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Summary. The problem of spacecraft time-optimal reorientation maneuvers under bound-
aries and path constraints is solved using the Particle Swarm Optimization technique. Keep-out
constraints for an optical sensor are taken into account. A novel method based on the evolution
of the kinematics and the successive obtainment of the control law is presented and named as
Inverse Dynamics Particle Swarm Optimization. It is established that the computation of the
minimum time maneuver with the proposed technique leads to near optimal solutions, which
fully satisfy all the boundaries and path constraints.

1. INTRODUCTION

The minimum time reorientation maneuver of a rigid spacecraft is a well-known problem:
the first related work regarding a numerical approach dates back to the 90s [1] [2]. When
introducing boundaries and path constraints, these maneuvers are difficult to compute because
the solutions are related to complex nonlinear problems. The research still focuses on this
problem with several approaches, for example, through homotopic approach algorithms [3],
pseudospectral optimization analysis [4] [5] or with hybrid numerical techniques [6].
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The problem of reorientation maneuvers with path constraints has been initially studied by
McInnes in [7]. The path constraints may be determined by bright light sources (e.g. Sun and
Moon) for optical sensors or by pointing boundaries for antennas to maintain communication
[8]. Several numerical methods, such as the Randomized Motion Planning [9], the Logarithmic
Barrier Potentials [10] or the Lie group variational integrator [11], have been used to obtain the
optimal solution.

Metaheuristic algorithms (properly defined in [14]) have been recently proposed for the
planning of slew maneuvers, as in [12] [13]. Metaheuristic algorithms may be used to find
sub-optimal solutions: for instance, Melton proposed a hybrid technique where a metaheuristic
solution was used as the best available initial guess for a pseudospectral optimizer [15]. The
metaheuristic algorithms are being studied extensively and the high interest generated from their
results is shown in the research performed by NASA [16]. With regards to the Particle Swarm
Optimization (PSO), which is the primary interest of this paper, it has been used not only for
the planning of attitude maneuvers as in [17] [18], but also for the trajectory planning [19] or
for attitude determination [20].

From the previous works, the optimization of attitude maneuvers uses the PSO applied to
the control. In [21] it has been shown how such an approach fails in satisfying the boundary
constraints (i.e. final position and final velocity). In this work, a new approach is reported,
where the PSO technique is applied to the kinematics rather than to the control. As a result, the
final boundary constraints are straight satisfied. This approach is referred to as Inverse Method.

The paper is organized as follows: Sec. II reviews the PSO method. Sec. III shows the
scenario in which the slew maneuver has to be accomplished. Sec. IV introduces the Inverse
Method. Sec. V shows the numerical results. Sec. VI concludes the paper.

2. PSO Method

The PSO is an algorithm introduced by James Kennedy and Russel Eberhart in 1995 [22].
This method is based on cooperation between a fixed-size population of solutions [23]. This
method presumes the evolution of a group of candidate solutions called particles that move
through the set of all acceptable and meaningful solutions called Feasible Research Space FRS.
Typical values of the number of particles nparticles are between 30 and 50. During the evolution,
each particle is evaluated according to a numerical value determined through a fitness function
φ, which takes into account the goal of the optimization and the constraints. The aim is to find
the minimum value of the fitness function.

The generic particle represents a possible optimal solution inside the FRS. The position of
the generic particle x(k)i is defined as the solution associated with the ith particle at the kth step
of its evolution. With reference to Fig. 1, the particle is perturbed by a term called velocity
evaluated as:

x
(k+1)
i = x

(k)
i + v

(k+1)
i (1)

In each step the actual position x(k)i is updated through the term v
(k+1)
i reaching the new position

x
(k+1)
i . Note that the term vi is not a velocity in the traditional physical sense, i.e. vi 6= dxi/dt,
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Figure 1. Representation of the displacement of a particle with respect to the different inputs.

but the velocity is the rate at which the position per generation changes. The velocity term
dictates the direction of the evolution for the entire swarm.

In each step k, every ith particle is assigned a performance index J (k)
i corresponding to the

best value of the fitness function obtained by the particle up to the kth step. The position of the
particle related to this index is saved as personal best p(k)best,i.

The particle which has obtained the best value of the performance index up to the generic
step k is saved as global best particle. Its perfomarce index and position are referred to as J (k)

g

and g(k)best, respectively.
With respect to what is reported in Fig. 1, the displacement of the ith particle is the sum of

three different velocity vectors:

• The “individual” vector pointing toward the best position p(k)best,i.

• The “social” vector pointing toward the best position g(k)best (global version of the PSO).

• The “inertia” vector which makes the ith particle move in the direction in which the
actual position has been reached. This means that the inertia vector is along the direction
which goes from the positions x(k−1) to the position x(k) of the particle.

The individual vector and the social vector are multiplied by stochastic values uniformly ditributed
between 0 and 1 in order to give some randomness to the search of the optimization goal.

In the local version [25] of the PSO the g(k)best is substituted by a local best particle l(k)best,i with
performance index J (k)

l,i : the ith particle compares its fitness value only in a small neighbor-
hood. In this manner, the whole search group tends to separate into subgroups thus enhancing
the probability of finding the optimal solution when the problem has more than one suboptimal
solution. The dimension of the neighborhood is a parameter of the algorithm that can influence
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the results. The Unified Particle Swarm Optimization UPSO strategy [24] combines the advan-
tages of the global and local versions. A simple way to deal with UPSO is that, in the first
part of the loop, the local best is considered to be more important than the global best. Hence,
the swarm may compare different local minima (if various local minima are found) in the first
part of the evolution. In the final part of the evolution, the global version is now privileged
consequently allowing the swarm to converge quickly to the global minimum.

The velocity of the particles is described by the following formulation:

v
(k+1)
i = r

(
w · v(k)i + u1 · cp

(
p
(k)
best,i − x

(k)
i

)
+

+u2 · cl
(
l
(k)
best,i − x

(k)
i

)
+u3 · cg

(
g
(k)
best − x

(k)
i

)) (2)

where u1, u2 and u3 are different random numbers with uniform distribution between 0 and
1. The inertia vector is multiplied by a constant w, the inertia weight. The magnitude of the
last three quantities depends on the distance of p(k)best,i, l

(k)
best and g(k)best from the actual position

x
(k)
i . However, these terms are multiplied by user-defined constants (cp, cl and cg respectively)

and by the random number ui which produces an amount of randomness to the displacement.
The term r may be introduced as a scale factor usually decreasing during the evolution of the
swarm.

The magnitude of the velocity and displacement terms must be limited in order to make the
particle move only within the FRS. As a consequence, the following boundaries are introduced:

vmin < v < vmax , xmin < x < xmax (3)

where the subscript i has been removed for sake of simplicity. The maximum and minimum
values of the velocity and the displacement are defined by the user: usually the maximum value
of the velocity is set at about 10-20% of the dynamic range of the variable.

Convergence of the swarm towards a stable position with velocity tending to zero is demon-
strated [23]. The time required for convergence is a function of the parameters in Eq. (2) and
nothing guarantees that the point of convergence is the sought optimum. In our case, however,
we will illustrate that the swarm meets in the neighborhood of the global optimum. The evo-
lution of particles continues until a convergence criterion based on a user-defined tolerance is
satisfied.

3. Problem statement

This study deals with the problem of a constrained reorientation slew maneuver in which
a satellite must move from an initial attitude to a final attitude. The slewing motion must be
constrained to prevent an optical sensor axis (we consider a star tracker) from entering into
established “keep-out” zones. Such areas are cones that have central axes pointing to the Sun
and the Moon and specified half-angles depending on the light magnitude, the distance from
the satellite and the angular diameter of the source. The maneuver angle Θf and the initial and
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final attitudes are known. Moreover, the maneuver must be rest-to-rest, i.e. the angular velocity
must be equal to zero for t = t0 and t = tf . In particular t0 is fixed and equal to zero.

For every possible geometry of the keep-out zones we want to find the minimum-time ma-
neuver. As a consequence, the performance index is equal to the maneuver overall time:

J = tf − t0 (4)

Supposing that the time for completing the maneuver is negligible with respect to the time
for completing an orbit, it is possible to approximate the velocity of the satellite center of mass
CM to zero. As a consequence we can define an inertial reference frame fixed in the original
position of the body-fixed frame at time t = t0 that will be referred to as BRF0. The positions
of the keep-out cones defined in this inertial frame do not change during the maneuver. The
angular velocity is defined in the body-fixed frame and it is denoted as ω = [ωx ωy ωz]

T .
The rigid-body motion is described by the Euler’s equation expressed in the most general

form as follows:
Iω̇ + ω × Iω = M (5)

where I is the inertia tensor and M the total torque vector. In particular we will consider
three independent torques aligned with the axes of the body- fixed frame.

In the evolution between the initial and the final positions, the sensor axis must be kept at
least at the minimum angular distance αs from each light source. Using the notation from [12]
we can define the so-called keep-out constraints as:

Cs(t) = σ(t) · σs − cos(αs) ≤ 0 ∀t ∈ [t0, tf ] (6)

where σ(t) is the direction pointed to by the optical sensor and σs is vector placed in the
center of mass of the satellite and pointing to the generic source of light, here represented by
s. Introducing the new variable β defined as β(t) = cos−1(σ(t) · σs), the constraint in Eq. (6)
may be re-written more easily as:

β(t) ≥ αs ∀t ∈ [t0, tf ] (7)

The meaning of the constraint is shown in Fig. 2. On the left, a feasible configuration is re-
ported: the sensor axis σ is outside the keep-out cone being β > αs. On the right, an unfeasible
configuration is reported: in this case, the sensor axis σ is inside the keep-out cone since β < αs.

The cone defined for each source of light will be referred to as keep-out cone. The angle of
exclusion αs is determined by the sensor baffle and the source (considering its angular dimen-
sion and its intensity), and it is typically between 15 and 45 degrees depending on the sensitive
optical sensor [26] [27].

4. Inverse Dynamics Particle Swarm Optimization

The traditional way of dealing with these kind of optimization problems is the direct inte-
gration of the control law. This approach shows some issues due to the high computational load
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Figure 2. Graphical representation of the keep-out cone constraint.

required by the integration of the Euler equations and the difficulty of completely satisfy the
boundary constraints.

A novel approach has been recently presented [21]: instead of applying the PSO to the
control, we use the PSO approach to the kinematics. This technique may be referred to as
Inverse Dynamics and the acronym “iPSO” will be used consequantly hereinafter. The novelty
of the iPSO method lies in the fact that it may be used as a sub-optimal planner since both the
initial and the final conditions are imposed a priori for each particle.

The iPSO problem may be summarized as follows:

Find : min tf

subjected to

(8)
dynamic constraints : M = f(p, ṗ, p̈)

initial conditions : ṗ(t0) = 0

p(t0)− p0 = 0

final conditions : ṗ(tf ) = 0

p(tf )− pf = 0

path constraint : σ(t) · σx − cos(αx) ≤ 0 ∀t ∈ [t0, tf ]

control constraint : |Mν(t)| −Mmax ≤ 0 , ν = 1, 2, 3 ∀t ∈ [t0, tf ]

The fitness function is selected in the form of an Exterior Penalty Function (explained for
example in [29], [30] and [31] with special regards to genetic algorithms, or more generally in
[14]). Such a function is problem-dependent and must be built according to the characteristics
of the constraints. The path and the control constraints are inequality constraints that must be
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taken into account in the fitness function. Consequently, the fitness function is chosen as follow:

φ = tf +

Nineq∑
i=1

Gi + cNviol + f (9)

The first term of the fitness function is the time required for completing the maneuver.
The second term takes into account the penalty function Gi which is defined for the ith

inequality constraint as:

Gi = li

n∑
j=0

νi(tj) (10)

where lj is a user-defined constant and νi(ti) takes the following forms depending on the type
of constraint:

• Path constraint:

νi(tj) =

{
0 if σ(tj) · σx − cos(αx) < ∆i

1 otherwise
(11)

• Control constraint:

νi(tj) =

{
0 if |Mν(tj)| −Mmax < ∆i , ν = 1, 2, 3

1 otherwise
(12)

The most important feature of the present formulation is how the constraints are considered.
In fact, differently from other works in literature [12], here the constraints’ tolerances ∆j de-
crease during the swarm evolution. In this work, we have set a piecewise linear decreasing law:
the more the solution converges the more the tolerance ∆j decreases. The tolerances decrease
according to the following law:

∆j+1 =

{
∆j − kdec ·m · 10ξ−µ if ∆j ≥ 1e− 5

0 otherwise
(13)

where µ is equal to 1, m and ξ are the mantissa and the exponent of ∆j , i.e. ∆j = m · 10ξ.
The parameter kdec is a user-defined parameter with the following law:

kdecj+1
= kdecj +K

j − 1

N∗
(14)

N∗ is a user-defined parameter. The inequality constraints are fully satisfied only when ∆j = 0.
Eq. (13) is taken into account only when the global best satisfies all the constraints.

The third term in eq. (9) is related to number of violated constraints Nviol, being c a user-
defined constant. This term allow to reward the particles which satisfy more constraints than
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other. Every time the global best particle reaches the value of Nviol = 0 the precision is im-
proved, and the tolerances decrease.

The last parameter f in eq. (9) takes into account the geometry of the problem. This term is
set to 0 if the keep-out cones do not intersect. In this case a generic maneuver can pass through
the keep-out cones, even though the best maneuver may lie outside this region. On the other
hand, if the keep-out cones intersect, then f = 1e10 if the optical sensor axis σx passes between
the cones and f = 0 otherwise. In this way we avoid to concentrate the swarm around solution
that are in an unfeasible region since there is no passagge between the two keep-out cones.

The particles are structures containing:

• An array t(i)(k) containing the discretized time interval where i identifies the particle
and k = 1, 2, ...,m. m is equal to the number of points used for the interpolation of the
angular displacement. The array t(i) is monotonically increasing being t(i)(1) = t0 = 0

and t(i)(m) = t
(i)
f .

• The angular displacement ζ(i)j (k), where j = 1, 2, ..., n. In particular n is the number
of scalars required by the chosen angular representation. The m points are associated to
time instants contained in the array t(i). The kinematics is obtained interpolating the m
points [t(i)(k); ζ

(i)
j (k)] with B-splines.

The novelty of the proposed approach lies in the fact that also the time array move according
to the PSO strategy. This characteristic allow a better interpolation of the kinematic curves then
the one reported in [21]. ∆ζ

(i)
j (k) and ∆t(i)(k) are the velocities associated to the kinematics

and the time instants of each particle of the swarm. In this case Eq. (3) takes the following
form:

|∆ζ(i)j (k)| ≤ 0.02 · tan(θ∗/4) , |ζ(i)j (k)| ≤ tan(θ∗/4)

|∆t(i)(k)| < 0.01 · (tmax − tmin) , tmin < t
(i)
f < tmax

i = 1, ..., nparticles , j = 1, ...,m

(15)

The expression tan(θ∗/4) is explained in Eq. (18), while θ∗ is an angle which satisfies θ∗ ≥ Θf ,
being Θf the imposed angle of maneuver. The time constraints tmax and tmin may be defined by
knowing the unconstrained solution. The values 0.01 and 0.02 have shown to give good results
in the numerical experiments.

The initialization of the kinematics and the maneuver time of each particle is based on a
uniform random distribution of the particles within the constraints of Eq. (15). The time arrays
are initialized as sets of uniformly distributed points between t0 and t(i)f .

In this approach, given the angular displacement of each particle, the control is directly
evaluated by Eq. (5). As a consequence, ω and ω̇ are needed in order to obtain M. The setting
of the problem depends on:

1. Choice of the interpolation method.
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Figure 3. Example of interpolation curve obtained with a clamped B-spline.

2. Choice of the parameters for the attitude kinematics.

The first point is related to the formulas reported in Eq. (24) to Eq. (27). In fact, the rep-
resentation used for the description of the kinematics must easily allow the computation of the
needed derivatives. The problem may be solved using the B-spline (Basis-spline) interpolation
with the Cox-de Boor recursion formula [33]. B-splines are based on the fact that each segment
of the interpolating curve is built upon several rather than only one polynomial. The clamped
version of the B-spline is used here, where clamped means that the curve passes through the
initial and final control points U0 and Uf . The other control points U1, U2 ..., Uf−1 define
the shape of the whole curve. An example of clamped B-spline is reported in Fig. 3. As it can
be seen from the figure, the control points may move in any direction since the particle may
change both the time instants and the values of the kinematic displacement.

It is recommended to interpolate the angular displacement at least with curves based on
functions with differentiability classC4 in order to have smooth and continue second derivatives
(i.e. the angular acceleration). Moreover, the first derivative of the angular displacement at
t = t0 and t = tf may be user-defined since the clamped B-spline curve is tangent to the first
and last leg of the control polyline, as shown in Fig. 3. The curve is tangent to the first leg
U0U1 in U0 and tangent to the last leg U5U6 in U6.

As a consequence, to obtain a rest to rest (i.e. with velocity equal to zero in t = t0 and
t = tf ) maneuver, it is only necessary to set the first two points U0 and U1 and the last two
points Uf−1 and Uf of each angular displacement curve at the same ordinate value. In fact,

9
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as stated in Eq. (26), when ωx = ωy = ωz = 0 also the Modified Rodrigues Parameters are
equal to zero. Summarizing, four points for each of the three curves interpolating the MRP are
defined. As a result, we can set ṗ(t0) = 0 and ṗ(tf ) = 0 by imposing:

U0 = U1 = p0 Uf−1 = Uf = pf (16)

With regard to the attitude representation, an attitude description with only three parameters
is essential to avoid the invertibility of the kinematics matrix. The Modified Rodrigues Param-
eters (MRPs, [28]) are suitable for this issue. Moreover, MRPs show no singularity during the
maneuver because of the imposed Θf is below 2π. The mathematical formulation that describes
the kinematics through the MRPs is reported below. A vector p is defined as follows:

p =
η

1 + η4
(17)

where η and η4 are the vectorial and scalar components of the quaternion. Moreover p may be
rewritten in terms of axis and angle of rotation as:

p(n̂, θ) = tan(θ/4)n̂ (18)

The rotation matrix using the Modified Rodrigues Parameters appears as:

R(p) = I +
4 (1− |p|2)
(1 + |p|2)2

[p̃] +
8

(1 + |p|2)2
[p̃]2 (19)

where [p̃] is defined as:

[p̃] =

 0 p3 −p2
−p3 0 p1
p2 −p1 0

 (20)

In particular:
σ(t) = R(p)T σ(t0) (21)

The derivative of the Modified Rodrigues Parameters are related to the angular velocity by
the following equation:

ṗ =
1

4
Ψ(p)ω (22)

where the matrix Ψ(p) is defined as:

Ψ(p) =
[(

1− pTp
)
I + 2[p̃] + 2ppT

]
(23)

For the following development of the inverse dynamics with PSO algorithm, it is necessary to
find ω(p, ṗ) and ω̇(p, ṗ, p̈). As far as the former vector is concerned, it is quite simple to
obtain it from Eq. (22):

ω = 4Ψ−1(p)ṗ (24)

10
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Ψ−1 is defined as a near-orthogonal matrix since its inverse matrix is proportional to its trans-
pose:

Ψ−1(p) =
ΨT (p)

(1 + pTp)2
(25)

From Eq. (24) an important consequence may be drawn:

ω = 0 ⇐⇒ ṗ = 0 (26)

From Eq. (24), ω̇(p, ṗ, p̈) may be derived as:

ω̇ = 4
(

Ψ̇−1(p) ṗ + Ψ−1(p) p̈
)

(27)

where Ψ̇ and Ψ̇−1 are evaluated as:

Ψ̇ =
[
−(ṗTp + pT ṗ)I + 2[˜̇p] + 2(ṗpT + pṗT )

]
Ψ̇−1 =

Ψ̇T

(1 + pTp)2
− 2ΨT

(1 + pTp)3
(ṗTp + pT ṗ)

(28)

These equations fully describe the attitude kinematics through the Modified Rodrigues Parame-
ters. The main feature of the above equations is that an analytical closed-form solution is found
to compute ω and ω̇. Although the mathematical form of these equations is more complex than
the mathematical form described in the attitude kinematics with the quaternions, the advantage
is in dealing with square matrices . In order to summarize these results, placing Eq. (24) and
(27) in Eq. (5) the following relation is obtained:

M = f(p, ṗ, p̈) (29)

The main steps of the iPSO approach are reported in Algorithm 1. In the code, Nint repre-
sents the number of internal loops.

The iPSO approach may be used as:

1. Planner for near minimum-time maneuvers: the algorithm guarantees that all constraints
are satisfied. Moreover, the numerical results will prove that we can obtain a maneuver
time very close to that obtained with a Pseudospectral Optimal Control Software POCS
[32] approach in small computational times.

2. Initial guess for a POCS approach, reducing the required computational time for the ob-
tainement of the solution.

5. Numerical Results

A satellite for Earth observation in LEO is taken as test case. The nominal attitude is defined
as:

11
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Algorithm 1: iPSO algorithm
1 Initialization of constants, swarm and tolerances;
2 while toll > 1e− 8 do
3 upgrade cl and cg;
4 if N∗

viol = 0 and i > 1 then
5 upgrade the tolerance;
6 reset J , Jl and Jg if g(i−1)

best is not consistent with the new tolerances;
7 end
8 for ii = 1 : Nint do
9 upgrade r and w;

10 for j = 1 : nparticles do
11 interpolate p, ṗ and p̈;
12 compute the sensor rotation from Eq. (21);
13 compute of ω and ω̇ through Eq. (24) and (27) and M from Eq. (29);
14 evaluate penalty functions G, Nviol and parameter f ;
15 compute the fitness function φ, Eq. (9);
16 if φ < J(j) then
17 J(j) = φ;
18 end
19 if J(j) < Jg then
20 Jg = J(j);
21 save N∗

viol;
22 end
23 if J(j) < Jl(j) then
24 Jl(j) = J(j);
25 end
26 end
27 for j = 1 : nparticles do
28 update the swarm velocity and position;
29 end
30 end
31 end

• The Zb axis points in the nadir direction towards the Earth.

• The Xb axis is in the direction of the spacecraft velocity vector for circular orbits.

• The Yb axis completes the right-handed coordinate system and it is perpendicular to the
orbital plane in the negative orbit normal direction.

The inertial reference frame BRF0 is associated to the coordinate system {Xb, Yb, Zb} at
time t = t0. In the following roll rotations around Xb and pitch rotations around Yb will be
considered. The rotation angle is always set to Θf = 60 degree. At t = t0 the satellite is in
its nominal attitude. The inertia tensor is diagonal in the BRF and has the values Ix = 3000
kg·m2, Ix = 4500 kg·m2 and Ix = 6000 kg·m2. We assume that the attitude maneuvers are

12
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Table 1. Direction of Sun and Moon in BRF0 for the proposed case studies.

Sun Moon Free Angle
x [-] y [-] z [-] x [-] y [-] z [-] [degree]

Case 1 -0.582 -0.083 -0.809 0.405 -0.132 -0.905 0.518

Case 2 -0.649 -0.649 -0.397 0.100 -0.292 -0.951 0.836

Case 2 -0.123 -0.975 -0.187 -0.187 -0.317 -0.930 0.596

Case 4 -0.882 -0.126 -0.454 -0.060 0.019 -0.998 0.779

obtained through three independent torques aligned with the BRF with same maximum value
Mmax = 0.25 Nm.

Taking an angle ξ = 38 degree, let us consider a star tracker sensor mounted on the YbZb
plane with the unit vector ST expressed in the in BRF as:

ST = [0 − sinξ − cosξ]T (30)

The iPSO has been tested with nparticles = 30. With regards to Eq. (2), the inertia weight
w, the local best constant cl and the global best constant cg linearly go from w0 = 1.2, cl0 = 2,
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Figure 4. Geometries of the proposed case studies.
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Figure 5. Monte Carlo results over 600 test cases.

cg0 = 0 to wf = 0.6, clf = 0, cgf = 2. The number of iterations for the internal loop Nint has
been set equal to 20. The scale factor r has been set to 0.9 and the cognitive constant cp is equal
to 1.5. With regard to the neighbourhood chosen for the l(k)best,i term, the ith particle compares its
fitness value with the particles i ± j : j = 1, 2, 3. The constants c in Eq. (9) and lj in Eq. (10)
have been set to 10.

The initialization values for kdecj is 0.2 and the value of K may be set equal to 1. The
values of ∆ are initialized as a function of the keep-out cones geometry. Considering the ideal
minimum-time maneuver going from the initial attitude to the final attitude without considering
the keep-out cones, we evaluate the minimum distance between the optical axis and the light
source axes ζsun and ζmoon. The parameter λ∗ is chosen as 0.8 ·min(ζsun, ζmoon). Introducing a
parameter ε = 10 degree, we impose for the generic light source s:

∆1, s =


5 · 10−3 if ζs > λs

1− cos(λs − λ∗) if ζs > ε and f = 0

1− cos(λs) otherwise
(31)

∆1, control = 0 (32)

For numerical reasons, normalized units are considered: the control is divided by Mmax, the
inertia matrix by I1 and the maneuver time by

√
I1/Mmax. The number of external iterations is
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Figure 6. Comparison of the iPSO and POCS results for the otimal control.

a function of the tolerance criteria reported in Eq. (33).

1

10

10∑
i=1

(J ig − J i+1
g ) < 1e− 8 (33)

All results are obtained considering a PC with a processor Intel R© CoreTM i7-2670QM CPU @
2.20GHz and with 6.00 GB of RAM.

Four different case studies are proposed, whose characteristics are shown in the Table 1 and
reported in Fig. 4. The directions of the Moon and the Sun are referred in BRF0. The free
angle is the space between the two keep-out cones. The half-angles of the cones centered on
the Sun and on the Moon are set to λsun = 40 deg and λmoon = 19 deg, respectively. The first
and the second cases are different roll rotations with the minimum-time maneuver between the
keep-out cones. The third case is a pitch rotation and the last case is a roll rotation where the
minimum-time maneuver is not beetween the two cones. The maneuvers reported in Fig. 4
have been obtained with the iPSO approach.

15



Dario Spiller and Fabio Curti.

0 50 100 150 200
0

0.2

0.4

Time (s)

m
rp

 1

Attitude History − Case 1

 

 

iPSO
POCS

0 50 100 150 200
−0.04

−0.02

0

Time (s)

m
rp

 2

 

 

iPSO
POCS

0 50 100 150 200
−0.04

−0.02

0

0.02

Time (s)

m
rp

 3

 

 

iPSO
POCS

Figure 7. Comparison of the iPSO and POCS results for the attitude.

All the results obtained with the proposed approach have been compared with the results
obtained with a POCS. In Fig. 5 the percentage error of the iPSO otimal time with respect to
the POCS optimal time is reported after having carried out a Monte Carlo simulation of 600
experiments. As it can be seen, case 1 and case 3 have a mean error of about 2%, while in
the other two cases we arrive at a maximum mean error of about 6%. The most important
characteristic of the proposed approach is that the solution is always around the POCS solution,
i.e. the problem of local minima associated with other possible trajectory around the esclusion
cone is completely avoided. This is particularly important for cases 2 and 4, where a local
minimum with final time close to the obtained minimum time exists on the opposite side of the
reported maneuver (Fig. 4).

Detailed results have been reported for case 1 chosing one reference experiment. From Fig.
6, 7 and 8 we can see that the iPSO solution along the x axis is quite identical to the POCS
solution. In this case, the maneuver is mainly along the x axis: this result means that the main
characteristics of the maneuver have been caught from the iPSO solution. The y and z axes show
iPSO trends that differ from the POCS ones. It must be noted that all the constraints are satified
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Figure 8. Comparison of the iPSO and POCS results for the angular velocity.

by both the iPSO and POCS solutions. All the proposed test cases shows these features: the
future development of the proposed approach will take into account the possibility to improve
the solution in order to obtain the same accuracy for all the three axes.

The mean computational times required by the proposed iPSO approach has been reduced
with respect to the one reported in [21]: for the reported test cases about 50 seconds are required
for the obtainement of the solution. This time does not depend on the particular geometry of
the analysed cases. A further reduction of the computational time will be one of the goal of the
future development of the algorithm.

Accordigly with previous work in literature [15] [21], it has been noted that, using the iPSO
solution as best guess for the POCS, computational times may be considerably reduced. For
example, solving case 2 with the iPSO guess requires about 70 seconds, while about 3800
seconds are required without best guess.
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6. Conclusion

It has been demonstrated that the Particle Swarm Optimization may be used for planning
sub-optimal constrained maneuvers. The proposed Inverse Method guarantees solutions that
fully satisfy boundary and path constraints.

The final time obtained with the prposed method is greater than the time computed using
a pseudospectral method. However, the introduced movement of the time instants leads to
solutions very close to the ones obtained with a pseudospectral optimization software, with
errors less than 1% in some reported test cases.

The low computational effort and the satisfaction of all the imposed constraints make the
proposed approach suitable in the perspective of achieving fully autonomous satellites.
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