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Abstract

We consider a Riemannian cylinder Ω endowed with a closed potential 1-form A and study the
magnetic Laplacian ∆A with magnetic Neumann boundary conditions associated with those data.
We establish a sharp lower bound for the first eigenvalue and show that the equality characterizes
the situation where the metric is a product. We then look at the case of a planar domain bounded
by two closed curves and obtain an explicit lower bound in terms of the geometry of the domain. We
finally discuss sharpness of this last estimate.
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1 Introduction

Let (Ω, g) be a compact Riemannian manifold with boundary. Consider the trivial com-
plex line bundle Ω×C over Ω; its space of sections can be identified with C∞(Ω,C), the
space of smooth complex valued functions on Ω. Given a smooth real 1-form A on Ω we
define a connection ∇A on C∞(Ω,C) as follows:

∇A
Xu = ∇Xu− iA(X)u (1)

for all vector fields X on Ω and for all u ∈ C∞(Ω,C); here ∇ is the Levi-Civita connection
assocated to the metric g of Ω. The operator

∆A = (∇A)?∇A (2)

is called the magnetic Laplacian associated to the magnetic potential A, and the smooth
two form

B = dA

is the associated magnetic field. We will consider Neumann magnetic conditions, that is:

∇A
Nu = 0 on ∂Ω, (3)
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where N denotes the inner unit normal. Then, it is well-known that ∆A is self-adjoint,
and admits a discrete spectrum

0 ≤ λ1(∆A) ≤ λ2(∆A) ≤ ...→∞.

The above is a particular case of a more general situation, where E → M is a complex
line bundle with a hermitian connection ∇E, and where the magnetic Laplacian is defined
as ∆E = (∇E)?∇E.
The spectrum of the magnetic Laplacian is very much studied in analysis (see for exam-
ple [3] and the references therein) and in relation with physics. For Dirichlet boundary
conditions, lower estimates of its fundamental tone have been worked out, in particular,
when Ω is a planar domain and B is the constant magnetic field; that is, when the func-
tion ?B is constant on Ω (see for example a Faber-Krahn type inequality in [9] and the
recent[12] and the references therein, also for Neumann boundary condition). The case
when the potential A is a closed 1-form is particularly interesting from the physical point
of view (Aharonov-Bohm effect), and also from the geometric point of view. For Dirichlet
boundary conditions, there is a series of papers for domains with a pole, when the pole
approaches the boundary (see [1, 13] and the references therein). Last but not least,
there is a Aharonov-Bohm approach to the question of nodal and minimal partitions, see
chapter 8 of [4].
For Neumann boundary conditions, we refer in particular to the paper [10], where the
authors study the multiplicity and the nodal sets corresponding to the ground state λ1

for non-simply connected planar domains with harmonic potential (see the discussion
below).
Let us also mention the recent article [11] (chapter 7) where the authors establish a
Cheeger type inequality for λ1; that is, they find a lower bound for λ1(∆A) in terms of
the geometry of Ω and the potential A. In the preprint [8], the authors approach the
problem via the Bochner method and in [6], the authors look at the problem of finding
upper bounds for the spectrum.
Finally, in a more general context (see [2]) the authors establish a lower bound for λ1(∆A)
in terms of the holonomy of the vector bundle on which ∆A acts. In both cases, implicitly,
the flux of the potential A plays a crucial role.

• From now on we will denote by λ1(Ω, A) the first eigenvalue of ∆A on (Ω, g).

1.1 Main lower bound

Our lower bound is partly inspired by the results in [10] for plane domains. First, recall
that if c is a closed parametrized curve (a loop), the quantity:

ΦA
c =

1

2π

∮
c

A
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is called the flux of A across c. (We assume that c is travelled once, and we will not specify
the orientation of the loop, so that the flux will only be defined up to sign: this will not
affect any of the statements, definitions or results which we will prove in this paper). Let
then Ω be a fixed plane domain with one hole, and let ΦA be the flux of the harmonic
potential A across the inner boundary curve. In Theorem 1.1 of [10] it is first remarked
that λ1(Ω, A) is positive if and only if ΦA is not an integer (but see the precise statement
in Section 2.1 below). Then, it is shown that λ1(Ω, A) is maximal precisely when ΦA is
congruent to 1

2
modulo integers. The proof relies on a delicate argument involving the

nodal line of a first eigenfunction; in particular, the conclusion does not follow from a
specific comparison argument, or from an explicit lower bound.

In this paper we give a geometric lower bound of λ1(Ω, A) when Ω is, more generally, a
Riemannian cylinder, that is, a domain (Ω, g) diffeomorphic to [0, 1] × S1 endowed with
a Riemannian metric g, and when A is a closed potential 1-form : hence, the magnetic
field B associated to A is equal to 0. The lower bound will depend on the geometry of Ω
and, in an explicit way, on the flux of the potential A.

Let us write ∂Ω = Σ1 ∪ Σ2 where

Σ1 = {0} × S1, Σ2 = {1} × S1.

We will need to foliate the cylinder by the (regular) level curves of a smooth function ψ
and then we introduce the following family of functions.

FΩ = {ψ : Ω→ R : ψ is constant on each boundary component

and has no critical points inside Ω.}

As Ω is a cylinder, we see that FΩ is not empty. If ψ ∈ FΩ, we set:

K = KΩ,ψ =
supΩ|∇ψ|
infΩ|∇ψ|

.

It is clear that, in the definition of the constant K, we can assume that the range of ψ is
the interval [0, 1], and that ψ = 0 on Σ1 and ψ = 1 on Σ2. Note that the level curves of
the function ψ are all smooth, closed and connected; moreover they are all homotopic to
each other so that the flux of a closed 1-form A across any of them is the same, and will
be denoted by ΦA.
We say, briefly, that Ω is K-foliated by the level curves of ψ. We also denote by d(ΦA,Z)
the minimal distance between ΦA and the set of integer Z:

d(ΦA,Z)2 = min
{

(ΦA − k)2 : k ∈ Z
}
.

Finally, we say that Ω is a Riemannian product if it is isometric to [0, a] × S1(R) for
suitable positive constants a,R.
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Theorem 1.

a) Let (Ω, g) be a Riemannian cylinder, and let A be a closed 1-form on Ω. Assume that
Ω is K-foliated by the level curves of the smooth function ψ ∈ FΩ. Then:

λ1(Ω, A) ≥ 4π2

KL2
· d(ΦA,Z)2, (4)

where L is the maximum length of a level curve of ψ and ΦA is the flux of A across any
of the boundary components of Ω.

b) Equality holds if and only if the cylinder Ω is a Riemannian product.

• It is clear that we can also state the lower bound as follows:

λ1(Ω, A) ≥ 4π2

K̃Ω

· d(ΦA,Z)2,

where K̃Ω is an invariant depending only on Ω:

K̃Ω = inf
ψ∈FΩ

KΩ,ψL
2
ψ and Lψ = sup

r∈range(ψ)

|ψ−1(r)|.

It is is not always easy to estimate K. In Section 2.4 we will show how to estimate K
in terms of the metric tensor. Note that K ≥ 1; we will see that in many interesting
situations (for example, for revolution cylinders, or for smooth embedded tubes around a
closed curve) one has in fact K = 1.

1.2 Doubly connected planar domains

We now estimate the constant K above when Ω is an annular region in the plane, bounded
by the inner curve Σ1 and the outer curve Σ2.

• We assume that the inner curve Σ1 is convex.

From each point x ∈ Σ1, consider the ray γx(t) = x+tNx, where Nx is the exterior normal
to Σ1 at x and t ≥ 0. Let Q(x) be the first intersection of γx(t) with Σ2, and let

r(x) = d(x,Q(x)).

We say that Ω is starlike with respect to Σ1 if the map x → Q(x) is a bijection between
Σ1 and Σ2; equivalently, if given any point y ∈ Σ2, the geodesic segment which minimizes
distance from y to Σ1 is entirely contained in Ω.
For x ∈ Σ1, we denote by θx the angle between γ′x and the outer normal to Σ2 at the
point Q(x), and we let

m
.
= min

x∈Σ1

cos θx.
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Note that as Ω is starlike w.r.t. Σ1, one has θx ∈ [0, π
2
] and then m ≥ 0.

• To have a positive lower bound, we will assume that m > 0 (that is, Ω is strictly
starlike w.r.t. Σ1).

We also define {
β = min{r(x) : x ∈ Σ1}
B = max{r(x) : x ∈ Σ1}

(5)

Note that β and B are, respectively, the minimum and maximum thickness of the annulus;
obviously B has nothing to do with the magnetic field (which in our case is zero because
the magnetic potential is closed).
We then have the following result.

Theorem 2. Let Ω be an annulus in R2, which is strictly-starlike with respect to its
inner (convex) boundary component Σ1. Assume that A is a closed potential having flux
ΦA around Σ1. Then:

λ1(Ω, A) ≥ 4π2

L2

βm

B
d(ΦA,Z)2

where β and B are as in (18), and L is the length of the outer boundary component. If
Σ2 is also convex, then m ≥ β/B and the lower bound takes the form:

λ1(Ω, A) ≥ 4π2

L2

β2

B2
d(ΦA,Z)2.

In section 4, we will explain why we need to control
β

B
, L, and why we need to impose

the starlike condition. If β = B and Σ2 is the circle of length L we get the estimate

λ1(Ω, A) ≥ 4π2

L2
d(ΦA,Z)2

which is the first eigenvalue of the magnetic Laplacian on the circle with potential A (see
section 5.1). If Σ2 and Σ1 are two concentric circles of respective lengths L and Lε → L,

the domain is a thin annulus with λ1 →
4π2

L2
d(ΦA,Z)2 which shows that our estimate is

sharp.

Our aim is to use these estimates on cylinders as a basis stone in order to study the same
type of questions on compact surfaces of higher genus.
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2 Proof of the main theorem

2.1 Preliminary facts and notation

First, we recall the variational definition of the spectrum. Let Ω be a compact manifold
with boundary and ∆A the magnetic Laplacian with Neumann boundary conditions. One
verifies that ∫

Ω

(∆Au)ū =

∫
Ω

|∇Au|2,

and the associated quadratic form is then

QA(u) =

∫
Ω

|∇Au|2.

The usual variational characterization gives:

λ1(Ω, A) = min
{QA(u)

‖u‖2
: u ∈ C1(Ω,C)/{0}

}
(6)

The following proposition (which is well-known) expresses the gauge invariance of the
spectrum of the magnetic Laplacian.

Proposition 3. a) The spectrum of ∆A is equal to the spectrum of ∆A+dφ for all smooth
real valued functions φ; in particular, when A is exact, the spectrum of ∆A reduces to that
of the classical Laplace-Beltrami operator acting on functions (with Neumann boundary
conditions if ∂Ω is not empty).

b) If A is a closed 1-form, then A is gauge equivalent to a unique (harmonic) 1-form Ã
satisfying {

dÃ = δÃ = 0 on Ω

Ã(N) = 0 on ∂Ω

The form Ã is often called the Coulomb gauge of A. Note that Ã is the harmonic repre-
sentative of A for the absolute boundary conditions.

Proof. a) This comes from the fact that ∆Ae
−iφ = e−iφ∆A+dφ hence ∆A and ∆A+dφ are

unitarily equivalent.

b) Consider a solution φ of the problem:∆φ = δA on Ω,

∂φ

∂N
= A(N) on ∂Ω.
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Then one checks that Ã = A − dφ is a Coulomb gauge of A. As φ is unique up to an
additive constant, dφ, hence Ã, is unique.

We now focus on the first eigenvalue. Clearly, if A = 0, then λ1(Ω, A) = 0 simply
because ∆A reduces to the usual Laplacian, which has first eigenvalue equal to zero and
first eigenspace spanned by the constant functions. If A is exact, then ∆A is unitarily
equivalent to ∆, hence, again, λ1(Ω, A) = 0. In fact one checks easily from the definition
of the connection that, if A = dφ for some real-valued function φ then ∇Aeiφ = 0, which
means that u = eiφ is ∇A-parallel hence ∆A-harmonic. On the other hand, if the magnetic
field B = dA is non-zero then λ1(Ω, A) > 0.

It then remains to examine the case when A is closed but not exact. The situation was
clarified in [14] for closed manifolds and in [10] for Neumann boundary conditions.

Theorem 4. The following statements are equivalent:

a) λ1(Ω, A) = 0;

b) dA = 0 and ΦA
c ∈ Z for any closed curve c in Ω.

Thus, the first eigenvalue vanishes if and only if A is a closed form whose flux around
every closed curve is an integer; equivalently, if A has non-integral flux around at least
one closed loop, then λ1(Ω, A) > 0.

2.2 Proof of the lower bound

From now on we assume that Ω is a Riemannian cylinder. Fix a first eigenfunction u
associated to λ1(Ω, A) and fix a level curve

Σr = {ψ = r}, where r ∈ [0, 1].

As ψ has no critical points, Σr is isometric to S1(Lr
2π

), where Lr is the length of Σr. The

restriction of A to Σr is a closed 1-form denoted by Ã; we use the restriction of u to Σr

as a test-function for the first eigenvalue λ1(Σr, Ã) and obtain:

λ1(Σr, Ã)

∫
Σr

|u|2 ≤
∫

Σr

|∇Ãu|2. (7)

By the estimate on the eigenvalues of a circle done in Section 2.3.3 below we see :

λ1(Σr, Ã) =
4π2

L2
r

d(ΦÃ,Z)2,

where ΦÃ is the flux of Ã across Σr. Now note that ΦÃ = ΦA, because Ã is the restriction
of A to Σr; moreover Lr ≤ L by the definition of L. Therefore:

λ1(Σr, Ã) ≥ 4π2

L2
d(ΦA,Z)2 (8)
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for all r. Let X be a unit vector tangent to Σr. Then:

∇Ã
Xu = ∇Xu− iÃ(X)u

= ∇Xu− iA(X)u

= ∇A
Xu.

The consequence is that:

|∇Ãu|2 = |∇Ã
Xu|2 = |∇A

Xu|2 ≤ |∇Au|2. (9)

• Note that equality holds in (9) iff ∇A
Nu = 0 where N is a unit vector normal to the

level curve Σr (we could take N = ∇ψ/|∇ψ|).

For any fixed level curve Σr = {ψ = r} we then have, taking into account (7), (8) and
(9):

4π2

L2
d(ΦA,Z)2

∫
ψ=r

|u|2 ≤
∫
ψ=r

|∇Au|2. (10)

Assume that B1 ≤ |∇ψ| ≤ B2 for positive constants B1, B2. Then the above inequality
implies:

4π2

L2
d(ΦA,Z)2 ·B1

∫
ψ=r

|u|2

|∇ψ|
≤ B2

∫
ψ=r

|∇Au|2

|∇ψ|
. (11)

• Note that if equality holds in (10) and (11) then necessarily B1 = B2 and then ∇ψ
must be constant.
We now integrate both sides from r = 0 to r = 1 and use the coarea formula. Conclude
that

4π2

L2
d(ΦA,Z)2 ·B1

∫
Ω

|u|2 ≤ B2

∫
Ω

|∇Au|2.

As u is a first eigenfunction, one has:∫
Ω

|∇Au|2 = λ1(Ω, A)

∫
Ω

|u|2.

Recalling that K = B2

B1
we finally obtain the estimate (4).

2.3 Proof of the equality case

If the cylinder Ω is a Riemannian product then it is obvious that we can take K = 1 and
then we have equality by Proposition 8 below. Now assume that we do have equality: we
have to show that Ω is a Riemannian product. Going back to the proof, we must have
the following facts.
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F1. All level curves of ψ have the same length L.

F2. By the remark after (11), |∇ψ| must be constant and, by renormalization, we can
assume that it is everywhere equal to 1. Then, ψ : Ω→ [0, a] for some a > 0 and we set

N
.
= ∇ψ.

F3. The eigenfunction u on Ω restricts to an eigenfunction of the magnetic Laplacian of
each level set Σr = {ψ = r}, with potential given by the restriction of A to Σr.

F4. One has ∇A
Nu = 0 identically on Ω.

2.3.1 First step: description of the metric

Lemma 5. Ω is isometric to the product [0, a]× S1( L
2π

) with metric

g =

(
1 0
0 θ2(r, t)

)
, (r, t) ∈ [0, a]× [0, L] (12)

where θ(r, t) is positive and periodic of period L in the variable t. Moreover θ(0, t) = 1
for all t.

Proof. We first show that the integral curves of N are geodesics; for this it is enough to
show that ∇NN = 0 on Ω. Let e1(x) be a vector tangent to the level curve of ψ passing
through x. Then, we obtain a smooth vector field e1 which, together with N , forms a
global orthonormal frame. Now

〈∇NN,N〉 =
1

2
N〈N,N〉 = 0.

On the other hand, as the Hessian is a symmetric tensor:

〈∇NN, e1〉 = ∇2ψ(N, e1) = ∇2ψ(e1, N) = 〈∇e1N,N〉 =
1

2
e1〈N,N〉 = 0.

Hence ∇NN = 0 as asserted. As each integral curve of N = ∇ψ is a geodesic meeting
Σ1 orthogonally, we see that ψ is actually the distance function to Σ1. We introduce
coordinates on Ω as follows. For a fixed point p ∈ Ω consider the unique integral curve
γ of N passing through p and let x ∈ Σ1 be the intersection of γ with Σ1 (note that x
is the foot of the unique geodesic which minimizes the distance from p to Σ1). Let r be
the distance of p to Σ1. We then have a map Ω→ [0, a]× Σ1 which sends p to (r, x). Its
inverse is the map F : [0, a]× Σ1 → Ω defined by

F (r, x) = expx(rN).
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Note that F is a diffeomeorphism; we call the pair (r, x) the normal coordinates based on
Σ1. We introduce the arc-length t on Σ1 (with origin in any assigned point of Σ1) and
recall that L is length of Σ1 (which is also the length of Σ2) by F1). Let us compute

the metric g in normal coordinates. Since N =
∂

∂r
one sees that g11 = 1 everywhere;

for any fixed r = r0 we have that F (r0, ·) maps Σ1 diffeomorphically onto the level set

{ψ = r0} so that
∂

∂r
and

∂

∂t
will be mapped onto orthogonal vectors, and indeed g12 = 0.

Setting θ(r, t)2 = 〈 ∂
∂t
,
∂

∂t
〉 one sees that the metric takes the form (12). Finally note that

θ(0, t) = 1 for all t, because F (0, ·) is the identity.

2.3.2 Second step : Gauge invariance

Lemma 6. Let Ω be any Riemannian cylinder and A = f(r, t) dr + h(r, t) dt a closed
1-form on Ω. Then, there exists a smooth function φ on Ω such that

A+ dφ = H(t) dt

for a smooth function H(t) depending only on t. Hence, by gauge invariance, we can
assume from the start that A = H(t) dt.

Proof. Consider the function φ(r, t) = −
∫ r

0
f(x, t) dx. Then:

A+ dφ = h̃(r, t) dt

for some smooth function h̃(r, t). As A is closed, also A + dφ is closed, which implies

that
∂h̃

∂r
= 0, that is, h̃(t, r) does not depend on r; if we set H(t)

.
= h̃(t, 0) we get the

assertion.

• We point out the following consequence. If u = u(r, t) is an eigenfunction, we know

from F4 above that ∇A
Nu = 0, where N =

∂

∂r
. As ∇A

Nu =
∂u

∂r
− iA(

∂

∂r
)u and A = H(t) dt

we obtain A(
∂

∂r
) = 0 hence

∂u

∂r
= 0 at all points of Ω. This implies that

u = u(t) (13)

depends only on t.

10



2.3.3 Third step : spectrum of circles and Riemannian products

In this section, we give an expression for the eigenfunctions of the magnetic Laplacian
on a circle with a Riemannian metric g and a closed potential A. Of course, we know
that any metric g on a circle is always isometric to the canonical metric gcan = dt2,
where t is arc-length. But our problem in this proof is to reconstruct the global metric
of the cylinder and to show that it is a product, and we cannot suppose a priori that the
restricted metric of each level set of ψ is the canonical metric. The same is true for the
restricted potential: we know that it is Gauge equivalent to a potential of the type a dt
for a scalar a, but we cannot suppose a priori that it is of that form.
We refer to Appendix 5.1 for the complete proof of the following fact.

Proposition 7. Let (M, g) be the circle of length L endowed with the metric g = θ(t)2 dt2

where t ∈ [0, L] and θ(t) is a positive function, periodic of period L. Let A = H(t) dt.
Then, the eigenvalues of the magnetic Laplacian with potential A are:

λk(M,A) =
4π2

L2
(k − ΦA)2, k ∈ Z

with associated eigenfunctions

uk(t) = eiφ(t)e
2πi(k−ΦA)

L
s(t), k ∈ Z.

where φ(t) =
∫ t

0
H(τ) dτ and s(t) =

∫ t
0
θ(τ) dτ .

In particular, if the metric is the canonical one, that is, g = dt2, and the potential 1-form
is harmonic, so that A = 2πΦA

L
dt, then the eigenfunctions are simply :

uk(t) = e
2πik
L

t, k ∈ Z.

We remark that if the flux ΦA is not congruent to 1/2 modulo integers, then the eigen-
values are all simple. If the flux is congruent to 1/2 modulo integers, then there are two
consecutive integers k, k+ 1 such that λk = λk+1. Consequently, the lowest eigenvalue has
multiplicity two, and the first eigenspace is spanned by

eiφ(t)e
πi
L
s(t), eiφ(t)e−

πi
L
s(t).

The following proposition is an easy consequence (for a proof, see also Appendix 5.1).

Proposition 8. Consider the Riemannian product Ω = [0, a] × S1( L
2π

), and let A be a
closed 1−form on Ω. Then, the spectrum of ∆A is given by

π2h2

a2
+

4π2

L2
(k − ΦA)2, h, k ∈ Z, h ≥ 0.

In particular,

λ1(Ω, A) =
4π2

L2
d(ΦA,Z)2.
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2.3.4 Fourth step : a calculus lemma

In this section, we state a technical lemma which will allow us to conclude. The proof
is conceptually simple, but perhaps tricky at some points; then, we decided to put it in
Appendix 5.2.

Lemma 9. Let s : [0, a]× [0, L]→ R be a smooth, non-negative function such that

s(0, t) = t, s(r, 0) = 0, s(r, L) = L and
∂s

∂t
(r, t)

.
= θ(r, t) > 0.

Assume that there exist smooth functions p(r), q(r) with p(r)2 + q(r)2 > 0 such that

p(r) cos(
π

L
s(r, t)) + q(r) sin(

π

L
s(r, t)) = F (t)

where F (t) depends only on t. Then p and q are constant and
∂s

∂r
= 0 so that

s(r, t) = t

for all (r, t).

2.3.5 End of proof of the equality case

Assume that equality holds. Then, if u is an eigenfunction, we know that u = u(t) by
the discussion in (13) and u restricts to an eigenfunction on each level circle Σr for the
potential A = H(t) dt above (see Fact 3 at the beginning of Section 2.3 and the second
step above).

We assume that ΦA is congruent to 1
2

modulo integers. This is the most difficult case; in
the other cases the proof is a particular case of this, it is simpler and we omit it.

Recall that each level set Σr is a circle of length L for all r, with metric g = θ(r, t)2 dt. As
the flux of A is congruent to 1

2
modulo integers, we see that there exist complex-valued

functions w1(r), w2(r) such that

u(t) = eiφ(t)
(
w1(r)e

πi
L
s(r,t) + w2(r)e−

πi
L
s(r,t)

)
,

which, setting f(t) = e−iφ(t)u(t), we can re-write

f(t) = w1(r)e
πi
L
s(r,t) + w2(r)e−

πi
L
s(r,t). (14)

Recall that here φ(t) =
∫ t

0
H(τ) dτ and

s(r, t) =

∫ t

0

θ(r, τ) dτ.
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We take the real part on both sides of (14) and obtain smooth real-valued functions
F (t), p(r), q(r) such that

F (t) = p(r) cos(
π

L
s(r, t)) + q(r) sin(

π

L
s(r, t)).

Since θ(0, t) = 1 for all t, we see
s(0, t) = t.

Clearly s(r, 0) = 0; finally, s(r, L) =
∫ L

0
θ(r, τ) dτ = L, being the length of the level circle

Σr. Thus, we can apply Lemma 9 and conclude that s(r, t) = t for all t, that is,

θ(r, t) = 1

for all (r, t) and the metric is a Riemannian product.
It might happen that p(r) = q(r) ≡ 0. But then the real part of f(t) is zero and we can
work in an analogous way with the imaginary part of f(t), which cannot vanish unless
u ≡ 0.

2.4 General estimate of KΩ,ψ

We can estimate KΩ,ψ for a Riemannian cylinder Ω = [0, a] × S1 if we know the explicit
expression of the metric in the normal coordinates (r, t), where t ∈ [0, 2π] is arc-length :

g =

(
g11 g12

g21 g22

)
.

If gij is the inverse matrix of gij, and if ψ = ψ(r, t) one has:

|∇ψ|2 = g11
(∂ψ
∂r

)2

+ 2g12∂ψ

∂r

∂ψ

∂t
+ g22

(∂ψ
∂t

)2

.

The function ψ(r, t) = r belongs to FΩ and one has: |∇ψ|2 = g11, which immediately
implies that we can take

KΩ,ψ ≤
supΩ g

11

infΩ g11
.

Note in particular that if Ω is rotationally invariant, so that the metric can be put in the
form:

g =

(
1 0
0 α(r)2

)
,

for some function α(r), then KΩ,ψ = 1. The estimate becomes

λ1(Ω, A) ≥ 4π2

L2
· d(ΦA,Z)2, (15)

where L is the maximum length of a level curve r = const.

13



Example 10. Yet more generally, one can fix a smooth closed curve γ on a Riemannian
surface M and consider the tube of radius R around γ:

Ω = {x ∈M : d(x, γ) ≤ R}.

It is well-known that if R is sufficiently small (less than the injectivity radius of the normal
exponential map) then Ω is a cylinder with smooth boundary which can be foliated by
the level sets of ψ, the distance function to γ. Clearly |∇ψ| = 1 and (15) holds as well.

A concrete example where we could estimate the width R is the case of a compact surface
M of genus ≥ 2 and curvature −a2 ≤ K ≤ −b2, a ≥ b > 0. Let γ be a simple closed
geodesic. Then, using the Gauss-Bonnet theorem, one can show that R is bounded
below by an explicit positive constant R = R(γ, a), hence the R-neighborhood of γ is
diffeomorphic to the product S1 × (−1, 1) (see for example [5]). If we take Ω as the
Riemannian cylinder of width R(γ, a) having one boundary component equal to γ then
we can foliate Ω with the level sets of the distance function to γ and so K = 1 and (15)
holds, with L given by the length of the other boundary component.

3 Proof of Theorem 2: plane annuli

Let Ω be an annulus in R2, which is starlike with respect to its inner convex boundary
component Σ1. Assume that A is a closed potential having flux ΦA around Σ1. Recall
that we have to show:

λ1(Ω, A) ≥ 4π2

L2

βm

B
d(ΦA,Z)2 (16)

where β,B and m will be recalled below and L is the length of the outer boundary
component. If we assume that Σ2 is also convex, then we show that m ≥ β/B and the
lower bound takes the form:

λ1(Ω, A) ≥ 4π2

L2

β2

B2
d(ΦA,Z)2. (17)

Before giving the proof let us recall notation. For x ∈ Σ1, the ray γx is the geodesic
segment γx(t) = x+ tNx, where Nx is the exterior normal to Σ1 at x and t ≥ 0. The ray
γx meets Σ2 at a first point Q(x), and we let r(x) = d(x,Q(x)). For x ∈ Σ1, we denote by
θx the angle between the ray γ′x and the outer normal to Σ2 at the point Q(x), and we let

m
.
= min

x∈Σ1

cos θx.

We assume that Ω is strictly starlike, that is, m > 0; in particular Q(x) is unique. Recall
also that:

β = min
x∈Σ1

r(x), B = max
x∈Σ1

r(x). (18)

14



We construct a suitable smooth function ψ and estimate the constant K = KΩ,ψ with
respect to the geometry of Ω. The starlike assumption implies that each point in Ω belongs
to a unique ray γx. Then we can define a function ψ : Ω→ [0, 1] as follows:

ψ =


0 on Σ1

1 on Σ2

linear on each ray from Σ1 to Σ2.

Estimates (16) and (17) now follow from Theorem 1 together with the following Proposi-
tion.

Proposition 11. a) At all points of Ω one has: 1
B
≤ |∇ψ| ≤ 1

βm
. Therefore:

KΩ,ψ =
supΩ|∇ψ|
infΩ|∇ψ|

≤ B

βm
.

b) One has

sup
r∈[0,1]

|ψ−1(r)| = L = |Σ2|.

c) If Σ2 is also convex, then m ≥ β/B hence we can take K = β2/B2.

The proof of the Proposition 11 depends on the following steps.

Step 1. On the ray γx joining x to Q(x), consider the point Qt(x) at distance t from x,
and let θx(t) be the angle between γ′x and ∇ψ(Qt(x)). Then the function

h(t) = cos(θx(t))

is non-increasing in t. As θx(r(x)) = θx we have in particular:

cos(θx(t)) ≥ cos(θx) ≥ m

for all t ∈ [0, r(x)] and x ∈ Σ1.

Step 2. The function r → |ψ−1(r)| is non-decreasing in r.

Step 3. If Σ2 is also convex we have m ≥ β/B.

We will prove Steps 1-3 below.

Proof of Proposition 11. a) At any point of Ω, let ∇Rψ denote the radial part of ∇ψ,
which is the gradient of the restriction of ψ to the ray passing through the given point.
As such restriction is a linear function, one sees that

1

B
≤ |∇Rψ| ≤ 1

β
.

15



Since |∇ψ| ≥ |∇Rψ| one gets immediately

|∇ψ| ≥ 1

B
.

Note that θx(t), as defined above, is precisely the angle between ∇ψ and ∇Rψ, so that,
using Step 1,

|∇Rψ| = |∇ψ| cos θx(t) ≥ m|∇ψ|
hence:

|∇ψ| ≤ 1

m
|∇Rψ| ≤ 1

βm
.

as asserted. It is clear that b) and c) are immediate consequences of Steps 2-3.

Proof of Step 1. We use a suitable parametrization of Ω. Let l be the length of Σ1 and
consider a parametrization γ : [0, l] → Σ1 by arc-length s with origin at a given point in
Σ1. Let N(s) be the outer normal vector to Σ1 at the point γ(s). Consider the set:

Ω̃ = {(t, s) ∈ [0,∞)× [0, l) : t ≤ ρ(s)}

where we have set ρ(s) = r(γ(s)). The starlike property implies that the map Φ : Ω̃→ Ω
defined by

Φ(t, s) = γ(s) + tN(s)

is a diffeomorphism. Let us compute the Euclidean metric tensor in the coordinates (t, s).
Write γ′(s) = T (s) for the unit tangent vector to γ and observe that N ′(s) = k(s)T (s),
where k(s) is the curvature of Σ1 which is everywhere non-negative because Σ1 is convex.
Then: 

dΦ(
∂

∂t
) = N(s)

dΦ(
∂

∂s
) = (1 + tk(s))T (s)

If we set Θ(t, s) = 1 + tk(s) the metric tensor is:

g =

(
1 0
0 Θ2

)
and an orthonormal basis is then (e1, e2), where

e1 =
∂

∂t
, e2 =

1

Θ

∂

∂s
.

16



In these coordinates, our function ψ is written:

ψ(t, s) =
t

ρ(s)
.

Now 
〈∇ψ, e1〉 =

∂ψ

∂t
=

1

ρ(s)

〈∇ψ, e2〉 =
1

Θ

∂ψ

∂s
= − tρ′(s)

Θ(t, s)ρ(s)2

.

It follows that

|∇ψ|2 =
1

ρ2
+
t2ρ′2

Θ2ρ4
=

Θ2ρ2 + t2ρ′2

Θ2ρ4
.

Recall the radial gradient, which is the orthogonal projection of ∇ψ on the ray, whose
direction is given by e1. If we fix x ∈ Σ1, we have

θx(t) = angle between ∇ψ and e1

and we have to study the function

h(t) = cos θx(t) =
〈∇ψ, e1〉
|∇ψ|

=
1

ρ(s)|∇ψ|

for a fixed s. From the above expression of |∇ψ| and a suitable manipulation we see

h(t)2 =
Θ2

Θ2 + t2g2

where g = ρ′(s)/ρ(s). Now

d

dt

Θ2

Θ2 + t2g2
=

2tΘg2

(Θ2 + t2g2)2
(t
∂Θ

∂t
−Θ)

As Θ(t, s) = 1 + tk(s) one sees that t
∂Θ

∂t
−Θ = −1 hence

d

dt
h(t)2 = − 2tΘg2

(Θ2 + t2g2)2
≤ 0

Hence h(t)2 is non-increasing and, as h(t) is positive, it is itself non-increasing.

Proof of Step 2. In the coordinates (t, s) the curve ψ−1(r) is parametrized by α : [0, l]→
Ω̃ as follows:

α(u) = (rρ(u), u) u ∈ [0, l].

17



Then:

|ψ−1(r)| =
∫ l

0

√
g(α′(u), α′(u)) du

=

∫ l

0

√
r2ρ′(u)2 + (1 + rk(u)ρ(u))2 du

Convexity of Σ1 implies that k(u) ≥ 0 for all u; differentiating under the integral sign
with respect to r one sees that indeed d

dr
|ψ−1(r)| ≥ 0 for all r ∈ [0, 1].

Proof of Step 3. Let Tx be the tangent line to Σ2 at Q(x) and H(x) the point of Tx
closest to x. As Σ2 is convex, H(x) is not an interior point of Ω, hence

d(x,H(x)) ≥ β.

The triangle formed by x,Q(x) and H(x) is rectangle in H(x), then we have:

r(x) cos θx = d(x,H(x)).

As r(x) ≤ B we conclude:
B cos θx ≥ β,

which gives the assertion.

4 Sharpness of the lower bound

4.1 An upper bound

In this short paragraph, we give a simple way to get an upper bound when the potential
A is closed. Then, we will use this in different kinds of examples, in order to show that
the assumptions of Theorem 2 are sharp. The geometric idea is the following: if we
have a region D ⊂ Ω such that the first absolute cohomology group H1(D) is 0, then
we can estimate from above the spectrum of ∆A in Ω in terms of the spectrum of the
usual Laplacian on D. The reason is that the potential A is 0 on D up to a gauge
transformation; then, on D, ∆A becomes the usual Laplacian and any eigenfunction of
the Laplacian on D may be extended by 0 on Ω and thus used as a test function for the
magnetic Laplacian on the whole of Ω.

Let us give the details. Let D be a closed subset of Ω such that, for some (small) δ > 0
one has H1(Dδ,R) = 0, where Dδ = {p ∈ Ω : dist(p,D) < δ}. This happens when Dδ

has a retraction onto D. We write

∂D = (∂D ∩ ∂Ω) ∪ (∂D ∩ Ω) = ∂extD ∪ ∂intD

18



and we denote by (νj(D))∞j=1 the spectrum of the Laplacian acting on functions, with
the Neumann boundary condition on ∂extD (if non empty) and the Dirichlet boundary
condition on ∂intD.

Proposition 12. Let Ω be a compact manifold with smooth boundary and A a closed
potential on Ω. Assume that D ⊂ Ω is a compact subdomain such that H1(D,R) =
H1(Dδ,R) = 0 for some δ > 0. Then we have

λk(Ω, A) ≤ νk(D)

for each k ≥ 1.

Proof. We recall that for any function φ on Ω, the operator ∆A and ∆A+dφ are unitarily
equivalent and have the same spectrum. As A is closed and, by assumption, H1(Dδ,R) =

0, A is exact on Dδ and there exists a function φ̃ on Dδ such that A+ dφ̃ = 0 on Dδ.

We consider the restriction of φ̃ to D and extend it differentiably on Ω by using a partition
of unity (χ1, χ2) subordinated to (Dδ,Ω/D). Then, setting

φ
.
= χ1φ̃

we see that φ is a smooth function on Ω which is equal to φ̃ on D so that, on D, one has
A+ dφ = 0. We consider the new potential Ã = A+ dφ and observe that Ã = 0 on D.

Now consider an eigenfunction f for the mixed problem on D (Neumann boundary condi-
tions on ∂extD and Dirichlet boundary conditions on ∂intD), and extend it by 0 on Ω \D.
As Ã = 0 on D, we see that

|∇Ãf |2 = |∇f |2,
and we get a test function having the same Rayleigh quotient as that of f . Thanks to the
usual min-max characterization of the spectrum, we obtain, for all k:

λk(Ω, A) = λk(Ω, Ã) ≤ νk(D).

4.2 Sharpness

We will use Proposition 12 to show the sharpness of the hypothesis in Theorem 2. Let us
first show that we need to control the ratio BL

β
.

Example 13. In the first situation, we give an example where the ratio BL
β
→∞ and the

distance β between the two components of the boundary is uniformly bounded from below.
We want to show that λ1 → 0. We consider an annulus Ω composed of two concentric
balls of radius 1 and R + 1 and same center, with R → ∞. We have B = β = R and
L→∞.
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From the assumptions we get the existence of a point x ∈ Ω such that the ball B(x, R
2

) of

center x and radius R
2

is contained in Ω. Proposition 12 implies that λ1(Ω, A) is bounded
from above by the first eigenvalue of the Dirichlet problem for the Laplacian of the ball,
which is proportional to 1

R2 and tends to zero because R→∞.

Example 14. Next, we construct an example to show that if the distance β tends to 0
and B and L are uniformly bounded from below and from above, then again λ1 → 0. We
again use Proposition 12. Fix the rectangles :

R2 = [−4, 4]× [0, 4], R1,ε = [−3, 3]× [ε, 2]

and consider the region Ωε given by the closure of R2 \ R1,ε. Note that Ωε is a planar
annulus whose boundary components are convex and get closer and closer as ε→ 0.

Figure 1: λ1 → 0 as ε→ 0

We show that, for any closed potential A one has:

lim
ε→0

λ1(Ωε, A) = 0. (19)

Consider the simply connected region Dε ⊂ Ωε given by the complement of the rectangle
[−1, 1] × [0, ε]. Now Dε has trivial 1-cohomology; by Proposition 12, to show (19) it is
enough to show that

lim
ε→0

ν1(Dε) = 0. (20)

By the min-max principle :

ν1(Dε) = inf
{∫

Dε
|∇f |2∫
Dε
f 2

: f = 0 on ∂Dint
ε

}
where

∂Dint
ε = {(x, y) ∈ Ωε : x = ±1, y ∈ [0, ε]}.
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Define the test-function f : Dε → R as follows.

f =


1 on the complement of [−2, 2]× [0, ε]

x− 1 on [1, 2]× [0, ε]

− x− 1 on [−2,−1]× [0, ε]

One checks easily that, for all ε:∫
Dε

|∇f |2 = 2ε,

∫
Dε

f 2 ≥ const > 0

Then (20) follows immediately by observing that the Rayleigh quotient of f tends to 0 as
ε→ 0

Example 15. In the example we constructed previously the two boundary components
approach each other along a common set of positive measure (precisely, a segment of total
length 6). In the next example we sketch a construction showing that, in fact, this is not
necessary.

So, let us fix the outside curve Σ2 and choose a family of inner convex curves Σ1 such
that B is bounded below (say, B ≥ 1) and β → 0 (no other assumption is made). Then,
we want to show that λ1(Ω, A)→ 0.

Fix points x ∈ Σ2, y ∈ Σ1 such that d(x, y) = β. We take b = 2β and introduce the balls

of center x and radius b and
√
b, denoted by B(x, b) and B(x,

√
b), respectively. Then the

set D = Ω \ (B(x, b) ∩ Ω) is simply connected so that, by Proposition 12:

λ1(Ω, A) ≤ ν1(D)

and it remains to show that ν1(D)→ 0 as b→ 0.

Introduce the function F (r) ( r being the distance to x):

F (r) =


1 on the complement of B(x,

√
b)

0 on B(x, b)

−2

ln b
(ln r − ln b) on B(x,

√
b)−B(x, b)

and let f be the restriction of F to D. As f = 0 on ∂intD = ∂B(x, b) ∩ Ω, we see that f
is a test function for the eigenvalue ν1(D). A straightforward calculation shows that, as
b→ 0, we have ∫

D

|∇f |2 → 0;
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on the other hand, as B ≥ 1, the volume of D is uniformly bounded from below, which
implies that ∫

D

f 2 ≥ C > 0.

We conclude that the Rayleigh quotient of f tends to 0 as b → 0, which shows the
assertion.

Example 16. The following example shows that we need to impose some condition on
the outer curve in order to get a positive lower bound as in Theorem 2.

It is an easy and classical fact that, in order to create a small eigenvalue for the Neumann
problem, it is sufficient to deform a domain locally, near a boundary point, as indicated by
the mushroom-shaped region shown in the figure below. Up to a gauge transformation, we
can suppose that the potential A is locally 0 in a neigborhood of the mushroom, and we
have to estimate the first eigenvalue of the Laplacian with Dirichlet boundary condition
at the basis of the mushroom (which is a segment of length ε) and Neumann boundary
condition on the remaining part of its boundary, as required by Proposition 12.

Figure 2: A local deformation implying λ1 → 0

The only point is to take the value of the parameter ε much smaller than δ as δ → 0. Take
for example ε = δ4 and consider a function u taking value 1 in the square of size δ and
passing linearly from 1 to 0 outside the rectangle of sizes ε, δ. The norm of the gradient
of u is 0 on the square of size δ and 1

δ
in the rectangle of size δ, ε.

Then the Rayleigh quotient is

R(u) ≤
1
δ2 δε

δ2
=

ε

δ3

which tends to 0 as δ → 0.

Moreover, we can make such local deformation keeping the curvature of the boundary
uniformly bounded in absolute value (see Example 2 in [7]).
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5 Appendix

5.1 Spectrum of circles and Riemannian products

We first prove Proposition 7.
Let then (M, g) be the circle of length L with metric g = θ(t)2dt2, where t ∈ [0, L] and θ(t)
is periodic of period L. Given the 1-form A = H(t)dt we first want to find the harmonic
1-form ω which is cohomologous to A; that is, we look for a smooth function φ so that
ω = A+ dφ is harmonic. Now a unit tangent vector field to the circle is

e1 =
1

θ

d

dt
.

Write ω = G(t) dt. Then

δω = −1

θ

(G
θ

)′
.

As any 1-form on the circle is closed, we see that ω is harmonic iff G(t) = cθ(t) for a
constant c. We look for φ and c ∈ R so that

φ′ = −H + cθ.

As φ must be periodic of period L, we must have
∫ L

0
φ′ = 0. As the volume of M is L,

we also have
∫ L

0
θ = L. This forces

c =
1

L

∫ L

0

H(t) dt.

On the other hand, as the curve γ(t) = t parametrizes M with velocity d
dt

, one sees that
the flux of A across M is given by

ΦA =
1

2π

∫ L

0

H(t) dt.

Therefore c = 2π
L

ΦA and a primitive could be

φ(t) = −
∫ t

0

H + c

∫ t

0

θ.

Conclusion:

• The form A = H(t)dt is cohomologous to the harmonic form ω = cθ dt with c = 2π
L

ΦA.

We first compute the eigenvalues. By gauge invariance, we can use the potential ω. In
that case

∆ω = −∇ω
e1
∇ω
e1
.
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Now

∇ω
e1
u =

u′

θ
− icu

hence

∇ω
e1
∇ω
e1
u =

1

θ

(u′
θ
− icu

)′
− ic

(u′
θ
− icu

)
.

After some calculation, the eigenfunction equation ∆ωu = λu takes the form:

−u′′ + θ′

θ
u′ + 2icθu′ + c2θ2u = λθ2u.

Recall the arc-length function s(t) =
∫ t

0
θ(τ) dτ . We make the change of variables:

u(t) = v(s(t)), that is v = u ◦ s−1.

Then: {
u′ = v′(s)θ

u′′ = v′′(s)θ2 + v′(s)θ′

and the equation becomes:
−v′′ + 2icv′ + c2v = λv

with solutions :

vk(s) = e
2πik
L

s, λ =
4π2

L2
(k − ΦA)2, k ∈ Z.

Now Gauge invariance says that

∆A+dφ = eiφ∆Ae
−iφ;

and vk is an eigenfunction of ∆A+dφ iff e−iφvk is an eigenfunction of ∆A. Hence, the
eigenfunctions of ∆A (where A = H(t) dt) are

uk = e−iφvk,

where φ(t) = −
∫ t

0
H + c s(t) and c = 2π

L
ΦA. Explicitly:

uk(t) = ei
∫ t
0 He

2πi(k−ΦA)s(t)
L (21)

as asserted in Proposition 7.

Let us now verify the last statement. If the metric is g = dt2 then θ(t) = 1 and s(t) = t.

If A is a harmonic 1-form then it has the expression A = 2πΦA

L
dt. Taking into account

(21) we indeed verify that uk(t) = e
2πik
L

t.
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• We now prove Proposition 8.

Here we assume that Ω is a Riemannian product [0, a]×S1( L
2π

) with coordinates (r, t) and
the canonical metric on the circle. We fix a closed potential A on Ω. By gauge invariance
we can assume that A is a Coulomb gauge, and by what we said above we have easily

A =
2πΦA

L
dt.

Then A restrict to zero on [0, a]; as A(N) = 0 on ∂Ω the magnetic Neumann conditions

reduce simply to
∂u

∂N
= 0. At this point we apply a standard argument of separation of

variables; if φ(r) is an eigenfunction of the usual Neumann Laplacian on [0, a], and v(t) is
an eigenfunction of ∆A on S1( L

2π
), we see that the product u(r, t) = φ(r)v(t) is indeed an

eigenfunction of ∆A on Ω. As the set of eigenfunctions we obtain that way is a complete
orthonormal system in L2(Ω), we see that each eigenvalue of the product is the sum of an
eigenvalue in the Neumann spectrum of [0, a] and an eigenvalue in the magnetic spectrum
of the circle, as computed before. We omit further details.

5.2 Proof of Lemma 9

For simplicity of notation, we give the proof when a = L = 1. This will not affect
generality. Then, assume that s : [0, 1]× [0, 1]→ R is smooth, non-negative and satisfies

s(0, t) = t, s(r, 0) = 0, s(r, 1) = 1 and
∂s

∂t
(r, t)

.
= θ(r, t) > 0.

Assume the identity

F (t) = p(r) cos(πs(r, t)) + q(r) sin(πs(r, t)) (22)

for real-valued functions F (t), p(r), q(r), such that p(r)2 +q(r)2 > 0. Then we must show:

∂s

∂r
= 0 (23)

everywhere.

Differentiate (22) with respect to t and get:

F ′(t) = −πp(r)θ(r, t) sin(πs) + πq(r)θ(r, t) cos(πs) (24)

and we have the following matrix identity(
cos(πs) sin(πs)
−πθ sin(πs) πθ cos(πs)

)(
p
q

)
=

(
F
F ′

)
.
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We then see:

p(r) = F (t) cos(πs)− F ′(t)

πθ
sin(πs).

Set t = 0 so that s = 0 and p(r) = F (0)
.
= p is constant; the previous identity becomes

p = F (t) cos(πs)− F ′(t)

πθ
sin(πs). (25)

Observe that: {
F ′(0) = πq(r)θ(r, 0)

F ′(1) = −πq(r)θ(r, 1)
(26)

• Assume F ′(0) = 0. Then, as θ(t, r) is positive one must have q(r) = 0 for all r, hence

p 6= 0 and F (t) = p cos(πs), from which, differentiating with respect to r, one gets easily
∂s

∂r
= 0 and we are finished.

• We now assume that F ′(0) 6= 0: then we see from (26) that q is not identically zero
and the smooth function F ′ : [0, 1]→ R changes sign. This implies that

• there exists t0 ∈ (0, 1) such that F ′(t0) = 0.

Now (25) evaluated at t = t0 gives:

p = F (t0) cos(πs(r, t0))

for all r. Differentiate w.r.t. r and get, for all r ∈ [0, 1]:

0 = sin(πs(r, t0))
∂s

∂r
(r, t0).

Since s(r, t) is increasing in t, we have

0 < s(r, t0) < s(r, 1) = 1.

Hence sin(πs(r, t0)) > 0 and we get

∂s

∂r
(r, t0) = 0.

(22) writes:
F (t) = p cos(πs) + q(r) sin(πs),

and then, differentiating w.r.t. r:

0 = −pπ sin(πs)
∂s

∂r
+ q′(r) sin(πs) + πq(r) cos(πs)

∂s

∂r
.
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Evaluating at t = t0 we obtain 0 = q′(r) sin(πs(r, t0)) which implies

q′(r) = 0

hence q(r) = q, a constant. We conclude that

F (t) = p cos(πs) + q sin(πs)

for constants p, q. We differentiate the above w.r.to r and get:

0 =
(
− πp sin(πs) + πq cos(πs)

)∂s
∂r

for all (r, t) ∈ [0, 1]× [0, 1]. Now, the expression inside parenthesis is non-zero a.e. on the

square. Then one must have
∂s

∂r
= 0 everywhere and the final assertion follows.
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