free case, one recovers
cδ (ξ ) = ϕδ (ξ ).

Remark 3.2: For a given τ , the pair (N, δ ) has to be
chosen as a trade off between computational effort and
required performances on the closed-loop system.

1) On the definition of the sampled-data control law:
Theorem 3.1 states sufficient conditions for the existence of a
I&I stabilizing controller uk = ψ̄δ (xk,vk,zk). In this section,
we describe a multirate design strategy of order equal to
the dimension of the off the manifold state component z.
For, let us introduce the (N + 1)-order multirate sampled-
data dynamics associated with (11) when the I&I controller
ψ̄ iδ̄ (·, ·) is denoted as ui

k

z1k+1 =z1k + δ̄

N+1

∑
i=2

[zik +ϕ
δ̄ (x1k+ i−2

N+1
)]+

γ
δ̄ (x1k)− γ

δ̄ (x1k+1)+ δ̄u1
k

z2k+1 =u2
k−ϕ

δ̄ (x1k+1) . . . zNk+1 = uN
k −ϕ

δ̄ (x1k+ 2N−1
N+1

)

zN+1k+1 =uN+1
k −ϕ

δ̄ (x1k+ 2N
N+1

)

x1k+1 =F δ̄
1 (xe

k,u
1
k) x3k+1 = x3k + δ̄ [u1

k +
N

∑
i=1

vi
k]

v1
k+1 =u2

k . . . vN
k+1 = uN+1

k
(12)

in which the control u(t) is maintained constant at values
ui

k over intervals of length δ̄ = δ

N+1 for all t ∈ [kδ + (i−
1)δ̄ ,kδ + iδ̄ [, i = 1

N+1 .

Remark 3.3: The prediction steps required with a single
rate strategy is N; the multirate strategy requires, at most,

2N
N+1 prediction steps.

The hypotheses of Theorem 2.2 in [6] are naturally pre-
served under the multirate controller. Though, an accurate
rewriting of the immersion condition may be useful to point
out that the so-defined sampled-data controller preserves
manifold invariance under multirate-sampling. In particular,
by defining ci,δ̄ (ξ ) = cδ̄ (ξk+ i

N+1
) (i = 1, . . . ,N +1), one has

that ∀ξ ∈ Rn

ξk+1 = α
δ̄ (ξk)

γ
δ̄ (ξk+1) = γ

δ̄ (ξk)+ δ̄

N+1

∑
i=2

ϕ
δ̄ (ξk+ i−2

N+1
)+ δ̄c1,δ̄ (ξk)

c2,δ̄ (ξk) = ϕ
δ̄ (x1k+1) . . . cN,δ̄ (ξk) = ϕ

δ̄ (x1k+ 2N−1
N+1

)

cN+1,δ̄ (ξk) = ϕ
δ̄ (x1k+ 2N

N+1
).

(13)

Finally, one can see that the I&I stabilisation is achieved by
the (N +1)-rate control u defined as

δ̄u1
k =−δ̄Γ1z1k− γ

δ̄ (x1k)+ γ
δ̄ (x1k+1)−

δ̄

N+1

∑
i=2

[zik +ϕ
δ̄ (x1k+ i−2

N+1
)]

u2
k =−Γ2z2k +ϕ

δ̄ (x1k+1)

. . .

uN
k =−ΓNzNk +ϕ

δ̄ (x1k+ 2N−1
N+1

)

uN+1
k =−ΓN+1zN+1k +ϕ

δ̄ (x1k+ 2N
N+1

)

(14)

with suitably defined gains Γi (i = 1, ...,N + 1). More in
detail, when such a controller is applied, one has that all
trajectories of (12) are bounded for all k ≥ 0 with

limk→∞ zk = 0 ψ̄ iδ̄
k (π̄ δ̄ (ξ ),0) = ciδ̄ (ξ )

for i = 1, . . . ,N +1.
Without loss of generality, the proof of the existence of

such a solution is reported for the particular case of τ = δ .

IV. THE CASE τ = δ

Let us discuss more in detail the design of the feedback
ψ̄δ (xe,z) in the single-rate case in which τ = δ . In such a
case, Theorem 3.1 specifies as follows.

Proposition 4.1: Consider the continuous-time dynamics
(1) satisfying Assumptions A, B and C with state delay τ =
δ . Let the extended dynamics on Rn+2 be

x1k+1 = Fδ (x1k,x3k)+
δ 2

2!
vkGδ (x1k,x3k,vk)

x3k+1 = x3 +δvk, vk+1 = uk.

(15)

Then it is I&I stabilizable with target dynamics (5) whose
equilibrium is made GAS with suitable choice of γδ , ϕδ :
Rn→ R.

Proof: The proof proceeds in the same way as in the
one of Theorem 3.1, so it will be omitted.



A. On the design of the sampled-data stabilizer

In this section, a possible choice of the controller which
satisfies the condition on Manifold invariance and attractivity
with trajectory boundedness is proposed. When τ = δ , the
double rate sampled-data equivalent model of the hybrid
dynamics (3) over time intervals of length δ = 2δ̄ is defined
as in (12) with

ψ̄
1δ̄ (x1k,vk,zk) = ψ̄

δ̄ (x1k,zk)

and
ψ̄

2δ̄ (x1k,vk,zk) = ψ̄
δ̄ (x1k+ 1

2
,zk+ 1

2
).

Setting

δ̄ ψ̄
1δ̄ (x1k,vk,zk) =δ̄Γ1z1k + γ

δ̄ (x1k+1) (16a)

− γ
δ̄ (x1k)− δ̄ [z2k +ϕ

δ̄ (x1k)]

ψ̄
2δ̄ (x1k,vk,zk) =Γ2z2k +ϕ

δ̄ (x1k+1) (16b)

the reduced z-dynamics is

z1k+1 = [1+ δ̄Γ1]z1k, z2k+1 = [1+Γ2]z2k.

The existence of such a controller is proved in the following
Proposition.

Proposition 4.2: Given the sampled-data dynamics in (15)
verifying Theorem 3.1, then there exists a double-rate control
ensuring, at each step, I&I stabilisation of the dynamics in
(15).

Proof: Denoting by ψ̄1δ̄ = u1
k . The proof consists in

verifying that there exist solutions in the form

ψ̄
jδ̄ (x1k,vk,zk) = ψ̄

j
0(x1k,vk,zk)+∑

i≥1
δ̄

i
ψ̄

j
i (x1k,vk,zk) (17)

for j = 1,2 to equalities (16a) and (16b).
The existence of a solution to (16b) is guaranteed since the

right-hand side of the equality does not depend on ψ̄2δ̄ itself;
hence, a series inversion is needed in order to compute the
resulting controller. For, one rewrites γ δ̄ (x1k+1) as the sum
of two component:

γ
δ̄ (x1k+1) = γ̄

δ̄
1 (x1k,zk,0)+ δ̄u1

k γ̄
δ̄
2 (x1k,zk,u1

k)

where

γ̄
δ̄
1 (x1k,zk,0) = γ

δ̄ (F̃ δ̄ (x1k,z1k + γ
δ̄ (x1k),z2k +ϕ

δ̄ (x1k)))

does not depend on the control while

γ̄
δ̄
2 (x1k,zk,uk) =

δ

2 ∑
i≥1

∂ iγ δ̄

∂xi
1

∣∣
x1=F̃ δ̄ [G̃(x1k,z1k + γ

δ̄ (x1k),z2k +ϕ
δ̄ (x1k),u1

k)]
i

is control dependent. One can now rewrite the equality
among formal series in (16a) as

δ̄S(δ̄ ,x1k,zk,u1
k) = δ̄u1

k [1− γ̄
δ̄
2 (x1k,zk,uk)]− δ̄Γ1(xe

k)z1k−

γ̄
δ̄
1 (x1k,zk,0)+ γ

δ̄ (x1k)+ δ̄ [z2k +ϕ
δ̄ (x1k)] = 0.

The existence of a solution is proved by means of the Implicit
Function Theorem. Indeed, for δ = 0 one has

S(0,x1k,zk,u1
k) = ψ

1
0 (x1k,zk)−Γ1(xe

k)z1k +2
∂γ0

∂x1

∣∣
x1k
{ f (x1)

+g(x1)[z1k + γ0(x1)]}+[z2k +ϕ0(x1)] = 0

where γ0(·) and ϕ0(·) are defined according to Proposition
2.1. Such an equality is solved if

ψ
1
0 (x1k,zk) = Γ1(xe

k)z1k−2
∂γ0

∂x1

∣∣
x1k
{ f (x1k)+

g(x1k)[z1k + γ0(x1k)]}− [z2k +ϕ0(x1k)]

i.e., the controller defined on the double-rate Euler sampled-
data model of (3). Since the partial derivative

∂S(δ̄ ,u)
∂u

∣∣
δ̄=0 = 1

is non-zero for any (x1,z), one can conclude that there
exists, for δ̄ small enough, a control u = ψ̄1δ̄ (x,v,z) in a
neighbourhood of ψ̄1

0 (x,v,z) such that

S(δ̄ ,ρ(δ̄ )) = 0 ⇐⇒ u = ψ̄
1δ̄ (x,v,z) = ρ(δ̄ ),

where ρ is the formal inversion ρ(δ̄ ) = S−1(δ̄ ,ρ(δ̄ )). Such
a solution can be defined as an asymptotic series of δ̄ in
the form (17) with ψ̄1

0 (·, ·) = ρ(0). The I&I stabilisation is
guaranteed since the invariance of the multi-rate controller is
verified at the inter-sampling and sampling instants as in (13).
Hence, Theorem 3.1 is satisfied for a suitable choice of δ̄Γ1
and Γ2 (not necessarily static) in order to have boundedness
of the whole state trajectories in 12, with N = 1. At this point,
the choice of δ̄Γ1 and Γ2 can be performed by means of a
control Lyapunov function defined as V δ (x,v,z) = W (x1)+

∑
2
i=1 z2

i .

B. Some constructive aspects

In this part, some constructive aspects are sketched for the
computation of the solution in an approximate context, [17].
More in detail, considering (12), with N = 1, one gets in
O(|z|2) the approximation below

x1k+1 =F̃ δ̄ (x1k,γ
δ̄ (x1k),ϕ

δ̄ (x1k))+Pδ̄
1 (x1k,z1k,z2k)z1k+

Pδ̄
2 (x1k,z1k,z2k)z2k +

δ̄ 2

2
ψ̄

1δ̄ (xk,vk,zk)

G̃(x1k,z1k + γ
δ̄ (x1k),z2k +ϕ

δ̄ (x1k), ψ̄
1δ̄ (xk,vk,zk))

with, discarding the dependence on the state and the control,

Pδ̄
1 =

∂ F̃ δ̄

∂x3

∣∣
x3=γδ (x1)

Pδ̄
2 =

∂ F̃ δ̄

∂v

∣∣
v=ϕδ (x1)

.



Accordingly, one can write the Taylor expansion of γ δ̄ (x1k+1)

and ϕ δ̄ (x1k+1) in O(|z|2) as

γ
δ̄ (x1k+1) =γ

δ̄ (F̃ δ̄ )+
∂γ δ̄

∂x1

∣∣
F̃ δ̄ [P

δ̄
1 z1k+

Pδ̄
2 z2k +

δ̄ 2

2
ψ̄

1δ̄ G̃δ̄ ]+O(|z|2)+O(|ψ̄1δ̄ |2)

ϕ
δ̄ (x1k+1) =ϕ

δ̄ (F̃ δ̄ )+
∂ϕ δ̄

∂x1

∣∣
F̃ δ̄ [P

δ̄
1 z1k+

Pδ̄
2 z2k +

δ̄ 2

2
ψ̄

1δ̄ G̃δ̄ ]+O(|z|2)+O(|ψ̄1δ̄ |2).
(18)

One can now define the controls ψ̄1δ̄ and ψ̄2δ̄ by their
asymptotic series expansions with respect to δ̄ truncated at
the p-th order; namely,

ψ̄
jδ̄ ,[p j ](x1,v,z) = ψ̄

j
0(x1,v,z)+

p

∑
i≥1

δ̄
i
ψ̄

j
i (x1,v,z) (19)

for j = 1,2. Substituting (19) and (18) into (16a) and (16b),
under suitable boundedness assumptions on Γ j(xk,vk), j =
1,2, for the corresponding approximated dynamics in O(δ̄ p)
and O(|z|2), one has that limk→∞zk = 0 with manifold invari-
ance and boundedness of the approximated state trajectories.
This implies that the computed feedback at least locally
stabilizes the delayed continuous time dynamics in (1).

V. EXAMPLE

Let us consider the system in strict-feedback form

ẋ1(t) = x2
1(t)+ x2(t− τ), ẋ2(t) = u(t). (20)

A. Continuous-time design - the delay free case

Let us consider τ = 0. In the continuous time case, one
has that the I&I control law which makes the origin globally
asymptotically stable is

uc(x) =−Γcz+ γ̇c(x1) ϕc(x) = γ̇c(x1) K > a > 1

with Γc = 2 and γc(x1) =−x2
1−x1. The immersion mapping

and invariant manifold are defined as in the proof of Propo-
sition 2.1. The target dynamics is ξ̇ =−ξ .

B. Sampled-data design - the delay free case

Once again, suppose τ = 0 and introduce the sampled-data
equivalent model associated to (20) as below

x1k+1 = x1k +δ (x2
1k + x2k)+δ 2x1k(x2

1k + x2k)+
δ 2

2! uk +O(δ 3)
x2k+1 = x2k +δuk.

In this case, the resulting target dynamics is GAS by setting

γ0(ξk) =−ξk−ξ 2
k γ2(ξk) = 2ξ 3

k
ϕ0(ξk) = ξk +2ξ 2

k ϕ1(ξk) =−2ξk−8ξ 2
k −4ξ 3

k

where γ0, γ1, and c0 are the terms of γδ ,[2] and ϕδ ,[1] which
are defined according to Proposition 2.1. The final second-
order approximated sampled-data I&I control law is provided
by δψD(x1k,x2k,zk) = −ΓDzk + γδ (x1k+1)− γδ (x1k),where
γδ (x1k+1) is computed as its Taylor extension around x1k
truncated at the second-order.

C. Sampled-data design - the case of τ = δ

According to Section II-A, one introduces x3(t)= x2(t−τ)
and the sampled-equivalent extended dynamics associated to
(20) as

x1k+1 = x1k +δ (x2
1k + x3k)+δ

2x1k(x2
1k + x3k)+

δ 2

2!
vk +O(δ 3)

x3k+1 = x3k +δvk vk+1 = uk.
(21)

According to the sampled-data delay-free design, one in-
troduces the target dynamics, immersion mapping and off-
manifold component as in Proposition 4.1 and the problem
results in finding ψ̄δ (x,v,z) such that limk→∞ zk = 0 and
ψ̄δ (π̄δ (ξ ),0) = cδ (ξ ), with boundedness of the trajectories
of the system with state (z, x, v). Accordingly to Section
V-A, one can define sampled-data controller by considering
the double-rate sampled-equivalent model. Setting

δ

2
ψ̄

1δ ,[2](x1k,vk,zk) =
δ

2
Γ1z1k + γ

δ (x1k+1)−

γ
δ (x1k)−

δ

2
[z2k +ϕ

δ (x1k)]

ψ̄
2δ ,[2](x1k,vk,zk) = Γ2z2k +ϕ

δ (x1k+1)

(22)

one ensures stability of the closed-loop sampled-data input-
delayed dynamics.

D. Simulations

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
1
 evolution over time

0 1 2 3 4 5 6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x
2
 evolution over time

0 1 2 3 4 5 6
−5

−4

−3

−2

−1

0

1
Control over time

 

 

CT delay−free

SD delay−free

SD state−delay

Fig. 1. δ = 0.1 s and x0 = (0.5,0.5)T

Simulations are carried out on the example in Section V
for different sampling periods δ . The control law is defined
according to an I&I double-rate design when τ = δ with
gains Γ1, Γ2 = 1. All the simulations are performed for
the initial condition x =

(
0.5 0.5

)T . The control approach
presented in this paper is compared with the continuous-time
and sampled-data ones (respectively in [1] and in [7]), when



the former ones are applied to the delay-free dynamics. In
general it can be pointed out that the so-defined feedback
leads to good performances even with respect to the delay-
free case. This is achieved since the control law is not
explicitly designed in order to predict the delayed-state, but
to stabilize the dynamics with no information on the delay-
free controller. As a matter of fact, the proposed controller
directly stabilizes the delayed-dynamics by leading it to
the invariant manifold where the implicit prediction aim
is fulfilled. Promising performances are obtained when δ

increases with still limited control efforts and reasonable
smoothness of the trajectories.
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Fig. 2. δ = 0.4 s and x0 = (0.5,0.5)T

VI. CONCLUSIONS

In this paper a multi-rate sampled-data I&I controller
is proposed for a special class of dynamics in which one
state is affected by delays. The performances are shown
through simulations on an academic example. The proposed
approach can be extended to the case of dynamics with
delayed interconnection (e.g. through the state component
x2) taking advantage of possible intrinsic properties of the
sampled-data equivalent models [18].
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