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Abstract The objective of the paper is the investigation of the capability of
Operational Modal Analysis approaches to deal with time-varying system in
the low-frequency domain. Specifically, the problem of the identification of the
dynamic properties of a launch-vehicle, working under actual operative condi-
tions, is studied. Two OMA methods are considered: the Frequency Domain
Decomposition and the Hilbert Transform Method. It is demonstrated that
both OMA approaches allow the time-tracking of modal parameters, namely,
natural frequencies, damping ratios and mode shapes, from the response ac-
celerations only recorded during actual flight tests of a launcher characterized
by a large mass variation due to fuel burning typical of the first phase of the
flight.

Keywords Operational Modal Analysis · Output Only · Launchers · Launch
systems · Dynamical Identification · Time-Varying systems

M. Eugeni, G. Coppotelli, F. Mastroddi, P. Gaudenzi
Department of Mechanical and Aerospace Engineering
University of Rome “La Sapienza”
via Eudossiana, 18, 00184 Rome - Italy
E-mail: marco.eugeni@uniroma1.it

S. Muller
Expert in Structural Analysis,
Airbus Defence and Space, Les Mureaux, France

B. Troclet
Senior Expert in Structural Analysis,
Airbus Defence and Space, Les Mureaux, France
Half time Professor,
ENS Cachan/Université Paris Saclay, Frace
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1 Introduction

The development of Operational Modal Analysis (OMA) methods allows esti-
mating the modal parameters of a structure by using vibration responses only.
Thus, OMA methodologies are of great importance from the industrial point of
view. Indeed, such methods permit to evaluate the behavior of a structural sys-
tem under its operative conditions considering its actual boundary conditions
and excitation levels, see Ref. [1]. Several techniques, both in frequency and in
time domain, have been developed in recent years. Among the OMA methods,
it is worth recalling the Frequency Domain Decomposition, FDD, the Hilbert
Transform Method, HTM, and the Balanced Realization, BR, approach, see
Refs. [2,3,4,5]. In the FDD method, the natural frequencies and mode shapes
are gained from the evaluation of the frequency-dependent spectral character-
istics of the output Power Spectral Density (PSD) matrix through the Singular
Value Decomposition transformation technique. On the other hand the Hilbert
Transform Method enables the estimate of the biased Frequency Response
Functions, FRF’s,directly from the output PSD spectra by taking advantages
of the properties of the Hilbert transform applied to causal signals (Ref. [6]).
From this biased FRFs the modal parameters are easily estimated by intro-
ducing residue-pole estimates available in literature. The Balanced Realization
approach belongs to the Stochastic Subspace Identification methods, SSI, in
which the state-space model is associated to the observed output responses
through the so called orthogonal projection technique (Refs. [5] and [7]). In
particular, the Balanced Realization, which works in the time domain, pro-
vides the observability matrix of the studied system starting from the so-called
Hankel matrix built using the correlation functions evaluated from the output
time responses [5]. The Stochastic Subspaces Identification can be performed
also in the time domain with the so-called Frequency-Stochastic Subspaces
Identification, f-SSI, which uses the same procedure of BR-SSI method but in
the frequency domain computing the Vandermonde matrix with the output
spectra [7].

In the present paper the identification in low frequency domain of a launcher
vehicle by using data recorded during flight tests is considered. In particular,
the identification is performed in terms of natural frequencies, damping ratios
and variation of mode shapes. This important industrial application permits
to consider some critical issues about the identification procedure via OMA
methodologies. The analyzed system is characterized by time-dependency of its
dynamical properties because its mass is varying due to the burning propellant.
Thus, it has been necessary to determine a criterion of practical applicability
of the OMA techniques for this kind of applications. This aspect is relevant
in that all the identification OMA techniques are based on the assumption
that the system intrinsic parameters like mass, stiffness and damping prop-
erties are constant in time and therefore, the intrinsic system signatures as
its frequency response functions (FRF) keep their nature for any time-shift of
the input/output recording. Unfortunately, because of these parameter varia-
tions (which is the typically mass variation of a launcher with solid or liquid
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propeller), the result of a frequency domain analysis will give spectra that
are dependent on the length of acquisition time window. Specifically, FRF ob-
tained by FFT performed in a given time window will give a frequency-peak
(resonance) with different locations because of the variations of mass quantity
in the system. At limit, for a very long acquisition time, the resulting obtained
FRF will average these behaviors and no information could be available on the
variation of the frequency peak in time. On the other hand, the use of local
and sufficiently short time windows to perform FFT could imply a frequency
step for FRF function too large, namely, a frequency resolution, too coarse.
Therefore, a quantitative evaluation of these effect and a rational choice for
a compromise is presented in order to define the field of applicability of the
time-invariant identification procedure. In Ref. [11] the problem of estimating
the modal parameters of a luncher has been addressed even if without going
into a detailed analysis of the critical aspect of this systems. As a further
contribution the problem of uncertainties associated with the identification
process has been addressed. This is a well-known issue related to dynamical
identification and it has been deeply studied in literature, see Refs. [12,13,14,
15]. In the present paper, it will be analyzed from the point of view of system
theory by studying how this uncertainties affect the poles of identified system.
In particular, it has been demonstrated that the uncertainties associated to
the identification process are determined by those associated to the natural
frequencies evaluation.

The results here presented came from an activity developed by the De-
partment of Mechanical and Aerospace Engineering of University of Roma La
Sapienza and Airbus Defence and Space, a leading industry in the launcher
sector. It is worth to remember that if, from one side, the considered study
permits to evaluate the applicability of OMA methodologies to time-varying
systems giving the possibility to address some theoretical aspects of opera-
tional modal analysis based identification process as already explained, on
the other side, it gives the possibility to consider a practical application of
clear interest for the aerospace industry. Indeed, the dynamic identification of
a Launch Vehicle (LV) structure is of great importance for launcher industry
because the availability of a validated mechanical model allows an accurate pre-
diction of launcher dynamical performances thus reducing the time-to-market
in developing phase, Ref. [16]. The vibrational data of launcher in its actual en-
vironmental conditions is an essential input necessary for the characterization
of its dynamic behavior and, therefore, for updating the numerical models of
the structure and for improving the design. Unfortunately, the operative costs
for the experimental acquisition of such a data is often very expansive and the
quality of acquired signal data is very coarse because of the difficult environ-
mental conditions of the test. Another critical issue is specifically related to the
standard procedures because, in the considered case, the system input load in
the operative condition cannot be practically determined and only the output
vibration level can be measured. Thus, the above aspects and limitations in
the launcher vehicles dynamical evaluation make the OMA techniques of great
practical interest for this kind of applications.
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The dynamic identification of the launcher is provided by applying two
different Operational Modal Analysis: the Fourier Domain Decomposition and
the Hilbert Transform Method. Both methods has been demonstrated are able
to track the time behavior of the natural frequencies, damping ratios and mode
shapes of the studied launcher vehicle.

In Section 2 the used methodologies are presented in their theoretical as-
pects and in Sec. 3 a criterion of applicability of OMA techniques for time-
varying systems is presented. Finally, in Sec. 4 the results of the analysis of
two different flights cases are presented and in Sec. 5 some remarks about the
accuracy of the estimated are given. In Sec. 6 some final comments are given.

2 Theoretical Background

Let us consider a linear system excited by a stochastic load representing
the time evolution of a vibrating structure. Its Frequency Response Function
(FRF) matrix, H(ω) ∈ CNo×Ni ,can be expressed, by assuming Nm significant
modes, as:

H(ω) = Ψ [jωI−Λ]
−1

ΦT (1)

where Ψ ∈ CNo×Nm is the mode shapes matrix evaluated in the No out-
put degrees of freedom and Φ ∈ CNi×Nm is the modal participation ma-
trix evaluated in the Ni input degrees of freedom. The poles of the system,
λn = λRn

+ jλIn , n = 1, · · · , 2Nm; λIn = ωn, are the terms of the diagonal
matrix Λ and contain the natural frequencies fn = ωdn

2π and the damping ra-

tios ζn = −λRn

λIn
. As a result, the FRF matrix could be expressed in terms of

the modal parameters as an expansion of partial fractions [8]:

H(ω) =

Nm∑
n=1

(
ψ(n)ϕ(n)T

jω − λn
+
ψ(n)∗ϕ(n)H

jω − λ∗n

)
(2)

The output spectral density function matrix, Gyy(ωk) ∈ CNo×No , k =
1, · · · , Nt/2 can be built from the evaluation of the spectral density functions,
Gyiyj (ωk), defined between the i-th and j-th output responses as:

Gyy(ωk) =

 Gy1y1(ωk) . . . Gy1yNo
(ωk)

...
. . .

...
GyNoy1

(ωk) . . . GyNoyNo
(ωk)

 (3)

Introducing, in a similar way, the input spectral density matrix defined
between the Ni inputs, i.e., Gff (ωk) ∈ CNi×Ni , their relationship through the
FRF matrix of the system, H(ωk) ∈ CNo×Ni , can be written as:

Gyy(ωk) = H(ωk)Gff (ωk)HH(ωk) (4)
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where the assumption of white noise input excitation implies that Gff (ωk)
is frequency independent, that is Gff (ωk) = Gff , where Gff is a diagonal
matrix when the input excitation is uncorrelated in the space domain. A com-
bination of the Eqs.(4) and (2) yields the following expression that decomposes
the output spectral density function matrix in the modal components:

Gyy(ωk) =

Nm∑
i=1

(
ψ(i)ϕ̄(i)T

jωk − λi
+
ψ(i)∗ϕ̄(i)H

jωk − λ∗i
+
ϕ̄(i)ψ(i)T

−jωk − λi
+
ϕ̄(i)∗ψ(i)H

−jωk − λ∗i

)
(5)

in which ϕ̄(i) takes into account the contribution of the input excitation
to the i-th participation factor. In the following subsection a brief recall of the
methods considered in the paper is reported for the sake of completeness. More
details could be found for each approach in the provided specific references.

2.1 Frequency Domain Decomposition

The FDD is based on the singular value decomposition of the response spectral
matrix. In particular, being GH

yy(ωk) = Gyy(ωk), namely, a Hermitian matrix
with real and positive diagonal elements, the singular value decomposition of
the output spectral density matrix, for each of the k-th spectral lines can be
decomposed as [2]:

Gyy(ωk) = Uk(ωk)Σk(ωk)UH
k (ωk) (6)

in which Uk(ωk) ∈ CNo×No is the matrix of left singular vectors and
Σk(ωk) ∈ R+(No×No) is the diagonal matrix of singular values. Under the
hypothesis that the structure behaves as a single degree of freedom system
around the peak of resonance, ωn, then the rank of Gyy(ωk) is practically uni-
tary (and then only one singular value will differ from zero) when the current
frequency ωk approaches one of the natural frequency of the structure, ωn. In
addition, by comparing Eq. (5) and Eq. (6) when ωk = ωn, a good estimate
of the mode shape could be achieved from the singular vector corresponding
to the only non-zero singular value. Moreover, taking an inverse Fourier trans-
form of Eq.(5), the correlation matrix could be written in terms of the modal
parameters as:

R(τ) =

Nm∑
i=1

(
ψ(i)ϕ̄(i)eλiτ +ψ(i)∗ϕ̄(i)Heλ

∗
i τ
)

(7)

If the mode shape are well separated and if such correlation functions are
evaluated by inverse Fourier transforming the power spectral density matrix in
the neighborhood of the identified natural frequency then they correspond to
the free decay of an equivalent SDOF system so permitting the identification
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of the damping ratio. Indeed, the logarithmic decrement technique could be
applied to estimate the damping ratio [9,10]. In order to define the frequencies
interval where the system behaves like a SDOF, the mode shape associated to
the identified frequency is compared by using the Modal Assurance Criterion
(MAC) with those associated with the neighboring frequencies. Thus, by fixing
a critical value for the MAC, namely, the Threshold MAC, the searched interval
is obtained and the damping ratio can be identified.

2.2 Hilbert Transform Method

The advantage in using the Hilbert transform is about the capability of esti-
mating the imaginary part of the Fourier transform of a time causal function
starting from the real part [6]. The Hilbert transform of a signal x(t) is defined
as the Cauchy principal value of

x̂(t) = H[x(t)] =
1

π

∫ +∞

−∞

x(τ)

t− τ
dτ (8)

The polar representation of a driving point FRF is given by

Hii(ω) = |Hii(ω)|e−jφii(ω) (9)

or, by introducing the natural logarithm, could be expressed as

ln [Hii(ω)] = Gii(ω)− jφii(ω) (10)

in which Gii(ω) = ln|Hii(ω)| is the gain function. Considering that the
real part of the FRF is an even function and the imaginary part is an odd
function, therefore the gain and the phase are even and odd, respectively. As
a result the left-hand side of the Eq.(10) could be expressed as the sum of a
pair of Hilbert transform functions:

φii(ω) = −Ĝii(ω) (11)

The gain function is related to the spectral density function by Eq.(4),
applying the natural logarithm and performing the Hilbert transform, it be-
comes:

H [ln(Gyiyi(ω))] = 2H [ln |Hii(ω)|] (12)

in which the input spectral density contribution, Gfifi , is null, as the
Hilbert transform of a constant is zero. Combining the previous Eqs.(11) and
(12) it is possible to write
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φii(ω) = −1

2
H [ln(Gyiyi(ω))] (13)

Therefore, the FRF in the i-th driving point is available. It is possible to
demonstrate that the off-diagonal terms of the FRF are derivable from the
comparison between the commonly used H1 and H2 estimators [3].

Hij(ω) =
Gyiyj (ω)√
GfifiH

∗
ii(ω)

(14)

Obviously the estimated functions are unbiased depending on the unknown
input forces. The modal parameters are evaluated with a least square approx-
imation, considering the expression of FRF in pole-residue terms, Eq.(2).

In the frequency range of definition of the FRF, the number of modes, Nm,
is not known, therefore a stabilization diagram is introduced to estimate it
by means of an iterative procedure. It is worth remarking that the structural
properties are independent from the order used to describe the system, thus
stable poles are representative of natural frequencies [10].

3 A criterion of applicability of OMA techniques for
time-dependent systems

The OMA hypotheses require a linear time-independent system excited by a
white noise in order to identify the considered dynamics in terms of modal
damping, natural frequencies and mode shapes. If the system is characterized
by time-dependent dynamic properties, the analysis can be carried out by
splitting the whole observation time into NI sub-intervals Ii, i = 1, ..., NI ,
where the system dynamical features can be considered constant in time. In
the considered cases the varying parameter is the natural frequency fn, thus,
an accuracy criterion is defined considering such dynamical property.

From the identification point of view, the estimated natural frequency is
achieved within an accuracy given by the frequency resolution ∆fn (numerical
error and round-off errors are not considered) which is, in turn, related to
the length of the time-interval where the dynamics is observed. In the same
time interval, if the natural frequency is varying in time, one can assume that
fn = f̌n + ∆obsfn where ∆obsfn represents the time variation of the natural
frequency, in the considered interval, with respect to a reference value f̌n.
Without loss of generality, it can be assumed that fn = f̌n.

In order to consider the system properties constant over the generic interval
Ii it is necessary that the variation of the natural frequency in time is less or
equal to the frequency resolution. In this case the physical quantity that has to
be estimated has no observable variation. Thus, the following condition must
hold:

∆obsfn ≤ ∆fn (15)
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The variation in time can be defined as

∆obsfn = ḟn∆t (16)

where

ḟn = maxI

[
ḟ(t)

]
t ∈ [tI , tI +∆t]

By recalling that the frequency resolution is ∆fn = 1/∆t and by using Eq. 16,
the condition given by Eq. 15 become:

ḟn∆t ≤ 1/∆t (17)

Therefore, an estimate of the length of the observation time-window is
given, see Eq. 17, by:

∆t ≤
√

1

ḟn
(18)

Equation 18 shows that the faster the rate of variation of fn is, the smaller
the length of the observation interval must be in order to apply the OMA
techniques to an almost time-independent system (in the given observation
time-window). From the practical point of view the criterion introduced in
Eq. 18 affects the accuracy of the modal parameter estimates and limits the
applicability of the OMA methods when dealing with time-dependent systems.
Indeed, not only the maximum frequency resolution depends on the rate of
variation of natural frequency but also on the number of samples available for
OMA, that is ∆t = Ns∆st where ∆st is the given sampling time. By reducing
the available number of samples also the numerical error associated to the
identification procedure increases. Therefore, such an operative criterion of
applicability of the OMA techniques applied to time-dependent systems links
the accuracy of the estimates to the rate of variation of the unknown system
characteristics, namely the higher the rate of variation is the lower the accuracy
of the estimate is.

4 Analysis of flight data

The considered data refer to different flight conditions of a Launch Vehicle.
Such conditions consider different excitation loading and different modal pa-
rameters to be estimated. These data sets, which are adimensionalized with
respect to reference values intentionally left unknown, are organized in two
different cases: Case 1 and Case 2 representing two different phases of the
flight.



Title Suppressed Due to Excessive Length 9

4.1 Case 1

In Case 1 the dynamic response is measured by three accelerometers whose
locations are intentionally left unknown. Specifically, the time-frequency re-
sponse is obtained by evaluating the PSD with a suitable time-window. The
input nature is unknown and it is assumed to be white noise at least in the
bandwidth of interest.

It can be observed that there are two target modes around 20 Hz and 40
Hz. The damping is expected to be in around the interval 0.20% − 2.00%.
The provided data are considered synchronous and analyzed in the interval
[10s − 100s]. The Nyquist frequency is 227.27 Hz. In Figure 1 the analyzed
time-histories are reported.
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Fig. 1: Analyzed time-histories

In order to track the change of modal parameters over time, a trade-off has
been made between the frequency variation (at least supposed to be) and the
time duration of the analysis time-window. Because it is expected a frequency
variation of about 0.1 Hz/s then, see Sec. 3, a frequency resolution of at 0.1
Hz is assumed to be correct to follow the dynamic of the studied system. Thus,
a time observation window of 10s will be used for every analysis.

4.1.1 Frequency Domain Decomposition Analysis

In the performed analysis the Nyquist Frequency is 227.27 Hz and all the
interval analysis Ii, i = 1, ..., 10 are of 10s length. Moreover, the FDD is
performed with a Theshold MAC of 0.90. The Figure 1, shows a strongly time-
dependent non-zero mean value up to 30s, thus violating the OMA-hypotheses.
The analyses in the first two time windows i.e., I1 = [10s, 20s] and I1 =
[20s, 30s], have been performed considering first all the three channels then
only channel 1 and channel 3 in order to evaluate the effects on the estimates
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of such type of data. It is relevant to point out that for all the channels the
mean value on the generic Ii is filtered out before the analysis.

The estimated natural frequencies fn obtained using the FDD approach
are shown in Figs. 2 and 3, for the two modes respectively, where some inter-
polating lines of different orders are also drown in order to give a better idea
of the time-dependency of the results. In particular, the two identified natural
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Fig. 2: Time dependence of first natural frequency
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Fig. 3: Time dependence of second natural frequency

frequency are in the ranges fn1
∈ [19.81, 21.64]Hz, fn2

∈ [39.57, 41.04]Hz.
Moreover, it has been observed that by using only Channel 1 and 3 in [10s, 20s]
in order to avoid the effect of the time-varying mean valued of Channel 2 does
not permit the identification of the second natural frequency. Thus, in the next
analyses all the channel will be considered.
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The estimated damping ratios ζn are shown in Fig. 4 together with the
associated regression lines. Globally, Figure 4 shows that the estimated damp-
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Fig. 4: Identified damping ratios, Threshold MAC=0.9

ing ratios are in the intervals ζ1 ∈ [0.22%, 0.84%], ζ2 ∈ [0.16%, 0.22%] with
average damping coefficients: ζ̄1 = 0.52%, ζ̄2 = 0.27% and associated standard
deviations on the whole time-window of σζ1 = 0.19%, σζ2 = 0.25%.

Finally, in order to evaluate the time-evolution of the mode shapes, all
the modes in the different time interval of analysis are compared, by using
the MAC where the reference modes are chosen those evaluated in the I1 =
[10s, 20s] time-intervals. The results are shown in Fig. 5 where both the two
identified modes show a significant variation at the end of the considered time-
window,i.e., in the interval [70s, 100s].
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Fig. 5: Identified Modes variation
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4.1.2 Hilbert Transform Method Analysis

In the performed analysis the Nyquist Frequency is 227.27 Hz and all the
interval of analysis Ii, i = 1, ..., 10 are of 10s length. All the channels have
been used for all the analyses and for all the channels the mean value on
the generic Ii is filtered out before the analysis starts. The estimated natural
frequencies fn obtained using the HTM are shown in Figs. 6 and 7 where some
interpolating lines of different orders are drown in order to give an idea of the
time-dependency of the results.
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Fig. 6: Time dependence of first natural frequency
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In particular, it has been obtained that the natural frequencies vary in
the ranges fn1

∈ [17.83, 21.04]Hz, fn2
∈ [38.67, 42.19]Hz. The estimated

damping ratios ζn using the HTM approach are shown in Fig. 8 in which also
the associated regression lines are drown. From Figure 8 one can observe that
the estimated damping ratios are in the intervals ζ1 ∈ [0.30%, 2.16%], ζ2 ∈
[0.35%, 1.67%]. Moreover, on the whole observation window the average damp-
ing ratios are ζ̄1 = 1.10%, ζ̄2 = 0.89% with a standard deviation damping
σζ1 = 0.68%, σζ2 = 0.38%
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The mode shapes evolution has been evaluated by comparing via the MAC
those evaluated in the generic time-interval Ii with those identified in I1 =
[10s, 20s]. The results are shown in Fig. 9 where both modes show a significant
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Fig. 9: Identified Modes variation

variation at the end of the considered time-window, i.e., [60s, 100s]: a result
similar to the one obtained via FDD.

4.1.3 Comparison between FDD and HTM

In this Section the results obtained via FDD and HTM are compared in order
to enforce the results obtained by the two methods. From Figures. 5 and 9 it
appears that the two different methods have a similar behavior for both the
identified modal shapes although the modes exhibit by HTM show a larger
variation. Moreover, by considering the damping ratios, see Figs. 4 and 8, a
similar trend of identified ζn is shown. Specifically, the damping ratios esti-
mated with HTM approach are slightly higher with respect to those identified
using the FDD method. However, by considering the standard deviation and
the average value of the ζn time-distribution, the two results fall in the same in-
terval of magnitude. A comparison between the frequencies identified by HTM
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and FDD is shown in Fig. 10. Figure 10 shows that all the results obtained
via FDD and HTM differ for less than 2 Hz. It is important to underline that
because of it is not present a reference value for the estimated frequency the
comparison between two OMA methods provides also an indirect evaluation
of the consistency of obtained results. This approach will be followed also in
the next Section where the same procedure is not only applied between two
different OMA methods but also to different data sets referring to the same
flight condition.

4.2 Case 2

The second case corresponds to a flight phase where the system is excited by
a supposed white noise and the responses are recorded in correspondence of
4 locations left intentionally unknown. The only available information on the
systems is that the target modes are vibrating with natural frequencies lo-
cated around at 10-20 Hz and 30-40 Hz. No information are available concern-
ing about the values of damping ratios. The data are considered synchronous
and analyzed in the time interval 200s − 500s and sampled with a Nyquist
Frequency of 227.27 Hz. Three data sets with the same sampling rate are
available: Flight1, Flight2 and Flight3. In Figure 11 the analyzed time-history
are reported together with the excitation for the data set named Flight 1, as
an example. In order to follow the change of modal properties over time, a
trade-off between the frequency variation (at least supposed to be) and time
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Fig. 11: Recorded excitation and channels time histories for the Flight1 data set

duration of the analysis time-windows has been carried out. Thus, any analysis
has been performed on a time-window of 10s.

4.2.1 Frequency Domain Decomposition analysis

In the performed analysis the Nyquist Frequency is 227.27 Hz. The analysis will
be performed in interval of analysis Ii, i = 1, ..., 10 of length of 10s. Moreover,
the FDD is performed with a Threshold MAC of 0.90. Moreover, for all the
channels the mean value on the generic Ii is filtered out before the analysis.

By applying the FDD approach, three natural frequencies are estimated
for Flight1, see Figs. 12, 13 and 14 the three natural frequencies identified for
the Flight1 case are shown, respectively.
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Fig. 12: Time dependence of first natural frequency, Flight1

In particular, fn2 is not identified in [260s, 270s] and the global inter-
val of variation of the natural frequency are fn1

∈ [12.75, 17.77]Hz, fn2
∈



16 M. Eugeni et al.

200 250 300 350 400 450 500

24

26

28

30

Time (s)

2nd
 N

at
ur

al
 F

re
qu

en
cy

 (
H

z)

 

 

2nd Natural Frequency
Polyfit order 1
Polyfit order 2
Polyfit order 3
Polyfit order 4

Fig. 13: Time dependence of second natural frequency, Flight1
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Fig. 14: Time dependence of third natural frequency, Flight1

[23.32, 27.47]Hz and fn3
∈ [31.17, 37.17]Hz. The same number of natural fre-

quencies has been estimated considering the Flight2 data, as reported in Figs.
15, 16 and 17. Specifically, the estimated interval of variation of the natural
frequency of the Flight2 case are
fn1 ∈ [12.82, 17.66]Hz, fn2 ∈ [23.26, 29.26]Hz, fn3 ∈ [32.49, 38.95]Hz. More-
over, as for Flight1, the second natural frequency fn2

is not identified in
[260s, 270s]. Finally, as for Flight1 and Flight2, also for the Flight3 data
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Fig. 15: Time dependence of first natural frequency, Flight2
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Fig. 16: Time dependence of second natural frequency, Flight2
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Fig. 17: Time dependence of third natural frequency, Flight2

sets three natural frequencies have been identified, see Figs. 18, 19 and 20.
The depicted results show that for the Flight3 data set all the natural fre-
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Fig. 18: Time dependence of first natural frequency, Flight3

quencies have been estimated in all the time intervals. Moreover, the estimated
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Fig. 19: Time dependence of second natural frequency, Flight3

200 250 300 350 400 450 500

31

32

33

34

35

36

37

38

39

40

Time (s)

3rd
 N

at
ur

al
 F

re
qu

en
cy

 (
H

z)

 

 

3rd Natural Frequency
Polyfit order 1
Polyfit order 2
Polyfit order 3

Fig. 20: Time dependence of third natural frequency, Flight3

intervals of variation are fn1
∈ [12.87, 17.75]Hz, fn2

∈ [23.26, 29.06]Hz, fn3
∈

[32.10, 39.41]Hz.

The obtained results show a consistency of the identified natural frequencies
using the FDD approach with all the three different data sets (corresponding to
the three flights), but only by using the Flight3 data set all the frequencies have
been identified for all the time-intervals considered. Figures 21 shows a direct
comparison of the natural frequencies identified in all the three considered
flights which permits to appreciate the robustness of frequency identification
of FDD.

The estimated damping ratios ζn using the FDD approach are shown in Fig.
22 where also the associated regression lines are drown. The damping ratios
estimated for Flight1 vary in the following intervals ζ1 ∈ [0.46%, 0.89%], ζ2 ∈
[0.19%, 0.40%], ζ3 ∈ [0.13%, 0.55%] and from a global point of view are charac-
terized by average values on the whole time observation window of ζ̄1 = 0.67%,
ζ̄2 = 0.27%, ζ̄3 = 0.24% with associated standard deviation of σζ1 = 0.14%,
σζ2 = 0.08%, σζ3 = 0.09%.

In Figure 23 the identified damping ratios for the Flight2 data set are
shown. The damping ratios estimated for Flight2 vary in the following intervals
ζ1 ∈ [0.55%, 1.60%], ζ2 ∈ [0.16%, 0.54%], ζ3 ∈ [0.13%, 0.46%] and from a
global point of view are characterized by average values on the whole time
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Fig. 21: Comparison of the natural frequency for different flights
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Fig. 22: Identified damping ratios Flight1, Threshold MAC=0.9
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Fig. 23: Identified damping ratios Flight2, Threshold MAC=0.9

observation window of ζ̄1 = 0.82%, ζ̄2 = 0.25%, ζ̄3 = 0.27% with an associated
standard deviation of σζ1 = 0.05%, σζ2 = 0.02%, σζ3 = 0.00%. Observe that
even if the standard deviation σζ3 = 0.00% this does not means that the
estimated coefficient does not deviate from the mean valued in the analysis
intervals but it means that ζ3 does not deviate up to the second digit.
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Finally, in Figures 24 the damping ratios for the Flight3 data set are shown.
The identified damping ratios vary in the intervals ζ1 ∈ [0.44%, 1.71%], ζ2 ∈
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Fig. 24: Identified damping ratios, Threshold MAC=0.9

[0.16%, 0.95%], ζ3 ∈ [0.14%, 0.56%] and from a global point of view are charac-
terized by average values on the whole time observation window of ζ̄1 = 0.74%,
ζ̄2 = 0.32%, ζ̄3 = 0.26% with an associated standard deviation of σζ1 = 0.25%,
σζ2 = 0.18%, σζ3 = 0.11%.

It is worth to note that by observing all the average values for all the data
sets and their associated time standard deviations together with their interval
of variation one can conclude that the identified quantities are similar for all
the considered flights. As for the frequencies in Flight1 and Flight2 in the
interval [200s, 210s], the second mode damping ratio has been not identified.

In order to evaluate the natural mode shapes evolution, all the identified
modes in the different intervals of analysis have been compared via the Modal
Assurance Criterion where the reference mode is the one identified in I1 =
[10s, 20s]. The results are shown in Fig. 25 for all the Flight1 data set, in Fig.
26 for the Flight2 data set and in Fig. 27 for the Flight3 data set.

For all the different data sets analyzed, the first mode is the one identi-
fied with the best accuracy and it shows a slow variation in the considered
time-intervals. As for the natural frequencies in Flight1 and Flight2 for the
interval [200s, 210s], the second mode is not identified because it is not pos-
sible to identify the corresponding fn due to too many uncertainties in the
time-histories. Indeed, the singular values distribution around those frequen-
cies exhibited several local maxima but none of them was much higher then the
other ones, thus not providing a clear information on the natural frequency.

4.2.2 Hilbert Transform Method Analysis

In the performed analysis the Nyquist Frequency is 227.27 Hz and all the
interval of analysis Ii, i = 1, ..., 10 are of 10s length. In all the channels the
mean value on the generic Ii is filtered out before the analysis.

For the Flight1 data sets three natural frequencies have been identified, see
Figs. 28, 29 and 30. All the target fn for all the considered time-interval have
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(c) Third identified mode

Fig. 25: Flight1: identified Modes variation

been identified by considering the Flight1 data set and
fn1
∈ [13.16, 17.85]Hz, fn2

∈ [22.77, 28.93]Hz, fn3
∈ [31.01, 39.00]Hz.

In Figures 31, 32 and 33 the three natural frequencies identified for the
Flight2 case are shown. In particular, it has been obtained that
fn1
∈ [12.73, 17.27]Hz, fn2

∈ [22.63, 29.25]Hz, fn3
∈ [31.17, 39.12]Hz Fi-

nally, also for Flight3 data set three natural frequencies have been identi-
fied, see Figs. 34, 35 and 36. The identified interval of variation of the nat-
ural frequencies are fn1 ∈ [12.90, 17.78]Hz, fn2 ∈ [22.43, 29.27]Hz, fn3 ∈
[30.67, 39.50]Hz.

For all the given data sets the natural frequencies identified in all the time
intervals using the HTM approach are congruent with themselves. Figure 37
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(c) Third identified mode

Fig. 26: Flight2: identified Modes variation

shows a direct comparison of the natural frequencies identified in all the three
considered flights, thus confirming the consistency of the results.

The identified damping ratios for the Flight1 data set are shown in Fig.38.
The estimated damping ratios vary in the intervals ζ1 ∈ [0.21%, 2.01%], ζ2 ∈
[0.10%, 2.45%], ζ3 ∈ [0.18%, 2.00%] with an average on the whole observation
time window of ζ̄1 = 0.93%, ζ̄2 = 0.88%, ζ̄3 = 0.86% with the associated
time standard deviation damping coefficients: σζ1 = 0.52%, σζ2 = 0.62%,
σζ3 = 0.52%.

In Figure 39 the identified damping ratios for the Flight2 data set are
shown. The estimated damping ratios vary in the intervals ζ1 ∈ [0.11%, 1.61%], ζ2 ∈
[0.19%, 2.03%], ζ3 ∈ [0.10%, 2.14%] with an average on the whole observation
time window of ζ̄1 = 0.79%, ζ̄2 = 0.95%, ζ̄3 = 0.80% with the associated time
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(c) Third identified mode

Fig. 27: Flight2: identified Modes variation
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Fig. 28: Time dependence of first natural frequency
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Fig. 29: Time dependence of second natural frequency
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Fig. 30: Time dependence of third natural frequency
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Fig. 31: Time dependence of first natural frequency
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Fig. 32: Time dependence of second natural frequency
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Fig. 33: Time dependence of second natural frequency
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Fig. 34: Time dependence of first natural frequency

standard deviation damping coefficients: σζ1 = 0.43%, σζ2 = 0.52%,
σζ3 = 0.60%.

In Figures 40 the identified damping ratios for the Flight3 data set are re-
ported. The estimated damping ratios vary in the intervals ζ1 ∈ [0.15%, 1.34%]
ζ2 ∈ [0.11%, 2.61%], ζ3 ∈ [0.16%, 1.93%] with an average on the whole obser-
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Fig. 35: Time dependence of second natural frequency
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Fig. 36: Time dependence of second natural frequency
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Fig. 37: Comparison of the natural frequency for different flights

vation time window of ζ̄1 = 0.67%, ζ̄2 = 0.93%, ζ̄3 = 0.72% with the associ-
ated time standard deviation damping coefficients: σζ1 = 0.37%, σζ2 = 0.65%,
σζ3 = 0.53%.

By comparing all the average values for all the data sets and their time
standard deviation together with their interval of variation it appears that the
identified damping properties are very similar for all the flights.
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Fig. 38: Identified damping ratios Flight1
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Fig. 39: Identified damping ratios Flight2
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Fig. 40: Identified damping ratios Flight3

In order to evaluate the mode shape evolution all the modes in the different
interval of analysis have been compared via the Modal Assurance Criterion
with the corresponding mode identified in I1 = [10s, 20s]. The results are
shown in Fig. 41 for the Flight1 data set, in Fig. 42 for the Flight2 data set
and Fig. 43 for the Flight3 data set.

For all the different data sets the first mode is the one better identified
and it shows a slow variation on the considered time interval as for the FDD
identification. Again, the identification of the second and third modes is dif-
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(b) Second identified mode
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(c) Third identified mode

Fig. 41: Flight2: identified Modes variation

ficult due to the small number of spatial measure point available and limited
sampling.

4.2.3 Comparison between FDD and HTM

A comparison between the natural frequencies identified by HTM and FDD,
for all the considered Flight data, is shown in Fig. 44. This Figure shows that
all the results obtained via FDD and HTM have a maximum difference of
about 5Hz. By considering the damping ratios, a similar trend (not reported)
is obtained for all the flights but HTM gives a higher damping values with
respect to FDD (about 1%). The mode time-variations are similar for all the
considered flights. Specifically, the first mode slowly changing in time and well
identified. Otherwise, the second and the third modes appear to experience a
greater variation during the considered flight phases due to both the intrinsic
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(b) Second identified mode
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(c) Third identified mode

Fig. 42: Flight2: identified Modes variation

nature of the system properties and the reduced number of measurement points
together with the higher corresponding natural frequency.

5 Discussion on the accuracy of the estimates

From the analyses carried out, it can be observed that all the considered OMA
techniques are able to identify the target natural frequency fn. On the con-
trary, from the damping ratio point of view, the accuracy of the estimates
seems to largely vary with the used method and on the particular analyzed
case. Starting from this, the evaluation of the accuracy of the estimates seems
difficult to asses. However, a bounded accuracy in the natural frequency esti-
mates is clearly identified, whereas the damping ratios have not such bounding
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(c) Third identified mode

Fig. 43: Flight2: identified Modes variation

limits for accuracy. The problem of large variations in the estimates of damp-
ing coefficient is well-known in literature and in Ref. [15] it is argued from the
analytical point of view. Otherwise, in the present paper a different approach
is considered by changing the point of view with respect to the system dynam-
ics identification. Thus, the quantities largely used in structural analysis are
fn and ζn but, really, the dynamics of the system is characterized by its poles
λn which are related to the natural frequencies and damping ratios, see Eqs.
19.

λn = λRn
+ jλIn

ζn := −λRn

λIn
(19)

λnI
:= ωn = 2πfn
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Fig. 44: Comparison of the natural frequency for different flights

Moreover, the system pole (and thus, its dynamics) could be identified by
its module and phase:

|λn| = ωn
√

1 + ζ2n (20)

∠λn =
π

2
+ arctang(−λRn

λIn
) =

π

2
+ arctang(ζn) (21)

Equations 20 and 21 can be approximated for the usual values of the damping
ratios as:

|λn| ∼= ωn (22)

∠λn ∼=
π

2
+ ζn (23)

By introducing the accuracy of the estimate of the natural frequency, ∆fn,
and damping ratio, ∆ζn, and recalling Eqs. 20-21, the accuracy of the overall
dynamics could be written, referring to the analyzed cases, as:

∆|λn| ∼= ∆ωn = 2π∆fn = O(1) (24)

∆∠λn ∼= ∆ζn = O(10−2) (25)

From Eq. 25 follows that even in presence of uncertainties associated to the
damping ratio of the same order of magnitude of the identified quantity it
will be the uncertainties associated to the natural frequency identification (see
Eq. 24) to the define the accuracy of the pole estimation and, thus of the
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system dynamics. From Sec. 3 it has been shown that the accuracy of the
method, not considering numerical error and round-off errors, can be identified
with the frequency resolution and thus, the above results permit to obtain a
first accuracy estimate of the obtained results. Moreover, it is worth to note
that Eq. 24 implies that for a fixed sampling time, the greater the frequency
variation velocity the higher the uncertainties associated to the identification
process. That is the accuracy of the estimate is driven by the accuracy of the
estimate of the natural frequency. The above observations on the system poles
identification permit to evaluate the accuracy of the different OMA techniques
if the exact value of the natural frequency to be estimated is known.

6 Conclusions

Two different OMA methodologies have been used in order to identify the
dynamic properties of a launch vehicle in terms of natural frequencies, mode
shape variations and damping ratios, considering its actual operative condi-
tions. The first used method is the Frequency Domain Decomposition whereas
the second one is the Hilbert Transform Method. Both methods provide es-
timates for the modal parameters which are in agreement with the declared
target modes. Because of the few information available a direct evaluation of
the estimate has been not possible otherwise, this issues has been addressed
by defining a criterion of practical applicability of OMA techniques to sys-
tems with time-varying dynamical properties. This criterion links the physical
variation of modal parameters to the time-observation-window by permitting
to reduce the physical uncertainty to the frequency resolution. Moreover, it
has been demonstrated, by arguing from system theory, that the driving un-
certainty in the dynamical identification is the one associated with the nat-
ural frequency which de facto identify the position of the system poles on
the complex plane. The obtained results with the two different methods have
been compared showing a consistency between the estimates. Moreover, when
available, the results obtained with the same method have been compared with
those obtained for the same method but associated to different data sets for
equal flight conditions. From the point of view of the mode shapes, they have
been studied by observing how the identified mode varies from itself evaluated
at the beginning of the studied time-window. This have shown similar behav-
ior both in FDD and HTM methods even if more sensors and time samples
are required for better estimates of the higher-order modes.
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