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A new method able to transport charged particle beams along a curved path is
presented. It is based on curved capillary-discharge waveguides where the induced
azimuthal magnetic field is used to focus the beam and, at the same time, keep it
close to the capillary axis. We show that such a solution is highly tunable, it allows
to develop compact structures providing large deflecting angles and, unlike conven-
tional solutions based on bending magnets, preserves the beam longitudinal phase
space. Such a feature, in particular, is very promising when dealing with ultra-short
bunches for which non-trivial manipulations on the longitudinal phase spaces are usu-
ally required when employing conventional deflecting devices. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5011964

Nowadays there is a growing interest in the development of new compact devices able to deflect
charged particle beams with large energies. In accelerator facilities dipole magnets are widely used
to realize bends and translate the beam to a specific location1–3 or for the generation of synchrotron
radiation,4,5 with a broad range of applications.6–9 So far permanent and electromagnetic devices
have been extensively employed although different solutions, e.g. based on channeling,10,11 have been
proposed. Superconducting magnets12 are at the edge of present technology and NbTi superconductors
cooled at cryogenic temperatures represent the state of the art. They are routinely used, for instance,
at the Large Hadron Collider (LHC) where more than 2/3 of the 27 km-long ring is filled by 8 T
superconducting dipole magnets13,14 for the bending of the 7 TeV proton beams. With current limits
of superconducting technology, it is difficult to envision compact solutions that can be scaled to even
greater energies and/or larger deflection angles.

In this context plasma technology represents an alternative approach. Plasmas can sustain
extremely large fields15 and currents16–19 and, for these reasons, they are replacing conventional
accelerators20–22 and standard focusing devices.23–25 Recently, several proof of principle experiments
have been performed in focusing electron beams by means of the so-called active plasma lenses,26–28

schematically depicted in Fig. 1. They consist of gas-filled capillaries in which the plasma is pro-
duced by an electrical discharge.29,30 According to the Ampere law, an azimuthal magnetic field B�

is induced across the capillary whose strength increases radially and, unlike standard quadrupoles,
provides symmetric focusing of the beam in both transverse planes. Here we show that the same
mechanism can also be used to deflect particles. In the active plasma lens the Lorentz force produced
by the azimuthal magnetic field pushes the travelling particles toward the capillary axis (where it
vanishes) and the same applies for curved shapes since the flux of plasma electrons driven by the dis-
charge actually follows the capillary geometry.31,32 Such a device, hereinafter called Active Bending
Plasma (ABP), presents interesting features when considering the effects of deflection on the particle
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FIG. 1. Scheme for particle guiding. A discharge current flows through the plasma capillary inducing, according to the Ampere
law, an azimuthal magnetic field B� whose resulting force F focuses an externally injected electron bunch.

beam and can in principle reach greater magnetic fields (and, thus, larger deflection angles) than
superconducting magnets. In the paper we present the main features of such a device and a detailed
study based on numerical simulations both for the particle guiding and plasma dynamics.

To test the guiding efficiency of the ABP we will refer to a reference electron beam with 50 pC
charge, energy E = 100 MeV (0.1% energy spread), 1 ps duration (or, equivalently, �z ⇡ 300 µm
length), ✏n = 1 µm normalized emittance and�x , y = 100 µm spot size. All the quantities are quoted as
root mean square (rms). The particle trajectories are reconstructed by using the General Particle Tracer
(GPT) code33 while the bunch dynamics along the plasma channel is investigated with Architect, a
hybrid-kinetic fluid code.34,35 Similarly to the active plasma lens, ABP requires a magnetic focusing
field whose strength increases with radius. When the bunch particles move away from the axis they
experience a larger recalling force pushing toward the center of the capillary. The required magnetic
field can be obtained with the so-called capillary discharge waveguides,29,30 in which a discharge
current is pulsed through a capillary pre-filled with gas.

Under these assumptions, we have tested the feasibility of the ABP concept by employing a bent
capillary with Rc = 1 mm hole radius and ⇢ = 10 cm radius of curvature. For the chosen parameters
the bending requires at least a magnetic field with strength B� = �Ec/qe⇢ ⇡ 3.3 T, where � is the
bunch velocity normalized to the speed of light c and qe is the electron charge. The magnetic field
radial profile B�(r) across the capillary is calculated with a one-dimensional analytical model that
assumes the plasma distribution as a balance between Ohmic heating and cooling due to electron
heat conduction.36 The model computes the plasma temperature profile T (r) allowing to retrieve its
electric conductivity �e(r) and, in turn, the current density J(r) flowing through it. The resulting
magnetic field is then calculated according to the Ampere law as B�(r)= (µ0/r) s r

0 J(r 0)r 0dr 0, with
µ0 the vacuum permeability.

Fig. 2(a) shows the radial magnetic field for a discharge current of ID = 25 kA to a capillary
pre-filled by pure Hydrogen gas with 1019 cm 3 density. On the same plot we also report temperature
and density profile as a function of the radial coordinate. The resulting vector plot of the magnetic
field lines is shown in Fig. 2(b). The gas and density have been chosen to avoid plasma pinching
and maintain a pure Ohmic regime. In these conditions the average plasma temperature and electron
density are Te ⇡ 17 eV and ne ⇡ 7 ⇥ 1018 cm 3. Being the plasma thermal pressure (per volume unit)
pT = 4NekBTe (with kB is the Boltzmann constant and Ne = ne⇡R2

c the number of electrons per unit
length) and the magnetic pressure pB = µ0I2

D/4⇡, it is pT � pB and thus no pinching is expected.37

For the sake of completeness we have numerically cross-checked such a statement by employing the
so-called “snow-plow” model38 that analyses the plasma dynamics under the influence of the external
discharge circuit. The results confirm that no pinching occurs by using the same plasma parameters
of the ABP.

The magnetic field of the ABP in the full three-dimensional space is then computed with the
commercial code CST STUDIO,39 that computes the field map along the curved capillary geometry
by using the previously obtained electrical conductivity �e(r). Fig. 2(c) shows the resulting intensity
profile along the y = 0 plane. Two 1 cm long straight sections have been included before and after
the curved capillary.

To test the particle deflection, we imported the 3D field map into GPT. The reference elec-
tron beam, consisting of 106 macro-particles, is assumed to be injected from the left of Fig. 2(c)
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FIG. 2. (a) Calculated radial profiles of the magnetic field (blue), temperature (red) and electron density (green) in a pre-filled
Hydrogen capillary for ID = 25 kA discharge current. (b) Vector plot showing the field lines in the transverse x-y plane. The
white dashed circle indicates the capillary walls. (c) Magnetic field intensity (along the y = 0 plane) for the bent capillary with
⇢ = 10 cm curvature radius. Two 1 cm-long straight sections are included before and after the bent path. (d) Trajectories of
the travelling electrons along the curved path. The red (black) dotted lines show the capillary channel (without) including the
two straight sections. A drift of 1 (2) cm is considered in the simulation upstream (downstream) the capillary channel.

at x = y = z = 0. The simulated macro-particle trajectories are reported in Fig. 2(d). An initial (final)
drift of 1 (2) cm is considered upstream (downstream) the capillary channel. The red (black) dotted
lines show the overall path (without) including the two straight sections. The plot highlights that all
the particles are properly bent and follow the curved path along the capillary. The beam envelopes are
shown in Fig. 3. Here we refer to the envelopes�x0,y0,z0 , i.e. the ones calculated in the beam co-moving
system x0, y0, z0, with z0 indicating the relative position along the curved path. The beam undergoes
several betatron oscillations during its motion. These are evident by looking at the evolution of �y

since such a plane is not affected by the deflection. Regarding the �x envelope, it exactly resembles
�y up to the end of the straight capillary section (approximately at z0 = 3 cm), then it follows a
different behavior on the plane of deflection.

An interesting feature we can retrieve from Fig. 3 is the evolution of the bunch length �z. We
can see that such a quantity is effectively preserved (within 1% of its initial value) at the end of the
bending, thus no elongation (or longitudinal dispersion) of the bunch is observed as in the case of
conventional bending magnets. It is due to the fact that, regardless of their energy, all the particles
follow approximately the same path. By considering that the azimuthal magnetic field grows radially,
larger (lower) is the particle energy larger (smaller) is the offset with respect to the reference path
since ⇢ / E. As a consequence, a stronger (weaker) kick is produced, resulting in trajectories that are
almost independent on the particle energies.
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FIG. 3. Bunch envelopes as a function of the longitudinal position z0. The transverse sizes are labelled as �x0,y0 (solid blue
and dashed red lines). The bunch length is denoted by �z0 (green line). As in Fig. 2(d), the red (black) dotted lines show the
capillary channel (without) including the two straight sections.

Fig. 4 compares the initial ( ) and final ( ) beam longitudinal phase space (LPS) as computed
by the Architect code. At the end of the ABP a small fraction (less than 0.1%) of particles in the tail is
weakly accelerated by the induced plasma wakefield but the main core of the bunch actually remains
unaffected and the overall elongation is of the order of 0.4%. In the same plot we have also reported
the resulting LPS at the exit of a conventional bending dipole ( ), modeled as a sector magnet with
same radius of curvature ⇢ and gap equal to 2Rc. In this case the bunch acquires an energy chirp and
its elongation is more pronounced (about 8%).

A parametric study conducted on several beam configurations is summarized in Fig. 5. The
effectiveness in preserving the length of even ultra-short bunches (down to 3 µm or, equivalently,
10 fs) is shown in Fig. 5(a) as a function of the bunch spot size at the ABP entrance. We can see that
such a quantity is better preserved for small aspect ratio beams, i.e. when �x , y/�z . 1. In a similar
study, reported in Fig. 5(b), we confirm that even with large energy spreads (up to 6%) the elongation
is contained within only 5%. The same plot also highlights that, for a conventional bending dipole,
the same energy spreads would result in an overall elongation approximately 200 times larger. The
ability to guide the beam for different discharge currents flowing through the capillary is shown in

FIG. 4. Longitudinal phase space (LPS) at the entrance ( ) and exit ( ) of the ABP. The y-axis shows the single particle
energies with respect to the mean bunch energy (100 MeV). The resulting LPS at the exit of a conventional bending dipole
( ) is also reported. On top the resulting histogram of the bunch longitudinal profile for the three cases is shown.
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FIG. 5. (a) Bunch elongation as a function of the initial bunch length for several spot sizes at ABP entrance. (b) Elongation
calculated at different energy spreads for the reference beam (�z = 300 µm) at the end of the ABP (blue line). The red dashed
line refers to a conventional bending dipole. Its real values must be multiplied by a factor of 200. (c) Guiding efficiency as a
function of the applied discharge current. At lower values a larger fraction of particles is lost. The red dashed line represents
the discharge current used for all the calculations considered so far. (d) Resulting emittance at the end of the transport as a
function of the initial spot size. The red dashed line indicates the initial emittance (✏n = 1 µm).

Fig. 5(c). For the reference 100 MeV beam, a minimum current ID ⇡ 24 kA is needed to ensure the
proper bending for all the particles. At lower currents the guiding is less efficient and a larger fraction
of particles is lost during the transport. On the contrary, at larger currents the guiding is always
guaranteed being the resulting magnetic field large enough to keep all particles on the reference
trajectory. In Fig. 5(d) we have evaluated the emittance increase as a function of the spot size at
capillary entrance. We observe that the beam emittance is preserved when �x , y ⌧ Rc, which ensures
that the magnetic field (as the one calculated in Fig. 2(a)) is almost linear along the bunch radial
profile. For the reference beam, instead, we find a dramatic emittance degradation (up to 40 µm) due
to its large initial spot size.

In this context, the best scenario is obtained when the beam is matched with the focusing channel.
By assuming a linear focusing force F(r) = k2r (with k2 = µ0qe �cID/2⇡R2

c ) acting at distance r from
the axis, the beam envelope equation is

�00x,y + k2
n�x,y =

✏2
n

�3
x,y

, (1)

where kn = k/
p
�mec2 is the normalized lens focusing strength, � the relativistic Lorentz factor and

me the electron rest mass. The equilibrium solution is associated to a betatron oscillation of amplitude
�eq = 1/kn and thus to a matched spot size equal to �eq =

p
�eq✏n/� ⇡ 7 µm. For such a value we

achieve the emittance minimum in Fig. 5(d).



015326-6 Pompili et al. AIP Advances 8, 015326 (2018)

In conclusion, we have presented a new device based on a capillary-discharge waveguide able
to deflect particles at large angles. The theoretical treatment is discussed and supported by numerical
simulations showing that the guiding, under certain conditions, preserves both the beam emittance and
longitudinal phase space. The latter feature, in particular, would be particularly useful in accelerator
facilities. If the beam has to be translated in a different beamline, a system consisting of (at least two)
consecutive bending magnets separated by dispersion-matching focusing optics (e.g. quadrupoles
and sextupoles) has to be adopted to preserve (or compress) the bunch duration.40,41 On the contrary,
by means of the ABP even ultra-short beams can be transported without requiring additional optics.
We have also demonstrated its capability in guiding particle beams with large energy spread as, for
instance, the ones coming from plasma-based accelerators.42–44 In such a specific case the transport
up to a specific location would represent a tricky task to accomplish when employing conventional
magnetic optics (strongly affected by chromatic effects). With the ABP, instead, the overall elongation
would be contained within only few percent.

Regarding its scalability to larger beam energies (and/or larger deflection angles), the ABP can
still be used by tuning its main parameters (radius of curvature, discharge current and capillary
radius). Here we have demonstrated how to obtain the most compact structure able to bend by 90� a
100 MeV electron beam. For all the other cases, e.g. when dealing with larger energies, the radius of
curvature has to be increased (since ⇢ / E) by employing longer capillaries and avoiding the use of
too large discharge currents that can induce plasma pinch and other nonlinear effects. If compared to
the state of the art of current technology, based on superconducting magnets operating at cryogenic
temperatures, its practical implementation would be simpler and affordable in terms of costs. The
ABP might thus represent an alternative solution to develop more compact beamlines and, in general,
to bend and guide charged particle beams.
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