
0

A Fine-Grain Time-Sharing Time Warp System

ALESSANDRO PELLEGRINI, Sapienza Università di Roma
FRANCESCO QUAGLIA, Sapienza Università di Roma

Although Parallel Discrete Event Simulation (PDES) platforms relying on the Time Warp (optimistic) syn-
chronization protocol already allow for exploiting parallelism, several techniques have been proposed to
further favor performance. Among them we can mention optimized approaches for state restore, as well as
techniques for load balancing or (dynamically) controlling the speculation degree, the latter being specif-
ically targeted at reducing the incidence of causality errors leading to waste of computation. However, in
state of the art Time Warp systems, events’ processing is not preemptable, which may prevent the possibil-
ity to promptly react to the injection of higher priority (say lower timestamp) events. Delaying the processing
of these events may, in turn, give rise to higher incidence of incorrect speculation. In this article we present
the design and realization of a fine-grain time-sharing Time Warp system, to be run on multi-core Linux
machines, which makes systematic use of event preemption in order to dynamically reassign the CPU to
higher priority events/tasks. Our proposal is based on a truly dual mode execution, application vs platform,
which includes a timer-interrupt based support for bringing control back to platform mode for possible CPU
reassignment according to very fine grain periods. The latter facility is offered by an ad-hoc timer-interrupt
management module for Linux, which we release, together with the overall time-sharing support, within the
open source ROOT-Sim platform. An experimental assessment based on the classical PHOLD benchmark and
two real world models is presented, which shows how our proposal effectively leads to the reduction of the
incidence of causality errors, as compared to traditional Time Warp, especially when running with higher
degrees of parallelism.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of Systems;
D.4.1 [Operating Systems]: Process Management —scheduling; I.6.8 [Simulation and Modeling]:
Types of Simulation — discrete event; parallel

General Terms: Theory, Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Optimistic synchronization

1. INTRODUCTION
Parallel Discrete Event Simulation (PDES) is a universally recognized methodology
for speeding up the execution of (very) large/complex discrete event models via the
exploitation of hardware parallelism [Fujimoto 1990a]. It is based on partitioning the
model into multiple simulation objects, historically referred to as Logical Processes
(LPs), whose events are concurrently dispatched for execution.

One core problem in PDES is how to ensure causally consistent (say, timestamp or-
dered) execution of the events at all the simulation objects, which is not trivial due
to the dependencies that arise when different objects schedule events for each other.

Authors’ addresses: A. Pellegrini, Dipartimento di Ingegneria Informatica, Automatica e Ges-
tionale “Antonio Ruberti”, Sapienza Università di Roma, Via Ariosto 25, 00185 Roma, Italy, email
quaglia@dis.uniroma1.it; F. Quaglia, Dipartimento di Ingegneria Informatica, Automatica e Ges-
tionale “Antonio Ruberti”, Sapienza Università di Roma, Via Ariosto 25, 00185 Roma, Italy, email
quaglia@dis.uniroma1.it
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2015 ACM 1049-3301/2015/-ART0 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:2 A. Pellegrini and F. Quaglia

This is also known as the synchronization problem, for which different approaches
and protocols have been provided in literature. The various proposals differ from each
other by whether they entail (or not) the possibility to speculate along the simulated
trajectory. If speculation is allowed, events are dispatched for processing at any simu-
lation object as soon as they are available (at the underlying PDES environment) with
no preliminary assessment of their safety. If causal inconsistencies arise, their effects
are undone via rollback schemes. This is the Time Warp approach introduced in the
seminal article by Jefferson [1985].

The relevance of speculative synchronization for PDES lies in that it allows for ex-
tremely high scalability. Recent results [Barnes-Jr. et al. 2013] have indeed shown how
Time Warp systems exhibit the potential for scaling up to millions of processing units.
However, on the down side, building Time Warp-based PDES platforms is far from be-
ing a trivial task because of two main reasons. One is related to the need for including
the support for reversibility of the simulation model execution trajectory, an objective
that should be pursued as transparently as possible to the overlying simulation ap-
plication. Second, the actual performance delivered by the Time Warp-based PDES
platform can be strongly affected by the rules according to which its worker threads
CPU-dispatch the events to be processed.

The common literature trend is to build Time Warp systems as user-space platforms
that are seen by the application-level code as run-time environments offering a specific
API (e.g., for cross-simulation-object scheduling of events) and, in the most advanced
cases (see, e.g., [Pellegrini et al. 2015]), providing application transparent support for
reversibility of the actions performed by both the native application code and the in-
voked third party (standard) libraries. Invocations to the latter, or side effects on the
simulation state natively produced by the application code, are in fact transparently
intercepted by the platform-level code (via wrapping and/or instrumentation [Pelle-
grini et al. 2015; Rönngren et al. 1996; West and Panesar 1996]) which runs reversible
versions of the corresponding tasks.

Nonetheless, another common way of implementing Time Warp PDES systems is
the one where each CPU-dispatched simulation event is executed in non-preemptable
manner. Consequently, the platform-level software is not allowed to re-evaluate CPU
assignment until the completion of the last-dispatched event. This approach is not able
to promptly react to the (system wide) dynamic generation and injection of events with
higher priority, say lower timestamps, compared to the one currently being processed
by some CPU-core. Consequently, it is not fully optimized given that the generation of
rollbacks, and the associated waste of computation, tends to increase when events are
CPU-dispatched and processed according to a rule that does not fully fit the priorities
associated with the dynamic generation of timestamped events [Quaglia and Cortel-
lessa 2002]. We note that the reduction of rollback incidence cannot be fully tackled
by solely relying on load balancing/sharing strategies (see, e.g., [Carothers and Fuji-
moto 2000; Choe and Tropper 1999; Glazer and Tropper 1993; Vitali et al. 2012]) since
they operate as long term planners for fruitful CPU usage, thus being not suited for
“prompt” response to punctual variations of the event priorities along time.

Clearly, the ideal approach to preempt the execution of a CPU-dispatched event
would be to interrupt the thread execution flow right upon the delivery of some higher
priority event (or anti-event), destined to one of the simulation objects managed by
the same thread. This would require a mechanism to reflect the arrival of a new event
(say of a new message) into a change of the state of the CPU-core (e.g. the instruction

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Time-Sharing Time Warp System 0:3

e0 e1 e2 e3

Wall clock time

Message arrival from the network

The interrupt leads the operating system to change state

User space execution flow of the thread is not altered

operating system tick-interval Instant of time where the thread can be

interrupted for changing the execution flow

via signaling mechanisms

Events processed along a same thread

e0 e1 e2 e3

Wall clock time

Message delivery in shared memory

operating system tick-interval

partitioned into fine-grain ticks

Each finer-grain tick leads to an execution flow

Variation leading control to a module that checks

in shared memory whether a higher priority event/task

is standing

Fast causal consistency

check routine

Fig. 1. Thread reactions to the injection of higher priority events.

pointer) so that the running thread can change its execution path, thus enabling the
higher priority event to be actually dispatched1.

For the case of network based message passing in distributed memory systems, the
arrival of a message from a network interface is reflected into a change of the operating
system state, which makes the message accessible on I/O channels (e.g. via polling).
But the thread itself does not change its execution flow, except if asynchronous sig-
naling mechanisms are adopted. However, these would operate according to the time-
granularity of conventional timer-interrupt mechanisms, say 1 to 4 milliseconds on
conventional operating system configurations. This is a granularity level that does not
allow prompt preemption of events with common PDES workloads, where CPU re-
quirements for processing simulation events are well below the order of milliseconds.
An example scenario illustrating this problem is shown in Figure 1 (left).

A similar problem still appears for the case of Time Warp systems running on top of
shared-memory platforms. In more detail, if user space shared-memory support is used
for exchanging messages across the threads, a sending thread will only post the new
message on a shared-buffer, which will be checked by the destination thread accord-
ing to a polling mechanism operating before (or after) the processing of an event. In
fact, pure shared-memory based communication provides no effective mechanism for
interrupting the event execution at some destination thread right upon the post of the
new message. Even if a signaling mechanism were used by the source thread, such as
Posix user-defined signals, the time-granularity for the signal delivery to the destina-
tion thread would be still bound to the conventional operating system timer-interrupt
interval configuration, thus resulting not adequate. Also, this approach would require
the whole chain of signal management mechanisms to be passed through at the level
of the operating system kernel, with consequent non-minimal overhead.

In this article we cope with preemptive events’ processing in Time Warp systems
to be run on shared-memory multi-core machines. Also, we target C-based applica-
tion programming and Linux/x86-64 computing systems. Our solution overcomes the
above depicted limitations by enabling the platform-level software to take back con-
trol and to re-evaluate CPU assignment with very fine grain period (e.g. on the order
of tens of microseconds). To achieve this target we designed and developed an ad-hoc
timer management Linux module which allows for (periodical) control flow variations
along any running thread with no intervention by the chain of kernel-level mecha-
nisms used for supporting Posix signals, hence leading to minimal run-time overhead.
This is achieved by dividing each operating system tick assigned to the thread into
sub-ticks, each one leading to an execution flow variation that brings control to a fast
causality check routine implemented at the Time Warp platform level. The latter ac-
cesses compact data posted on shared-memory to determine whether the currently

1For the case of an incoming higher priority anti-event, the thread would dispatch the corresponding man-
agement operations, including the rollback of the target simulation object.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:4 A. Pellegrini and F. Quaglia

processed event is still the highest priority one (across those bound to the simulation
objects managed by that same thread). In the negative case, the thread preempts the
execution of the current event and switches to the execution of some higher priority
task, according to a fine-grain time-sharing approach. The time-line of the execution
of a thread with our approach is schematized in Figure 1 (right). Clearly, the higher
the frequency of fine-grain ticks’ delivery, the higher the likelihood of prompt switch to
some higher priority task, if any. But the overhead associated with the management
of fine-grain ticks should be anyhow kept to a minimum value. To cope with this issue,
we also provide a benchmark program that can be used to configure the frequency of
fine-grain ticks in the target computing platform where our fine-grain time-sharing
Time Warp system would be installed.

In our proposal, CPU assignment is also re-evaluated right before returning control
back to the application code after the execution of an event has trapped into a platform
level service, either explicitly or because of interception (aimed at making some action
by the application modules reversible). Overall, the return to application code from
platform level execution and the fine-grain ticks are exploited in a synergistic manner
to maximize the opportunities to preempt events if higher priority ones are delivered.

Our proposal does not create any bias in terms of CPU assignment across the threads
(including kernel-level threads) running in the Linux system. In fact, the fine-grain
tick mechanism we adopt does not alter the original operating system planning in
terms of overall CPU time to be assigned to the worker threads running within the
Time Warp PDES platform and to any other thread. This prevents impairing fairness
when running our fine-grain time-sharing Time Warp system on top of a multi-user
conventional platform.

Besides the ability to optimize CPU assignment depending on the (dynamic) pri-
ority of the tasks to be performed, our proposal has also the capability to address
some specific liveness problems related to the speculative nature of Time Warp, such
as application-level infinite loops that may arise when reaching an application non-
admissible state due to out of order events’ executions caused by speculation [Nicol and
Liu 1997]. These loops can be (timely) broken thanks to our fine-grain time-sharing ap-
proach which can be exploited for supporting preemptive rollback operations leading
to the squash of the non-admissible state trajectory.

The fine-grain time-sharing Time Warp architecture we have developed has been
integrated within the open source ROOT-Sim package 2 [Pellegrini et al. 2011; HPDCS
Research Group 2012], and operates in a fully transparent way to the overlying ap-
plication code. Hence, the benefits from it come with no intervention by the appli-
cation programmer. We also report experimental data for an assessment of our pro-
posal, which have been collected by running three different test-bed applications—the
PHOLD benchmark, a data store model and a personal communication system model—
on top of a 32-core machine equipped with 64 GB of RAM.

While presenting our proposal, we assume the reader is already familiar with Time
Warp concepts, and we refer the less familiar readers to, e.g., [Jefferson 1985; Jafer
et al. 2013] for background information.

The remainder of this article is structured as follows. The fine-grain time-sharing
Time Warp architecture is presented in Section 2. Experimental data are provided in
Section 3. Related work is discussed in Section 4.

2Available at http://github.com/HPDCS/ROOT-Sim.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Time-Sharing Time Warp System 0:5

SOC= Simulation Object Context

PC = Platform Context

…

simulation objects in the set S

simulation

object

CPU-dispatch

simulation object

context-switch off

the CPU

Contexts associated with

event processing activities

Context associated with

housekeeping activities

Fig. 2. Time-sharing Time Warp basics: execution contexts for an individual worker thread.

2. THE TIME-SHARING ARCHITECTURE
2.1. Basics
We assume the organization of the Time Warp PDES platform to adhere to the multi-
thread paradigm, which has been recently shown to offer benefits (compared to coun-
terpart implementations based on separate processes) for several aspects, such as the
avoidance of simulation object migrations for well balanced usage of resources [Vitali
et al. 2012] and optimized data-exchange [Wang et al. 2014]. With this type of orga-
nization, any subset S of the simulation objects is (temporarily) bound to a specific
worker thread, which is in charge of managing the corresponding event queues (each
one associated with an object) and of CPU-dispatching its bound objects for event pro-
cessing. Further, all the worker threads share platform level data structures, which
plays a central role in how our fine-grain time-sharing architecture handles the detec-
tion of event priority variations at run-time, as we shall discuss.

The basic organization of the fine-grain time-sharing Time Warp system is schema-
tized in Figure 2. Each simulation object belonging to the set S managed by a given
worker thread has its own execution context (e.g. its own stack). Additionally, a plat-
form context is included, thus each worker thread operates, at any time instant, either
in the context of some simulation object or in platform context. In the real implemen-
tation these contexts, including the switch between them, are managed by relying on
context management functions inspired to classical setjump and longjump functions
provided by the Posix API, whose detailed description is provided in the appendix.

When running in platform context, the worker thread carries on housekeeping tasks,
such as the check for incoming events (anti-events) destined to the simulation objects
it is currently managing, and the actual CPU-dispatch of the simulation objects. The
latter operation takes place according to the Lowest-Timestamp-First (LTF) policy [Lin
and Lazowska 1991], which leads the worker thread to CPU-dispatch the simulation
object (belonging to its bound set S) whose next to be processed event is the one with
the minimum timestamp among those already delivered, thus already known to exist.

Third party library functions accessible by the application code (e.g. malloc, free
and printf) are transparently intercepted via wrapping schemes, which enables run-
ning the corresponding reversible instances supported by the run-time environment3,
conforming to what suggested by a few literature works (see, e.g., [Antonacci et al.

3In our view, reversibility also means that the behavior of the intercepted libraries is guaranteed to be piece-
wise-deterministic, so as to allow optimized state restore schemes based on infrequent checkpointing and
coasting forward.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:6 A. Pellegrini and F. Quaglia

2013; Rönngren et al. 1996]). The same is true for the case of application transparent
code injection (say instrumentation) aimed at intercepting memory updates by the ap-
plication code so as to make them reversible [Pellegrini et al. 2015; West and Panesar
1996]. The injected software brings control to platform level in a manner that is logi-
cally equivalent to the interception of external libraries’ invocations by the application
code. As for this aspect, in our fine-grain time-sharing Time Warp system, reversibility
of the updates occurring within the (dynamically allocated) memory chunks forming
the live state image for the simulation object is supported by relying on the check-
point support offered by the DyMeLoR library [Toccaceli and Quaglia 2008]. In what
follows we focus our discussion on the interception of external libraries, with the im-
plicitly assumption that the discussion also covers scenarios based on application level
instrumentation.

In our time-sharing architecture, each time one of the third party library functions
is invoked, we say that the execution switches to platform mode, and then switches
back to application mode as soon as the function returns. Clearly, when the worker
thread operates in platform context, it also operates in platform mode. On the other
hand, when it runs within the context of some simulation object, it can switch from
application to platform mode multiple times, depending on the interactions between
the application code and the intercepted external libraries. The wrapper that in our
proposal encapsulates any intercepted function has the following structure:

return_type _function_name_wrapper (.. params ..){
return_type ret;
_enter_platform_mode;
ret = function_name_reversible (.. params ..);
_try_leave_platform_mode;
return ret;

}

where the preamble enter platform mode and the tail try leave platform mode are
macros that set/unset a per-worker thread flag indicating the current running mode.
Further, as we shall discuss, the try leave platform mode macro is also used for im-
plementing part of the event preemption logic leading to switch the current execution
context, if needed. This is the reason for the “try” prefix in the macro.

The switch between application and platform mode (and vice versa) occurs in our
architecture not only because of synchronous invocations to intercepted external func-
tions by the application level software (when running in the context of some simulation
object). Rather, a timer-interrupt handler operating in user space is used to bounce con-
trol to platform mode periodically. We refer this handler to as extra-tick-manager,
given that, as hinted, the time-sharing architecture leads a single operating system
tick interval assigned to a worker thread to be partitioned into multiple fine-grain tick
intervals just leading to extra-tick events for the target thread. Overall, the state dia-
gram for any worker thread operating within the fine-grain time-sharing Time Warp
system is the one depicted in Figure 3.

The execution of extra-tick-manager is triggered by the ad-hoc timer management
logic we have embedded within our Linux module, which allows delivering fine-grain
ticks to any worker thread running within the time-sharing Time Warp platform. The
details of the implementation are provided in the appendix. For the abstraction level
of the discussion in the main body of this article the important point is that a thread
that wishes to be interrupted according to fine-grain ticks needs to register itself via
an ioctl command on the dev extra tick file we support with our Linux module.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Time-Sharing Time Warp System 0:7

application mode platform mode

invocation to an intercepted

function or timer-interrupt

return from intercepted

functions or from

timer-interrupt

SOC

platform mode

PC

simulation object

context-switch off the CPU

simulation object

CPU-dispatch

event handler return

Fig. 3. Worker thread state diagram.

2.2. Run-time Detection of Priority Variations and Event Preemption Logic
As well known, when CPU-dispatching of the simulation objects in S is carried out
by the worker thread according to the LTF algorithm, priority variations of the cur-
rently executed events (say, a decrease of the priority of the last CPU-dispatched event
caused by the delivery of some event–or anti-event–with a lower timestamp destined
to some object belonging to S) may only arise due to communication between simula-
tion objects belonging to different subsets, say S and S′, which are bound to different
worker threads. Consequently, the architectural organization of the communication fa-
cility within the multi-thread Time Warp platform plays a relevant role in the run-time
determination of the priority variation (if any) of the currently processed event.

As hinted we focus on shared-memory communication, and we consider a sce-
nario conforming to the indications in [Vitali et al. 2012], where the exchange of
messages/anti-messages across different worker threads does not take place by directly
incorporating the corresponding information into the destination object event queue.
Rather, messages are exchanged according to a top/bottom-half approach oriented to
scalability. In particular, each worker thread manages a set of bottom-half queues (one
for each simulation object belonging to the set S it is currently handling) such that any
other worker thread in the system can notify the presence of new data to be ultimately
incorporated into the destination object’s event queue via the corresponding bottom-
half queue. This is done via the execution of a top-half data record (tail) insertion into
the bottom-half queue. Checking whether some new data is present into a bottom-half
queue, and actual processing of the data with (timestamp-ordered) incorporation into
the destination event queue, is carried out exclusively by the worker thread in charge
of (currently) handling the destination object.

In our time-sharing organization of the multi-thread Time Warp system, the above
scheme has been extended along the following lines, in order to support early detec-
tion of priority variations. First, each worker thread t has been associated with a
BH mint record, which represents at any time instant the minimum timestamp of
a message/anti-message that has been recorded in any of the bottom-half queues as-
sociated with the simulation objects that t is currently managing, since the last flush
operation of these queues. In other words, BH mint represents the minimum value

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:8 A. Pellegrini and F. Quaglia

among the timestamps of data in transit (if any), destined to some simulation object
belonging to the set S handled by t.

This record is initialized to a special macro INFINITE when the worker thread t ac-
cesses its bound bottom-half queues and flushes the data into the corresponding event
queues. Whenever a different worker thread inserts a bottom-half record into any of
the bottom-half queues associated with the simulation objects managed by t, the re-
duction BH mint = Min(BH mint, T) is performed, where T represents the times-
tamp of the message/anti-message that is being placed into the destination bottom-half
queue. In our implementation, this reduction is performed via an atomic Compare-
And-Swap (CAS) instruction. This allows manipulating BH mint while not requiring
worker threads that concurrently access two distinct bottom-half queues associated
with t to execute a conflicting critical section4.

Another record, called current timet, is associated with each worker thread t. It is
used to keep track of the timestamp of the current simulation event, if any, that has
been CPU-dispatched along t—this is the lowest-timestamp event according to LTF.
The value of current timet is set to the special value -1 if thread t is not currently
processing any event, which means that it is running housekeeping operations in plat-
form context. The values of current timet and BH mint are used in combination to de-
termine whether some higher priority task (compared to the one currently processed
along thread t) needs to be CPU-dispatched. In particular, the platform level function
that executes the check and determines whether some higher priority task needs to
be executed along thread t, which needs therefore context switch between simulation
object and platform contexts (thus enabling CPU reassignment via platform level ac-
tions), is structured as follows :

void check-and-switch()
1. if (current timet ≤ BH mint)
2. return;
3. else
4. enter platform mode;
5. switch to platform context();

The above structure allows changing the current execution flow along thread t, by
pushing it to platform-context (and also to platform mode, if not already operating with
this mode), in case:

1) The simulation object currently dispatched for event execution along t needs to roll-
back, since it is the recipient of a message or an anti-message in its past—BH mint

corresponds to the timestamp of a message/anti-message destined to the currently
running simulation object. In this case the rollback operation will take place accord-
ing to a preemptive mode.

2) Any simulation object belonging to the set S managed by t dynamically gains a
priority higher than that of the currently running one, since it becomes the recip-
ient of some message or anti-message with a timestamp lower than that of the last
event that has been CPU-dispatched according to LTF. The case of an incoming anti-
message is again representative of a causal inconsistent execution at the destination
simulation object, given the adopted LTF rule for CPU-dispatching the events.

In either case, control must return to the Time Warp platform layer, so that the
higher priority task (either a rollback operation or not) can be promptly executed. On

4In fact, each of them needs to temporarily lock a different bottom-half queue for data insertion, which helps
not hampering concurrency [Vitali et al. 2012].

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Time-Sharing Time Warp System 0:9

the other hand, if no higher priority task needs to be executed, the check-and-switch
function simply returns control back to its caller. Clearly, if the simulation object that
is context-switched off the CPU still runs long a consistent path, the preempted event
will be resumed (with no loss of already performed work) when LTF will again find it
as the highest priority one.

The last aspect to discuss is related to how the check-and-switch function is in-
tegrated with the other parts of the fine-grain time-sharing Time Warp support. In
particular, how it is integrated with the try leave platform mode macro and with the
extra-tick-manager, which is used to handle the interrupts delivered by the timer.
The integration with try leave platform mode takes place as follows:

try leave platform mode
1. check-and-switch();
2. leave platform mode; //reset of the flag indicating platform mode running

//regular return from an intercepted function
3. return;

By the above pseudo-code, the check-and-switch function (possibly leading to
context-switching off the CPU the currently running simulation object) is invoked upon
the finalization of any application external function that has been intercepted by the
corresponding wrapper, and is then executed in platform mode (for reversibility pur-
poses). If the invocation to check-and-switch in line 1 leads to no switch to platform
context, then the flag indicating whether we are running in application or platform
mode is correctly aligned with the return to application mode.

As for the integration between check-and-switch and the timer-interrupt handling
function extra-tick-manager, we have the following structure:

void extra-tick-manager()
1. if(platform mode)
2. return; //already platform mode running - no control flow variation
3. else
4. check-and-switch(); // do we need an execution flow variation?

If the timer-interrupt handler is activated while already running in platform mode,
then no control flow variation needs to take place. In fact, if platform mode is cur-
rently associated with simulation object context, it means that the check on whether
some higher priority task needs to be CPU-dispatched will be carried out right before
returning to application mode via the try leave platform mode macro. If the current
mode is not the platform one, then the handler triggers check-and-switch to ver-
ify whether higher priority tasks need to be carried out. This may lead to context-
switching the currently processed event (hence the running simulation object) off the
CPU.

The check in line 1 and the avoidance of the variation of the current execution flow
if the worker thread is already in platform mode guarantee that whichever platform
level block of code is executed along any worker thread as a non-preemptable action,
which is a fundamental prerequisite. In fact, locks on data structures or memory re-
gions might be acquired by some worker thread once the application has trapped into
platform mode along that thread, which might be necessary in order to correctly man-
age the triggered service (see, e.g., [Pellegrini and Quaglia 2015]). Hence, the in place
critical section cannot be context-switched off the CPU5.

5A way to cope with the interruption of platform level code blocks would be to design the platform level
software according to the concept of “safe places”, which characterizes preemptable, e.g. real-time, operating
system kernels. However, this type of design is aside of the core focus of our time-sharing proposal.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:10 A. Pellegrini and F. Quaglia

wall-clock-time

Start of event

processing

Execution of pure

application code

printf()

Platform code execution
(reversible printf())

Execution of pure

application code

T1

extra-tick-manager immediately returns to the

already running platform level code block

Fig. 4. Management of extra-ticks in the interleave between application and platform code blocks within
an event processing wall-clock-time window.

A schematization of the behavior of our fine-grain time-sharing Time Warp system in
relation to the delivery of timer-interrupts while already running in platform mode is
provided in Figure 4, where we show the arrival of an extra-tick at wall-clock-time T1,
with consequent activation of the extra-tick-manager. In this scenario, the interrupt
handler simply returns given that at the same time instant the thread was already
running a platform-level reversible version of the printf function, via interception.
However, the check on whether higher priority tasks would need to be dispatched by
preempting the current event is anyhow carried out in our architecture as soon as the
interrupted platform level function will attempt to return to application mode, which
is done via the try leave platfrom mode macro.

2.3. Overall Configuration of the Time-sharing Support
By the architectural organization of the event preemption support described in Sec-
tion 2.2, in our Time Warp system the platform level software has two different trig-
gers for context-switching a simulation object off the CPU: (a) timer-interrupts and
(b) returns from platform mode. However, while return from platform mode events
are intrinsically related to the activities (say the execution profile) of the application
level software (since they are triggered depending on the interaction between appli-
cation level modules and the intercepted external libraries), timer-interrupts (and the
cost/benefits they induce) depend on the configuration of the extra-tick interval. The
shorter the length of the extra-tick period, which we denote as ∆ET , the higher the
expected overhead caused by timer-interrupts. However, shorter ∆ET values can pro-
vide more opportunities for event preemption and prompt CPU reassignment to higher
priority events/tasks, thus likely improving the effectiveness of the fine-grain time-
sharing approach in reducing the amount of rollback.

To cope with the selection of ∆ET and to optimize the synergy between the above two
triggers for event preemptions, we devise the following scheme. We denote with ∆̂ET
the minimum length of the extra-tick interval, which still induces negligible overhead
due to extra-tick delivery to the Time Warp platform. As we shall discuss in Section
3, the value of ∆̂ET can be determined by running an ad-hoc benchmark in the early
phase of the installation of our fine-grain time-sharing Time Warp system. Once deter-
mined ∆̂ET , synergistic exploitation of the two different triggers for event preemption
is based on run-time estimation of (i) the average event granularity for the specific
application, which we refer to as ∆e, and (ii) the average number of switches to (and
then back from) platform mode while processing an individual event. We recall that
these switches (if any) take place while running in simulation object context (see the
state diagram in Figure 3). We denote such an average number of switches as APMS

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Time-Sharing Time Warp System 0:11

(Application/Platform Mode Switches), hence the expression

T =
∆e

APMS
(1)

represents the average wall-clock-time interval after which the application software
spontaneously provides control back to the platform software while an event process-
ing phase is in place. The actual computation of ∆e and APMS has been based on
the exponential mean of samples. The samples for computing ∆e are taken by mon-
itoring, via gettimeofday, the CPU time spent for processing individual events. The
samples for computing APMS are taken by counting the number of times the macro
leave platform mode is executed while processing any individual event6. Given that,

according to the rules specified in Section 2.2, this already provides opportunities for
CPU reassignment, the combination of the two different triggers for event preemption
is based, in our design, on the relation between T and ∆̂ET . Specifically, we dynam-
ically switch on/off the extra-tick delivery along a thread depending on whether the
following inequality is verified (or not)

T

∆̂ET
≥ (1 + α) (2)

where α is a tunable parameter whose value falls in the interval [−1,∞]. If α is set
to the minimum value -1, then the Time Warp worker thread registers itself on the
dev extra tick device file, thus being interrupted by the timer each ∆̂ET time units,
independently of the simulation objects’ run-time behavior (in terms of switches be-
tween application and platform modes). However, this settings might lead to bring con-
trol back to the platform level software excessively frequently (with respect to the ben-
efits we would expect from CPU reassignment), especially for low values of T . Greater
values of α would reduce the impact of this phenomenon. In fact, for α → ∞, Equation
2 would not be satisfied (except for ∆̂ET tending to zero, which is not realistic), leading
the Time Warp worker thread to deregister itself from the dev extra tick device file,
thus fully renouncing to be periodically interrupted for possible CPU reassignment.

A baseline settings for α could be represented by the value zero, leading the Time
Warp thread to register itself as one to be extra-ticked with period ∆̂ET if the fre-
quency according to which the execution of an event (taking place in simulation object
context) switches to/from platform mode does not overstep the one of the extra-tick de-
livery. However, this setting would lead to reduced opportunities for event preemption
if the switches to/from platform mode were not uniformly distributed along the lifetime
of a simulation event. More conservative values of α, say in the interval [−0.5,−0.1],
would likely avoid this phenomenon. With this settings, even if T is less than ∆̂ET ,
meaning that the execution in simulation object context spontaneously and frequently
switches to platform mode, thus providing opportunity for event preemption, we still
retain the possibility to achieve the same objective via the timer-interrupt scheme,
which is done in order to avoid having a portion of the event processing interval un-
covered by switches to platform mode.

As a last note, the quantity T in Equation 1 can be estimated at run-time on a per
worker thread basis, so that each worker thread can operate its decision on whether
to dynamically register or deregister itself as one to be extra-ticked (on the basis of
the evaluation of Equation 2) independently of the other ones. This would allow coping
with scenarios with simulation objects exhibiting different (heterogeneous) execution

6In our implementation the counter is directly updated by the macro upon its execution.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:12 A. Pellegrini and F. Quaglia

profiles, possibly giving rise to different ∆e and/or APMS values across the simulation
objects’ sets managed by the different threads.

3. EXPERIMENTAL RESULTS
3.1. Determining ∆̂ET

As hinted, to determine the value of ∆̂ET , an ad-hoc benchmark can be run during
the early phase of installation of our fine-gain time-sharing Time Warp system on
the target computing platform. Since PDES engines based on Time Warp are CPU-
bound applications (given the absence of wait/block phases, at least in the presence of
tasks/events to be actually carried on), our ad-hoc benchmark is simply made up by a
multi-thread application where each thread executes a busy loop of a given duration.
We initially run this benchmark in a baseline configuration with no registration of
the threads on dev extra tick, hence with no extra-tick delivery. Then we run the
benchmark again by registering the threads on dev extra tick, thus leading them to
be periodically interrupted by the extra-tick logic. We run these experiments on a 32-
core 64-bit HP ProLiant NUMA server, equipped with four 2GHz AMD Opteron 6128
processors (each one equipped with 8 CPU-cores) and 64 GB of RAM. The operating
system is Linux SUSE, kernel version 3.16.7. This is the computing platform we used
for all the experiments whose outcomes are reported in this section.

In the original configuration of the Linux kernel, the timer was set to issue an in-
terrupt (a tick) each 1 millisecond. When running our benchmark we experimented
with different values of the extra-tick interval achieved by scaling the original tick by
a factor between 2 and 20, leading to experiment with extra-tick periods in the inter-
val between 500 and 50 microseconds, hence being able to observe how the overhead
caused by extra-tick delivery scales vs the length of the extra-tick period. In our bench-
mark, the extra-tick handler only increments a counter of delivered extra-ticks, and
then returns control to the execution flow interrupted by the extra-tick arrival. This
is aligned with the objectives of this benchmarking phase given that we only aim at
evaluating the cost for delivering extra-ticks, independently of the usefulness of such
a delivery (hence independently of any real action to be taken upon extra-tick arrival).
We also varied the number of running threads between 1 and 32, thus studying how
the overhead varies as a function of the number of threads managed according to the
extra-tick logic supported by our Linux module.

We show in Figure 5 the inverse ratio between the execution time of the baseline
configuration (no extra-tick), which we roughly report to be on the order of 30 seconds,
and the execution time achieved with extra-ticks delivered to the application according
to the selected scaling factor. Each sample has been computed as the average over 5
different runs of a same configuration; nonetheless, very minimal variation has been
observed among the different sampled values. By the plot we see that the overhead
induced by the extra-tick operating mode is less than 4% even when the scaling factor
of the original tick interval (which we recall is of 1 millisecond) is set to the value 20,
meaning that the extra-tick is delivered with granularity of 50 microseconds. Another
interesting trend is that the overhead appears to be slightly higher when running the
benchmark with larger number of threads. This is due to the slightly increased in-
terference by common kernel level threads automatically started up by the operating
systems (e.g. kworker threads), which is naturally induced when the benchmark tends
to run on an increased number of CPU-cores. In fact, kernel level threads, although
not being CPU-bound, lead anyhow to periodic operating system context switches,
which in turn force our extra-tick management logic to more frequently interact with
the timer, in terms of setting the requested interrupt period (depending on whether a
dev extra tick registered thread, or not, is CPU-dispatched by the kernel).

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Time-Sharing Time Warp System 0:13

1.010

1.015

1.020

1.025

1.030

1.035

1.040

 2 4 6 8 10 12 14 16 18 20In
ve

rs
e

ra
tio

 b
et

w
ee

n
ba

se
lin

e
 e

xe
cu

tio
n

tim
e

 a
nd

 e
xt

ra
-t

ic
k

ex
ec

ut
io

n
tim

e
original tick scaling factor

1 Thread
2 Threads

4 Threads
8 Threads

16 Threads
32 Threads

Fig. 5. Extra-tick overhead vs variations of both the extra-tick period and the number of threads.

Scaling factors of the original tick lower than the maximum value 20 lead the over-
head by extra-tick delivery to be further reduced, at the expense of reduced opportu-
nities for timer-interrupt based preemptions in the time-sharing Time Warp systems
(in case of adoption of such lower scaling factors). Also, extra-tick interval length of
50 microseconds, beyond still providing minimal overhead, looks a suited value (in
terms of opportunities for preempting an event currently being processed) when con-
sidering complex PDES workloads characterized by event granularity well above the
order of a few (or a few tens of) microseconds. These workloads can be considered as
typical targets for Time Warp synchronization, and more generally for classical PDES
methodologies. We intrinsically target this category of workloads with our fine-grain
time-sharing Time Warp proposal, at least for time-interrupt triggered preemptions.
On the other hand, discrete event models with (very) fine grain events spontaneously
bring control back to platform mode (after the CPU-dispatch of some event) in a prompt
manner. Hence they naturally allow the platform to promptly react to priority vari-
ations even when events are processed in non-preemptable manner. Still, for these
workloads, our time-sharing Time Warp system offers the possibility to preempt a
CPU-dispatched simulation object by relying on switches back from platform mode.

Finally, the overhead determined via this benchmark can be considered a worst case
reference value since the busy loop run by the threads is not interfered by factors such
as memory access latency (and its variation as a function of locality of the accesses),
which would tend to reduce the relative per-instruction cost of extra-tick delivery.

3.2. Performance Results with the PHOLD Benchmark
In this section we provide performance data that have been collected by relying on
the well known PHOLD benchmark [Fujimoto 1990b]. The relevance of using PHOLD
lies in that it entails events that are loosely coupled with the underling Time Warp
platform. In fact, they are simple CPU busy loops, which lead to no invocation of
application-external libraries possibly intercepted (for reversibility purposes) by the
underlying platform. Therefore, event preemptions will never take place via switches
back from platform mode. This kind of workload allows assessing the benefits from our
fine-grain time-sharing Time Warp system in scenarios where preemptions can only be
triggered by fine-grain timer-interrupts.

In order to improve the representativeness of this study, the PHOLD benchmark
configuration we selected entails three different execution phases having the same
virtual time duration, which we refer to as A, B and C. PHASE-A is lightweight, be-
ing it characterized by event duration of the order of 30 microseconds. PHASE-B is

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:14 A. Pellegrini and F. Quaglia

10

15

20

25

30

35

40

45

50

55

60

PHASE-A PHASE-B PHASE-C

w
al

l-c
lo

ck
-t

im
e

phases of the PHOLD benchmark

traditional Time Warp time-sharing Time Warp

Fig. 6. Results with the PHOLD benchmark.

middleweight, being it characterized by event granularity of the order of 150 microsec-
onds. Finally, PHASE-C is heavyweight, since the events have granularity of the or-
der of 300 microseconds. We configured the benchmark with 2025 simulation objects
connected as a bi-dimensional mesh, which have been equally distributed among 32
worker threads operating in the Time Warp system. Five events (say jobs) per simu-
lation object have been inserted in the system. The jobs are routed randomly among
neighbors by scheduling new events with exponential timestamp increment. This con-
figuration of PHOLD (coupled with the selected level of parallelism in the underlying
platform, say 32 threads) gave rise to a speculative execution pattern characterized
by infrequent rollbacks undoing large numbers of events. The overall efficiency (say
the ratio between the number of committed events, and the total number of processed
events, say committed plus rolled back) that has been observed for the case of execu-
tion with a traditional configuration of the Time Warp system was on the order of 50%,
with minor variations in the different execution phases.

In Figure 6 we show the execution time of the different phases of the PHOLD
benchmark for the case of both traditional Time Warp and the time-sharing version7.
Both these configurations rely on the same core PDES engine, namely ROOT-Sim,
within which the time-sharing support has been integrated. The runs have been car-
ried out by setting the extra-tick period to 50 microseconds. Also, the parameter α
in Equation 2 has been set to the baseline value zero. This led time-sharing execu-
tions to have worker threads (dynamically) registered on the dev extra tick device
file along PHASE-B and PHASE-C, but not along the lightweight PHASE-A. Hence,
the time-sharing version behaves like a traditional one during this phase given that,
as hinted, PHOLD events do not undergo switches to/from platform mode except for
timer-interrupts. On the other hand, the two different platform configurations, time-
sharing and traditional, were run with either the dev extra tick device file active or
not, respectively. Therefore, the execution time of PHASE-A can help assessing the
overhead by the device file logic, in relation to checking whether a thread that has
been CPU-dispatched by the operating system kernel is a registered one or not, plus
the overhead for managing simulation object contexts.

By the data we see that the time-sharing Time Warp version introduces about 4%
overhead during PHASE-A, along which it provides no advantage due to absence of
preemptions (since extra-ticks are not delivered during PHASE-A). However, when
switching to PHASE-B and then to PHASE-C, the time-sharing version allows for in-

7All the reported samples have been computed as the average over 10 runs.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Time-Sharing Time Warp System 0:15

Table I. Ratio between the efficiency of traditional ex-
ecution and the efficiency of time-sharing execution.

execution phase efficiency of traditional Time Warp

efficiency of time−sharing Time Warp

PHASE-A 1.003
PHASE-B 0.935
PHASE-C 0.917

creasing reduction of the execution time. In particular, the time-sharing Time Warp
system is between 9% and 11% faster than the traditional one. This happens thanks
to the delivery of extra-ticks during both PHASE-B and PHASE-C, possibly triggering
CPU reassignment to higher priority events/tasks, which leads the time-sharing ver-
sion to reduce the amount of wasted computation. In particular, we show in Table I
the ratio between the efficiency of the traditional execution, and the efficiency of the
time-sharing execution in the different phases. By the data, time-sharing Time Warp
provides about 7% better efficiency along PHASE-B and about 8% better efficiency
along PHASE-C. This result, in combination with the particular rollback pattern with
unfrequent but long rollbacks, allows for boosting the final performance gain. Such a
gain is not only originated by the reduction of the amount of events that are eventually
undone, but also by the reduction of rollback management costs, such as the cost for
managing anti-messages, which may not scale linearly, e.g., for locality reasons8.

3.3. Performance Results with a Data Store Model
As an alternative workload to PHOLD, in this section we consider a real world discrete
event model of an in-memory key/value data store system. This type of models have
recently become attractive (e.g. for capacity planning purposes) since real platforms
based on this data storing paradigm have become a first class technology in modern
(e.g. cloud based) infrastructures.

We simulated a distributed data store with 64 nodes, each one modeled by a sepa-
rate simulation object, where data are partitioned and the partitions are distributed
across the nodes. Batches of transactional data access requests are delivered to each
node by proper simulation events (that are self-generated by the same simulation ob-
ject modeling the node), which are scheduled following an exponential distribution of
their timestamps. The transactions may entail accessing the local partition or remote
partitions, and the access to remote data partitions leads to cross-simulation-object
exchange of simulation events, carrying as payload the set of transactional requests
that require access to the remote partition. The batching factor determines the actual
workload to be simulated, hence the resource requirements for executing the simula-
tion. We have considered two different configurations of this model, a lightweight con-
figuration characterized by batching factor set to 10, and a heavy one characterized by
batching factor set to 20. The transactional requests within each batch are processed
(in the simulation) by having them managed via a round-robin scheme, resembling
the assignment of real CPU resources in a multi-thread data management system. For
the lightweight configuration, the average CPU requirement for simulating the event
delivering the batch of transactions is of the order of 300 microseconds. Instead, the
heavy configuration has CPU requirement of the order of slightly less than 500 mi-
croseconds. One primary objective of this type of simulation is the determination of

8In the configuration of PHOLD we have used, each undone event by a rollback operation requires sending
a corresponding anti-message, which leads to costs for both send and receive tasks, including the cost for
scanning output/input queues of the simulation objects, operations that lead to reduced locality especially
for longer rollbacks. On the other hand, being the PHOLD benchmark an application with almost no state,
the checkpoint/restore cost for the data structure representing the state of the simulation objects does not
influence performance significantly vs variations of the amount of rollback.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:16 A. Pellegrini and F. Quaglia

the data store performance (e.g. its throughput) while varying the size of data parti-
tions, the transaction access pattern (which may give rise to aborts depending on the
materialization of data conflicts), and the locality of the accesses to the partitions.

In this study we still set the extra-tick interval to the value 50 microseconds, while
selecting a more conservative value for the parameter α, which has been set to -0.5.
This choice is motivated by the fact that this simulation model makes use of dynamic
memory allocation/deallocation services for keeping the meta-data representing the
transactional requests. Therefore it generates a non-negligible amount of interactions
with the underlying Time Warp platform since the dynamic memory services are in-
tercepted to make them reversible (as hinted, via the DyMeLoR library [Toccaceli and
Quaglia 2008]). Since this already gives rise to switches to/from platform mode while
processing the events, which provide opportunities for event preemptions, setting α to
a conservative value allows us to still exploit opportunities for preemptions thanks to
timer-interrupts. In fact, with such a conservative value, according to Equation 2, the
worker threads operating in the time-sharing configuration of the Time Warp system
register themselves on the dev extra tick device file.

Beyond being focused on a real world simulation model, this study complements the
one with PHOLD for a few additional aspects. First, for the data store model we varied
the degree of execution parallelism by varying the number of worker threads between
4 and 32. This has been done in order to compare traditional and time-sharing execu-
tions of the Time Warp system with different concurrency degrees, which in turn give
rise to different amounts of rollback. Second, the type of interactions among the simu-
lation objects in the data store model gives rise to a rollback pattern that is opposite to
the one observed with PHOLD. In fact it is made up by frequent rollback occurrences,
each one undoing a reduced number of events.

We report in Figure 7 (left side) the variation of the efficiency of the simulation
run9 while varying the number of worker threads for both traditional and time-
sharing Time Warp systems. When running with low parallelism degree (say 4 worker
threads), both the systems show relatively high efficiency, which is slightly less than
70%. The traditional version gives rise to a bit reduced efficiency limited to the case
of the heavy model configuration. However while scaling up the degree of parallelism,
the efficiency provided by the traditional Time Warp system rapidly degrades, falling
just below 50% when running with 32 worker threads for both heavy and lightweight
model configurations. Instead, the time-sharing version allows keeping the efficiency
value significantly higher, leading to the order of 57% efficiency for the case of 32
worker threads, for both model configurations. Overall, the efficiency provided by the
time-sharing Time Warp system stands up to 14% better than the one provided by
the traditional Time Warp system. This advantage is reflected into a reduction of the
simulation model execution time, as shown in Figure 7 (right side), which improves
when increasing the degree of parallelism. Particularly, when relying on 32 worker
threads the performance gain by the time-sharing Time Warp system is of the order
of 15% for the heavy model configuration, and of the order of 11% for the lightweight
model configuration. As compared to PHOLD, this time the advantage provided by the
time-sharing configuration on the side of efficiency does not further boost in terms of
final performance, which is due to the different rollback pattern. With more frequent
rollback occurrences, the time-sharing Time Warp system has improved chances for
early detection of (potential) causality violations. However, the gain by reducing the
overall amount of rollback is essentially due to the avoidance of processing events that
would be eventually undone, rather than to significant reductions of the cost for man-
aging rollback phases (given that the rollback length is very short). Still, the gain by

9Also for this study we report average values over 10 different samples.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Time-Sharing Time Warp System 0:17

Table II. Ratio between the execution times of the two tested configu-
rations of the heavy data store model with time-sharing Time Warp

number of used threads execution time of the original configuration

execution time of the varied configuration

4 0.989
8 0.985

16 0.979
32 0.976

the time-sharing version, at the point of maximum parallelism, is significant. Also, the
maximum speedup by the time-sharing Time Warp system compared to a sequential
execution of the same data store models has been observed to be of the order of 20.

In Figure 8 we analyze the run-time dynamics of the time-sharing Time Warp sys-
tem from a finer grain perspective. In particular, we report the number of event pre-
emptions per wall-clock-time unit triggered either by timer-interrupts or by switches
back from platform mode, and the sum of the two (marked as “total” in the plots). On
the left side we show these data for the case of the original version of the data store
model (heavy configuration), while on the right side we show the values achieved by
running a modified version that is functionally equivalent, but where the instantia-
tion of the meta-data for simulating the transactional requests does not take place
following the round-robin scheme according to which the advancement of transactions
execution is simulated. Rather, we instantiate these meta-data right upon starting the
simulation phase of the whole transaction batch. This variant only anticipates the in-
stantiation operation at the begin of the event that delivers the batch of transactions
to be simulated. Hence, differently from the original version, the interaction with the
underlying platform, which intercepts the dynamic memory management requests for
instantiating the meta-data, are much more clustered along the execution phase of
simulation events. By the data in Figure 8 we can see that the amount of preemp-
tions triggered by timer-interrupts definitely increases in the second configuration,
which also shows a reduction of the incidence of preemptions originated by switches
back from platform mode. However, the important message that is convoyed by these
data is that the total amount of preemptions per wall-clock-time unit is very similar
in the two scenarios, independently of the number of used worker threads. This is a
support to the robustness according to which timer-interrupts and switches to/from
platform mode can be combined in complex workloads especially when relying on con-
servative values of the parameter α. In fact, by these results we see that the fine-grain
time-sharing Time Warp system does not degrade its ability to early detect priority
variations independently of the actual pattern of interaction between application and
platform level software. Also, the version of the data store model with clustered al-
location of meta-data for simulating the transactional requests has shown execution
times very close to the ones observed for the case of the original version with either
traditional or time-sharing configurations of the Time Warp system, which is somehow
expected given that no relevant change in the actual run-time dynamics were induced.
Relative performance values of the two versions of the data store model for the case
of time-sharing executions are shown in Table II. Overall, the ability of our fine-grain
time-sharing Time Warp system to robustly provide opportunities for event preemp-
tions (as shown in Figure 8) is reflected into performance improvements independently
of the interaction pattern between application and platform software.

3.4. Performance Results with a Personal Communication System Model
As a thirds alternative workload, in this section we consider a personal communication
system model, say a real-world application that has already been used in a number
of studies for assessing optimizations in PDES platforms (see, e.g., [Cingolani et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:18 A. Pellegrini and F. Quaglia

45

50

55

60

65

70

 4 8 16 32

ef
fic

ie
nc

y
(%

)

number of threads

time-sharing Time Warp (heavy model)
traditional Time Warp (heavy model)
time-sharing Time Warp (lightweight model)
traditional Time Warp (lightweight model)

50

100

200

300
400

 4 8 16 32

w
al

l-c
lo

ck
-t

im
e

(lo
g

sc
al

e)

number of threads

time-sharing Time Warp (heavy model)
traditional Time Warp (heavy model)
time-sharing Time Warp (lightweight model)
traditional Time Warp (lightweight model)

Fig. 7. Results with the data store model.

0

2000

4000

6000

8000

10000

12000

4 8 16 32

ev
en

t p
re

em
pt

io
ns

 p
er

 w
al

l-c
lo

ck
-t

im
e

un
it

number of threads

timer-interrupts
back from platform

total

0

2000

4000

6000

8000

10000

12000

4 8 16 32

ev
en

t p
re

em
pt

io
ns

 p
er

 w
al

l-c
lo

ck
-t

im
e

un
it

number of threads

timer-interrupts
back from platform

total

Fig. 8. Frequency of event preemptions for the heavy data store model - Original (left) and varied (right)
memory allocation patterns.

2015]). In this application, each simulation object models a wireless cell—we selected
a total number of 1024 cells organized into a hexagonal grid—each one managing 1000
wireless channels, which provide coverage to mobile devices in a squared region. The
model represents the cells in high fidelity, addressing both interference across different
channels within a same cell, and power management upon call setup/handoff. Partic-
ularly, the application handles power management simulation according to the results
in [Kandukuri and Boyd 2002]. This application is also highly parameterizable by al-
lowing the recalculation of fading coefficients and actual Signal-to-Interference Ratio
(SIR) both on the occurrence of specific events (e.g. the startup of a call) and period-
ically (so as to account for, e.g., changes of weather conditions in the coverage area).
Also, the inter-arrival of calls to mobile devices residing in the coverage area can be
configured, thus leading to different values for the wireless channels’ utilization factor.
This, in its turn, affects both memory and CPU demand by the simulation given that
higher utilization factors lead to the need for keeping more records (stored on dynami-
cally allocated buffers) for simulating the concurrently active calls in any cell, and also
to more costly operations for scanning and (possibly) updating these records. As a final
preliminary note, the interaction across the different simulation objects takes place
upon the occurrence of a handoff of a mobile device involved in an ongoing communi-
cation, in which case the wireless channel at the source cell is released, and a new one
is attempted to be reserved at the destination cell.

In our experimentation we set the average residual residence time in the current
cell for a mobile device involved in an on-going call to the 5 minutes, while the average
call duration was set to 2 minutes. Both these parameters have been set to follow

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Time-Sharing Time Warp System 0:19

 0

 50

 100

 150

 200

25% 50% 75%

w
al

l-c
lo

ck
-t

im
e

channel utilization factor

baseline
management of contexts

management of contexts plus extra-tick delivery

Fig. 9. Execution time with no cross-simulation-object events scheduling.

exponential distributions. Also, we have run this model with three different settings
for the channel utilization factor, namely 25%, 50% and 75%, determined by different
call inter-arrival rates, with balanced workload on all the simulation objects, and with
periodic recalculations of the fading coefficients of active channels. This settings gives
rise to variations of the average CPU requirement for simulation events from about
70/80 microseconds to about 150 microseconds.

For this study we still set the extra-tick interval to 50 microseconds, and α to the
value -1, say to its lower bound. With this setting the worker threads operating within
the time-sharing Time Warp system keep on being registered on the dev extra tick
device file for the whole lifetime of the simulation in all the tested configurations (say
for any value of the channel utilization factor). This leads to maximal exploitation of
timer-interrupts for event preemptions. This choice is motivated by the fact that, un-
like the data store model, the processing of an event in the personal communication
system model leads to reduced interactions with platform level reversible implemen-
tations of memory allocation/deallocation services (since the number of buffer alloca-
tions/deallocations per event is much lower than the one characterizing the data store
model). Hence, returns from platform mode can play a reduced role in triggering pre-
emptions. On the other hand, compared to the data store model, the event processing
routine shows a very different profile, much more based on floating point operations.

For this test-bed application we initially run a modified version, with the aim to as-
sess the overhead imposed by the core facilities offered by the fine-grain time-sharing
Time-Warp system, which enable systematic exploitation of event preemptions. These
facilities are (i) the support for managing contexts, and (ii) the delivery of extra-ticks to
the PDES platform. This overhead study is someway complementary to the one associ-
ated with PHASE-A of the execution of the PHOLD benchmark, since in that phase we
only assessed the cost for managing contexts. In fact during that phase of the execu-
tion of PHOLD, the worker threads did not register themselves on the dev extra tick
device file, hence no extra-ticks were delivered.

In order to assess the overhead by the aforementioned two facilities we run the
personal communication system model by always enforcing a call to complete with
the same wireless cell where it was originated. In this way, no interaction at all by
the different simulation objects is ever generated, and events are processes by the
worker threads always according to non-decreasing values of their timestamps. In
such a scenario, the delivery of extra-ticks provides no revenue (since the event be-
ing processes will always represent the one with the highest priority bound to a given
worker thread), just like the management of separate simulation object contexts (since
no simulation object will be ever context-switched off the CPU while processing an

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:20 A. Pellegrini and F. Quaglia

 0

 50

 100

 150

 200

 250

25% 50% 75%

w
al

l-c
lo

ck
-t

im
e

channel utilization factor

traditional Time Warp
time-sharing Time Warp

Fig. 10. Results with the personal communication system model.

event). Also, the absence of rollback in such scenarios allows us to assess the overhead
by the two facilities with no interference by rollback management operations (which
might lead to, e.g., changes in the locality of the execution due to the access to both
checkpoints of the simulation object states and already processed event buffers). In
Figure 9 we report the execution time values10—achieved with 32 worker threads—
when excluding both the management of contexts and the delivery of extra-ticks, or
when including these facilities. The former settings represents the common one for
Time Warp systems not embedding the support for fine-grain time-sharing execution
of the simulation objects. The reported data show how the overhead by the core facili-
ties enabling fine-grain time-sharing is very limited, except for 25% channel utilization
factor, case in which it reaches 7%. In fact, as soon as the event granularity (say the
channel utilization factor) increases, we observe a decrease of the overhead, especially
in relation to the management of contexts. This is somehow expected given that longer
running events lead to reduced frequency of context switch operations across different
simulation objects over time in scenarios with no actual preemptions.

In Figure 10 we show execution time results when reintroducing handoff events
across cells, say cross-simulation-object scheduling of events. With this settings, the
performance gain provided by the fine-grain time-sharing Time Warp system, com-
pared to the traditional Time Warp execution, increases when increasing the channel
utilization factor. The gain is of the order of 7% for the case of utilization factor set
to 50%, and of the order of 13% when the utilization factor is further increased up
to 75%. For channel utilization factor set to 25% we observe no relevant gain from
time-sharing, just because of the reduced potentiality of extra-ticks exploitation (given
the reduced wall-clock-time required for processing events in this configurations). This
tren is confirmed by data we report in Figure 11, showing the variation of the amount
of event preemptions per execution time unit achieved while running in time-sharing
mode for the different configurations of the channel utilization factor.

For completeness, we also report in Table III the corresponding execution times for
the case of a serial execution of the same identical application code on top of a sequen-
tial scheduler based on the Calendar-Queue data structure [Brown 1988], which allows
determining the speedup of the parallel runs—hence whether the reported data refer
to competitive parallel performance.

10Still based on the average over 10 runs.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Time-Sharing Time Warp System 0:21

 0

 50

 100

 150

 200

 250

 300

 350

25% 50% 75%
nu

m
be

r
of

 p
re

em
pt

io
ns

 p
er

 w
al

l-c
lo

ck
 ti

m
e

un
it

channel utilization factor

Fig. 11. Number of preemptions per wall-clock-time unit.

Table III. Performance of the serial simulator

Channel
Utilization Factor

25% 50% 75%
execution time (sec) 3500 5145 7610

4. RELATED WORK
Approaches Focusing on Performance vs Timer-interrupt Trade-offs. In the wide area

of High-Performance-Computing (HPC), some literature studies exist on the relation
between performance and timer-interrupt frequency. The common idea underlying
most of the performance optimization proposals is that the lower the timer-interrupt
frequency, the better the final delivered performance [De et al. 2007; Ferreira et al.
2008; Seelam et al. 2010]. The extremization of this approach led to defining tick-less
operating systems (namely, with extremely reduced frequency of timer-interrupt) as
the best configuration for hosting HPC applications. However, these studies have been
tailored to the case of non-speculative processing, where the work carried out by any
thread running on whichever CPU-core is ever useful, and there is no need to change
the software execution flow (e.g. periodically) in order to optimize synchronization dy-
namics in terms of reduction of wasted computation, which is instead the case of spec-
ulative Time Warp systems. Also, the above studies have been tailored to evaluate the
effects of the variation of the timer-interrupt frequency in contexts where the manage-
ment of the timer-interrupt is still based on the native rules applied by the operating
system kernel. In other words, the above proposals have been aimed at simply config-
uring the timer-interrupt behavior (limited to its frequency) in HPC contexts, not at
introducing ad-hoc software modules for exploiting timer events, which is instead the
approach we followed. In fact, our proposal puts in place a special (and lightweight)
mechanism for handling timer-interrupts. Overall, our approach is completely differ-
ent from the one dealt with by those literature studies, in terms of both reference
scenario (speculative vs non-speculative processing) and architectural impact on the
system organization.

In the context of speculative PDES systems, the only work we are aware of which
deals with the relation between performance and timer-interrupt configuration is the
one by Carothers [2002]. Here the author proposes an approach which is opposite to
ours, where the Time Warp threads are allowed to take CPU control for longer pe-
riods (thus being not interrupted for a while) in order to be able to fully execute a
simulation model with no interference by other workloads, and to deliver the output
in real-time. This solution is still along the path of tick-less operating systems, with
the difference that the tick-less behavior is triggered on-demand (namely whenever a

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:22 A. Pellegrini and F. Quaglia

time-critical parallel simulation needs to be executed), hence it is not a static configu-
ration of the underlying operating system. Our approach is fully orthogonal to this one
because our target is the reduction of wasted computation, thanks to an appropriate
periodic variation of the control flow along Time Warp threads. Also, while the pro-
posal by Carothers [2002] is based on reserving the computing capacity for Time Warp
programs—thus excluding the possibility for other tasks to be run on the system for a
while—in our approach we do not create any bias in the usage of the computing sys-
tem by Time Warp threads and other kinds of threads. We only allow the Time Warp
threads to see their own ticks as partitioned into sub-intervals (with proper control
flow management at the end of each sub-interval).

Approaches Targeting Preemptive Rollback. Our time-sharing Time Warp proposal
supports preemptive rollback, a topic that has been somehow studied in literature,
mainly in [Das et al. 1994; Santoro and Quaglia 2005]. The solution in [Das et al.
1994] targets parallel simulation on shared-memory machines, and is based on direct
manipulation of the event list of the recipient simulation object by the thread along
which the generation of a new event is handled. With this solution, the sender thread
is able to determine the current simulation time of the recipient simulation object
and whether any message/anti-message being sent to that object violates causality. If
this is the case, the sender thread notifies the violation to the thread handling the
recipient object, which is done to timely interrupt any in-progress activity in order to
execute rollback operations. Our solution is different since it does not rely on cross-
thread signaling. Also, in our approach, any Time Warp thread is allowed to change
its current flow (and dynamically dispatch a different simulation event, or simulation
object, after preempting the last dispatched one) independently of the materialization
of a causality violation, but rather when any need arises to process a higher priority
task, bound to a simulation object possibly different from the currently running one.
This is done in order to reduce the likelihood of future rollback generation, not only to
react via preemption to an already materialized causality violation. This is basically
due to the fact that our fine-grain time-sharing Time Warp system is not limited to the
support for preemptive rollback.

As for the preemptive rollback approach in [Santoro and Quaglia 2005], it is suited
for distributed memory systems while we deal with shared memory multi-core ma-
chines. Also, it is based on polling, and the polling code to periodically verify causal
consistency of the current event needs to be nested in the application code by the pro-
grammer. Instead, our proposal is fully transparent, and exploits back from platform
mode and timer-interrupt events, rather than polling. Finally, similarly to [Das et al.
1994], the solution in [Santoro and Quaglia 2005] does not cope with control flow vari-
ations associated with the dynamic generation of higher-priority events (namely with
timestamps lower than that of the event being executed along the thread) that do not
directly give rise to a causality violation.

Approaches Based on Operating Systems Concepts. Dual-mode execution in Time
Warp systems, which we exploit in our proposal, has been also investigated in [Pelle-
grini and Quaglia 2014]. In this proposal, when the worker thread runs in application
mode, only a sub-portion of the whole address space is made accessible, namely the
sub-portion keeping the memory layout of the CPU-dispatched simulation object. Any
access to the state of another object generates a trap that gives control back to the plat-
form code, which actuates proper thread synchronization mechanisms so as to allow
cross-state processing of the events. Unlike [Pellegrini and Quaglia 2014], the present
proposal is tailored to variations of the control flow in order to react to the generation
of higher priority simulation events or tasks (such as rollbacks to be processed). Still,
we retain application transparency just like [Pellegrini and Quaglia 2014].

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Time-Sharing Time Warp System 0:23

Our proposal is clearly related to the work in [Jefferson et al. 1987], where Time
Warp is instantiated as a special-purpose operating system destined to host discrete
event applications to be executed according to the speculative processing paradigm.
The core difference between what we are presenting and the proposal in [Jefferson
et al. 1987] lies in that such an approach uses preemption only in case of causality
errors affecting the currently-dispatched simulation event. Rather, we exploit preemp-
tion anytime a higher priority task needs to be processes, independently of the actual
materialization of causality errors. Thus our solution also tends to anticipate the gen-
eration of causality errors.

Our proposal has also relations with recent approaches based on operating system
scheduling to support virtual time synchronized advancement in emulation/simulation
scenarios (see, e.g., [Lamps et al. 2015; Lamps et al. 2014; Yoginath et al. 2012]). These
solutions provide scheduling policies of Linux Containers (LXCs) or Virtual Machines
(VMs) allowing the emulated components to adjust their speed of operation in order
to align it to the advancement of simulation time. This is typically achieved by scaling
up/down the CPU capacity assigned to the different LXCs or VMs. Our solution is
orthogonal to these approaches since we do not work at the level of the operating
system scheduling policy. Rather, we customize the operating system management of
timer-interrupts, so as to deliver them with fine granularity and at low cost to the
speculative PDES simulation platform, so as to enable optimized CPU assignment
within a fine-grain time-sharing scheme among multiple simulation objects run on top
of a same thread.

Approaches Directly Targeting the Reduction of Rollback. Given that our core target
is the reduction of the incidence of causality errors, our proposal is naturally related to
literature solutions directly targeting rollback reduction in speculative PDES. We can
roughly classify these works in two main categories: (a) the ones based on balanced re-
source usage (see, e.g., [Carothers and Fujimoto 2000; Choe and Tropper 1999; Glazer
and Tropper 1993; Vitali et al. 2012]) and (b) the ones based on bounded optimism
(see, e.g., [Dickens et al. 1996; Srinivasan and Reynolds 1998]). In the former case, the
target is the one of reducing the skew in the advancement of simulation time at the dif-
ferent simulation objects, which is typically achieved via simulation objects’ periodical
migration (for balanced execution) across the Time Warp worker threads. As hinted,
these proposals act as long term planners for CPU usage, and do not entail capabili-
ties of reacting to punctual variations of the priority of the events, as instead we do via
preemptive CPU reassignment. Overall, we can see the two approaches as orthogonal
to each other, hence being ideally combinable. Finally, the solutions based on bounded
optimism opt for artificially delaying the execution of events within the speculative
processing scheme with the aim at increasing the likelihood of performing useful (not
eventually rolled back) work. Some proposal (see, e.g. [Srinivasan and Reynolds 1998])
can even dynamically select per-event delays, thus attempting to reduce the incidence
of rollback on a fine grain basis. We retain this same capability, but we still fully ex-
ploit the available computing power since we admit truly speculative preemptive event
processing, with no artificial delay. Although different in spirit, we can still think of
these two approaches as orthogonal and potentially usable in synergy.

5. CONCLUSIONS
It is typical that PDES platforms process simulation events in non-preemptive manner.
For the case of Time Warp PDES systems, which exploit speculative processing and
rollback techniques for causality maintenance, a preemptive approach would provide
the possibility to dynamically reassign the CPU to events (or tasks, such as rollback op-
erations) standing in the past logical time of the currently processed event. This would

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:24 A. Pellegrini and F. Quaglia

allow for reducing the incidence of causality errors along the speculated execution
path, and to more promptly react to the actual generation of the errors. To cope with
this issue, have presented a fine-grain time-sharing version of a Time Warp system,
which makes systematic use of event preemption just for the purpose of making the
system run, at any time, those events/tasks that are dynamically determined to have
the highest priority—they refer to past logical time values compared to the last CPU-
dispatched ones. Our proposal is targeted at multi-core machines and Linux/x86-64
platforms. We integrated the fine-grain time-sharing Time Warp architecture, includ-
ing the ad-hoc Linux module supporting timer-interrupt based preemptions, within
an open source speculative PDES platform. Further, we have reported experimental
data supporting the effectiveness of our proposal. Indications on how to configure the
presented fine-grain time-sharing Time Warp system, in relation to core parameters
driving its internal logic, have also been provided, which should help fruitful employ-
ment of our solution with workloads aside of the ones used in our experiments.

REFERENCES
ANTONACCI, F., PELLEGRINI, A., AND QUAGLIA, F. 2013. Consistent and efficient output-streams manage-

ment in optimistic simulation platforms. In Proceedings of the ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation. ACM, 315–326.

BARNES-JR., P. D., CAROTHERS, C. D., JEFFERSON, D. R., AND LAPRE, J. M. 2013. Warp speed: executing
time warp on 1, 966, 080 cores. In Proc. of the 1st ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation’. 327–336.

BROWN, R. 1988. Calendar queues: a fast O(1) priority queue implementation for the simulation event set
problem. Communications of the ACM 31, 1220–1227.

CAROTHERS, C. D. 2002. Xsim: real-time analytic parallel simulations. In Proceedings of the 16th Workshop
on Parallel and Distributed Simulation, PADS 2002, Washington, D.C., USA, May 12-15, 2002. 27–34.

CAROTHERS, C. D. AND FUJIMOTO, R. M. 2000. Efficient Execution of Time Warp Programs on Heteroge-
neous, NOW Platforms. IEEE Transactions on Parallel and Distributed Systems 11, 3, 299–317.

CHOE, M. AND TROPPER, C. 1999. On learning algorithms and balancing loads in time warp. In Proceedings
of the 13th Workshop on Parallel and Distributed Simulation. Springer Verlag, 101–108.

CINGOLANI, D., PELLEGRINI, A., AND QUAGLIA, F. 2015. Transparently mixing undo logs and software re-
versibility for state recovery in optimistic PDES. In Proceedings of the 3rd ACM Conference on SIGSIM-
Principles of Advanced Discrete Simulation, June 10 - 12, 2015. 211–222.

DAS, S. R., FUJIMOTO, R. M., PANESAR, K., ALLISON, D., AND HYBINETTE, M. 1994. GTW: a time warp
system for shared memory multiprocessors. In WSC ’94: Proceedings of the 26th conference on Winter
simulation. Society for Computer Simulation International, 1332–1339.

DE, P., KOTHARI, R., AND MANN, V. 2007. Identifying sources of operating system jitter through fine-
grained kernel instrumentation. In Proceedings of the 2007 IEEE International Conference on Cluster
Computing, 17-20 September 2007, Austin, Texas, USA. 331–340.

DICKENS, P. M., NICOL, D. M., JR., P. F. R., AND DUVA, J. M. 1996. Analysis of bounded time warp and
comparison with YAWNS. ACM Transactions on Modeling and Computer Simulation 6, 4, 297–320.

FERREIRA, K. B., BRIDGES, P., AND BRIGHTWELL, R. 2008. Characterizing application sensitivity to os
interference using kernel-level noise injection. In Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing. SC ’08. IEEE Press, Piscataway, NJ, USA, 19:1–19:12.

FUJIMOTO, R. M. 1990a. Parallel discrete event simulation. Communications of the ACM 33, 10, 30–53.
FUJIMOTO, R. M. 1990b. Performance of Time Warp under synthetic workloads. In Proceedings of the Mul-

ticonf. on Distributed Simulation. Society for Computer Simulation, 23–28.
GLAZER, D. W. AND TROPPER, C. 1993. On process migration and load balancing in time warp. IEEE

Transactions on Parallel and Distributed Systems 4, 3, 318–327.
HPDCS RESEARCH GROUP. 2012. ROOT-Sim: The ROme OpTimistic Simulator - v 1.0.

http://www.dis.uniroma1.it/ hpdcs/ROOT-Sim/.
JAFER, S., LIU, Q., AND WAINER, G. A. 2013. Synchronization methods in parallel and distributed discrete-

event simulation. Simulation Modelling Practice and Theory 30, 54–73.
JEFFERSON, D. R. 1985. Virtual Time. ACM Transactions on Programming Languages and System 7, 3,

404–425.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Time-Sharing Time Warp System 0:25

JEFFERSON, D. R., BECKMAN, B., WIELAND, F., BLUME, L., LORETO, M. D., HONTALAS, P., LAROCHE, P.,
STURDEVANT, K., TUPMAN, J., WARREN, L. V., WEDEL, J. J., YOUNGER, H., AND BELLENOT, S. 1987.
Distributed simulation and the time wrap operating system. In SOSP. 77–93.

KANDUKURI, S. AND BOYD, S. 2002. Optimal power control in interference-limited fading wireless channels
with outage-probability specifications. IEEE Transactions on Wireless Communications 1, 1, 46–55.

LAMPS, J., ADAM, V., NICOL, D. M., AND CAESAR, M. 2015. Conjoining emulation and network simulators
on linux multiprocessors. In Proceedings of the 3rd ACM-SIGSIM Conference on Principles of Advanced
Discrete Simulation, June 10 - 12, 2015. 113–124.

LAMPS, J., NICOL, D. M., AND CAESAR, M. 2014. Timekeeper: a lightweight virtual time system for linux.
In Proceedings of the 2nd ACM-SIGSIM Conference on Principles of Advanced Discrete Simulation, May
18-21, 2014. 179–186.

LIN, Y.-B. AND LAZOWSKA, E. D. 1991. Processor scheduling for Time Warp parallel simulation. In Pro-
ceedings of the 23rd SCS Multiconference on Advances in Parallel and Distributed Simulation. IEEE
Computer Society, 11–14.

NICOL, D. M. AND LIU, X. 1997. The dark side of risk (what your mother never told you about time warp). In
Proceedings of the Eleventh Workshop on Parallel and Distributed Simulation, PADS ’97, Lockenhaus,
Austria, June 10-13, 1997. 188–195.

PELLEGRINI, A. AND QUAGLIA, F. 2014. Transparent multi-core speculative parallelization of DES mod-
els with event and cross-state dependencies. In SIGSIM Principles of Advanced Discrete Simulation,
SIGSIM-PADS ’14, Denver, CO, USA, May 18-21, 2014. 105–116.

PELLEGRINI, A. AND QUAGLIA, F. 2015. NUMA time warp. In Proceedings of the 3rd ACM Conference
on SIGSIM-Principles of Advanced Discrete Simulation, London, United Kingdom, June 10 - 12, 2015.
59–70.

PELLEGRINI, A., VITALI, R., AND QUAGLIA, F. 2009. Di-DyMeLoR: Logging only dirty chunks for efficient
management of dynamic memory based optimistic simulation objects. In Proceedings of the Workshop
on Principles of Advanced and Distributed Simulation. IEEE Computer Society, 45–53.

PELLEGRINI, A., VITALI, R., AND QUAGLIA, F. 2011. The ROme OpTimistic Simulator: Core internals and
programming model. In Proceedings of the 4th International ICST Conference on Simulation Tools and
Techniques. Proceedings of the 4th ICST Conference of Simulation Tools and Techniques (SIMUTools).

PELLEGRINI, A., VITALI, R., AND QUAGLIA, F. 2015. Autonomic state management for optimistic simula-
tion platforms. IEEE Transactions on Paralle and Distributed Systems 26, 6, 1560–1569.

QUAGLIA, F. AND CORTELLESSA, V. 2002. On the processor scheduling problem in time warp synchroniza-
tion. ACM Transactions on Modeling and Computer Simulation 12.

RÖNNGREN, R., LILJENSTAM, M., AYANI, R., AND MONTAGNAT, J. 1996. Transparent incremental state
saving in Time Warp parallel discrete event simulation. In Proceedings of the 10th Workshop on Parallel
and Distributed Simulation. IEEE Computer Society, 70–77.

SANTORO, A. AND QUAGLIA, F. 2005. Software supports for event preemptive rollback in optimistic parallel
simulation on myrinet clusters. Journal of Interconnection Networks 6, 4, 435–457.

SEELAM, S., FONG, L. L., TANTAWI, A. N., LEWARS, J., DIVIRGILIO, J., AND GILDEA, K. 2010. Extreme
scale computing: Modeling the impact of system noise in multicore clustered systems. In 24th IEEE
International Symposium on Parallel and Distributed Processing, IPDPS 2010, Atlanta, Georgia, USA,
19-23 April 2010 - Conference Proceedings. 1–12.

SRINIVASAN, S. AND REYNOLDS, JR., P. 1998. Elastic time. ACM Transactions on Modeling and Computer
Simulation 8, 2, 103–139.

TOCCACELI, R. AND QUAGLIA, F. 2008. DyMeLoR: Dynamic Memory Logger and Restorer library for opti-
mistic simulation objects with generic memory layout. In Proceedings of the Workshop on Principles of
Advanced and Distributed Simulation. IEEE Computer Society, 163–172.

VITALI, R., PELLEGRINI, A., AND QUAGLIA, F. 2012. Load sharing for optimistic parallel simulations on
multi core machines. SIGMETRICS Performance Evaluation Review 40, 3, 2–11.

WANG, J., JAGTAP, D., ABU-GHAZALEH, N. B., AND PONOMAREV, D. 2014. Parallel discrete event simula-
tion for multi-core systems: Analysis and optimization. IEEE Transactions on Parallel and Distributed
Systems 25, 6, 1574–1584.

WEST, D. AND PANESAR, K. 1996. Automatic incremental state saving. In Proceedings of the Workshop on
Parallel and Distributed Simulation. IEEE Computer Society, 78–85.

YOGINATH, S. B., PERUMALLA, K. S., AND HENZ, B. J. 2012. Taming wild horses: The need for virtual
time-based scheduling of vms in network simulations. In Proceedings of the 20th IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, Au-
gust 7-9, 2012. 68–77.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:26 A. Pellegrini and F. Quaglia

APPENDIX
A. MANAGEMENT OF CONTEXTS
In the most general case, an execution context is the program state at a certain point of
the lifetime of the application. This state is composed of the CPU image and program
variables. The former entails all CPU registers, which allow to determine what is the
next instruction to be executed (the program counter), and which keep values com-
monly computed by the currently executed function, and all control registers which al-
low the hardware architecture and the operating system to correctly interact with the
available hardware resources (e.g., MMU-related registers to correctly drive a virtual-
to-physical address translation). The latter entails all the variables kept in the data
sections, in the heap, and in the stack.

In our time-sharing Time Warp environment, multiple contexts should be available
at the same time within the same multi-threaded application. Moreover, the multi-
threaded application should be able to switch from one execution context to another
at any point. This means that there are no “safe points” in which one context could
be saved, rather the context switch might happen after the execution of any machine
instruction, e.g., since the fine grain timer interrupts we deliver are independent of
the flow of the application’s code. The contexts we need to manage cannot therefore be
associated with multiple concurrent operating system’s threads. Rather, they are logi-
cally bound to a single operating system’s thread, and we rely on multiple User-Level
Threads (ULTs), each one associated with a simulation object, which can be activated
by any worker thread—namely, at any time a worker thread can “jump” to the ex-
ecution flow of any ULT. Given that simulation objects’ program variables stored in
the head/data section are transparently managed by the multi-threaded nature of the
simulation engine and state management facilities (see, e.g., [Pellegrini et al. 2009]),
we rely on the following code snippet to setup a new execution context for a certain
simulation object:

void context_create(LP_context_t *context, void (*entry_point)(void *), void *args,
void *stack, size_t stack_size) {

struct sigaction sa;
struct sigaltstack ss;
struct sigaltstack oss;

bzero((void *)&sa, sizeof(struct sigaction));
sa.sa_handler = context_create_trampoline;
sa.sa_flags = SA_ONSTACK;
sigfillset(&sa.sa_mask);
sigdelset(&sa.sa_mask, SIGUSR1);
sigaction(SIGUSR1, &sa, NULL);

ss.ss_sp = stack;
ss.ss_size = stack_size;
ss.ss_flags = 0;
sigaltstack(&ss, &oss);

context_creat = context;
context_creat_func = entry_point;
context_creat_arg = args;
context_called = false;
raise(SIGUSR1);
sigaltstack(&oss, NULL);

context_switch_create(&context_caller, context);
}

The context create function stores the information related to this new execu-
tion flow (namely, the CPU context and the stack’s location in memory) within the
LP context t structure. To setup this new context, we rely on Posix signals raised by
the worker thread which is in charge of setting up the context for a certain simulation

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Time-Sharing Time Warp System 0:27

object. To allow the new context to live in a different stack, we rely on the Posix-
compliant sigaltstack() API, which asks the underlying operating system to run a
signal handler within a separate stack. This stack can be allocated using any mem-
ory allocator, and is passed to the context create function as an argument. Then, the
context create function stores a function pointer (entry point) and a pointer to a vec-
tor of arguments (args) both passed as arguments to the context create function into
two TLS variables. This allows to concurrently run the creation of multiple ULTs by
multiple worker threads, which allows to reduce the overhead to startup the simula-
tion.

The worker thread then issues a call to the Posix raise() API, to kill itself
with the SIGUSR1 signal. Given that the context create function earlier posted the
context create trampoline() function as the signal handler, control is passed to it.
The source of the context create trampoline function is as follows:

static void context_create_trampoline(int sig) {
(void)sig;

if(context_save(context_creat) == 0)
return;

context_create_boot();
}

The behavior of this function is quite straightforward if we correctly catch what the
context save() call does. This function (which we shall discuss later) is similar in
spirit to the traditional Posix setjmp() API. In particular, the purpose of this func-
tion is to store the whole CPU state of the running thread. We recall that this signal
handler is run using a different stack (the one passed via the stack parameter to
context create), so the image saved by context save actually stores in %rsp a pointer
to the top of the new stack. Similarly to setjump, the context save function returns
0 when called directly, while it returns a user-specified value whenever the context is
later restored. Since at this time we are directly calling context save, the return value
is 0 and the return statement is executed so that control returns to context create.
We note that this return statement completes the execution of the manually-activated
signal handler, so the operating system returns the control to context create in a state
which is no longer related to the signal which was raised.

At this point, context create relies again on sigaltstack to restore the previous
setting (namely, new signals are not run in the previously-specified different stack)
and it issues a call to context switch create, which relies on special versions of the
Posix-compliant setjmp()/longjmp() API we have developed, and is implemented as
the following macro:

#define context_switch_create(context_old, context_new) \
if(set_jmp(context_old) == 0) \

long_jmp(context_new, 1)

Basically, the purpose of this macro is to store the current execution context in the
context old variable, and to restore the context stored in context new. This can be
done safely by checking again for the return value 0 from set jmp, which is returned ex-
actly when context switch create is referenced for the first time (i.e., we don’t restore
context new when we return from context new due to an additional context switch).
Therefore, once context switch create is referenced by context create, control is re-
turned again to context create trampoline. At this time, since the second argument
of long jmp in context switch create is 1, the check for 0 is not satisfied, and the exe-
cution flow continues. We emphasize that this invocation to long jmp already changes
the stack, bringing back the stack which was setup by the operating system due to the

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:28 A. Pellegrini and F. Quaglia

sigaltstack call earlier in context create. Nevertheless, the execution is not related
to a signal handler now.

Next a call to context create boot() is issued. This implements the last step in the
construction of the ULT context upon starting up the simulation, and is declared as a
noreturn function. This is due to the fact that the final goal of ULTs in our system is
to run simulation objects, which have a lifetime as long as the whole simulation, and
therefore they are realized using a private main loop which never ends—if a simulation
object has no scheduled events, then its context is simply not reactivated by the worker
thread in charge of its execution. The implementation of context create boot is as
follows:

static void context_create_boot(void) __attribute__ ((noreturn));
static void context_create_boot(void) {

void (*context_start_func)(void *);
void *context_start_arg;

context_start_func = context_creat_func;
context_start_arg = context_creat_arg;

// Go back where the thread was created, being ready to restart from here when the ULT is scheduled!
context_switch(context_creat, &context_caller);

// Magically start the thread
context_start_func(context_start_arg);

// you should never reach this!
abort();

}

By relying on it, the worker thread makes a copy of the ULT entry point and its
arguments (which were temporarily stored in a TLS variable) in a couple of local vari-
ables. These local variables are actually persistent to further context changes exactly
because each ULT has its own stack. At this point, everything is ready to activate
the ULT, but this is postponed to the time instant the simulation object has to be ac-
tivated for event processing—this will be done by calling the local function pointer
context start func(). Control is now returned to the worker thread by issuing a call
to context switch, which restores the previous context, namely the one at the end of
context create. The latter function then returns, and the normal execution flow is
restarted. Nevertheless, the argument context of context create can now be used to
reactivate the ULT (with a separate stack) whenever an event bound to the simulation
object should be CPU-dispatched. Figure 12 summarizes the steps which we have just
described.

We shall now discuss how it is possible to explicitly switch among two different ex-
ecution contexts, in our architecture. The main problem we had to face is related to
context-switch management upon timer-interrupts delivered to the Time Warp plat-
form. To understand this issue, we must consider the fact that computing architec-
tures rely on calling conventions to change the control flow between functions. Calling
conventions usually divide general purpose registers between caller-save and callee-
save registers. The former category encloses all the registers which, upon a function
call, are not guaranteed to be saved by the called function—after the function’s return
point, their content might be clobbered. On the other hand, callee-save registers are
those which are guaranteed to be saved by the called function before using them, so
that the previous content can be restored before the function returns. It is the respon-
sibility of compilers to coherently handle calling conventions, allowing as well for code
reuse (e.g., in the context of libraries) on a same architecture. On x86-64, which is the
target of our work, calling conventions are dictated by the System V AMD64 ABI. In

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Time-Sharing Time Warp System 0:29

context_create()

setup signal handler

setup new stack for handlers

store entry point in TLS

raise()
restore handlers' stack

context_switch()

return

context_create_trampoline

context_save()

 return

create_boot()

create_boot()

context_switch()

context_start_func()

ULT entry point

1

2

3 4

5
6

7

Fig. 12. Steps taken to setup a ULT— 1⃝: a signal is raised towards a signal handler using a separate stack,
2⃝: the CPU context is saved, and control is returned to complete the signal handler, 3⃝: context is changed
explicitly, returning to the signal handler although in regular execution mode, 4⃝: a function is called to
store a local copy of the ULT entry point and arguments, 5⃝: context is switched back again, to restore the
original execution flow, 6⃝: eventually the context is switched again, to activate the ULT, 7⃝: ULT’s entry
point is called.

this calling convention, callee-save registers are %rbp, %rbx, and %r12–%r15, any other
general purpose register is caller-save.

Since compilers are assumed to be consistent with calling conventions, traditional
implementations of setjmp/longjmp Posix API functions leverage them to reduce their
internal execution time. In particular, a setjmp is regarded by the compiler as a func-
tion call, therefore any required caller-save register is pushed before issuing that call.
This allows setjmp to store the execution context keeping only callee-save registers
%rbp, %rbx, %r12–%r15, along with the program counter %rip and the status register
%rflags. No other register should be copied, since when control is returned after the
call to setjmp, any required caller-save register is restored by the code generated by
the compiler. Once again, we emphasize that this (correct) behaviour is triggered by
the fact that the compiler sees a function call, and enforces calling conventions.

In our scenario, such a function call cold be missing. In particular, we might change
the flow of the program at any point, due to the interception of a timer-interrupt de-
livered to the Time Warp plaform. Therefore, the compiler has no clue about what reg-
isters could be caller-save, so it never emits instructions to store their value. Anyway,
they might be required to be saved at any point in the program. Therefore, traditional
setjmp/longjmp API simply do not work in our time-sharing Time Warp environment.

We therefore rely on special versions of these functions, which are calling
convention-agnostic, meaning that they save the whole CPU state. Although this is
a bit more costly, it is mandatory to enforce correctness in the execution. As an ad-
ditional note, x86 CPUs offer a plethora of additional registers, e.g. those related to
floating-point instructions. By the definition of the calling conventions, they are all
caller-save, so they must be explicitly saved/restored by our context switch facilities.
We report in the following code snippet the source for the set jmp() function, which is
at the heart of the implementation of the set jmp which we have previously shown. It
is directly implemented in assembly, due to efficiency reasons and because it explicitly
breaks traditional x86-64 calling conventions.

To understand the organization of this function, we note that its C-like signature
is long long set jmp(exec context t *env), thus it takes as its only argument a
pointer to an exec context t structure, which keeps enough space to store the whole
CPU state. According to System V AMD64 ABI, the first argument of a function (in

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:30 A. Pellegrini and F. Quaglia

case it is a pointer) is passed via the %rdi register—when we enter the set jmp func-
tion, thus, we have already lost the possibility to save its value, so this should be
handled in a different way.

.align 4

.globl _set_jmp

.type _set_jmp, @function
_set_jmp:
pushq %rax # save rax, it will point to the context
pushq %r11 # save r11, it will be used as the source

lahf # Save status flags on stack
seto %al
pushq %rax

Save the context
movq %rdi, %rax # rax points to the context
movq 16(%rsp), %r11 # r11 keeps the ’old’ rax
movq %r11, (%rax) # rax is the first field of the context
movq %rdx, 8(%rax)
movq %rcx, 16(%rax)
movq %rbx, 24(%rax)
movq %rsp, 32(%rax)
addq $16, 32(%rax) # saved rsp must point one quadword above the old return address
movq %rbp, 40(%rax)
movq %rsi, 48(%rax)
movq 32(%rsp), %r11 # old ’rdi’ was pushed by the surrounding macro
movq %r11, 56(%rax)
movq %r8, 64(%rax)
movq %r9, 72(%rax)
movq %r10, 80(%rax)
movq 8(%rsp), %r11 # r11 keeps the ’old’ r11
movq %r11, 88(%rax) # r11 is the 12-th field of the context
movq %r12, 96(%rax)
movq %r13, 104(%rax)
movq %r14, 112(%rax)
movq %r15, 120(%rax)
movq (%rsp), %rdx # (%rsp) is flags
movq %rdx, 136(%rax)

movq 24(%rsp), %r11 # Save the original return address
movq %r11, 128(%rax)

Now save other registers. fxsave wants memory aligned to 16 byte.
The context structure is aligned to 16 bytes. We have 18 8-byte
registers, so the next address is exactly the ’others’ buffer.
fxsave 144(%rax)

addq $24, %rsp
xorq %rax, %rax # return 0 because the context is being created
ret

The idea behind our construction of this context-save facility is to move the content
of all CPU registers in a memory buffer. To this end, we must use some register as a
“pointer”. This register is %rax, so in order to preserve its value we first push its content
to the stack. We then use %rax to save the status register. We can then save all registers
to the buffer: this is done via a couple of mov instructions (we recall that the pointer
to the buffer was passed via %rdi). Some register’s content must be reconstructed,
such as the stack pointer %rsp, since we executed within this function a couple of push
instructions. Nevertheless, since we know the number of pushes, we can determine the
offset to apply to the current value of %rsp. Similarly, we clobbered the %rax register
to save the content of the status flags, but we pushed it beforehand, so we can retrieve
it from the stack. Similarly, since we issued a call to set jmp, we can retrieve the
original program counter’s value from the stack.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Time-Sharing Time Warp System 0:31

To save the remainder of the CPU state, we must save all other caller-save registers
which are used to support all floating-point instructions. Manually saving them could
be difficult and performance-unfair, as the number of these registers is large, and they
cannot be accessed using traditional mov instructions. Therefore, we rely on the fxsave
instruction, which is offered by x86 architectures to save very quickly all registers used
for floating-point and vectorized instructions.

To complete the execution of our context-save procedure, we return 0, to be compli-
ant with the original semantic of setjmp—by the calling convention the return value
is always stored into %rax. Nevertheless, we still have to discuss how we can save the
original value of %rdi, which is clobbered by the function call due to calling conven-
tions. In fact, context switch does not call set jmp directly, rather it relies on the
set jmp macro which is defined as follows:
#define set_jmp(env) ({\

int _set_ret;\
__asm__ __volatile__ ("pushq %rdi"); \
_set_ret = _set_jmp(env); \
__asm__ __volatile__ ("add $8, %rsp"); \
_set_ret;\

})

This macro evaluates the return value of set jmp, making it compliant in its turn
with the original setjmp, but before issuing the call to set jmp, it pushes the value of
%rdi on the stack (and similarly removes it from the stack after the call returns). In
fact, looking at the code of set jmp, we explicitly retrieve the original value of %rdi
from the stack, since it was pushed by the surrounding macro.

To discuss how we can restore a previously-saved context, we first emphasize that
the actual program counter’s value that we have saved in the CPU context is the ad-
dress of the first instruction after the call to set jmp, namely the instruction that
stores set jmp’s return value into set ret in the macro. Therefore, to discriminate
whether we are returning from a set jmp to a longjmp (or equivalent) we can play
with this return value. Nevertheless, care must be taken to restore as well the actual
original value of %rax, which is used to store the return value. First, we introduce
the C-like signature of our long jmp (which is presented in the next code snippet)
as attribute ((noreturn)) void long jmp(exec context t *env, long long
val), where val allows to specify the return value that we want to use as the return
value of our “fake” invocation of set jmp upon a context restore. This value is stored
into the %rsi register, as per the calling conventions.
.align 4
.globl _long_jmp
.type _long_jmp, @function
_long_jmp:
movq %rdi, %rax # rax points to the context

movq 128(%rax), %r10 # This is the old return address
movq 32(%rax), %r11 # r11 is the old rsp
movq %r10, 8(%r11) # restore the old return address

movq %rsi, (%r11) # Put on the old stack the desired return value

movq 8(%rax), %rdx # rdx is the second field of the context
movq 16(%rax), %rcx
movq 24(%rax), %rbx
movq 32(%rax), %rsp
movq 40(%rax), %rbp
movq 48(%rax), %rsi
movq 64(%rax), %r8
movq 72(%rax), %r9
movq 80(%rax), %r10 # Finish to restore GP registers
movq 88(%rax), %r11
movq 96(%rax), %r12

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:32 A. Pellegrini and F. Quaglia

movq 104(%rax), %r13
movq 112(%rax), %r14

Restore FLAGS
movq 136(%rax), %rax # this is flags
addb $0x7f, %al # Overflows if OF was set
sahf

Restore remaining rdi and r15
movq %rdi, %rax # rax now points again to context
movq 56(%rax), %rdi
movq 120(%rax), %r15

fxrstor 144(%rax) # Restore other registers

movq 32(%rax), %rsp # (possibly) change stack
popq %rax # Set the desired return value
ret # do the long jump

In our implementation, we play a bit with the “other” stack, namely the stack of
the destination ULT. This can be done since we can extract from the stored execution
context the value of %rsp before having restored it in the current CPU state. In our
code, register %r11 is used to this end. In this way, while executing on the current stack,
we can read/write values to the destination stack. In fact, we use this facility to make
a copy of val (stored in the %rsi register) on the destination stack. This frees the %rsi
register, which can be restored along with all other registers. To move the return value
from the stack to %rax, we just issue a pop %rax instruction just before returning from
long jmp. To restore %rflags, we use a triplet of instructions in a way similar to what

we did in the context-save procedure, considering that addb $0x7f, %al generates an
overflow only if the overflow flag was set during the context-save procedure. After this
point, we must ensure that no arithmetic/logical instructions are executed. To restore
floating-point registers, we use the companion fxrestor instruction.

To actually perform the context switch, we use a trick similar to what we did to
restore %rax. In particular, we read from the saved context the old program counter’s
value, and we push that on the destination stack. Therefore, once the stack is changed,
on the top of the stack we find exactly the address of the instruction next to the
call to the corresponding set jmp. A ret instruction will “jump” to the program
counter’s value of the destination CPU context. In order to have the long jmp re-
store the actual original value of %rax, it can be called as long jmp(context new,
(context new)->rax).

B. ENABLING TIMER-INTERRUPT DELIVERY TO THE TIME WARP PLATFORM
In this section we initially discuss basics on how Linux manages timer-interrupts, and
then provide the description of our timer-interrupt management module enabling the
delivery of timer-interrupts (with fine granularity) to the Time Warp platform.

B.1. Basics on Linux Timer-Interrupts
x86 processors are equipped with various timer facilities, among which one is ulti-
mately exploited to drive the passage of time on each CPU-core. This is the LAPIC-
timer supported by APIC (Advanced Programmable Interrupt Controller), which is a
timer-component local to the CPU-core (see Figure 13).

The LAPIC-timer can be configured to operate in different modes, among which the
one used by the Linux kernel is the periodic-interrupt mode. Specifically, at kernel
startup, a so called calibration procedure is executed such that the LAPIC-timer is
setup (in terms of its internal hardware counter, upon the expiration of which the
interrupt is issued towards the associated CPU-core) so as to periodically generate in-
terrupts according to the frequency established by the CONFIG HZ parameter defined

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Time-Sharing Time Warp System 0:33

8259A PIC

CPU 0

Timer

Local APIC

CPU 1

Local APIC
. . .

CPU n-1

Local APICNMI

LINT0

LINT1

Internal BUS

Interrupt

Messages IPIs
Interrupt

Messages IPIs
Interrupt

Messages IPIs

I/O APIC

System Chipset

Interrupt

Messages

External

Interrupts

Fig. 13. x86 interrupt system.

at kernel compile time. Classical interrupt periods for entry level to medium-end ma-
chines range from 1 to 4 milliseconds, which is reflected to values of CONFIG HZ ranging
from 1000 to 250. Once setup, the configuration of the LAPIC-timer is never changed,
thus the same interrupt period (which we also refer to as original timer-tick) is always
used at operating system steady state.

The timer-interrupt management scheme supported by Linux is still based on the
top/bottom-half paradigm. In more detail, upon the receipt of the LAPIC-timer inter-
rupt, a very minimal portion of code (the top-half) is executed, which is only used to
update timing information and to possibly flag the current thread in such a way that
eventually the scheduler is called and a context switch (leading the thread off the CPU)
can take place. A thread that has been CPU-dispatched is typically allowed to run for
various timer-ticks before being flagged for re-schedule. On the other hand, the call to
the kernel schedule() function for performing actual context switches (if requested)
is actuated right prior to leaving kernel mode11. Therefore, the schedule() function,
which represents the core part of the bottom-half of the timer-interrupt manager, is
executed only in case no kernel-level critical task is being executed by the thread. This
allows for scalability on multi-core processors, given that de-scheduling a thread dur-
ing the execution of any kernel-level critical task, such as a spinlock-protected kernel-
level critical section, would lead the critical section to be locked up to the point in
time where this same thread will be CPU-dispatched again, an operation that may
occur after an unpredictable amount of time (also depending on workload and thread
priorities).

B.2. The Extra-Tick Logic
The extra-tick logic at the core of our time-sharing architecture is based on a kernel-
level differentiation between Time Warp threads and other kinds of threads (run-
ning generic applications or kernel level housekeeping tasks), since only the former
ones need to be managed according to the lightweight extra-tick scheme. To this
end, the Linux module we developed offers the support for a special device file called
dev extra tick such that:

— this special device file is single instance, hence no two different concurrently-opened
I/O sessions on it are allowed. This is compliant with the idea that a single process—
namely the multi-thread Time Warp platform running on the multi-core machine—
needs to use the facilities offered by the special device file for supporting the execu-
tion of all its worker threads;

— a thread can register itself as a Time Warp worker thread by issuing an ioctl call
towards the device file.

11A minor variation is in place for the case of kernel threads, which never leave kernel mode operations.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:34 A. Pellegrini and F. Quaglia

Registering a thread on the special device file allows the kernel to know that the
thread needs to undergo the extra-tick policy. Upon registering, the kernel-level thread
identifier is recorded into a fast access hash table, which is installed as part of the ker-
nel module data structures implementing the special device file driver. At this point,
the portions of the whole kernel architecture that need to know whether some thread
is registered, thus requiring ad-hoc tick management, are the following two: (i) the ker-
nel scheduler, and (ii) the top-half of the timer-interrupt handler. The external module
implementing the dev extra tick device file is also in charge of redefining the behavior
of the kernel scheduler and of the top-half of the timer-interrupt handler, thus lead-
ing them to become compliant with extra-tick management requirements. Specifically,
our module adopts a dynamic patching approach that rewrites parts of the executable
image of the kernel upon being loaded. This leads to avoid kernel recompilation.

To patch the kernel schedule() function, we retrieve the memory position of the
corresponding machine instructions block from the system-map (typically available in
Linux installations from the /boot directory of the root file system), and we inject into
this routine an execution flow variation such that control goes to a schedule hook()
routine offered by the external module right before schedule() would execute its final-
ization part (e.g. stack realignment and return). A scheme of this patching approach
is shown in Figure 14, which has been tested on Linux kernel versions from 2.6 to 3.2.
According to this patching scheme, the schedule() function will never return, rather it
will pass control to schedule hook() so that the final part of the scheduling process is
under the control of our external module. In the end, the schedule hook() function will
simply execute the same return actions originally planned by the kernel schedule()
function. However, patching the original scheduler in this way allows the hook to take
control when the decision about what thread needs to take control of the CPU-core12

is already finalized. Hence, we know what thread will have control of the CPU-core for
the current set of operating system assigned ticks. As a consequence, the hook is able
to check whether the thread is a registered one (so that it needs to be extra-ticked) by
consulting the aforementioned fast access hash table implementing the registration
record, and in the positive case it executes the following additional steps:

A) It changes the LAPIC-timer period by scaling it on the basis of a configuration pa-
rameter supported by our kernel module. The scaling factor is what determines the
length of the extra-tick interval.

B) It records in a per CPU-core entry of a proper control table (still managed by the
module) that the current CPU-core is working in extra-tick mode.

C) It records in a proper per registered-thread entry of a control table (again managed
by the module) a counter of extra-ticks not yet consumed by such a thread within the
current tick period.

Clearly, the information recorded in point B is also used in order to revert the LAPIC-
timer configuration to the original one. In more detail, if the scheduler passes control
to a non-registered thread, and the current CPU-core is registered as operating in
extra-tick mode, then the LAPIC-timer is restored to its initially configured counter
value, thus the scheduled thread will run with a classical tick length, and the control
record associated with the CPU-core is reset in order to reflect that the CPU-core is
no longer operating in extra-tick mode. This approach works also in scenarios where
the thread registered within the dev extra tick device file looses control of the CPU-
core because of a passage into a sleep state (e.g. for an I/O interaction). Overall the
above scheme allows restoring the LAPIC-timer configuration to the original one each

12It has actually already taken control of the CPU-core, since we are returning from the scheduling process.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Time-Sharing Time Warp System 0:35

011010 ..

011110 ..

….

….

110010 ..

…

…

schedule()

Address taken from the

system map

schedule_hook()
patch

Ad-hoc tick management for

registered (Time Warp) threads

Return from the schedule task

External module stuff

Fig. 14. Dynamic patching of the Linux kernel scheduler.

SP

IP

CPU-context

saved/restored

upon

entering/exiting

LAPIC-timer top-half

kernel

stack area

user

stack area

added element

address of the extra-tick

management callback function

Step 1

Step 2

Fig. 15. Stack and CPU context management by the LAPIC-timer top-half hook.

time a non-registered thread is (re)scheduled independently of any state-transition of
registered (hence extra-ticked) threads in the operating system state diagram.

Let us now analyze how the original top-half of the LAPIC-timer interrupt han-
dler has been patched so as to exploit extra-ticks for control flow variations of the
dev extra tick registered threads, say the Time Warp worker threads. The patch has
been developed by targeting kernel version 3.16.7, but it is of general use (except for
a few minor modifications that might be required for other kernel versions depending
on the exact path of execution of, e.g., very basic actions in the preamble of the actual
timer-interrupt management logic—details on this aspect will come shortly).

Top-half modules in conventional Linux configurations are made up by two differ-
ent code blocks, a launcher and an actual top-half procedure. The launcher takes con-
trol when the CPU-core firmware accepts the interrupt. It is in charge of aligning the
kernel-level stack of the interrupted thread to a proper snapshot and of calling the
actual top-half module. Such a snapshot also includes the CPU-context to be restored
once the interrupt handling top-half procedure ends. This includes the stack pointer
(SP) and the instruction pointer (IP) associated with the interrupted execution flow.

In our patching approach of the LAPIC-timer interrupt management logic, we have
still exploited the system-map to locate the launcher code block in the kernel memory
image, and then we patched it by replacing the call to the original top-half with one to
a top-half hook function offered by the external module that we have developed, which
therefore fully replaces the original top-half procedure. The top-half hook is in charge
of executing the same identical basic actions as those executed by the original top-half
procedure (such as acknowledging the accepted interrupt). However, it discriminates

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:36 A. Pellegrini and F. Quaglia

LAPIC-timer

interrupt

Interrupted thread

is registered ?

no

local_apic_timer_inteterrupt()

return from interrupt

Decrease thread

extra-tick counteryes

Counter is zero ?
Set counter to N

local_apic_timer_inteterrupt()

yes

1 – post IP onto the stack (and update SP)

2 – post callback address onto IP

no

Basic actions

yes
Kernel or interrupt

context already on

no

Fig. 16. Behavior of the top-half hook for the LAPIC-timer interrupt.

if the interrupted thread is a dev extra tick registered one (namely, one subject to
extra-tick management), and in the positive case it executes the following actions:

(i) It decreases the extra-tick counter associated with the thread (as hinted, this counter
is set upon the reschedule of any thread registered on dev extra tick).

(ii) If the counter reaches the value zero, then a whole originally-sized tick-period has
expired (i.e., the thread consumed all the extra-ticks granted to it in its current tick
period). In this case, the top-half hook calls the kernel function used to update kernel-
level timing information (in most of the recent Linux kernel versions this work is car-
ried out via the local apic timer interrupt() function). This mimics the behavior of
the original top-half manager execution path, given that it would trigger the timing
information update function exactly at the end of each originally-sized tick-period.

(iii) The top-half hook changes the IP kept by the processor image registered into the sys-
tem stack upon interrupt acceptance, so that the interrupted thread will gain control
in a proper machine code block upon the restore of that image onto the CPU-core
when returning from LAPIC-timer interrupt. In our design, this code block corre-
sponds to the extra-tick-manager function, which we have presented in Section
2.2 of the main body of this article. Consequently, the top-half hook also changes the
application-level stack layout of the thread by adding a program-counter return value
that will allow that code block to exactly return control to the instruction interrupted
by the extra-tick (namely, the original IP value logged into the CPU-context snap-
shot on the system stack). This is done by exploiting the SP value from the logged
CPU-context, which is then modified in order to reflect the insertion of a new ele-
ment at the top of the user level stack. A schematization of the performed operations
is provided in Figure 15.

(iv) Finally, if the extra-tick counter of the thread registered within the dev extra tick
device file reached the value zero—see point (ii)—the thread is again filled with the
number of extra-ticks (say N) it is allowed to receive in the next tick period.

The address of the extra-tick-manager code block that will take control as a call-
back from the kernel thanks to the instruction pointer variation in point (iii) is posted
to the kernel when calling the same ioctl system call that is used for registering the
thread on the dev extra tick device file as one to be extra-ticked. Overall, a Time Warp
thread can atomically register itself for being subject to extra-ticks and post the ad-
dress of the function whose execution is activated thanks to the actions by the top-half
hook of the LAPIC-timer interrupt we provide within our module.

The behavior of our top-half hook for the LAPIC-timer interrupt is schematized in
Figure 16. It is still lightweight given that the additional actions it performs (compared

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Time-Sharing Time Warp System 0:37

to the original top-half version) have constant time and are mostly related to decre-
menting and (possibly) setting a counter (the per-registered-thread extra-tick counter)
and setting a few memory locations, one in the application-level thread stack and the
other ones in the user level CPU-context logged in the stack (namely IP and SP values,
that will be then restored upon exiting the interrupt procedure).

Although our software architecture is available for free download (at the URL
https://github.com/HPDCS/ROOT-Sim), for the sake of the reader’s convenience we re-
port below a snippet of code showing the structure of our hook of the original LAPIC-
timer interrupt handler:

void smp_apic_timer_interrupt_hook(struct pt_regs* regs) {

unsigned long auxiliary_stack_pointer;
unsigned long flags;
unsigned int timer_cycles;

struct pt_regs *old_regs = set_irq_regs(regs);

.... //ack of the timer interrupt removed from this snippet of code

if(current->mm == NULL) goto normal_LAPIC_timer_interrupt; /* this is a kernel thread */

if(registered_in_dev_extra_tick(current)) goto extra_tick_LAPIC_timer_interrupt;
//this is a Time Warp thread - need extra tick management

normal_LAPIC_timer_interrupt:

//CPU-core not working in extra tick mode - need to update software timers
if(extra_tick_flag[smp_processor_id()] == 0 || CPU_extra_ticks[smp_processor_id()]<=0){

local_apic_timer_interrupt();
}

//realign the timer interrupt period if needed
//no additional cost (except for the predicate evaluation) in non-extra-tick scenarios
if(extra_tick_flag[smp_processor_id()] == 1){

local_irq_save(flags);
CPU_extra_ticks[smp_processor_id()] = 0;
extra_tick_flag[smp_processor_id()] = 0;
timer_cycles = (*original_calibration) ;
setup_APIC_LVTT(timer_cycles, 0, 1);//reset timer original calibration
local_irq_restore(flags);

}

my_irq_exit();
set_irq_regs(old_regs);

return;

extra_tick_LAPIC_timer_interrupt:

if(CPU_extra_ticks[smp_processor_id()] <= 0){//original tick expired
//reassign fine-grain ticks to the Time Warp thread
CPU_extra_ticks[smp_processor_id()] = EXTRA_TICK_SCALING_FACTOR;
local_apic_timer_interrupt();

}
else{

CPU_extra_ticks[smp_processor_id()] -= 1;//one less fine grain-tick to spend
}

if(old_regs != NULL){//interrupted while in kernel mode running
goto extra_tick_APIC_interrupt_kernel_mode;//cannot run user space timer handler

}

if((regs->ip >= data_section_address)){//interrupted while running outside the Time Warp system code
goto extra_tick_APIC_interrupt_kernel_mode;//cannot run user space timer handler

}

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:38 A. Pellegrini and F. Quaglia

if(extra_tick_handler() != NULL){//do we have a valid address for the extra-tick-manager?
//actual manipulation of user space stack and processor state to run the handler
local_irq_save(flags);
auxiliary_stack_pointer = regs->sp;
auxiliary_stack_pointer -= sizeof(regs->ip);
copy_to_user((void *)auxiliary_stack_pointer,(void *)®s->ip, sizeof(regs->ip));
regs->sp = auxiliary_stack_pointer;
regs->ip = extra_tick_handler();
local_irq_restore(flags);

}

extra_tick_APIC_interrupt_kernel_mode:

local_irq_save(flags);
extra_tick_flag[smp_processor_id()] = 1; //still running a Time Warp thread
timer_cycles = (*original_calibration) / EXTRA_TICK_SCALING_FACTOR;
setup_APIC_LVTT(timer_cycles, 0, 1); //post the fine-grain tick to the LAPIC-timer
local_irq_restore(flags);
irq_exit();
set_irq_regs(old_regs);

return;

}

As an additional note, our approach to modify the execution flow of Time Warp
worker threads is based on modifying the user space stack of the thread just above
the current stack pointer address. So we do not allow software to use the so called
red zone of the stack13, which is achieved by simply compiling both application and
platform software with red zone exclusion directives. Making our proposal compliant
with the reliance on red zones of the stack would require putting in place in point
(iii) a stack management logic similar to the one used by operating system kernels for
the activation of signal handlers. However, this is an issue aside of the core aspects
characterizing our design.

13The red zone is the stack region above the current stack frame. It is typically exploited by conventional
compilation tool-chains so as to allow a leaf function to use the stack with no explicit storage reserving–via
decrease of the stack pointer– within the stack frame

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2015.

