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Abstract—In this paper, we show that Immersion and Invariance is a
natural framework for the design of sampled-data stabilizing controllers
for input-delayed systems. Assuming the existence of a continuous-time
feedback in the delay free case, Immersion and Invariance stabilizability
of the equivalent sampled-data dynamics is proven. The proof is con-
structive for the stabilizing controller. Two simulated examples illustrate
the performances.

Index Terms—Nonlinear Systems, Systems with Delays, Sampled-Data
Control, Nonlinear Predictive Control

I. INTRODUCTION

Compensation of delays is widely discussed in the literature
through different approaches ([1], [2], [3] and the references therein).
Recent works extend the reduction method or predictor-based
methodologies to the nonlinear context [4], [5], [6]. Nowadays, a
growing interest is addressed to the sampling problem in presence
of input delays ([7], [8], [9], [10], [11], [12], [13], [14], [15]). This
paper focuses on both the problems of sampling and compensation of
constant input delays for nonlinear systems. We show how Immersion
and Invariance (I&I) ([16], [17], [18]) provides a natural and fruitful
framework for the design of sampled-data state-feedback for dynam-
ics with input delays. Furthermore, we underline that such a strategy
notably simplifies the design with respect to other predictor-based
ones.

Nonlinear stabilization is addressed with reference to a single-
input-affine continuous-time system with non-negative input-delay
τ ∈ R. The problem is set in the sampled-data context, i.e. the state
measures are available at the sampling instants t = kδ ,k≥ 0, and the
control variable is constant over each sampling period. The existence
of a continuous-time feedback ensuring Global Asymptotic Stability
(GAS) of the continuous-time delay free dynamics (i.e., when τ = 0)
is assumed. Furthermore, as usual in the concerned literature [19],
the sampling period δ is set as multiple of the delay length (i.e.,
τ = Nδ , N ∈ N+). It is well known that, under such assumptions,
the input-delayed dynamics (intrinsically infinite-dimensional) admits
a finite dimensional equivalent sampled-data model. This has been
recently exploited in the nonlinear context ([19], [10], [9], [11]) as a
simplifying approach to handle the presence of a delay on the input.
However, the computation of nonlinear sampled-data predictor-based
controllers remains a difficult problem ([11], [12], [13], [14]).
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In this paper the problem is set and solved in the I&I context: a
sampled-data stabilizing feedback is firstly designed on the delay-
free dynamics following the lines of [20], [21]; then, the delay-
free controlled dynamics identifies the target system evoling over a
stable manifold; finally, I&I stabilization in discrete-time is achieved
by driving the off-the manifold components to zero. The manifold
invariance guarantees that the on-the-manifold closed-loop dynamics
recover the sampled-data stable target ones.

In comparison with sampled-data predictor-based techniques (see
[19], [10], [9], [11]), the proposed I&I feedback achieves asymptotic
convergence of the controlled trajectories onto the manifold where
they recover the predictor-based ones. With this in mind, such a
strategy prevents from big control effort with improved robustness
in particular when sampled-data predictor-based controllers cannot be
easily computed [13]. To conclude the paper, two simulated examples
illustrate the performances even in the case of uncertain delay length.
In addition to the well known van der Pol oscillator, admitting an
exactly computable predictor [19], an academic example is developed
to illustrate the robusteness of the proposed approach when only
approximate predictors can be computed. A preliminary version of
this work is in [22] where the linear case illustrates the strategy.

The paper is organized as follows: instrumental tools and results
are given in Section II; the main result is proposed and discussed in
Section III; finally, simulated examples are in Sections IV and V.

Notations: MU (MI
U ) denotes the space of measurable and locally

bounded functions u : R+ → U (u : I → U , I ⊂ R+) with U ⊆ R.
A system ẋ = f (x) + g(x)u (with x ∈ Rn, u ∈ U) is said forward
complete if for every x0 ∈ Rn and u ∈ MU its solution x(t) with
x(0) = x0 ∈Rn exists for all t ≥ 0. Given a vector field f , L f denotes
the Lie derivative operator, L f = ∑

n
i=1 fi(·) ∂

∂xi
. eL f (or e f , when no

confusion arises) denotes the associated Lie series operator, e f :=

1+∑i≥1
Li

f
i! . Given vector fields f ,g, their Lie bracket is defined as

ad f g := [ f ,g] := [L f ,Lg] := L f ◦Lg−Lg ◦L f and, iteratively, adi
f g :=

[ f ,adi−1
f g], with ad0

f g := g. We denote by the same ◦ the composition
of functions and operators. Given a n-dimensional real vector v, v′

denotes its transposed.

II. PROBLEM SETTLEMENT AND PRELIMINARIES

A. Problem settlement

Consider the retarded single input-affine dynamics

ẋ(t) = f (x)+u(t− τ)g(x) (1)

where f and g are smooth (i.e. C∞) vector fields on Rn; x∗ denotes
the equilibrium f (x∗) = 0; the delay τ is known. We shall refer to
the dynamics (1) as delay free dynamics (or delay free system) when
no delay is acting on the control input (i.e. τ = 0); i.e.

ẋ(t) = f (x)+u(t)g(x). (2)

The following standing assumptions are set:

• measures are available only at the sampling instants t = kδ (k≥
0) and the control is constant over time intervals of length δ ∈
]0,T ∗[, where δ is the sampling period and T ∗ is the maximum
allowable sampling period;

• maps and vector fields are smooth (i.e. infinitely differentiable
- C∞) and the system (2) is forward complete;

• δ is chosen so that τ = Nδ for a suitable integer N;
• Assumption A - The delay free system (2) is smoothly stabi-

lizable; i. e. there exists a feedback u(t) = γ(x) with γ(x∗) = 0
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and a proper 1 Lyapunov function V : Rn→R≥0 with V (x∗) = 0
such that V̇ = (L f + γLg)V < 0.

Accordingly, the objective of this work is to design a sampled-data
control law which stabilizes the closed-loop equilibrium of (1).

Remark 2.1 ([19]): Assuming that the delay-free system (2) is
forward complete ensures that the delayed one (1) is complete too: for
any x0 and u ∈M[−τ,∞)

U the solution x(t) of (1) with initial condition
x(0) = x0 ∈ Rn corresponding to u ∈M[−τ,∞)

U exists for all t ≥ 0.
Remark 2.2: Assuming τ = Nδ (i.e., N steps delay) is classical in

the case of nonlinear purely discrete-time and sampled-data retarded
systems [9], [19]. We argue that is not too restrictive under sampling
since actuators are assumed to provide piecewise constant control
with periodic sampling. Finally, a mismatch between the lengths of
the sampling period and the delay is allowed so providing a further
degree of freedom for the sampled-data design.

B. Sampled-data stabilization in the delay free case - recalls

To define the discrete-time target dynamics let us first recall that
assumption A is sufficient to prove the existence of a piecewise
constant control preserving GAS of the equilibrium at the sampling
instants. Consider (2) and assume the input constant over successive
intervals of length δ > 0; i.e. u(t) = uk for t ∈ [kδ ,(k+1)δ [

ẋ(t) = f (x)+ukg(x). (3)

Through integration over the same time-interval with initial condition
xk = x|t=kδ , one describes the equivalent sampled-data dynamics in
the form of a map as

xk+1 = Fδ
1 (xk,uk) = eδ ( f+ukg)x

∣∣
xk
. (4)

Following [20], from Assumption A one directly infers the existence
of a sampled-data feedback uk = γδ (xk) which stabilizes (4) by guar-
anteeing, at the sampling instants, the same performances ensured by
the continuous-time controller.

Theorem 2.1 ([21]): Given the dynamics (2) and the smooth feed-
back u = γ(x) satisfying A with Lyapunov function V , if LgV (x) 6= x∗
for any x 6= 0, then there exists a state-feedback uk = γδ (xk) which
achieves input-Lyapunov matching for the closed loop dynamics; i.e.
it is is the unique solution of the equality

V (Fδ (xk,uk))−V (xk) =
∫ (k+1)δ

kδ

(L f V + γLgV )(x(s))ds (5)

in the unknown uk. Such a controller, which admits the series
expansion

γ
δ (x) = γ0(x)+ ∑

i≥1

δ i

(i+1)!
γi(x) (6)

with γδ (x∗) = 0, ensures global asymptotic stabilization of the
equilibrium of (4) with the same control Lyapunov function V (·).

The proof of the above result is constructive and works out by
equating the terms of the same power in δ in both sides of the equality
(5). For the first terms one computes

γ0(xk) = γ(x(t))|t=kδ (7)

γ1(xk) = γ̇(x(t))|t=kδ (8)

γ2(xk) = γ̈(x(t))|t=kδ +
γ1(xk)

2LgV (x(t))|t=kδ

ad[ f ,g]V (x(t))|t=kδ . (9)

recovering respectively the continuous-time solution (7) and its time
derivative (8) computed at t = kδ . The higher order terms γq(·), q >

1V : Rn → R is proper if ∀ r > 0, V−1([0,r]) = {x ∈ Rn V (x) ≥ r} is
compact.

2, can be computed from the previous ones through an executable
algorithm.

Remark 2.3: The hypothesis LgV (x) 6= 0 for any x 6= x∗ is here
assumed to guarantee the existence and uniqueness of the solution of
the formal power series associated to (5). Less rescrictive conditions
could be identified by renouncing to exploit the function V (·) to
get the sampled-data feedback; this would correspond to address the
problem of extending the concept of control Lyapunov function under
sampling ([23], [24]) .

Remark 2.4: γ0(xk) restitutes the emulated solution which satisfies
(5) with an error in O(δ ). Denoting by γ [q](xk) with q ≥ 0, the
qth-order approximate controller (truncation in O(δ q+1) of the exact
solution (6)), one has by construction that γ [1](xk) := γ0(xk)+

δ

2 γ1(xk)

satisfies (5) with an error in O(δ 2) and γ [q](xk) with an error in
O(δ q+1).

Remark 2.5: In [21], it was shown that Lyapunov-based approx-
imate controllers yield practical global asymptotic stability of the
closed-loop equilibrium.

C. I&I stabilization in discrete time

I&I was firstly introduced in [16] and applied to several domains.
I&I stabilizability in discrete time was discussed in [18] and is
reformulated below.

Theorem 2.2: Consider a nonlinear discrete-time dynamics in the
form of a map

xk+1 = F(xk,uk) (10)

with state x ∈ Rn and control u ∈U and equilibrium state x∗ to be
stabilized. Let p < n and assume that we can find mappings

α(·) : Rp→ Rp; π(·) : Rp→ Rn; c(·) : Rp→ R
φ(·) : Rn→ Rn−p; ψ(·, ·) : Rn×(n−p)→ R

such that the following four conditions hold:
H1) (Target dynamics) - The dynamics with state ξ ∈ Rp

ξk+1 = α(ξk) (11)

has a GAS equilibrium at ξ∗ ∈ Rp and x∗ = π(ξ∗).
H2) (Immersion and invariance condition) - For all ξ ∈ Rp, there

exists c(·) : Rp→ R such that

F(π(ξk),c(ξk)) = π(α(ξk)). (12)

H3) (Implicit manifold) - The following identity between sets holds

{x ∈ Rn|φ(x) = 0}= {x ∈ Rn|x = π(ξ ) for ξ ∈ Rp} . (13)

H4) (Manifold attractivity and trajectory boundedness) - All the
trajectories of the system

zk+1 = φ(F(xk,ψ(xk,zk))) (14a)

xk+1 = F(xk,ψ(xk,zk)) (14b)

with z = φ(x) and z0 = φ(x0) are bounded for all k ≥ 0 and
satisfy

lim
k→∞

zk = 0 and ψ(π(ξ ),0) = c(ξ ). (15)

Then x∗ is a globally asymptotically stable equilibrium of the closed
loop dynamics

xk+1 = F(xk,ψ(xk,φ(xk))). (16)

Definition 2.1: Any discrete-time dynamics of the form (10)
satisfying the hypotheses H1) to H4) of Theorem 2.2 is said to be
I&I stabilizable with target dynamics ξk+1 = α(ξk).
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Remark 2.6: Rewriting (10) as F(x,u) = F(x) + G(x,u) with
G(x,0) = 0, condition H4) can be relaxed. To prove asymptotic
convergence of xk to x∗, it is sufficient to require

lim
k→∞

(G(xk,ψ(xk,zk))−G(xk,ψ(xk,0))) = 0. (17)

D. Hybrid representation and target dynamics

Setting τ = Nδ and assuming u(t) = uk for t ∈ [kδ ,(k+1)δ [, it is
immediate to represent the continuous-time retarded system (1) as an
hybrid dynamics over Rn+N ; one sets

ẋ(t) = f (x)+ v1
kg(x); ∀t ∈ [kδ ,(k+1)δ [

v1
k+1 =v2

k ; ... ;vN
k+1 = uk. (18)

On these bases, the stabilizing problem can be set on an extended
but finite dimensional dynamics strictly related to the delay length.
Accordingly, the discrete-time target dynamics is defined as (4), the
sampled-data equivalent of the continuous-time delay free system (3)
when uk = γδ (xk); i.e. for t ∈ [kδ ,(k+1)δ [ the target gets the form

xk+1 = Fδ
1 (xk,γ

δ (xk)) = eδ ( f+γδ (xk)g)xk (19)

with GAS equilibrium x∗ by construction of γδ (·).

III. THE MAIN RESULT

Consider the discrete-time equivalent of the hybrid system (18)

xk+1 = Fδ
1 (xk,v

1
k) = eδ ( f+v1

k g)xk; v1
k+1 = v2

k ; . . . ; vN
k+1 = uk (20)

rewritten in compact form (10) as

xe
k+1 =Fδ (xe

k,uk) (21)

with xe = (x
′
, v̄
′
)∈Rn+N , v̄ = (v1, ...,vN)

′ ∈RN and equilibrium xe
∗ =

(x
′
∗,0)

′
. Following Theorem 2.2, one introduces

z̄ = φ
δ (xe) = (φ δ

1 (x
e), ...,φ δ

N (x
e))

′

with

zi
k =φ

δ
i (xk, v̄k) = vi

k− γ
δ (xk+i−1), i = 1, . . . ,N (22)

and πδ (·) = (·,γδ (·), . . . ,γδ ((αδ )N−1(·)))′ with αδ (·) =Fδ (·,γδ (·)).
The above mappings refer to the ones in Theorem 2.2 where the
superscript δ is added so to underline their parametrization by the
sampling period.

In (22), xk+i stands for the i-times composition of the function Fδ
1

xk+i = Fδ
1 (·,vi)◦ · · · ◦Fδ

1 (xk,v
1) = eδ ( f+v1

k g) ◦ · · · ◦ eδ ( f+vi
kg)x
∣∣
xk
.

The following definition is instrumental.
Definition 3.1: The continuous-time system (1) is said to be

sampled-data I&I stabilizable if its sampled-data equivalent model
(21) is I&I stabilizable in the discrete-time sense of Definition 2.1.

The main result can now be set.

Theorem 3.1: The input-affine continuous-time dynamics (1) under
Assumption A with LgV (x) 6= x∗ for any x 6= 0 and τ = Nδ is
sampled-data I&I stabilizable. Equivalently, (21) is I&I stabilizable
with target dynamics over Rn

ξk+1 = Fδ
1 (ξk,γ

δ (ξk)) := α
δ (ξk) (23)

where γδ (·) : Rn→R denotes the controller of the delay free system
defined in Theorem 2.1.

Proof. For, one has to show that the four conditions in Theorem
2.2 are satisfied. Given γδ (·) : Rn→R defined according to (5) with
control Lyapunov function V (·) : Rn → R, let ξ ∈ Rn and define
πδ (·) : Rn→ Rn+N as πδ (ξk) = (ξk,γ

δ (ξk), ...,γ
δ (ξk+N−1))

′
. It is a

matter of computations to very that the conditions H1), H2) and H3)

of Theorem 2.2 are satisfied by construction with φ δ (·) : Rn+N →R
described in (22) and

cδ (ξk) = γ
δ (ξk+N) = γ

δ ◦α
δ ◦ · · · ◦α

δ (ξk), N times. (24)

On these bases, it follows directly from Theorem 2.2 that any
feedback u = ψδ (x, v̄, z̄) such that ψδ (πδ (ξ ),0) = cδ (ξ ) designed to
drive z̄ to zero while ensuring boundedness of the state trajectories
of the extended dynamics

zi
k+1 = φ

δ
i (F

δ (xe
k,ψ

δ (xe
k, z̄k))) (25a)

xe
k+1 = Fδ (xe

k,ψ
δ (xe

k, z̄k)) (25b)

for i= 1, . . . ,N achieves global asymptotic stability of the equilibrium
of the closed loop dynamics xe

k+1 = Fδ (xe
k,ψ

δ (xe
k,φ

δ (xe
k))). /

Remark 3.1: Theorem 3.1 shows that the problem admits a solution
in the discrete-time I&I context when: there exists a sampled-data
solution to the continuous time delay free stabilization problem (The-
orem 2.1) and the hybrid retarded dynamics (18) is finite dimensional.

Remark 3.2: The feedback cδ (·) in (24) corresponds to the N-steps
ahead predictor-based feedback γδ (·) with target dynamics (23) as
predictor. Hence, when the stable manifold is reached (z̄ = 0), one
recovers the predictor-based solution γδ ◦(αδ )N(·) while in the delay
free case cδ (·) = γδ (·).

A. On the I&I stabilizing feedback design

According to the specific structure of the extended dynamics (20)
and the definition of φ δ (xe) in (22), it is a matter of computations
to verify that the off-the manifold dynamics (25a) simplifies so that
the system (25) rewrites as

zi
k+1 = zi+1

k ; zN
k+1 = uk− γ

δ (xk+N) (26a)

xe
k+1 = Fδ (xe,0)+Buk (26b)

for i = 1, . . . ,N−1 with xk+N = eδ ( f+v1
k g) ◦ · · · ◦ eδ ( f+vN

k g)x
∣∣
xk

and

Fδ (xe,0) = (Fδ
1 (x,v1)

′
, v2, . . . vN , 0)

′
; B =

(
0′ , 1

)′
.

As a consequence of the structure of the xe-dynamics, condition H4)
of Theorem 2.2 can be relaxed to (17) so getting the following result
about the construction of the control law.

Proposition 3.1: The extended dynamics (21) with target dynamics
(23) is I&I stabilized by the feedback

uk = ψ
δ
k (x

e
k, z̄k) = lz̄k + γ

δ (xk+N) (27)

with xk+N = Fδ
1 (.,vN

k )◦· · ·◦Fδ
1 (xk,v1

k) and l = (l1 . . . lN) chosen such
that the matrix

L =


0 1 0 . . . 0

. . .
0 0 0 . . . 1
l1 l2 l3 . . . lN


is Schur2. Equivalently, the piecewise constant control (27) globally
asymptotically stabilizes the equilibrium of (1) under Assumption A
with LgV (x) 6= 0 for any x 6= x∗ and τ = Nδ . Setting l = 0 one has
convergence to the manifold in exactly N steps (deadbeat).

Proof. According to Remark 2.6, it can be easily deduced that
limk→∞ l z̄k = 0 is sufficient to prove global asymptotical convergence
to xe
∗ since the dynamics z̄k+1 = Lz̄k is globally asymptotically stable

by construction. Suppose l = 0 to bring z̄ to zero in exactly N steps,
then xk+N = eδ ( f+v1

k g) ◦ · · · ◦ eδ ( f+vN
k g)x

∣∣
xk

coincides with the stable
delay-free target (19). Hence, (17) still holds. /

2A matrix N ∈ Rn×n is said to be Schur if all its eigenvalues are within’
the unit circle
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Remark 3.3: Proposition 3.1 shows that (27) linearizes the off-
the-manifold z̄-dynamics. It results that the closed-loop system is
minimum-phase with respect to the output z̄ with zero-dynamics
coinciding with the target one.

B. Approximate solutions: the case τ = δ

The solution (27) with constant gain l is referred to the case in
which the sampled-data equivalent model (20) can be finitely com-
puted. This is seldom the case so that, in general, only approximate
expressions of γδ (xk+N) in (27) can be worked out. For this reason, a
constant gain l as in (27) may not be robust with respect to unmodeled
higher order dynamics in (20). Hereinafter, we propose an alternative
approximate solution in which the closed-loop z̄-dynamics becomes
nonlinear in x when choosing a dynamic gain lδ (x).
Constructive aspects are sketched to characterize the I&I solution
around the predictor-based feedback when N = 1. In such a case,
dynamics (26a) and (26b) rewrite as

zk+1 = uk− γ
δ (xk+1) (28a)

xk+1 = Fδ
1 (xk,γ

δ (xk)+ zk) (28b)

vk+1 = uk. (28c)

The following proposition states the result in the case in which a
finite sampled-data equivalent model cannot be computed.

Proposition 3.2: The input-affine continuous-time dynamics (1)
under Assumption A with τ = δ is sampled-data locally I&I stabilized
by the piecewise constant feedback

uk = γ
δ (αδ (xk))+ lδ (xk)zk (29)

with dynamic gain lδ (x) such that for all xk ∈ Rn

|lδ (xk)−
∂γδ (x)

∂x

∣∣∣
αδ (xk)

Gδ (αδ (xk),γ
δ (xk))|< 1 (30)

and Gδ (x,v) =
∫

δ

0 e−sad f+vg g(x)ds. Equivalently, the control (29)
locally asymptotically stabilizes the equilibrium of (28b)-(28c).
Proof. (28b) can be expanded around the target dynamics αδ (·) =
Fδ

1 (·,γδ (·)) as

xk+1 =α
δ (xk)+

∂Fδ
1 (xk,v)
∂v

∣∣∣
γδ (xk)

zk +O(z2).

Similarly, in (28a), one has

γ
δ (xk+1) =γ

δ (αδ (x))+
∂γδ (x)

∂x

∣∣∣
αδ (x)

∂Fδ
1 (x,v)
∂v

∣∣∣
γδ (x)

z+O(z2)

with by definition (see [20] for more details)

Gδ (αδ (xk),γ
δ (xk)) =

∂Fδ
1 (xk,v)
∂v

∣∣∣
γδ (xk)

. (31)

Choosing the feedback ψδ (x,v,z) as in (29) with dynamic gain lδ (x)
such that (30) holds, one gets in O(z2)

zk+1 =
(

lδ (x)− ∂γδ (x)
∂x

∣∣∣
αδ (x)

Gδ (αδ (xk),γ
δ (xk))

)
zk

xk+1 = α
δ (xk)+Gδ (αδ (xk),γ

δ (xk))zk

vk+1 = γ
δ (αδ (xk))+ lδ (xk)zk = cδ (xk)+ lδ (xk)zk

where xk+1 =αδ (xk) is the target dynamics and γδ (αδ (xk)) = cδ (xk)
the predictor-based feedback solution.

Under the feedback (29), condition (17) is verified in O(z2);
i.e. local sampled-data asymptotic stabilization of the input-delay
dynamics (1) is achieved. /

Further approximations in δ give the following condition which
specifies the constraint in terms of the continuous-time dynamics and

the sampling period only. By construction, Gδ (·,γδ ) = δg+O(δ 2),
so that the gain condition (30) gives in O(δ 2)

|lδ (xk)−δLgγ
δ (xk)|< 1. (32)

Remark 3.4: The structure of the feedback (29) underlines that the
I&I solution recovers the predictor-based controller when z = 0. The
additional term lδ (x)z is referred to the prediction error dynamics.
This guarantees robustness improvements with respect to discarded
higher order approximations of the sampled-data equivalent model.

Remark 3.5: Easy manipulations show that in the general case
τ = Nδ , γδ (xk+N) rewrites as

γ
δ (xk+N) = eδ ( f̃+z1

k g) ◦ · · · ◦ eδ ( f̃+zN
k g)

γ
δ (xk)

which can be expanded around the predictor-based solution
eNδ f̃ γδ (xk) = cδ (xk). Hence, the gain function lδ (x)z in (29) gen-
eralizes as

l̄δ (x)z̄ = δ

N

∑
i=1

ziLg(eNδ f̃
γ

δ (x))+δΩ(x, z̄,δ )

where f̃ = f +γδ g and Ω(x, z̄,δ ) contains the remaining higher order
terms in δ with Ω(x,0,δ ) = 0 and Ω(x, z̄,0) = 0.

IV. THE VAN DER POL EXAMPLE

Let us consider the system in strict-feedforward form studied in
[19], [10] which represents the van der Pol oscillator

ẋ1(t) =x2(t)− x2
2(t)u(t− τ), ẋ2(t) = u(t− τ).

When τ = 0, the stabilizing continuous-time controller is provided as
γ(x) =−x1−2x2−

x3
2

3 with control Lyapunov function V (x) = 1
2 (x1+

x3
2

3 )
2 + 1

2 (x2 +2x1 +
2
3 x3

2). Assuming, u(t) = uk for t ∈ [kδ ,(k+1)δ ),
one gets the exact sampled-data equivalent dynamics

x1k+1 =x1k +δ (x2k− x2
2kuk)+

δ 2

2!
(uk−2x2ku2

k)−
δ 3

3
u3

k (33)

x2k+1 =x2k +δuk. (34)

The equivalent sampled-data delay-free stabilizing controller γδ (x)
is computed according to Section II to satisfy the equality (5). It is
approximated as

γ
δ (x) = γ(x)+

δ

2
γ̇(x)+O(δ 2) (35)

with γ̇(x) = 2
3 x3

2 +3x2 +2x1.

A. Predictor-based controller

Assuming the delay equal to δ (N = 1) and setting xp
k = xk+1, the

predicted state, the sampled-data predictor-based feedback is uk =
γδ (xp

k ) with

xp
1k =x1k +δ (x2k− x2

2kuk−1)+
δ 2

2!
(uk−1−2x2ku2

k−1)−
δ 3

3
u3

k−1

xp
2k =x2k +δuk−1.

Hence, as well known, prediction is performed in open-loop.

B. I&I sampled data controller

According to Section III, one sets the extended dynamics as

x1k+1 =x1k +δ (x2k− x2
2kvk)+

δ 2

2!
(vk−2x2kv2

k)−
δ 3

3
v3

k

x2k+1 =x2k +δvk, vk+1 = uk
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Fig. 1: The Van der Pol oscillator: τ = δ = 0.1 s.
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Fig. 2: The Van der Pol oscillator: δ = 0.7 s, ε = 0.2δ .

and the target dynamics as (dropping the k-subscript in the r.h.s.)

ξ1k+1 =ξ1 +δ (ξ2−ξ
2
2 γ

δ (ξ ))+
δ 2

2!
(γδ (ξ )−2ξ2γ

δ (ξ )2)− δ 3

3
γ

δ (ξ )3

ξ2k+1 =ξ2 +δγ
δ (ξ )

with γδ (·) as in (35). Finally, the manifold is implicitly defined
as φ δ (x) = v− γδ (x) = 0 and the off-the-manifold component as
z = φ δ (x), with z0 = φ δ (x0). Setting ψδ (xk,vk,zk) = lzk + γδ (xk+1),
one ensures that Proposition 3.1 holds so concluding GAS of the
equilibrium of the closed loop sampled-data dynamics

x1k+1 =x1k +δ (x2k− x2
2kvk)+

δ 2

2!
(vk−2x2kv2

k)−
δ 3

3
v3

k

x2k+1 =x2k +δvk; vk+1 = l(vk− γ
δ (xk))+ γ

δ (xk+1).

When z = 0 (and, hence, v = γδ (x)), the manifold is reached and one
recovers ψδ (πδ (ξ ),0) = γδ (αδ (ξ )), the closed loop stable dynamics
on the manifold. Since the van der Pol dynamics admits a finite
sampled-data equivalent model, the term γδ (xk+1) can be exactly
computed.

C. Simulations

Simulations are carried out on the van der Pol Example. The I&I
strategy (SD I&I) is implemented for the case τ = δ with l = 0.
The delay-free closed-loop trajectories under the feedback (35) are
depicted as well. The initial conditions are set at x0 = (1 1)′ and
u(t) = 0 for t ∈ [−τ,0).

Figure 1 depicts the results in the nominal case τ = Nδ with
N = 1. Figure 2 puts in light two aspects: good performances even
when singnificantly increasing the sampling period (from 0.1 to 0.3
seconds); robustness with respect to unmodeled uncertainties over δ

(i.e., on τ when τ = δ + ε , with small ε ≥ 0). Further simulations
(for ε = 0) were carried out for comparing the proposed solution
with the result in [19] showing that both approaches yield good and
satisfactory closed-loop performances with limited control effort.

V. AN ACADEMIC EXAMPLE

An interesting comparison with the approach proposed in [9] is
provided by the following simple academic example over R2

ẋ1 = x2
1 + x2; ẋ2 = u(t− τ). (36)

Setting φ(x1) = −x1− x2
1, the control law uc = γ(x) = φ̇(x1)− x1−

K(x2− φ(x1)), K > 0, makes the origin of (36) GAS when τ = 0,
with V (x1,x2) =

1
2 (x

2
1 +(x2− φ(x1))

2). According to Theorem 2.1
one computes uD = γδ (x) = γ(x)+ δ

2 γ̇(x)+O(δ 2), with

γ̇(x) =(x1 +(2x1 +1)(x2
1 + x2)+K(x2

1 + x1 + x2))(K +2x1 +1)

− (x2
1 + x2)(2x2 +K(2x1 +1)+2x1(2x1 +1)+2x2

1 +1)

so ensuring GAS of the equilibrium of (36) under sampling when
τ = 0. Since in this case an exact predictor cannot be computed as
(36) does not admit a finite sampled-data equivalent model, we will
show robustness with respect to the discarded higher order dynamics
in δ p (p approximate order) of the I&I predictor based-controller.
Setting τ = δ , the extended hybrid dynamics (20) is detailed as

ẋ1 = x2
1 + x2; ẋ2 = vk; vk+1 = uk

with 3rd-order approximate sampled-data model described as

x1k+1 =x1 +δ (x2
1 + x2)+

δ 2

2
(v+2x1(x2

1 + x2))

+
δ 3

3
(3x4

1 +4x2
1x2 + x1v+ x2

2)+O(δ 4) (37)

x2k+1 =x2 +δv; vk+1 = u.

Accordingly, one sets z = v− γδ (x) and gets

zk+1 =u− γ
δ (xk+1)

x1k+1 =x1 +δ (x2
1 + x2)+

δ 2

2
(γδ (x)+2x1(x2

1 + x2))

+
δ 3

3
(3x4

1 +4x2
1x2 + x1γ

δ (x)+ x2
2)+

δ 2

2
z+

δ 3

3
x1z+O(δ 4)

x2k+1 =x2 +δγ
δ (x)+δ z; vk+1 = u.

The feedback
u = lz+ γ

δ (xk+1) (38)

ensures I&I stabilization of the dynamics (36) by ensuring bound-
edness of the trajectories of the (z,x,v)-extended dynamics. As
pointed out, an exact predictor for (36) does not exist. Similarly, only
approximations of the control (38) can be implemented. According
to Section III-B, we define the approximate control

uapp = lδ (x,z)z+ γ
δ (αδ [3](ξ )) (39)

with γδ (·) computed on the approximate target dynamics ξk+1 =
αδ [3](ξ ) provided as

ξ1k+1 =ξ1 +δ (ξ 2
1 +ξ2)+

δ 2

2
(γδ (ξ )+2ξ1(ξ

2
1 +ξ2))+

δ 3

3
(3ξ

4
1 +4ξ

2
1 ξ2 +ξ1γ

δ (ξ )+ξ
2
2 )

ξ2k+2 =ξ2 +δγ
δ (ξ ).

Furthermore, the term lδ (x,z)z with lδ (x,z) = l + δ (1+K + 2x1)+
O(δ 2) represents a feedback on the prediction error which makes
the closed-loop system under approximate control more robust with
respect to discarded higher order predicted-state dynamics in O(δ 4).
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A. Simulations

We simulate the closed-loop performances of the dynamics (36)
under the proposed approximate sampled-data I&I control (39).
We set x0 = (0.5,0.5)T and u(t) = 0 for t ∈ [−τ,0). Comparisons
are carried out with respect to the mere approximate sampled-data
predicted-based control [19] uk = γδ [1](xk+1) that is implemented
with xk+1 as in (37). In particular, we consider two scenarios: Figure
3 depicts the result with rather fast sampling and when the delay is
assumed known with N = 1 and τ = δ = 0.1 s; in Figure 4 we report
simulations for the case of unceratainty on the delay length (i.e., we
simulate τ = δ +ε with small ε > 0) and rather large value of δ . In all
the simulations, we apply the same order of approximations in both
the I&I and predictor based control schemes. As the sampling period
increases, the predictor-based control yields degrading performances
(both in the state trajectories and control effort) even when the delay
is assumed exactly known. As a matter of fact, the effect of the
uncertainties in the delay length is better handled by the proposed I&I
strategy so yielding robustness even with respect to both unmodeled
higher order dynamics and approximation of the control solutions.

VI. CONCLUSIONS

The I&I stabilizing approach has been used to investigate sampled-
data feedback stabilization of input-affine-delayed continuous-time
dynamics. The sampled-data predictor-based controller is recovered
as a particular case. The method applies to multi-input dynamics
along the same lines. Extensions will concern other types of delays
as in the state, distributed delays or when the delay cannot be assumed
an entire of the sampling period. In this last case, a multirate sampled-
data strategy should be applied along the lines in [7].
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