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Abstract 

A parametric model is proposed to analytically describe the nonlinear dynamics of the structural system composed by two vertical 
cantilever beams connected by a suspended sagged cable. Focus is made on the geometric nonlinearities that characterize the 
boundary interactions between the linear beams and the nonlinear Irvine cable. The closed form solution of the linear eigenproblem 
governing the undamped small-amplitude vibrations enables – first – the clear distinction between global modes, dominated by the 
beam dynamics, and local modes, dominated by the cable vibrations, and – second – the parametric assessment of some parameter 
combinations corresponding to integer frequency ratios (1:1, 2:1) between global and local modes. Such internal resonances open 
the way to different phenomena of linear and nonlinear interactions, which can sustain the transfer of mechanical energy between 
the interacting modes and, consequently, the onset of high amplitude local oscillations. After the reduction to a single mode basis, 
the qualitative and quantitative relevance of the system nonlinearities is analyzed. In particular, the effects of the global, local, 
hybrid nature of the modal shapes on the softening/hardening behavior of the frequency response are investigated. 
© 2017 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

The structural employment of long-span and highly flexible cables with load-bearing or stabilizing functions has a 
well-established tradition in many engineering applications. Since the pioneer studies, dating back to the seventies or 
early eighties of the past century [1-6], the extreme slenderness and low-damping of structural cables has attracted the 
researchers’ interest, mainly focused on the prediction and mitigation of different nonlinear phenomena [7-12].     

More recently, a certain attention has been devoted to the formulation of refined but synthetic cable-beam models, 
in order to analyse the rich variety of linear and nonlinear interaction mechanisms, which can be responsible of high-
amplitude cable vibrations, in consequence of mechanical energy transfers from the cable-supported system [13-18]. 
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The present paper illustrates an original nonlinear model governing the nonlinear dynamics of a structural system 
composed by two free standing structures, modelled as cantilever beams, coupled by a suspended cable. The linearized 
system is known to possess a dense natural spectrum, in which global and local modes strongly interact to each other 
[19, 20]. Moving from this standpoint, the nonlinear free undamped oscillations of the cable-beam system are analysed, 
by means of a one-degree-of-freedom model. In particular, the influence of the modal localization and hybridization 
phenomena on the quadratic and cubic nonlinearities is discussed, in the significant range of the parameter space.     

 

2. Nonlinear dynamic model 

The structural model realized by two vertical unshearable inextensible cantilever beams, connected at the free ends 
by a suspended parabolic cable, is considered (Figure 1a). The length bL of the beams and the horizontal chord cL  of 
the cable are spanned by the rectilinear abscissae 1 2, ,b b cx x x  respectively. The varied configuration of the system is 
described by the dynamic variables 1 1 2 2( , ), ( , ), ( , )b b b b c cv x t v x t v x t  for the transversal beams and cable displacements, 
and the variable ( , )c cu x t , for the longitudinal cable displacement (Figure 1b). Denoting 1Ω the unknown fundamental 
frequency of the system, the dependent and independent variables can be expressed in the nondimensional form  

1 2 1 2
1 1 2 1 2

1

, , , , , , , ,c b b c c b b
c b b c c b b

c b b c c b b

x x x v u v v ΩΩ t x x x v u v v
L L L L L L L Ω

τ ω= = = = = = = = =                 (1) 

where ω stands for the nondimensional frequency. Denoting ,b cm m  the mass densities, H and d the pretension and 
midspan sag of the cable, cEA its axial rigidity, bEI the flexural rigidity of the beam, the mechanical parameters are 

2, , , ,b c b c

c b b c c

L m EI EA d
L m L EA H L

α ρ χ µ ν= = = = =        (2) 

where α  defines the height-to-width system proportion, ρ stands for the cable-beam mass ratio, χ accounts for the 
ratio between the beam (flexural) and cable (axial) stiffness. Furthermore, µ  describes the elastic (axial) to transversal 
(geometric) stiffness of the cable and ν expresses the cable shallowness. 

Adopting the classic quasi-static condensation of the longitudinal cable motion, as admissible in the low-frequency 
oscillation range, the nonlinear equations of motion governing the free damped dynamics of the system read  

4 2
1 1 12 0IV

b b b b bv v vβ ς ω ω+ + =        4 2
2 2 22 0IV

b b b b bv v vβ ς ω ω+ + =          (3)     
2 2 22 (8 ) 0c c c c c cv v v e vβ ς ω ω ω µ ν′′ ′′+ − + − =          (4) 

where the tilde has been omitted, while dot and prime stand for differentiation with respect to the nondimensional time 
and abscissa, respectively. The coefficients ,b cς ς  introduce viscous damping terms accounting for the dissipation. 
 

 
Fig. 1. Structural system beams-cable: (a) initial; (b) varied configuration. 
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Fig. 2. Eigensolution (wavenumber and eigenfunctions) versus the varying χ-parameter (α=0.4622, ρ=0.00023, μ=2213, ν=0.00125, see [19]). 

The geometric (kinematic) nonlinearities affecting the system dynamics are embodied by the quadratic and cubic terms 
in the cable equation, owing to the time-dependent elongation ( )e τ rising up from the static condensation 

( )1 21
22 1 0

( ) (1, ) (1, ) 8 ( , ) ( , )b b b b c c c c ce v v v x v x dxτ α τ α τ ν τ τ′= − + +∫       (5) 

It is worth noting that further quadratic and cubic nonlinearities affect the mechanical boundary conditions, since the 
cable elongation participates (through the dynamic tension ( )eµ τ )  in the transversal equilibrium at the beam tips. 
 

2.1. Closed-form linear eigensolution 

The solution of the integral-differential eigenproblem governing the linear undamped dynamics consists of the 
exact frequencies ω  and the related modal vectors 1 1 2 2( ( ), ( ), ( ))c c b b b bx x xϕ ϕ ϕ=φ , in which the cable ( )c cxϕ  and beam 
eigenfunctions 1 1 2 2( ), ( )b b b bx xϕ ϕ  are determined in closed form, depending on the nondimensional wavenumbers  

2 4 2
2 2 2 4 2 2

1 1,            ,            c c b b b
c b c

b

m L m Lω ω
H EI

= = =
ββ Ω β Ω β µρχ
α

      (6) 

The analysis of the eigensolution discloses a rich scenario of modal forms, depending on the system parameters [19]. 
Indeed global modes, dominated by the beams dynamics with quasi-static participation of the cable, coexist with local 
modes, dominated by the transversal cable dynamics [21]. Antisymmetric global (AG) modes do not entail any cable 
stretching. Consequently, only local modes (L) and symmetric global (SG) modes actually depend on the beam-cable 
stiffness ratio and undergo marked variations of the frequency ω  (or wavenumber bβ , through the univocal relation 
(6)) and modal shape in the χ -range (Figure 2). Internal 1:1 resonances or nearly-resonances may occur when the χ -
dependent frequencies of local and global modes approach each other, giving rise to crossing points (not-interacting 
AG-L modes) or veering zones (linearly interacting SG-L modes). The frequency veering determines the hybridization 
of the SG-L modes, which exchange their modal shapes in a rapid but continuous way across the veering zone. 

Superharmonic and subharmonic internal resonance conditions between a global symmetric and a local modes can 
be detected for the systems S1 and S2, whose χ -values give 2:1 or 1:2 ratios of the L and SG frequencies (Table 1).  

   Table 1. Superharmonic and subharmonic internal resonance conditions between a global symmetric and a local modes. 

System χ βb (L) βb (SG) βc (L) βc (SG) ω (L) ω (SG) Internal resonance 

S1 0.0051 5.32294 3.76237 3.12629 1.56188 8.05847 4.02599 Subharmonic (2:1) 

S2 1.055 1.41145 1.99547 3.16154 6.31914 0.56661 1.13250 Superharmonic (1:2) 
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3. Nonlinear one-degree-of-freedom model 

A one-degree-of-freedom nonlinear model can be formulated by expressing the displacement vector 1 2( , , )c b bv v v=u  
as 1 2( ) ( , , )c b bq x x x=u φτ , where q  is the unknown amplitude of a particular mode 1 2( , , )c b bx x xφ  of interest. Therefore, 
the free nonlinear dynamics of the one-degree-of-freedom model is governed by the equation 

2 3
2 3 0mq q kq c q c q+ + + + = ξ           (7) 

where m  is unitary and 2k =ω  in the following, since the mode can be properly normalized with respect to the system 
masses. The nonlinear coefficients 2c and 3c introduce the quadratic and cubic nonlinearities, respectively.  

Since linear models have been adopted for the cantilever beams, it is worth remarking that the nonlinear coefficients 
almost entirely depend on the cable mechanical properties. Nonetheless, the modal coupling at the beam-cable joints 
can be verified to influence the 2c -parameter in a not-negligible way. Consequently, some attention can be paid to 
analyzing how the nonlinear coefficients vary in the parameter space, with focus on the χ -range in which the beam-
cable interactions let symmetric modes undergo the localization and hybridization processes.  

Figure 3 illustrates the variation of the nonlinear coefficients versus the χ -parameter for the two symmetric modes 
corresponding to the wavenumber loci L1 (low-frequency mode M1) and L2 (high-frequency mode M2) in Figure 2. 
The actual importance of the nonlinearities in the hybridization regions is confirmed by the large values attained by 
the two coefficients 2c and 3c  for the χ -values corresponding to hybrid modes (e.g. mode D1, but also mode B2 in 
Figure 2). Furthermore, by virtue of the modal (linear) coupling, hybrid modes tend to exalt the nonlinearities affecting 
the boundary conditions at the beam-cable joints. Remarkably, this specific hybrid contribution offered by the cable-
beam boundary interaction can become dominant in the 2c -parameter, at least for shallow cables (low ν -values). 
Qualitatively, this remark reflects the unique maximum value attained by the 2c and 3c curves, which corresponds to 
the highest hybridization factor [21] between the low-frequency and high-frequency modes M1 and M2. 

 

 
Fig. 3. Nonlinear coefficients versus the varying χ-parameter for: (a),(b) low-frequency mode M1, (c),(d) high-frequency mode M2. 
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S2 1.055 1.41145 1.99547 3.16154 6.31914 0.56661 1.13250 Superharmonic (1:2) 
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3. Nonlinear one-degree-of-freedom model 

A one-degree-of-freedom nonlinear model can be formulated by expressing the displacement vector 1 2( , , )c b bv v v=u  
as 1 2( ) ( , , )c b bq x x x=u φτ , where q  is the unknown amplitude of a particular mode 1 2( , , )c b bx x xφ  of interest. Therefore, 
the free nonlinear dynamics of the one-degree-of-freedom model is governed by the equation 

2 3
2 3 0mq q kq c q c q+ + + + = ξ           (7) 

where m  is unitary and 2k =ω  in the following, since the mode can be properly normalized with respect to the system 
masses. The nonlinear coefficients 2c and 3c introduce the quadratic and cubic nonlinearities, respectively.  

Since linear models have been adopted for the cantilever beams, it is worth remarking that the nonlinear coefficients 
almost entirely depend on the cable mechanical properties. Nonetheless, the modal coupling at the beam-cable joints 
can be verified to influence the 2c -parameter in a not-negligible way. Consequently, some attention can be paid to 
analyzing how the nonlinear coefficients vary in the parameter space, with focus on the χ -range in which the beam-
cable interactions let symmetric modes undergo the localization and hybridization processes.  

Figure 3 illustrates the variation of the nonlinear coefficients versus the χ -parameter for the two symmetric modes 
corresponding to the wavenumber loci L1 (low-frequency mode M1) and L2 (high-frequency mode M2) in Figure 2. 
The actual importance of the nonlinearities in the hybridization regions is confirmed by the large values attained by 
the two coefficients 2c and 3c  for the χ -values corresponding to hybrid modes (e.g. mode D1, but also mode B2 in 
Figure 2). Furthermore, by virtue of the modal (linear) coupling, hybrid modes tend to exalt the nonlinearities affecting 
the boundary conditions at the beam-cable joints. Remarkably, this specific hybrid contribution offered by the cable-
beam boundary interaction can become dominant in the 2c -parameter, at least for shallow cables (low ν -values). 
Qualitatively, this remark reflects the unique maximum value attained by the 2c and 3c curves, which corresponds to 
the highest hybridization factor [21] between the low-frequency and high-frequency modes M1 and M2. 

 

 
Fig. 3. Nonlinear coefficients versus the varying χ-parameter for: (a),(b) low-frequency mode M1, (c),(d) high-frequency mode M2. 
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Fig. 4. Backbone curves (frequency versus amplitude) for the highly nonlinear systems S3-S6. 
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certain (small) oscillation amplitude a . The essential relation ( )aσ  has been determined by means of the standard 
Multiple Scale Method, up to the second approximation order for the solution of the eq. (7). The frequency-amplitude 
(namely backbone) curves are illustrated in Figure 4, where 0q  stands for the lowest order approximation of the 
oscillation amplitude a . Results are presented for the highly-nonlinear systems S3-S5, corresponding to the maxima of 
the 2c and 3c curves for the modes M1 and M2, whose dynamic characteristics are collected in Table 2. 

 The curves show how the quadratic nonlinearities, responsible for the softening behavior of the S3,S5,S6 systems, 
tend to prevail on the cubic nonlinearities. A moderate hardening behavior can be achieved only by the S4 system, 
which corresponds to the 3c -maximum for the low-frequency mode M1. Considering that the hardening effect can be 
fully attributed to the cable dynamics (as long as the 3c -parameter is independent of the beam eigenfunctions), this 
observation confirms that the modal hybridization (strongly contributing to the peak value of the 2c -parameter) can 
strongly characterize the nonlinear dynamics of the beam-cable-beam system. The occurrence of dynamic bifurcations 
in the forced dynamic response, as well as the possible occurrence of autoparametric excitations in two-degrees-of-
freedom models (based on a pair of internally resonant global-local modes), are under current investigations.  

   Table 2. Dynamic characteristics and nonlinear behavior of the highly-nonlinear systems in Figure 3 

Mode System χ βb βc ω c2 c3 Nonlinear behavior 

M1 S3 0.05 2.87857 2.86273 2.35670 max - softening 

M1 S4 0.1 2.49635 3.04475 1.77239 - max hardening 

M2 S5 0.0022 6.46657 3.03039 11.89315 max - softening 

M2 S6 0.0027 6.20261 3.08867 10.94203 - max softening 
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4. Conclusions 

A parametric model has been presented to describe the geometrically nonlinear dynamics of the structural system 
composed by two cantilever beams connected by a parabolic cable. Leveraging the closed form solution of the linear 
eigenproblem governing the small undamped free oscillations, a nonlinear one-degree-of-freedom model has been 
formulated. The importance of the quadratic and cubic nonlinearities has been parametrically analysed, with specific 
discussion concerning the global, local or hybrid nature of the modal basis. The modal hybridization has been found 
to exalt the nonlinear characteristics of the system, with particular reference to its inherent quadratic nonlinearities, 
responsible also for the softening behaviour of the backbone curve characterizing the frequency response function.   
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4. Conclusions 

A parametric model has been presented to describe the geometrically nonlinear dynamics of the structural system 
composed by two cantilever beams connected by a parabolic cable. Leveraging the closed form solution of the linear 
eigenproblem governing the small undamped free oscillations, a nonlinear one-degree-of-freedom model has been 
formulated. The importance of the quadratic and cubic nonlinearities has been parametrically analysed, with specific 
discussion concerning the global, local or hybrid nature of the modal basis. The modal hybridization has been found 
to exalt the nonlinear characteristics of the system, with particular reference to its inherent quadratic nonlinearities, 
responsible also for the softening behaviour of the backbone curve characterizing the frequency response function.   
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