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Curriculum in Automatica

Nonlinear Multi-Agent
Control with

Application to Networked
Systems

Advisors

Chiar.mo Prof. Salvatore Monaco

Chiar.ma Prof.ssa Marie-Dorothée Normand-Cyrot

Candidate

Ing. Lorenzo Ricciardi Celsi

DIAG – Dipartimento di Ingegneria Informatica, Automatica e
Gestionale Antonio Ruberti

A.A. 2016-2017



Le savant digne de ce nom, le géomètre surtout,
éprouve en face de son oeuvre la même impression que l’artiste ;

sa jouissance est aussi grande et de même nature.
- Jules Henri Poincaré

In order to arrive there,
to arrive where you are, to get from where you are not,

you must go by a way wherein there is no ecstasy.
In order to arrive at what you do not know

you must go by the way which is the way of ignorance.
In order to possess what you do not possess

you must go by the way of dispossession.
In order to arrive at what you are not

you must go through the way in which you are not.
And what you do not know is the only thing you know

and what you own is what you do not own
and where you are is where you are not.

- Thomas Stearns Eliot
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doctorat, for encouraging me and for wisely guiding the investigation of the
literature and my research in general. Also, I wish to express my deepest
gratitude to Prof. Francesco Delli Priscoli for his invaluable teachings and
insightful comments and advice, as well as for giving me the opportunity to
collaborate in several research projects with an international outlook.

I am sincerely indebted and grateful to Prof. Antonio Pietrabissa, Prof.
Vincenzo Suraci and Dr. Alessandro Di Giorgio for helping me find and select
the sources for my research and for withstanding my hour-long questions.
I am so grateful to my colleague Mattia Mattioni, for helping me with the
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Résumé

La science des réseaux est aujourd’hui un puissant paradigme conceptuel
en ingénierie. Une attention sans précédent est actuellement consacrée à
la théorie des réseaux et à ses applications par la communauté scientifique.
D’une part, il est devenu vital qu’on comprend mieux le rôle des interactions
inter-élémentaires dans la fonctionnalité collective des systèmes multicouches
dans les sciences biologiques et, d’autre part, les progrès technologiques
ont considérablement amélioré notre capacité de synthétiser des systèmes
d’ingénierie en réseau (systèmes á plusieurs véhicules et pelotons, vol en
formation, équipes de robots, réseaux de capteurs sans fil, réseaux d’énergie,
réseaux sociaux) qui ressemblent à leurs homologues naturels en termes de
complexité opérationnelle. Habituellement, les agents des systémes en réseau
doivent fonctionner de concert les uns avec les autres afin d’atteindre des
objectifs du système avec des ressources de calcul limitées, des capacités de
détection limitées et des communications locales.

Ceci a suscité chez le doctorant un intérêt significatif pour le cadre
méthodologique des systèmes dynamiques multi-agents en réseau. En partic-
ulier, l’étude de la littérature récente a amené le doctorant à découvrir que,
du point de vue méthodologique, il existe un dénominateur commun qui jette
les bases de presque tous les résultats novateurs liés aux systémes dynamiques
multi-agents : en effet, ces résultants sont fondés sur :

• la théorie algébrique des graphes et

• la théorie du consensus.

Dans cet esprit, en accord avec ses superviseurs, le doctorant a orienté ses
recherches vers le développement de résultats méthodologiques innovants en
termes de réalisation de comportements de multi-consensus dans les systèmes
multi-agents.

Cependant, ces aspects ont été étudiés non seulement du point de vue
méthodologique, mais aussi du point de vue applicatif.

En effet, au cours des trois dernières années, le doctorant a dédié beaucoup
de temps à résoudre des problèmes pratiques pour certaines applications

iv



RÉSUMÉ v

technologiques réelles dans le domaine des réseaux de télécommunication
et d’énergie, dans le cadre de projets de recherche italiens et européens, en
utilisant les méthodes théoriques de contrôle mentionnées ci-dessus. À ce
titre, en tant que consultant interne pour le CRAT (Consorzio per la Ricerca
nell’Automatica e nelle Telecomunicazioni), le doctorant a participé aux
projets suivants, en s’engageant non seulement sur les phases et processus de
gestion de projet, mais surtout sur la partie technique de ces projets et les
défis connexes :

• projet MIUR-PON PLATINO (Platform for Innovative Services in
Future Internet, juillet 2012 – juin 2015);

• projet FP7 T-NOVA (Network Functions as-a-service over Virtualised
Infrastructures, janvier 2014 – décembre 2016);

• projet H2020 BONVOYAGE project (From Bilbao to Oslo, intermodal
mobility solutions, interfaces and applications for people and goods,
supported by an innovative communication network, mai 2015 – avril
2018);

• projet H2020 ATENA (Advanced tools to assess and mitigate the crit-
icality of ICT components and their dependencies over critical infras-
tructures, mai 2016 – avril 2019).

En particulier, le projet PLATINO portait sur la conception et le développe-
ment d’une plate-forme de service capable de fournir services et contenus
hétérogènes, par le biais de réseaux différents, suffisamment souple pour gérer
une large gamme de terminaux, sensible au contexte, personnalisable sur la
base des préférences de l’utilisateur, et enfin capable de garantir la Qualité de
Service et de mesurer et maximiser la Qualité d’Expérience de l’utilisateur,
dans le respect du paradigme de l’Internet du Futur. Ce projet a effectivement
bénéficié des fonctions de contrôle de la la Qualité de l’Expérience capables de
sélectionner dynamiquement les Classes de Service les plus appropriées grâce
à un algorithme heuristique innovant fondé sur l’apprentissage par renforce-
ment à plusieurs agents et conçu de manière à contourner certains problèmes
d’implémentation pratique et à obtenir des performances satisfaisants, même
en présence de plusieurs centaines d’agents. Le projet T-NOVA, au con-
traire, portait sur la conception et la mise en œuvre d’une plate-forme de
gestion/orchestration pour la fourniture automatisée, la configuration, la
surveillance et l’optimisation de Network Functions-as-a-Service sur réseaux
virtualisés et/ou infrastructures informatiques en améliorant les plate-formes
déjà existantes de Software Defined Networking (SDN) : ce projet a béneficié
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d’un algorithme distribué et non-coopératif d’équilibrage de charge à temps
discret fondé sur la théorie des jeux à champ moyen, dans le but d’équilibrer
dynamiquement les demandes des commutateurs parmi les contrôleurs SDN
pour éviter la congestion dans le trafic de contrôle. Les résultats de recherche
obtenus dans le cadre des activités des projets PLATINO et T-NOVA ont
donné lieu à quatre communications dans des congrès internationaux et à
trois articles de journal (dont deux sont toujours en cours d’examen).

Le doctorant a également participé au projet BONVOYAGE, portant
sur la conception, le développement et le test d’une plate-forme optimisant
le transport porte-à -porte multimodal de passagers et de marchandises.
Cette plate-forme intègre les services d’information, de planification et de
billetterie en analysant automatiquement : les données collectées en temps
non réel à partir de bases de données hétérogènes (sur les réseaux routiers,
ferroviaires et urbains), les données mesurées en temps réel (prévisions de
trafic et météo), profils et commentaires des utilisateurs. Le doctorant a
ainsi développé un algorithme pour résoudre le problème du covoiturage
avec l’agrégation automatisée de passagers dans le cadre de la planification
multimodale des déplacements en s’assurant que la solution proposée contourne
raisonnablement la complexité de calcul des scénarios considérés. Ce travail a
conduit aux résultats présentés dans deux communications dans des congrès
internationaux. Pourtant, un tel sujet de recherche n’est pas détaillé dans
cette thèse de doctorat, car il est au-delà de la portée des systèmes dynamiques
multi-agents et de leurs applications spécifiques.

Le projet ATENA, toujours en cours, concerne plutôt le développement
d’une suite de composants TIC (Technologies de l’Information et de la
Communication) en réseau pour la détection et la réaction aux événements
indésirables dans les systèmes cyber-physiques et, en particulier, la conception
d’un système de protection fondé sur le placement de systèmes de stockage
d’énergie contre des attaques dynamiques de modification de charge en boucle
fermée, supportant ainsi avec succès les services de régulation de fréquence
dans les réseaux de transmission de puissance. Jusqu’à présent, les résultats
de recherche connexes ont mené à deux communications dans des congrès
internationaux.

Il ressort clairement de la description ci-dessus que le cadre méthodologique
des systèmes dynamiques multi-agents en réseau représente un terrain d’entente
qui se trouve sous les projets T-NOVA, PLATINO et ATENA. Cela a con-
duit le doctorant à enquêter sur la littérature récente et à rechercher des
avancées significatives au-delà de l’état de l’art. Les activités de recherche
et les résultats correspondants ont été réalisés dans le cadre du Progetto di
Ateneo (Sapienza, Université de Rome) au sujet des systèmes non linéaires à
temps discret et à données échantillonnées, conduisant à quatre communica-
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tions dans des congrès internationaux et à un article de journal (en cours de
préparation).

En particulier, le Progetto di Ateneo tourne autour de l’étude des modèles
mathématiques décrivant le comportement des systèmes dynamiques multi-
agents, avec un accent particulier sur :

• la coordination distribuée des systèmes multi-agents;

• le multi-consensus et les almost equitable partitions des graphes;

• la conception de lois de contrôle à données échantillonnées avec des ap-
plications aérospatiales – identifié comme un suivi des travaux effectués
par le doctorant dans sa thèse de master.

Les travaux reportés ci-dessus représentent toute la production scientifique
dont le doctorant a été coauteur au cours des trois années du programme de
doctorat.

L’extension internationale de la portée culturelle, scientifique et profes-
sionnelle des activités menées par le doctorant n’est dû pas seulement à la
participation active aux projets de recherche européens mentionnés ci-dessus,
mais aussi, notamment, à la cotutelle avec l’Ecole Doctorale de Sciences et
Technologies de l’information et de la Communication (ED STIC) à Centrale
Supélec, Université Paris-Saclay et au financement reçu par l’Université
Franco-Italienne (UFI) après avoir remporté le concours Vinci 2016.

La thèse de doctorat est divisé en quatre chapitres, comme suit :

• Chapitre 1: Apprentissage par renforcement à plusieurs agents, équilibrage
de charge à temps discret basé sur Lyapunov et optimisation du place-
ment des systèmes de stockage d’énergie par rapport aux attaques
dynamiques de modification de charge.

• Chapitre 2: État de l’art sur la coordination distribué des systèmes
multi-agents.

• Chapitre 3: Partitions des graphes et multi-consensus.

• Chapitre 4: Conception de lois de contrôle à données échantillonnées
pour des applications aérospatiales.

Ainsi, la thèse est caracterisée par une première partie (composé des
chapitre 1) dedié à la présentation et à la discussion des applications les
plus pertinentes des systèmes de contrôle multi-agents en réseau dans le
cadre de projets T-NOVA, ATENA et PLATINO. Ensuite, la deuxième
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partie (composée des chapitres 2, 3 et 4) présente le contexte théorique sous-
jacente par rapport à la coordination des systèmes multi-agents distribués
et les résultats innovants obtenus en ce qui concerne le multi-consensus et la
conception de lois de contrôle à données échantillonnées.



Abstract

La scienza delle reti si è recentemente imposta in ingegneria come un paradigma
concettuale di peso significativo. Un’attenzione senza precedenti è attualmente
rivolta dalla comunità scientifica a questa discriplina e alle sue applicazioni
poiché, da un lato, è di importanza fondamentale nelle scienze biologiche
l’acquisizione di una comprensione profonda del ruolo che nel comportamento
collettivo di sistemi multi-strato svolgono le interazioni tra i singoli com-
ponenti e, dall’altro, i recenti sviluppi tecnologici hanno considerevolmente
migliorato la nostra capacità di sviluppare sistemi ingegneristici su rete (e.g.,
sistemi multi-veicolo, plotoni di veicoli, volo in formazione e squadre di robot,
reti di sensori, reti elettriche, social network) il cui comportamento assomiglii
a quello delle loro controparti naturali in termini di complessità operativa.
In genere, gli agenti di un sistema su rete devono operare in concerto tra
loro al fine di raggiungere opportuni obiettivi a livello di sistemi, tenendo
conto della disponibilità di risorse computazionali limitate, di capacità di
sensing limitate e della possibilità di ricorrere solamente a comunicazioni
locali. Ciò ha suscitato nel dottorando un vivissimo interesse per il corpo
di metodi che riguardano l’analisi e il progetto di sistemi dinamici mulit-
agente su rete. In particolare, lo studio della letteratura recente ha portato
il dottorando a riconoscere che, dal punto di vista metodologico, è possibile
individuare un denominatore comune tale da porre le fondamenta quasi per la
totalità dei risultati innovativi raggiunti nella letteratura sui sistemi dinamici
multi-agente: tali risultati sono infatti basati principalmente su

• la teoria algebrica dei grafi, e

• la teoria del consenso.

Pertanto, in accordo con i propri relatori della tesi, il dottorando ha indirizzato
le sue ricerche verso lo sviluppo di risultati metodologici innovativi, con
particolare riferimento ai comportamenti di multi-consenso che si possono
riscontrare nei sistemi multi-agente.

Tuttavia, tali aspetti sono stati approfonditi non soltanto dal punto di
vista metodologico, ma anche dal punto di vista applicativo. Infatti, nel corso
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degli ultimi tre anni, il dottorando ha dedicato diverso tempo alla risoluzione
di problemi di interesse pratico, relativi ad alcune applicazioni tecnologiche nel
dominio delle telecomunicazioni e delle reti elettriche e inseriti nel contesto di
progetti di ricerca italiani ed europei, utilizzando le metodologie di teoria del
controllo sopraindicate. A tal proposito, in qualità di consulente in-house per
il CRAT (Consorzio per la Ricerca nell’Automatica e nelle Telecomunicazioni),
il dottorando ha partecipato ai seguenti progetti, avendo a che fare non solo
con i relativi processi di gestione, ma anche e soprattutto con le attività
tecniche di tali progetti e con le relative sfide:

• progetto MIUR-PON PLATINO (Platform for Innovative Services in
Future Internet, luglio 2012 – giugno 2015);

• progetto FP7 T-NOVA (Network Functions as-a-service over Virtualised
Infrastructures, gennaio 2014 – dicembre 2016);

• progetto H2020 BONVOYAGE project (From Bilbao to Oslo, intermodal
mobility solutions, interfaces and applications for people and goods,
supported by an innovative communication network, maggio 2015 – aprile
2018);

• progetto H2020 ATENA (Advanced tools to assess and mitigate the
criticality of ICT components and their dependencies over critical in-
frastructures, maggio 2016 – aprile 2019).

In particolare, il progetto PLATINO era incentrato sulla progettazione
e sullo sviluppo di una piattaforma software cognitiva (vale a dire con ar-
chitettura ad anello chiuso), in grado di fornire servizi e contenuti di vario
tipo attraverso reti eterogenee, abbastanza flessible per gestire una grande
varietà di terminali, personalizzabile sulla base delle preferenze degli utenti e
infine in grado di garantire la Qualità del Servizio e di misurare e massimiz-
zare la Qualità dell’Esperienza dell’utente, tutto ciò coerentemente con il
paradigma del Future Internet. Tale progetto ha potuto trarre beneficio da
funzionalità di controllo della Qualità dell’Esperienza in grado di selezionare
in modo dinamico le Classi di Servizio più adeguate mediante un innovativo
algoritmo euristico, basato sul Multi-Agent Reinforcement Learning e proget-
tato in modo tale da aggirare alcuni problemi implementativi e da ottenere
prestazioni soddisfacenti in presenza di diverse centinaia di agenti. Il progetto
T-NOVA, d’altro canto, prevedeva la progettazione e l’implementazione di una
piattaforma di gestione/orchestrazione per la fornitura, la configurazione, il
monitoraggio e l’ottimizzazione automatici di Network Functions-as-a-Service
su reti virtualizzate e infrastrutture IT, perfezionando le piattaforme di Soft-
ware Defined Networking (SDN) già esistenti: tale progetto ha potuto trarre
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beneficio dall’implementazione di un algoritmo distribuito, non-cooperativo e
a tempo discreto, per il bilanciamento dei carichi, basato sulla teoria dei giochi
di campo medio e finalizzato al bilanciamento dinamico delle richieste degli
switch tra i cosiddetti SDN Controllers per evitare congestioni nel traffico di
controllo. I risultati di ricerca ottenuti nell’ambito delle attività dei progetti
PLATINO e T-NOVA hanno dato luogo a quattro pubblicazioni su atti di
conferenze internazionali e a tre pubblicazioni su rivista (delle quali due sono
attualmente in revisione).

Il dottorando ha anche partecipato al progetto BONVOYAGE, finalizzato
alla progettazione, allo sviluppo e alla validazione di una piattaforma che
ottimizzi il trasporto multi-modale porta-a-porta di passeggeri e merci. Tale
piattaforma integra le informazioni di viaggio e i servizi di pianificazione
del viaggio e di acquisto del biglietto, analizzando automaticamente: i dati
raccolti non in tempo reale da database eterogenei (sui sistemi di trasporto
stradale, ferroviario e urbano), i dati misurati in tempo reale (riferiti al traf-
fico e alle previsioni meteorologiche), i profili degli utenti e i feedback degli
utenti. A tal proposito, il dottorando ha sviluppato un algoritmo per risolvere
il problema del many-to-many carpooling con aggregazione automatica dei
passeggeri nel contesto della pianificazione di viaggi multi-modali, assicu-
rando che la soluzione proposta ponga rimedio al problema della complessità
computazionale che sorge in scenari di dimensioni realistiche. Questo lavoro
ha condotto ai risultati mostrati in due pubblicazioni su atti di conferenze
internazionali. Tuttavia, tale argomento di ricerca non è ulteriormente appro-
fondito in questa tesi di dottorato poichè esso non rientra nell’ambito della
tematica dei sistemi dinamici multi-agente e delle relative applicazioni.

Il progetto ATENA (anch’esso attualmente in corso) prevede lo sviluppo
di una suite integrata di componenti ICT su rete per la rilevazione e la mi-
tigazione di eventi avversi nei sistemi ciber-fisici e, in particolare, sta traendo
beneficio dala progettazione di uno schema di protezione basato sul piazza-
mento di sistemi di accumulo energetico (energy storage systems) per porre
rimedio ad attacchi dinamici e ad anello chiuso responsabili dell’alterazione
dei carichi di rete, offrendo cos̀ı un efficace supporto ai servizi di regolazione di
frequenza delle reti elettriche di trasmissione. Finora, i risultati delle relative
ricerche hanno prodotto due pubblicazioni su atti di conferenze internazionali.

È chiaro dalla descrizione sopra che il corpo di metodi che riguardano
l’analisi e il progetto dei sistemi dinamici multi-agente su rete rappresenta
il terreno comune che soggiace ai progetti T-NOVA, PLATINO e ATENA.
Ciò ha condotto il dottorando ad approfondire la letteratura recente e a
ricercare significativi avanzamenti oltre lo stato dell’arte. Le relative attività
di ricerca e i risultati conseguenti sono stati inquadrati nel Progetto di Ateneo
(Sapienza, Università di Roma) su Sistemi Nonlineari a Tempo Discreto e
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a Dati Campionati e sintetizzati in due pubblicazioni su atti di conferenze
internazionali e un articolo su rivista (la cui preparazione è quasi conclusa).
In particolare, il Progetto di Ateneo, tra le altre cose, prevede un’indagine
sui modelli matematici che descrivono il comportamento dei sistemi dinamici
multi-agente, con particolare attenzione a:

• il coordinamento distribuito dei sistemi multi-agente;

• il multi-consenso e le almost equitable graph partitions ;

• la progettazione di leggi di controllo a dati campionati con applicazioni
aerospaziali (tale argomento è stato approfondito nel primo anno di dot-
torato come naturale proseguimento del lavoro effettuato dal dottorando
nella sua tesi di laurea magistrale).

Le pubblicazioni cui si è fatto riferimento costituiscono l’intera produzione
scientifica del triennio dottorale nella quale il dottorando figura come co-
autore.

Il respiro internazionale delle attività scientifiche e professionali condotte
dal dottorando è dovuto non soltanto alla partecipazione attiva ai progetti di
ricerca europei sopraindicati, ma anche, in modo particolare, alla co-tutela
con l’École Doctorale de Sciences et Technologies de l’Information et de la
Communication (ED STIC) presso Centrale Supélec, Université Paris-Saclay
e al finanziamento ricevuto dall’Università Italo Francese (UFI), essendo il
dottorando risultato vincitore del bando Vinci 2016.

La tesi di dottorato è suddivisa in cinque Capitoli:

• Capitolo 1. Multi-Agent Reinforcement Learning, bilanciamento dei
carichi distribuito basato sul metodo diretto di Lyapunov e protezione
della rete di trasmissione elettrica da attacchi ciber-fisici.

• Capitolo 2. Stato dell’arte sul coordinamento distribuito dei sistemi
multi-agente.

• Capitolo 3. Il multi-consenso e le almost equitable graph partitions.

• Capitolo 4. Progettazione di leggi di controllo a dati campionati con
applicazioni aerospaziali.

Perciò, la tesi inizia con una prima parte (costituita dal Capitolo 1) dedicata
alla presentazione e alla discussione delle più rilevanti applicazioni dei sistemi
di controllo multi-agente su rete nel contesto dei progetti T-NOVA, PLATINO
e ATENA. Dopodiché, la seconda parte (costituita dai Capitoli 2, 3 e 4)
presenta il contesto teorico che fa da sfondo a tali applicazioni, con particolare
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riferimento al coordinamento distribuito dei sistemi multi-agente, e i risultati
innovativi raggiunti in termini di multi-consenso e progettazione di leggi di
controllo a dati campionati.
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Résumé iv

Abstract ix

Introduction 1

1 Multi-Agent Quality of Experience Control, Lyapunov-Based
Discrete-Time Load Balancing, and Power Transmission Grid
Protection Against Cyber-Physical Attacks 7
1.1 Multi-Agent Quality of Experience Control . . . . . . . . . . . 8

1.1.1 QoE Controller Architecture . . . . . . . . . . . . . . . 9
1.1.2 The MARL-Q Algorithm for the QoE Controller . . . . 13
1.1.3 Proposed Heuristic MARL-Q Based (H-MARL-Q) Al-

gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.4 H-MARL-Q Algorithm Simulations . . . . . . . . . . . 20
1.1.5 Numerical Results . . . . . . . . . . . . . . . . . . . . 23

1.2 Discrete-Time Load Balancing Converging to the Wardrop
Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.1 Related Work and Proposed Innovation . . . . . . . . . 29
1.2.2 Load Balancing Problem . . . . . . . . . . . . . . . . . 31
1.2.3 Discrete-Time Control Law and Algorithm Convergence 33
1.2.4 Numerical Simulations . . . . . . . . . . . . . . . . . . 40

1.3 Lyapunov-Based Design of a Distributed Wardrop Load Balanc-
ing Algorithm with Application to Software Defined Networking 45
1.3.1 State of the Art and Proposed Innovations with Respect

to Software Defined Networks . . . . . . . . . . . . . . 47
1.3.2 Proposed Wardrop Load Balancing Algorithm . . . . . 48

xiv



CONTENTS xv

1.3.3 Proof-of-Concept Application to Software Defined Net-
working . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.4 Optimization of Energy Storage System Placement for Protect-
ing Power Transmission Grids Against Dynamic Load Altering
Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
1.4.1 Mathematical Model of the IEEE 39-Bus Test System

Under a D-LAA . . . . . . . . . . . . . . . . . . . . . . 68
1.4.2 Optimization of ESS Placement . . . . . . . . . . . . . 72
1.4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . 76

2 State of the Art on Distributed Coordination of Multi-Agent
Systems 80
2.1 First-Order Systems . . . . . . . . . . . . . . . . . . . . . . . 81

2.1.1 Discrete-Time Consensus in Linear Systems . . . . . . 81
2.1.2 Continuous-Time Consensus in Linear Systems . . . . . 87
2.1.3 A Few Hints about Switching Topologies Interconnect-

ing First-Order Systems . . . . . . . . . . . . . . . . . 93
2.2 Second-Order Systems . . . . . . . . . . . . . . . . . . . . . . 93

2.2.1 Interconnection of n Mass-Spring-Damper Systems . . 112
2.3 Consensus in 2D with Rotation Matrices . . . . . . . . . . . . 116
2.4 Lyapunov-based Analysis and Control of Nonlinear Models . . 120

2.4.1 Leader Following . . . . . . . . . . . . . . . . . . . . . 136
2.5 Networked Lagrangian Systems . . . . . . . . . . . . . . . . . 139

2.5.1 Distributed Leaderless Coordination . . . . . . . . . . 140
2.5.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 143

2.6 Sampled-Data Control . . . . . . . . . . . . . . . . . . . . . . 143
2.6.1 Sampled-Data Coordinated Tracking for Single-Integrator

Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 145
2.6.2 Comparison Between the Proportional-Like and Proportional-

Derivative-Like Discrete-Time Coordinated Tracking
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 152

2.6.3 Simulation Example . . . . . . . . . . . . . . . . . . . 153

3 Multi-Consensus and Almost Equitable Graph Partitions 159
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
3.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
3.3 Recalls on Single Consensus and on Multi-Consensus . . . . . 162
3.4 Almost Equitable Partitions . . . . . . . . . . . . . . . . . . . 171
3.5 Main Result Relating Multi-Consensus and Almost Equitable

Graph Partitions . . . . . . . . . . . . . . . . . . . . . . . . . 172
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188



CONTENTS xvi

4 Sampled-Data Design with Aerospace Applications 190
4.1 On the Exact Steering of Finite Sampled Nonlinear Dynamics

with Input Delays . . . . . . . . . . . . . . . . . . . . . . . . . 190
4.1.1 Theoretical Framework . . . . . . . . . . . . . . . . . . 192
4.1.2 The PVTOL Example . . . . . . . . . . . . . . . . . . 197
4.1.3 Simulation Results . . . . . . . . . . . . . . . . . . . . 201
4.1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 203

4.2 Sampled-Data Stabilization Around the L2 Translunar Libra-
tion Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
4.2.1 Quasi-Halo Orbit Following via Nonlinear

Regulation . . . . . . . . . . . . . . . . . . . . . . . . . 206
4.2.2 Sampled-Data Design by Emulation . . . . . . . . . . . 212
4.2.3 Remarks on Sampled-Data Design . . . . . . . . . . . . 212
4.2.4 Multirate Quasi-Halo Orbit Following . . . . . . . . . . 214
4.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.2.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . 217
4.2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 220

Conclusions and Future Work 222

Bibliography 225



Introduction

Network science has emerged as a powerful conceptual paradigm in engineer-
ing. An unprecedented attention is currently being devoted to network theory
and its applications by the scientific community since, on the one hand, it has
become vital to gain a deeper understanding of the role that inter-elemental
interactions play in the collective functionality of multi-layered systems in
the biological sciences, and, on the other hand, technological advances have
considerably improved our ability to synthesize networked engineering systems
(e.g., multi-vehicle systems and platoons, formation flight and multi-robot
teams, wireless sensor networks, energy networks, social networks) that re-
semble their natural counterparts in terms of operational complexity. Usually,
agents in networked systems have to operate in concert with each other so
as to achieve system-level objectives with limited computational resources,
limited sensing capabilities and local communications.

This aroused in the PhD candidate a significant interest in the methodolo-
gical framework of networked multi-agent dynamical systems. In particular,
the investigation of the recent literature led the PhD candidate to find out that,
from the methodological viewpoint, there is a common denominator laying
the foundation for almost all the innovative results related to multi-agent
dynamical systems: indeed, such results extensively rely on

• algebraic graph theory, and

• consensus dynamics.

With this in mind, in agreement with his supervisors, the PhD candidate has
directed his research efforts to the development of innovative methodological
results in terms of achieving multi-consensus behaviors in multi-agent systems.

Yet, these aspects have been investigated not just from the methodological
viewpoint, but also from the point of view of applications.

Indeed, over the last three years, the PhD candidate has devoted a great
effort to the task of solving practical problems in some real tecnological
applications arising in the domain of telecommunication and power networks,
within the context of Italian and European research projects, by resorting to

1



INTRODUCTION 2

the above-mentioned control-theoretical methodologies. In this respect, as
in-house consultant for CRAT (Consorzio per la Ricerca nell’Automatica e
nelle Telecomunicazioni), the PhD candidate has participated in the following
projects, dealing not just with the related project management phases and
processes, but especially with the technical part of such projects and the
related challenges:

• MIUR-PON PLATINO project (Platform for Innovative Services in
Future Internet, July 2012 – June 2015);

• FP7 T-NOVA project (Network Functions as-a-service over Virtualised
Infrastructures, January 2014 – December 2016);

• H2020 BONVOYAGE project (From Bilbao to Oslo, intermodal mobility
solutions, interfaces and applications for people and goods, supported by
an innovative communication network, May 2015 – April 2018);

• H2020 ATENA project (Advanced tools to assess and mitigate the
criticality of ICT components and their dependencies over critical in-
frastructures, May 2018 – April 2019).

In particular, the PLATINO project dealt with the design and develop-
ment of a service platform capable of delivering heterogeneous services and
contents, through dissimilar networks, flexible enough to handle a wide range
of terminals, context-aware, customable on the basis of the user preferences,
and finally capable of guaranteeing the Quality of Service and of measuring
and maximizing the customer’s Quality of Experience, all in compliance with
the Future Internet paradigm. This project could actually benefit from Qual-
ity of Experience control functions capable of dynamically selecting the most
appropriate Classes of Service based on an innovative heuristic Multi-Agent
Reinforcement Learning algorithm designed so as to get around some practical
implementation problems and achieve satisfactory performance results even
in the presence of several hundreds of agents. The T-NOVA project, instead,
dealt with the design and implementation a management/orchestration plat-
form for the automated provision, configuration, monitoring and optimization
of Network Functions-as-a-Service over virtualised Network/IT infrastruc-
tures by enhancing the already existing Software Defined Networking (SDN)
platforms: this project could benefit from a discrete-time distributed and
non-cooperative load balancing algorithm based on mean field game theory
aimed at dynamically balancing the requests of the switches among the SDN
Controllers to avoid congestion in the control traffic. The research results
achieved within the framework of the activities of the PLATINO and T-NOVA
projects led to the following publications/paper submissions:
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• L. Ricciardi Celsi, S. Battilotti, F. Cimorelli, C. Gori Giorgi, S. Monaco,
M. Panfili, V. Suraci, and F. Delli Priscoli, “A Q-Learning Based
Approach to Quality of Experience Control in Cognitive Future Internet
Networks,” in Proceedings of the 23rd Mediterranean Conference on
Control and Automation (MED 2015), pp. 1045-1052, June 16-19, 2015,
Torremolinos, Spain;

• S. Battilotti, S. Canale, F. Delli Priscoli, L. Fogliati, C. Gori Giorgi, F.
Lisi, S. Monaco, L. Ricciardi Celsi, and V. Suraci, “A Dynamic Approach
to Quality of Experience Control in Cognitive Future Internet Networks,”
poster appearing in Proceedings of the 24th European Conference on
Networks and Communications (EuCNC 2015), June 29 - July 2, 2015,
Paris, France;

• S. Battilotti, F. Delli Priscoli, C. Gori Giorgi, S. Monaco, M. Panfili, A.
Pietrabissa, L. Ricciardi Celsi, and V. Suraci, “A Multi-Agent Reinforce-
ment Learning Based Approach to Quality of Experience Control in
Future Internet Networks,” in Proceedings of the 34th Chinese Control
Conference (CCC 2015), pp. 6495-6500, July 28-30, 2015, Hangzhou,
China;

• F. Cimorelli, F. Delli Priscoli, A. Pietrabissa, L. Ricciardi Celsi, V.
Suraci, and L. Zuccaro, “A Distributed Load Balancing Algorithm for
the Control Plane in Software Defined Networking,” in Proceedings of
the 24th Mediterranean Conference on Control and Automation (MED
2016), pp. 1033-1040, June 21-24, 2016, Athens, Greece;

• F. Delli Priscoli, A. Di Giorgio, F. Lisi, S. Monaco, A. Pietrabissa, L.
Ricciardi Celsi, and V. Suraci, “Multi-Agent Quality of Experience
Control,” International Journal of Control, Automation, and Systems,
vol. 15, no. 2, pp. 892-904, 2017;

• V. Suraci, L. Ricciardi Celsi, A. Giuseppi, and A. Di Giorgio, “A
distributed Wardrop control algorithm for load balancing in smart
grids,” in Proceedings of the 25th Mediterranean Conference on Control
and Automation (MED 2017), art. no. 7984210, pp. 761-767, July 3-6,
2017, Valletta, Malta;

• A. Pietrabissa, L. Ricciardi Celsi, F. Cimorelli, V. Suraci, F. Delli
Priscoli, A. Di Giorgio, and S. Monaco, “Lyapunov-based design of
a distributed Wardrop load balancing algorithm with application to
Software Defined Networking,” submitted to the IEEE Transactions on
Control Systems Technology, 2017;
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• A. Pietrabissa and L. Ricciardi Celsi, “Discrete-Time Load Balanc-
ing Converging to the Wardrop Equilibrium,” submitted to the IEEE
Transactions on Automatic Control, 2017.

The PhD candidate has also participated in the BONVOYAGE project,
dealing with the design, development and testing of a platform optimizing the
multi-modal door-to-door transport of passengers and goods. Such a platform
integrates travel information, planning and ticketing services, by automatically
analyzing: non-real-time data collected from heterogeneous databases (on
road, railway and urban transport systems), real-time measured data (traffic,
weather forecasts), user profiles, and user feedback. In this respect the PhD
candidate developed an algorithm for solving the many-to-many carpooling
problem with automated passenger aggregation in the context of multi-modal
trip planning, ensuring that the proposed solution reasonably copes with the
computational complexity that arises in real-sized scenarios. This work led
to the results shown in the following publications:

• S. Canale, A. Di Giorgio, F. Lisi, M. Panfili, L. Ricciardi Celsi, V.
Suraci, and F. Delli Priscoli, “A Future Internet Oriented User Centric
Extended Intelligent Transportation System,” in Proceedings of the 24th
Mediterranean Conference on Control and Automation (MED 2016),
pp. 1133-1139, June 21-24, 2016, Athens, Greece;

• L. Ricciardi Celsi, A. Di Giorgio, R. Gambuti, A. Tortorelli, and F.
Delli Priscoli, “On the many-to-many carpooling problem in the context
of multi-modal trip planning,” in Proceedings of the 25th Mediterranean
Conference on Control and Automation (MED 2017), art. no. 7984135,
pp. 303-309, July 3-6, 2017, Valletta, Malta.

Yet, such a research topic is not detailed further in this PhD thesis, as it
is beyond the scope of multi-agent dynamical systems and their specific
applications.

The ongoing ATENA project deals, instead, with the development of a
suite of integrated ICT networked components for detection of and reaction
to adverse events in Cyber-Physical Systems and, in particular, benefits from
the design of a protection scheme based on energy storage system placement
against closed-loop dynamic load altering attacks, thus successfully supporting
frequency regulation services in power transmission networks. So far, the
related research results have led to the following publications:

• A. Di Giorgio, F. Liberati, R. Germanà, M. Presciuttini, L. Ricciardi
Celsi, and F. Delli Priscoli, “On the Control of Energy Storage Systems
for Electric Vehicles Fast Charging in Service Areas,” in Proceedings of
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the 24th Mediterranean Conference on Control and Automation (MED
2016), pp. 955-960, June 21-24, 2016, Athens, Greece;

• A. Di Giorgio, A. Giuseppi, F. Liberati, A. Ornatelli, A. Rabezzano
and L. Ricciardi Celsi, “On the optimization of energy storage system
placement for protecting power transmission grids against dynamic load
altering attacks,” in Proceedings of the 25th Mediterranean Conference
on Control and Automation (MED 2017), pp. 986-992, July 3-6, 2017,
Valletta, Malta.

It is clear from the description above that the methodological framework of
networked multi-agent dynamical systems represents the common ground that
lies beneath the T-NOVA, PLATINO and ATENA projects. This has led the
PhD candidate to investigate the recent literature and search for meaningful
advances beyond the state of the art. The corresponding research activities
and results have been carried out and achieved within the framework of the
Progetto di Ateneo (Sapienza, Università di Roma) on Discrete-Time and
Sampled-Data Nonlinear Systems, leading to the following publications/paper
submissions:

• L. Ricciardi Celsi, R. Bonghi, S. Monaco, and D. Normand-Cyrot, “On
the Exact Steering of Finite Sampled Nonlinear Dynamics with Input
Delays,” in Proceedings of the 1st Conference on Modelling, Identi-
fication and Control of Nonlinear Systems (MICNON 2015), IFAC-
PapersOnLine, vol. 48, no. 11, pp. 674-679, June 24-26, 2015, Saint-
Petersburg, Russia;

• L. Ricciardi Celsi, R. Bonghi, S. Monaco, and D. Normand-Cyrot,
“Sampled-Data Stabilization Around the L2 Translunar Libration Point,”
in Proceedings of the 3rd IAA Conference on University Satellite Mis-
sions and CubeSat Workshop & International Workshop on Lean Satel-
lite Standardization, Roma, Italy, November 30 - December 5, 2015, in
press;

• S. Monaco and L. Ricciardi Celsi, “On Multi-Consensus and Almost
Equitable Graph Partitions,” submitted to Automatica, 2017.

In particular, the Progetto di Ateneo revolves around the study of the math-
ematical models describing the behavior of multi-agent dynamical systems,
with specific focus on:

• the distributed coordination of multi-agent systems;

• multi-consensus and almost equitable graph partitions;
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• sampled-data design with aerospace applications (investigated as a
follow-up to the work carried out by the PhD candidate in his M.Sc.
thesis).

The works reported above represent all the scientific production co-
authored by the PhD candidate over the three years of the doctoral pro-
gramme.

The international extension of the cultural, scientific and professional
scope of the activities carried out by the PhD candidate is due not just to
the active participation in the above-mentioned European research projects,
but also, notably, to the co-tutelle with the Ecole Doctorale de Sciences et
Technologies de l’Information et de la Communication (ED STIC) at Centrale
Supélec, Université Paris-Saclay and to the funding received by the Université
Franco Italienne (UFI) after winning the Vinci 2016 competition.

The PhD thesis is organized into four Chapters, as follows:

• Chapter 1: Multi-Agent Quality of Experience Control, Lyapunov-Based
Discrete-Time Load Balancing, and Power Transmission Grid Protection
Against Cyber-Physical Attacks.

• Chapter 2: State of the Art on the Distributed Coordination of Multi-
Agent Systems.

• Chapter 3: Multi-Consensus and Almost Equitable Graph Partitions.

• Chapter 4: Sampled-Data Design with Aerospace Applications.

So, the thesis begins with a first part (represented by Chapter 1) devoted to
the presentation and discussion of the most relevant applications of networked
multi-agent control systems in the context of the T-NOVA, PLATINO and
ATENA projects. Then, the second part (consisting of Chapters 2, 3 and 4)
presents the underlying theoretical background with respect to the distributed
coordination of multi-agent systems and the innovative results achieved with
respect to multi-consensus and sampled-data design.



Chapter 1

Multi-Agent Quality of
Experience Control,
Lyapunov-Based Discrete-Time
Load Balancing, and Power
Transmission Grid Protection
Against Cyber-Physical Attacks

This Chapter collects the results of the research activites carried out with
respect to telecommunication networks in the framework of the PLATINO
project (see Section 1.1) and of the T-NOVA project (see Sections 1.2 and
1.3). It also collects the research results the PhD candidate has achieved so
far with respect to the protection of power transmission networks against
cyber-physical attacks, in the framework of the ATENA project.

More precisely, Section 1.1 presents the contents of the publications [156],
[12], [38], and [49], whereas Sections 1.2 and 1.3 present the contents of
the two submitted papers [147] and [148], which are currently under review.
In Section 1.4, instead, a power system protection scheme based on energy
storage system placement against closed-loop dynamic load altering attacks is
proposed as discussed in [159]. The protection design consists in formulating a
non-convex optimization problem, subject to a Lyapunov stability constraint
and solved using a two-step iterative procedure. Simulation results confirm
the effectiveness of the approach and the potential relevance of using energy
storage systems in support of primary frequency regulation services.

7
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1.1 Multi-Agent Quality of Experience Con-

trol

A key Future Internet target is to allow applications to transparently, efficiently
and flexibly exploit the available resources, with the aim of achieving a
satisfaction level that meets the personalized users needs and expectations.
Such expectations could be expressed in terms of a properly defined Quality of
Experience (QoE). In this respect, the International Telecommunication Union
(ITU-T) defines QoE as the overall acceptability of an application or service,
as perceived subjectively by the end-user: this means that QoE could be
regarded as a personalized function of plenty of parameters of heterogeneous
nature and spanning all layers of the protocol stack (e.g., such parameters can
be related to Quality of Service (QoS), security, mobility, contents, services,
device characteristics, etc.).

Indeed, a large amount of research is ongoing in the field of QoE Evaluation,
i.e., of the identification, on the one hand, of the personalized expected QoE
level (Target QoE ) for a given user availing her/himself of a given application
in a given context (e.g., see [89] and [169] for voice and video applications,
respectively), and, on the other hand, of the personalized functions for
computing the Perceived QoE, including the monitorable Feedback Parameters
which could serve as independent variables for these functions (e.g., see [27]).
In particular, several works focus on studying the relation between QoE and
network QoS parameters (e.g., see [64]).

Another QoE-related key research issue is that of QoE Control. Once
a QoE Evaluator has assessed the personalized expected QoE level (Target
QoE) and the personalized currently perceived QoE level (Perceived QoE),
a QoE Controller should be in charge of making suitable Control Decisions
aimed at reducing, as far as possible, the difference between the personalized
Target and Perceived QoE levels. QoE Evaluation and QoE Control have
also been widely studied in the context of several Future Internet related
initiatives such as the MIUR PLATINO project and the FP7 Future Internet
PPP initiative.

This Section focuses on QoE Control, whereas QoE Evaluation falls outside
its scope. The interested readers are referred to [27] for an approach to QoE
Evaluation that is fully consistent with the QoE Controller presented in this
Section. Without claiming to present a ready-to-use solution, this Section
provides some innovative hints that could ensure an efficient implementation
of the QoE Controller. Namely, we describe how Control Decisions can
practically be implemented via the dynamic selection of predefined Classes of
Service. We then explain how such a dynamic selection can be performed in
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a model-independent way – in the authors’ opinion, a control-based approach
relying on any Future Internet model is not practically viable due to the sheer
unpredictability of the involved variables [156] – thanks to the adoption of a
multi-agent algorithm. A suitable algorithm was identified in a Multi-Agent
Reinforcement Learning (MARL) technique, namely the MARL Q-Learning
algorithm presented in [103] and [26]. Then, the paper discusses the limitations
of MARL Q-Learning with respect to practical implementation and how these
limitations can be overcome by adopting the proposed heuristic algorithm,
hereafter referred to as H-MARL-Q algorithm. Finally, some numerical
simulations showing the encouraging performance results of the proposed
heuristic algorithm are presented with reference to a proof-of-concept scenario
which does not claim to represent any real network.

1.1.1 QoE Controller Architecture

The QoE Controller makes its decisions at discrete time instants tk, hereafter
referred to as time steps, occurring with a suitable time period T , whose
duration depends on the considered environment (including technological
processing constraints). We assume that each in-progress application instance
is handled by an Agent i and we define the personalized QoE Error at time
tk (indicated as ei(tk)), relevant to Agent i, as

ei(tk) = PQoEi(tk)− TQoEi, (1.1)

where PQoEi(tk) represents the Perceived QoE, i.e., the QoE currently per-
ceived at time tk by Agent i, and TQoEi represents the Target QoE, i.e., the
personalized QoE which would satisfy the personalized Agent i requirements.
So, if this QoE Error is positive, the in-progress application is said to be
overperforming, since the QoE currently perceived by the Agent is greater
than the desired one, whereas, if the QoE Error is negative, the in-progress
application is said to be underperforming. Note that the presence of overper-
forming Agents might affect the system performance, since they may require
an unnecessarily large amount of resources, which could cause, in turn, the
underperformance of other Agents. The goal of the QoE Controller is to
guarantee, at every time tk, a nonnegative QoE Error for all Agents i (for
i = 1, . . . , N), i.e., to avoid the occurrence of underperforming applications.
Furthermore, if it is not possible to guarantee a nonnegative QoE Error for
all Agents (e.g., due to insufficient network resources), the QoE Controller
should reduce, as far as possible, the QoE Errors of the various Agents while
guaranteeing fairness among them. Fairness basically consists in making sure
that the QoE Errors experienced by the Agents are kept, as far as possible,
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close to one another. As shown in Fig. 1.1, both the Perceived and the Target
QoE should be computed by a suitable QoE Evaluator based on suitable
Feedback Parameters resulting from the real-time monitoring of the network,
as well as from direct or indirect feedbacks coming from users and/or applica-
tions. For a more detailed description of the way the QoE functionalities are
embedded in the Future Internet architecture, see [31] and [23].

Figure 1.1: Sketch of the QoE architecture for the Future Internet.

In particular, a promising approach [27] is to relate the computation of
the Perceived QoE to the application type (e.g. real-time HDTV streaming,
distributed videoconferencing, File Transfer Protocol, etc.) of each in-progress
application instance. Let M denote the total number of application types in
the considered environment; let m ∈ {1, . . . ,M} denote a generic application
type; let i(m) denote an Agent (i.e., an application instance) belonging to
the m-th application type. Then, the Perceived QoE for Agent i(m), denoted
with PQoEi(m)(tk), is computed as follows:

PQoEi(m)(tk) = gm(φm(tk)), (1.2)

where φm(tk) represents a suitable set of Feedback Parameters for the m-th
application type, computed up to time tk, and gm is a suitable function
relating, for the m-th application type, the Feedback Parameters φm(tk) with
the Perceived QoE. In the following, we shows a simple implementation of
(1.2). A relevant drawback that could be immediately associated with such a
method of evaluating the Perceived QoE for every Agent at each time step
is the fact that an Agent can intentionally underreport its own Perceived
QoE in order to increase the amount of network resources allocated to it.
Such a problem falls within the area of mechanism design [132]. In this
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respect, in [47], the authors propose an interesting solution (compliant with
the control algorithm discussed here) that allows to determine whether the
Agent feedbacks are being fair or not. Such a solution is capable of ensuring
an acceptable degree of robustness to possible episodes of dishonest Agent
conduct.

The Target QoE, denoted with TQoEi, can be derived from a suitable
analysis of the available Feedback Parameters (e.g., by using unsupervised
machine learning techniques), or it can simply correspond to a reference value
which is assigned by the Telco operator, taking into account the commercial
profile of the user.

In the following, we propose a solution in which the distributed Agents
associated to the application instances are embedded in properly selected
network nodes (e.g., in the mobile user terminals): the Agents are in charge
of the monitoring and actuation functionalities whereas the control func-
tionalities are centralized in the QoE Controller. In particular, whenever
a new application instance is born, the associated Agent i is in charge of
evaluating the personalized Target QoE TQoEi (which remains unchanged
for the whole lifetime of the application instance), of computing its own
personalized Perceived QoE PQoEi(tk) and of communicating the monitored
values to the QoE Controller. As a result, at each time tk, the QoE Con-
troller, based on the received values for TQoEi and PQoEi(tj) up to time
tk (i = 1, . . . , N ; j = 0, 1, . . . , k), has to choose the most appropriate action
ai(tk) (for i = 1, . . . , N) which the Agent i should enforce at time tk, i.e., the
most appropriate joint action (a1(tk), a2(tk), . . . , aN (tk)) which the N Agents
should enforce at time tk. At each time tk, the chosen joint action is broadcast
to the N Agents: then, the i-th Agent has to enforce the corresponding action
ai(tk).

Note that the proposed arrangement is based on the presence of a cen-
tralized entity (i.e., the QoE Controller), collecting the Agents observations,
which runs the MARL algorithm and broadcasts the resulting Control Deci-
sions to the Agents. Therefore, any direct signal exchange among the Agents
is avoided, thus limiting the overall signalling overhead. The QoE Controller
outputs, i.e, the joint action chosen by the QoE Controller, may include for
each Agent the choice of QoS Reference Values (e.g., the expected priority
level, the tolerated transfer delay range, the minimum throughput to be
guaranteed, the tolerated packet loss range, the tolerated dropping frequency
range, etc.), of Security Reference Values (e.g., the expected encryption level,
the expected security level of the routing path computed by introducing
appropriate metrics, etc.), and of Content/Service Reference Values (e.g., the
expected content/service mix, etc.).

The QoE Controller has to dynamically select, for each in-progress appli-
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cation instance, the most appropriate Reference Values which should actually
drive, thanks to suitable underlying network procedures (which are outside
the scope of this Section), the Perceived QoE as close as possible to the Target
QoE – for further details, see [156] where the above-mentioned Reference
Values are referred to as Driving Parameters. However, since the control ac-
tion has a large number of degrees of freedom, the exploration of the solution
space may take a large amount of time, thus making the task of the QoE
Controller excessively complex. A simpler (yet less fine-grained) control task
arises if the management of the underlying networks is arranged into Classes
of Service (CoS), as described in [58].

We assume that each CoS is associated with a predefined set of QoS
Reference Values. Nevertheless, the proposed approach can be applied even in
the case when each CoS is associated with a set of Reference Values that are
not necessarily related to QoS issues only, but also, for instance, to Security
parameters, and/or to Content/Service characteristics, etc. Let S indicate
the total number of CoSs and let ai(tk) ∈ c1, c2, . . . , c5 indicate the action
performed by the i-th Agent (i.e., the CoS chosen by the i-th Agent) at the
time instant tk.

In current telecommunication networks, a static CoS assignment policy
is adopted: each application instance is given a CoS for its entire lifetime;
the CoS associated to a given application instance should be the one whose
QoS Reference Values satisfy on the average the application requirements.
Nevertheless, it is evident that such a static association does not take into
account either personalized application requirements or contingent situations
taking place in the telecommunication networks, such as congestion events.
So, a static CoS assignment may generally lead to poor performance in terms
of the personalized QoE perceived by each user. Hence, this Section considers
dynamic CoS-to-application assignment as the methodological means to
accomplish the above-mentioned goals in terms of QoE Error reduction and
fairness. This means that, at each time instant tk, the QoE Controller has to
decide, in real time, which is the most appropriate CoS to be associated with
each in-progress application instance (e.g., if the Agents are embedded in
mobile user terminals, the QoE Controller decisions can be implemented by
inserting the selected CoS identifier in the header of the packets transmitted
by the terminals). Up to the authors’ knowledge, apart from [31], [156],
and [12], such a dynamic assignment approach has never been investigated so
far.

Indeed, meeting the Target QoE for the in-progress applications, in con-
junction with an efficient exploitation of the available bandwidth, could be a
rather challenging issue, especially in wireless networks with limited band-
width resources. In this respect, optimal adaptive control strategies could be
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key factors to cope with such an issue. Moreover, due to the data-intensive
nature of multimedia streaming services as well as due to the increasingly
demanding requirements in terms of QoS/QoE, Reinforcement Learning based
algorithms are being used more and more in telecommunication networks, as
long as they prove to be computationally efficient and sufficiently scalable [91].

1.1.2 The MARL-Q Algorithm for the QoE Controller

This Section focuses on the problem of designing the QoE Controller algorithm.
It should be evident that, in order to solve this problem by means of traditional
model-based control techniques, the QoE Controller should know – or at least
estimate – the correlation between its decisions (namely, the selected QoE
Controller outputs) and the Perceived QoE. However, no model of the very
complex plant regulated by the QoE Controller (namely, the plant receiving
the QoE Controller outputs in input and producing the Perceived QoE as
its output) can be assumed, since it depends on plenty of hardly predictable
factors (such as traffic characteristics of the ongoing applications, network
topologies, resource management algorithms, QoE Evaluation methods and
so on).

In light of the above, the QoE Controller decision strategy must be learned
online by trial and error. This is why we propose that the QoE Controller
makes use of a model-free MARL algorithm in order to evaluate, at each time
step tk, the joint policy π(a1(tk), a2(tk), . . . , aN (tk)) = π(a1, a2, . . . , aN ) which,
once enforced by the Agents, tracks the discussed goals in terms of QoE Error.
The proposed MARL algorithm works on the basis of the observation of a
joint reward r(tk+1, a1(tk), a2(tk), . . . , aN (tk)) = r(tk+1, a1, a2, . . . , aN ), i.e., of
the numerical reward (the same for all the N Agents) which is received by
each Agent at time tk+1 as a consequence of the enforcement, at time tk, of
the joint policy π(a1, a2, . . . , aN ). The MARL algorithm in question is aimed
at maximizing the long-run return R(π), namely at maximizing the expected
discounted return:

R(π) = Eπ

{ ∞∑
i=0

γk · r(tk+1, a1, a2, . . . , aN)

}
, (1.3)

where γ ∈ [0, 1) is the discount rate, which weighs immediate versus delayed
rewards, and Eπ{·} denotes the expected value under policy π.

In order to set up a MARL problem, we have to select the state space,
the action spaces and the reward function.

• We consider a static game, i.e., a game with only a single state: such
an assumption, on the one hand, is not limiting in our context, and, on
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the other hand, greatly reduces the computational complexity which in
MARL is exponential in the number of state and action variables.

• Following the discussion on dynamic CoS assignment, the action set Ai
of Agent i coincides with the set of CoSs, i.e., Ai = {c1, c2, . . . , cS}, i =
1, . . . , N . In other words, action ai(tk), performed by Agent i at time tk,
can be equal to either c1, or c2, . . . , or cS. The cardinality of the joint
action space A = A1 × . . .×AN is equal to |A1| · |A2| · . . . · |AN | = SN .

• The function expressing the joint reward r(tk+1, a1, a2, . . . , aN) should
be consistent with the discussed goals in terms of QoE Error; in this
respect, each candidate joint reward should be a non-increasing function
of the N error values |ei(tk)| (for i = 1, . . . , N). Below, the choice of
suitable joint reward functions will be discussed.

In particular, we propose to apply the Multi-Agent Q-Learning algorithm
in [103] (hereinafter referred to as MARL-Q algorithm) which is proved
to converge to an optimal policy π∗(a1, a2, . . . , aN), i.e., to a policy which
maximizes the expected discounted long-run return R(π). The algorithm is the
multi-agent extension of the well-known (single-agent) Q-Learning algorithm
[179], already succesfully applied to QoE/QoS control in communication
networks [163] [145].

The MARL-Q algorithm relies on the estimation of the optimal action-
value function Q(s, a1, a2, . . . , aN), defined as the expected return of the
system when it starts from state s, takes the joint action (a1, a2, . . . , aN ), and
follows policy π thereafter. In the previously defined centralized context, at
each time step tk, this algorithm (i) evaluates a joint policy π(a1, a2, . . . , aN)
which sums up the behaviour of all the N Agents and is initialized arbitrarily
and (ii) improves such a policy by making it ε-greedy with respect to the
current action-value function [174], thus yielding a better joint policy π

′
to

be evaluated and improved at the next iteration.
In detail, the policy evaluation step (i) is performed by the MARL-Q al-

gorithm by updating the action-value function Q(tk, a1, a2, . . . , aN ) according
to the following update rule:

Q(tk, a1, a2, . . . , aN) = (1− α(tk))Q(tk−1, a1, a2, . . . , aN)+

+ α(tk)[r(tk, a1, a2, . . . , aN) + γ max
a1∈A1,...,aN∈AN

Q(tk−1, a1, a2, . . . , aN)], (1.4)

where γ ∈ [0, 1) is the discount rate and α(tk) is a sequence of learning
rates, which are key parameters that should satisfy the standard stochastic
approximation conditions for convergence [87]. The argument tk denotes the
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value of the action-value function computed at time tk, whereas the argument
s is omitted since we are considering a single state problem.

The policy improvement step (ii) consists in performing, with probability
equal to ε, a random joint action (a

′
1, a

′
2, . . . , a

′
N ) and, with probability equal

to 1ε, the following greedy joint action (a
′
1, a

′
2, . . . , a

′
N):

(a
′

1, a
′

2, . . . , a
′

N) = arg max
a1∈A1,...,aN∈AN

Q(tk, a1, a2, . . . , aN). (1.5)

The parameter ε ∈ (0, 1) is the exploration rate. A large value of ε
guarantees that different policies with respect to the current best one are
explored, and thus avoids that the QoE Controller remains stuck in a local
minimum (exploration); on the other hand, a small value of ε lets the QoE
Controller choose the best action based on the current estimate of the action-
value function (exploitation).

So, at each time step tk, the centralized QoE Controller based on the
Perceived QoE values PQoEi(tk) (i = 1, . . . , N) transmitted by the Agents at
time tk, and on the knowledge of the Target QoE values TQoEi (i = 1, . . . , N)
transmitted by the Agents at the time of their birth performs the following
tasks until the optimal action-value function Q∗ (and the optimal policy π∗)
is found:

T1) it updates the action-value function Q according to (1.4);

T2) it determines the joint action (a
′
1, a

′
2, . . . , a

′
N) in a random way with

probability equal to ε and according to (1.5) with probability equal to
1− ε;

T3) it broadcasts the chosen joint action (a
′
1, a

′
2, . . . , a

′
N) to all Agents so

that Agent i consequently enforces action a
′
i;

T4) it computes the corresponding joint reward r(tk+1, a
′
1, a

′
2, . . . , a

′
N ) accord-

ing to the selected reward function which should include, as independent
variables, the Perceived QoE values PQoEi(tk) (i = 1, . . . , N) and the
Target QoE values TQoEi (i = 1, . . . , N). The algorithm converges
under a generic initial policy. By varying the learning rates, the explo-
ration rate and the discount rate, the convergence speed of the algorithm
and the quality of the solution significantly change; the parameters
used in the simulations reported below have been tuned by running the
simulations several times.
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1.1.3 Proposed Heuristic MARL-Q Based (H-MARL-
Q) Algorithm

Limitations of MARL-Q

The analysis of the contents of the previous Section offers us the opportunity
to discuss the following issues.

• The main challenge arisen in MARL is the so-called curse of dimen-
sionality [26]: in fact, as Reinforcement Learning algorithms (such as
Q-Learning) estimate values for each possible state or state-action pair,
the computational complexity of MARL is exponential in the number
of state and action variables and, therefore, in the number of Agents;
in addition, the Agents rewards are correlated and then they cannot be
maximized independently of one another. The runtime of the MARL-Q
algorithm (i.e., the time the algorithm needs to perform the specific
task it has been designed for) directly depends on the cardinality SN

of the joint action space. As a matter of fact, at each time step, the
max operator in (1.5) has to consider SN values; in this respect, it is
particularly important to note that, in a Future Internet framework
where the QoE Controller should be able to handle even thousands
of Agents and dozens of CoSs, SN would become a really huge value.
For this reason, the task of implementing the dynamic CoS assignment
according to the MARL-Q algorithm discussed in the previous section is
inherently complex from a computational point of view and, as a result,
it is extremely runtime-consuming. Such a relevant issue claims for a
reasonable reduction of the size of the joint action space (and, hence, of
the computational effort of the learning algorithm).

• The issue of the nonstationarity of multi-agent learning arises too, since
all Agents in the system are simultaneously learning: each Agent is
faced with a moving-target learning problem and consequently the best
policy changes as the other Agents policies change. In this respect, the
exploration strategy is crucial for the efficiency of MARL algorithms.
Agents explore to obtain information not only about the environment,
but also about the other Agents, for the purpose of implicitly building
models of these Agents. In other words, the need for coordination stems
from the fact that the effect of any Agents action on the environment
depends also on the actions taken by the other Agents. Nonetheless, too
much exploration should be avoided, as it may destabilize the learning
dynamics of the other Agents.

In order to address the above-mentioned limitations, this Section presents an
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innovative heuristic algorithm, hereafter referred to as H-MARL-Q algorithm
and derived from the MARL-Q algorithm described above. Such a heuristic
algorithm, in comparison with the latter, considerably reduces the joint action
space, thus significantly accelerating the task of dynamic CoS mapping, with-
out teasing out an excessive amount of exploratory and information-gathering
actions (hence, preserving an acceptable level of environment exploration).
As shown below, the proposed H-MARL-Q algorithm has also turned out
to be successful in addressing the issue of the algorithm scalability, yielding
satisfactory results even when the number of Agents is counted in the order
of thousands (as it is happening in the ongoing Internet of Things era).

H-MARL-Q Algorithm Description

The H-MARL-Q algorithm only considers a suitably selected subset of the
joint action space, reasonably yielding an approximate solution to the dynamic
CoS assignment problem presented above.

Basically, at each time step, the entire joint action space contains plenty
of joint actions which have very few possibilities of being the best ones (i.e.,
the ones which meet the max operator in (1.5). Unfortunately, such joint
actions cannot be identified and discarded a-priori, because we do not have
any a-priori knowledge of the environment; nevertheless, such actions can
be identified and removed by carrying out a preliminary analysis of the
Agents’ dynamic behaviour in a simpler emulated environment. So, the basic
underlying idea of the H-MARL-Q algorithm is to perform the following two
steps.

Step (a): This step, referred to as Identification of the Reduced Joint Action
Space, is performed by the QoE Controller una tantum, every time
a new Agent is born, in order to identify, through the emulation of
suitable test environments, an appropriate Reduced Joint Action Space.

Step (b): This step, referred to as Identification of the Suboptimal Joint Action,
is performed, in real time, by the QoE Controller at each time step
tk, in order to identify the joint action (a1, a2, . . . , aN ) to be performed
at time tk on the basis of real-time observations of the environment
and considering the Reduced Joint Action Space identified in Step (a)
(and not the entire joint action space A). This yields a suboptimal
joint policy which constitutes a satisfactory approximate solution to
the considered problem.
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H-MARL-Q Algorithm Description: Step (a)

Whenever a new Agent, say agent N , is born (i.e., a new application instance
is launched), say at time tk, in a real environment in which N − 1 Agents i
(for i = 1, 2, . . . , N−1) are already active, the new Agent notifies its existence
to the QoE Controller together with its own personalized QoE requirements
expressed in terms of Target QoE (TQoEN). Then, the QoE Controller
emulates the dynamic behaviour of the system in N−1 two-player test games,
each one involving two Agents: (i) the new Agent N and (ii) each of the
already active Agents i (i = 1, . . . , N − 1). These two-player test games are
played in emulated test environments which should reproduce only some key
features of the real environment. Let [i, j] denote the two-player test game
involving Agents i and j. In each two-player test game [i, j] the optimal
policy π∗(ai, aj) is obtained by applying the MARL-Q algorithm described in
the previous section (clearly, in this case, the number of Agents N appearing
in (1.4) and (1.5) is equal to two). The optimal policy identifies a pair of
deterministic actions (a∗i , a

∗
j) where a∗i and a∗j represent the optimal CoS

choices that the Agents i and j, respectively, should enforce.
It should be clear that, since the cardinality of the joint action space of

each test environment is equal to S2, the computational complexity of the
MARL-Q algorithm is limited, i.e., the algorithm converges to the optimal
policy in a limited runtime as shown below through real tests. After Step
(a), at any time tk at which N Agents are active, the QoE Controller stores
N(N − 1)/2 optimal action couples:

(a∗i , a
∗
j) with i = 1, . . . , N, j = 1, . . . , N, i 6= j. (1.6)

These couples are used in order to identify a Reduced Joint Action
Space containing a reasonable subset of the entire joint action space A. Let
a∗i [i, j] and a∗j [i, j] denote the optimal action for the i-th Agent and the j-th
Agent, respectively, resulting from the two-player test game [i, j]. We assume
that such a Reduced Joint Action Space consists of the union of N Action
Subspaces, where the i-th Action Subspace is associated to the i-th Agent
(the sub-tables within the borders in bold in the table below represent such
Action Subspaces). Each Action Subspace includes S candidate joint actions
(i.e., the rows of each sub-table). The i-th Action Subspace is built by only
considering the two-player test games involving the i-th Agent. In particular,
each of the S candidate joint actions of the i-th Action Subspace is obtained
as follows: for each Agent j, with j 6= i, the optimal action a∗j [i, j] that
such an Agent would perform in the two-player test game [i, j] is taken into
account, whilst for the i-th Agent all the S possible actions of the Ai set are
spanned (each one being considered in a different candidate joint action of
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the Action Subspace). By so doing, the Reduced Joint Action Space includes
SN candidate joint actions: this certainly entails a drastic reduction with
respect to the SN joint actions that would appear in the entire joint action
space A.

For instance, if, at the considered time step, N = 4 (i.e., the Agents 1, 2,
3 and 4 are active) and S = 3 (i.e., the action ai that Agent i, for i = 1, 2, 3, 4,
can perform corresponds to the selection of one of the three CoSs c1, c2, c3),
each of the SN = 12 rows of the table in Fig. 1.2 provides one of the 12
candidate joint actions (in particular, the sub-tables included within the
borders in bold identify the N = 4 Action Subspaces), while each of the four
columns of the table identifies the single actions that can be taken by Agents
1, 2, 3 and 4, respectively, in the overall Reduced Joint Action Space.

Moreover, every time a new Agent, say agent N , dies (i.e., an in-progress
application terminates), the Reduced Joint Action Space is updated by
eliminating the actions involving Agent N . For instance, referring to the
example reported in the table in Fig. 1.2, if Agent 4 dies, the three joint actions
corresponding to the three last rows are removed (i.e., the Action Subspace
corresponding to Agent 4 is removed), and all the actions corresponding to
the last column are removed, too.

Figure 1.2: Representation of the Reduced Joint Action Space for N = 4
and S = 3. The columns of the table identify the different Agents, the rows
represent the different candidate joint actions, and the sub-tables within the
borders in bold represent the so-called Action Subspaces.
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H-MARL-Q Algorithm Description: Step (b)

Step (b) of the H-MARL-Q algorithm is performed on the basis of the MARL-
Q algorithm presented above and is applied to the Reduced Joint Action
Space identified in Step (a). So, in Step (b), the QoE Controller has to
perform the tasks T1, T2, T3, and T4, with the fundamental difference that,
when performing tasks T1 and T2, the Reduced Joint Action Space (having
cardinality SN), instead of the entire Joint Action Space (having cardinality
SN), is considered. Since N can be in the order of thousands, it is evident
that the proposed approach drastically reduces the required computing power.

1.1.4 H-MARL-Q Algorithm Simulations

Simulation Scenario

This section presents numerical simulations, carried out using MATLAB, with
reference to a simple simulation scenario which does not claim to represent any
real network. The presented simulations are just aimed at providing a proof-
of-concept of the proposed algorithm in order to highlight its potentialities
and criticalities.

We assume the presence of S = 3 different CoSs (e.g., guaranteed, premium
and best effort services) and M = 3 different application types (i.e., real-time
HDTV streaming, distributed videoconferencing and simple File Transfer
Protocol). The static CoS assignment policy determines a static association
among application types and CoSs (i.e., an application instance belonging
to a given application type is assigned the corresponding CoS for its entire
lifetime), whereas in the dynamic CoS assignment case, at each time step tk,
an application instance can be assigned any CoS (regardless of the application
type) according to the proposed H-MARL-Q algorithm.

We assume that, during our simulations, N Agents are active, each one
being involved in an application instance. Such an application instance may
belong to one of the three considered application types and is characterized
by an average offered transmission bitrate bi randomly selected in the set
{0.6, 1.2, 2} and by a personalized Target QoE TQoEi (for i = 1, . . . , N)
randomly selected in the set {0.7, 0.8, 0.9}.

The simulated network has a dumbbell network topology, as shown in Fig.
1.3, where each of the N transmitters corresponds to one of the N considered
Agents. Router West implements a Weighted Fair Queueing (WFQ) scheduler
for handling the traffic to be transmitted over the bottleneck link. The related
WFQ vector [50] is assumed to be (0.5, 0.3, 0.2), where the i-th element is the
weight assigned to the i-th CoS (higher weight means higher priority). The
bottleneck link is characterized by an available link capacity Blink computed
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Figure 1.3: Dumbbell network topology.

as:

Blink = ω
N∑
i=1

bi, (1.7)

where ω is a parameter in the range (0, 1) accounting for traffic congestion; in
particular, in our simulations we consider two different situations characterized
by ω = 0.7 and ω = 0.8, which represent High Traffic and Medium Traffic
conditions, respectively.

As for the number of active Agents N , in our simulations we consider two
cases: N = 100 and N = 1000. For each of these two cases and for each
of the two considered traffic congestion conditions, ten simulation runs or
episodes have been carried out, with a duration of (15× 103) time steps for
N = 100 and of (15× 104) time steps for N = 1000: in each simulation run a
different association among application instances, application types, average
offered bitrates and Target QoE values is performed. Such associations are
assumed to be fixed for the entire simulation run.

In the simple proposed simulation scenario, we assume that the set of
Feedback Parameters φm includes, for any m = 1, 2, 3, just a single element
denoted as φQoS and that the function gm, introduced in (1.2), is computed
on the basis of the well-known IQX hypothesis [64]. This means that (1.2)
becomes:

PQoEi(m)(tk) = pm · e−σmφQoS + τm, (1.8)

where the parameter φQoS has been assumed to be equal to the difference
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between the traffic offered by the application instance and the corresponding
bitrate currently allocated by the WFQ Scheduler. Note that the latter
parameter depends on the CoS appointed at time tk for the considered
application instance, which actually impacts on the priority assigned by
the WFQ Scheduler to the packets of the relevant traffic flow. We assume
σ1 = 0.5, σ2 = 0.7, σ3 = 1, as well as pm = 1 and τm = 0 for all values of m;
with these choices, PQoEi(m)(tk) is always included in the range [0, 1]. The
learning rates α(tk) appearing in (1.4), according to [120], are set to:

α(tk, a1, a2, . . . , aN) =
1

1 + visit(tk, a1, a2, . . . , aN)
, (1.9)

where visit(tk, a1, . . . , aN) is the number of times that a specific joint action
(a1, a2, . . . , aN ) has been enforced up to the iteration at time tk. The discount
rate is set to γ = 0.9. The selected joint reward function, consistent with the
general criteria identified above, is:

r(tk, a1, a2, . . . , aN) =
N∑
i=1

wi(tk), (1.10)

where the absolute value of wi serves as an appropriately chosen penalty, which
the i-th Agent is inflicted with, any time it exhibits either underperforming
or overperforming behaviour. A proper choice of wi may be the following:

• wi(tk) = −100 if ei(tk) < −0.15 (i.e., if severe underperformance is
experienced by Agent i);

• wi(tk) = −10 if −0.15 ≤ ei(tk) < 0 (i.e., if minor underperformance
is experienced by Agent i);

• wi(tk) = −1 if 0 ≤ ei(tk) < 0.1 (i.e., if acceptable overperformance is
experienced by Agent i);

• wi(tk) = −50 if ei(tk) ≥ 0.1 (i.e., if undesirable overperformance is
experienced by Agent i).

In particular, the thresholds on the QoE Error values listed above have
been arbitrarily chosen in order to suitably classify the behaviour of Agent i
at time tk as a result of the joint action taken. Moreover, the initial policy,
that is, the initial CoS-to-application association, is randomly generated.

Note that, even though the proposed proof-of-concept does not claim
to represent any real network, a bottleneck link characterized by limited
available bandwidth capacity can represent the uplink of a given cell of a
cellular network. In such a scenario, a number of Agents roaming in the
considered cell (and hence sharing the cell available uplink capacity) in the
order of some hundreds (as assumed in this section) seems reasonable.
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1.1.5 Numerical Results

This Subsection shows the results obtained in the described simulation sce-
nario; in particular, the H-MARL-Q algorithm is applied with a number
of Agents N = 100 and N = 1000, both in the High and Medium Traffic
conditions.

It should be emphasized that we can deal with such a high number of
Agents due to the fact that the proposed H-MARL-Q algorithm relies on a
Reduced Joint Action Space, which has cardinality SN = 300 in the scenario
with 100 Agents (S = 3 and N = 100), and SN = 3000 in the scenario with
1000 Agents (S = 3 and N = 1000). If the original Joint Action Space were
used, a solution relying on the MARL-Q algorithm would be unfeasible, since
the cardinality would be SN = 3100 = 5.2 · 1047, and SN = 31000 = 1.42 · 10477

in the two scenarios, respectively.
The results obtained with the H-MARL-Q algorithm are compared with

the performance of a Static algorithm which adopts a static CoS assignment
policy. The comparison with the MARL-Q algorithm is impossible due to
the curse of dimensionality (as explained above). The obtained results are
expressed in terms of two quantities:

(i) the Average Absolute QoE Error, computed as the absolute value of the
QoE Error expressed by (1.1), averaged over all the considered Agents
and all the simulation episodes (see Figs. 1.4 and 1.5);

(ii) the QoE Error Standard Deviation, computed as the standard deviation
of the QoE Error vector (e1, e2, . . . , eN) (where ei, for i = 1, 2, . . . , N ,
is expressed as in (1.1) averaged over all the simulation episodes (see
Figs. 1.6 and 1.7).

Note that the standard deviation accounts for the fairness among Agents:
the smaller the standard deviation, the higher the fairness among Agents.
Figs. 1.4-1.7 clearly show that the H-MARL-Q algorithm remarkably out-
performs the Static algorithm in all of the considered simulation cases. In
particular, while under the Static algorithm the Average Absolute QoE Error
is appreciably smaller in Medium rather than in High Traffic conditions, under
the H-MARL-Q algorithm, for both N = 100 and N = 1000, the Average
QoE Error bars corresponding to High and Medium Traffic conditions (see
Figs. 1.4 and 1.5) exhibit values that are really close to each other: this
means that the presented algorithm also allows to overcome the disadvantages
related to the impact that the traffic congestion conditions produce on the
bottleneck link.

Furthermore, the QoE Error Standard Deviation shown in Figs. 1.6 and
1.7 confirms the virtues of the H-MARL-Q algorithm, since the dispersion
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of the QoE Error values of the different Agents at the end of the learning
procedure is significantly closer to zero than in the case when the Static
algorithm is applied.

All these results evidently show that the dynamic and personalized selec-
tion of the most appropriate CoS for the ongoing application instances yields
improved performance results, if compared with a static CoS assignment
policy. In addition, Fig. 1.8 shows the Average Absolute QoE Error trend,
i.e., the evolution of the Average Absolute QoE Error over time.

Let the settling time denote the time needed by the Average Absolute
QoE Error to reach a steady state. Once an acceptable preliminary agreement
among Agents – yielding the selection of the most “promising” joint actions
for solving the dynamic CoS assignment problem – has been reached in
Step (a), the error dynamics, as highlighted in Fig. 1.8, experiences a rapid
decrease over the first 100 iterations of Step (b) and then it takes some time
to settle down to the steady-state value: in the figure, the settling time is
approximately equal to 9000 iterations. So, the overall runtime required by
the H-MARL-Q algorithm is the sum of the time ta necessary to reach the
preliminary agreement in Step (a) plus the time tb necessary to perform Step
(b), where tb amounts to approximately 9000 iterations for N = 100 and ta is
negligible with respect to tb. This is indeed an encouraging result which shows
that the H-MARL-Q algorithm has to be preferred to the MARL-Q algorithm
as the former achieves a satisfactory approximate solution in a reasonably
smaller amount of runtime than the latter – whose runtime, instead, actually
turns out to be unfeasibly long in scenarios where the number of Agents is
counted in the order of hundreds or thousands.

The proposed approach to QoE Control enables a dynamic Class of Service
selection aimed at reducing the error between the personalized Perceived
QoE and the personalized Target QoE levels by properly driving the control
procedures that handle the underlying networks. This result could be obtained
by embedding an innovative Multi-Agent Reinforcement Learning algorithm,
namely the proposed H-MARL-Q algorithm, in a centralized QoE Controller.
Such an algorithm has been tested in a simple simulation scenario, with just
the aim of providing a proof-of-concept and without claiming to represent
any real network.

In conclusion, the proposed method presents several practical advantages:

(i) it does not require any a-priori knowledge of the environment (i.e., it is
model-free) thanks to the adoption of a Reinforcement Learning based
approach;

(ii) it is decoupled from QoE Evaluation, i.e., it can work in conjunction
with any algorithm computing the Target QoE and the Perceived QoE
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values, and it allows a personalization level up to the single application
instance, since the only signal exchanged at the interface between the
QoE Controller and the QoE Evaluator is the QoE Error provided by
1.1);

(iii) it requires minimal signalling overhead since no communication exchange
among Agents is needed and very little information has to be exchanged
among the centralized QoE Controller and the distributed Agents;

(iv) it is characterized by a very good degree of scalability (thus being
able to handle several hundreds of Agents) due to the fact that, as
the joint action to be carried out at each time step is sought within a
suitable Reduced Joint Action Space, the complexity of the proposed
H-MARL-Q algorithm is linear in the number of Agents (as opposed to
the well-known MARL-Q algorithm whose complexity is exponential in
the number of Agents).

Note that the algorithm presented in this Section assumes the time-
invariance of the Target QoE. However, we are carrying out further studies,
based on concept drift in web/telecommunication systems [187], so as to
address also the case of a time-varying Target QoE. In this last case, the
Target QoE depends not only on the commercial profile of the users but also
on the relevant feedbacks provided by the users themselves. Moreover, we
are presently carrying out further research based on a combinatorial multi-
armed bandit approach to cooperative online learning [71] [181], with the aim
of overcoming the centralized paradigm and, consequently, of developing a
solution in which the QoE Control functionalities can be fully distributed
into the Agents. Finally, note that the overall modular architecture sketched
in Fig. 1.1 – within which Reinforcement Learning algorithms embedded in a
QoE Controller play the role of dynamically selecting (on the basis of real-time
feedbacks provided by a proper QoE Evaluator) appropriate Reference Values
which should drive environment-specific procedures – has proved to be so
flexible that the authors are reproducing it also in the domains of intelligent
transport systems [28] and telemedicine within the framework of EU-funded
research projects.

1.2 Discrete-Time Load Balancing Converg-

ing to the Wardrop Equilibrium

With respect to the research field of congestion control – e.g., [42], [44] and [30]
are authoritative references, just to name a few – this Section presents a
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Figure 1.4: Average Absolute QoE Error for N = 100. The dark-grey bar
and the light-grey bar represent the Average Absolute QoE Error in High
and Medium Traffic conditions, respectively.

Figure 1.5: Average Absolute QoE Error for N = 1000. The dark-grey bar
and the light-grey bar represent the Average Absolute QoE Error in High
and Medium Traffic conditions, respectively.

discrete-time algorithm for load balancing, proving the convergence to a
Wardrop equilibrium, which is a mean field game theoretical concept, originally
introduced for network games when modelling transportation networks with
congestion [178], and which can be informally described as the situation when
“the journey times on all the routes actually used are equal, and less than those
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Figure 1.6: QoE Error Standard Deviation for N = 100. The dark-grey bar
and the light-grey bar represent the QoE Error Standard Deviation in High
and Medium Traffic conditions, respectively.

Figure 1.7: QoE Error Standard Deviation for N = 1000. The dark-grey bar
and the light-grey bar represent the QoE Error Standard Deviation in High
and Medium Traffic conditions, respectively.

which would be experienced by a single vehicle on any unused route” [40].
Via Lyapunov arguments, the algorithm is proved to asymptotically con-

verge to a specific equilibrium condition among the traffic loads over the
network paths, known as Wardrop equilibrium. This convergence result
improves the discrete-time algorithms in the literature, which achieve approx-
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Figure 1.8: Average Absolute QoE Error trend, corresponding to Step (b)
of the H-MARL-Q algorithm, in High (black line) and Medium (grey line)
Traffic conditions with N = 100.

imate convergence to the Wardrop equilibrium. Numerical simulations show
the effectiveness of the proposed approach.

In load balancing scenarios, typically characterized by a distributed net-
work of computing hosts, the system performance crucially depends on effec-
tively dividing up work across the admissible network paths [7]. We therefore
refer to the model of a time-invariant communication topology where a certain
amount of traffic load, or flow demand, has to be routed from a source node
to a destination node over a set of admissible paths in such a way as to ensure
that the network stays balanced, i.e., the used network paths yield minimal
latencies. In particular, network traffic is modelled as an infinite stream of
infinitely-many arriving agents, each being responsible for an infinitesimal
amount of traffic, or job. Each agent is then a decision maker, yielding the
distributed nature of the modelling setup.

Non-cooperative algorithms entail the presence of several decision makers
which optimize their own response time independently of the others, since
cooperation is not allowed. In case a finite number of agents is considered, a
Nash equilibrium condition is reached when no agent can receive any further
benefit by changing its own decision unilaterally. In other words, the stability
of the network under said algorithms is analysed in terms of reaching a load
distribution in which no single agent can move to any other path with a lesser
number of jobs. In case the number of agents is infinite, a combination of
flows such that no agent can improve its latency by deviating unilaterally
yields a Wardrop equilibrium for the network. Indeed, a Nash equilibrium
is said to become a Wardrop equilibrium whenever the number of agents is
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assumed to be infinite [93]. In turn, dynamic algorithms are required for
settings where the load distribution is not known a priori as they succeed
in performing the decision-making process based on the current state of the
system, which is generally made available via feedback.

In this respect, we propose a discrete-time, distributed, non-cooperative,
dynamic load balancing algorithm, designed so that a Wardrop equilibrium
is reached by the agents. Up to the authors’ knowledge, the proposed
algorithm is the first discrete-time load balancing algorithm which is proved
to asymptotically converge to the exact Wardrop equilibrium.

1.2.1 Related Work and Proposed Innovation

The considered problem falls within the scope of mean field game theory,
which provides a fruitful modelling framework for many applications, e.g., in
transport, network engineering and computer science problems, and currently
represents a very active area of research [13]. Namely, Wardrop equilibria have
been relied upon in order to deal with several different types of congested
environments, such as: routing in road traffic networks [35] [39], traffic
engineering in communication networks [65], load balancing in distributed
computational grids [78] and in wired and wireless networks [6] [134] [135]. In
the classical problem formulation [11], a congested network represented by a
graph with nodes and edges is considered. A non-decreasing latency function
of traffic is associated with each edge, representing the cost of the edge (e.g.,
its congestion level). The network serves several commodities, characterized
by a given amount of traffic load to be routed from a source to a destination
and balanced over the set of admissible network paths. The job vector is
the amount of traffic that is allocated for each commodity and for each path
connecting the (source, destination) couples. Each agent has the possibility
to distribute its own flow among a set of admissible paths.

A job vector in which, for all commodities, the latencies of all used paths
are equal is called Wardrop equilibrium. The Wardrop equilibrium can be
computed by centralized algorithms in polynomial time [14]. The proposed
algorithm is aimed at achieving a Wardrop equilibrium via a discrete-time
dynamic and distributed algorithm.

Several load balancing approaches have been proposed in the literature:
in [80] it is suggested to classify load balancing algorithms as either static
or dynamic. Static load balancing relies on the available knowledge of the
application load, whereas dynamic load balancing algorithms are required for
settings where the load distribution is known based on the current state of
the system, which is generally made available via feedback.

From the large body of literature on load balancing, we recall [97] and [172]
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as examples of centralized static cooperative load balancing, [79] and [172] as
examples of centralized static non-cooperative load balancing, [59] and [60]
as examples of centralized dynamic load balancing, and we also recall [166],
which, instead, addresses the problem of distributed dynamic load balancing
relying upon local cooperation among neighbouring network nodes.

The scenario considered here requires a non-cooperative dynamic load
balancing approach. This kind of algorithms are widely investigated in game
theoretic frameworks, where the problem can be described as a dynamic load
balancing game, with users distributing their loads in a non-cooperative and
selfish fashion [1] [146].

Furthermore, such a setup can be adapted to selfish routing problems: in
this respect, quite a few works in the literature resort to a similar approach
as the one proposed here, such as [15] and [101] relative to a continuous-time
setting, and, instead, [18], [66], [67], and [68] relative to a discrete-time setting
where the authors only prove convergence to an approximated neighbourhood
of the Wardrop equilibrium. In [66], the authors develop a round-based
distributed algorithm with a finite number of agents. Each agent is responsible
for one commodity and has a set of admissible paths among which it may
distribute its traffic. In this respect, the population of agents responsible for
rerouting the traffic is instructed to learn a Wardrop equilibrium efficiently by
relying on suitable adaptive sampling methods. A bulletin board is assumed
to be available, where the traffic assignments are updated at every round.
With a similar bulletin board scenario, in [67] a distributed routing algorithm
is presented. At each round, each agent samples a different path and compares
the latency of the newly chosen path with its own current latency. If the
comparison shows that the agent can improve its latency by rerouting its
own portion of network traffic, then it migrates to the better path with some
probability depending on the latency improvement. Convergence results are
given both when the agents base their decisions on up-to-date information and
when the information is stale (i.e., considering delays in the bulletin board
update). In [68] a round-based version of the adaptive routing algorithm
with stale information shown in [67] is proposed. In [18], a distributed and
asynchronous routing algorithm is proposed, relying on an estimation of the
latencies of all paths and on a reinforcement learning algorithm to update
the probabilities of transmission towards the different paths. All the cited
algorithms converge to an approximate Wardrop equilibrium. Yet, none of
these works yields exact convergence to a Wardrop equilibrium.

The main innovation of the proposed algorithm is therefore the design
of a discrete-time load balancing algorithm converging to an exact Wardrop
equilibrium. In detail, the proposed algorithm is designed so as to dynamically
learn a Wardrop equilibrium efficiently and in a distributed fashion. We adopt
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the problem formulation proposed in [6] and rely on the algorithm proposed
in [68]. The convergence proof is given by using Lyapunov’s second method.

1.2.2 Load Balancing Problem

As anticipated, this Section further develops a well-known model for selfish
routing [68], where an infinite population of agents carries an infinitesimal
amount of load each, with the aim of addressing a load balancing scenario
and following the previous works [136] and [38] concerning distributed load
balancing algorithms. Let I denote a set of commodities with flow demands
di > 0, ∀i ∈ I, generally expressed in jobs per unit of time, with total demand
d :=

∑
i∈I d

i . Let also P i denote a set of paths (or providers), which serve
the traffic flows for every commodity i ∈ I, and let P = ∪i∈IP i be the set of
all the network paths. As an example, we may think of the considered model
as a description of a network consisting of a set of edges, over which the
adopted control law arranges proper paths to connect source and destination
nodes. Namely, each source node (e.g., si for some i ∈ I) is connected by the
network to the destination node (i.e., ti) through a set of paths denoted with
P i.

The definition of agent is also required. As defined, for instance, in (Barth
et al., 2008), each agent is an infinitesimal portion of a specified commodity.
Let xip be the volume of the agents, or bandwidth, of commodity i relying on
a path p ∈ P i. In the considered scenario, the vector x = (xip)p∈Pi, i∈I can
be defined as the flow vector or population share, whose components specify
the overall amount of traffic per unit of time flowing along path p ∈ P i and
associated with commodity i ∈ I. Let xp :=

∑
i∈I x

i
p denote the total traffic

flow over path p ∈ P .

Definition 1.1. The feasible state space, i.e., the closed set of feasible flow
vectors, is

X := {x ∈ R|P|×|I| | xip ≥ 0, ∀p ∈ P i,
∑
p∈Pi

xip = di, ∀i ∈ I. (1.11)

A metric of interest is the average response time required by the path
(or provider) p ∈ P for serving an amount of traffic load equal to xp. The
response time grows with the considered load and thus it is a reliable indicator
of the path congestion status. Hence, this quantity is defined as the latency
function associated with the path p ∈ P which is a non-negative function
lp(xp) : [0, d] → R≥0. The shape of the latency functions depends on the
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considered application. One strength of the proposed approach is that there
is no need for explicitly modelling such latency functions.

The latency of a path p ∈ P is therefore a function of its load xp, i.e.,
lp(xp) is the latency of path p with load xp. The latency functions are only
assumed to have the following properties.

Assumption 1.1. The latency functions lp(ξ), p ∈ P , are Lipschitz continu-
ous and strictly increasing over the interval [0, d]. We also define βp as the
local Lipschitz constant of lp, and βmax := maxp∈P βp.

Assumption 1.1 is a reasonable restriction, since the response time of a
path (or provider) generally increases with the total amount of traffic load
routed onto that path.

The agents’ aim is that of minimizing their personal latency selfishly
without considering the impact on the global situation. One usually assumes
that the agents will converge to some allocation in which no agent can improve
its latency by deviating unilaterally. A useful characterization of such an
equilibrium goes back to Wardrop. In particular, a single request of the flow is
approximately considered as an agent: in fact, even if the number of requests
is finite, if the flow rates are sufficiently high, the population acceptably
approximates the infinite population constraint required by Wardrop theory
[178].

The load balancing problem is formulated below as the problem of de-
termining the strategies which will lead the flow vector to reach a Wardrop
equilibrium. In Wardrop theory, stable flow assignments are the ones in which
no agent (i.e., no “small” portion of a commodity directed from a source to a
destination) can improve its situation by changing its strategy (i.e., the set
of used paths) unilaterally. This objective is achieved if all agents reach a
Wardrop equilibrium:

Definition 1.2. [66] A feasible flow vector x is at a Wardrop equilibrium for
an instance of the considered load balancing game if, for each path p ∈ P i such
that xip > 0, the following relation holds: lp(xp) ≤ lq(xq), ∀q ∈ P i, ∀i ∈ I.

In practice, at the Wardrop equilibrium, the latencies of all the loaded
paths have the same value: therefore, provided that the latency functions
properly represent the path performances, a fair exploitation of the network
resources is achieved by driving the flows towards a Wardrop equilibrium.
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In the framework of researches on Wardrop equilibria, a key role is played
by the Beckmann, McGuire, and Winsten potential [14], given by:

Φ(x) :=
∑
p∈P

∫ xp

0

lp(ξ)dξ, (1.12)

whose properties are summarised in Property 1.1 below.

Property 1.1. (Fischer and Vocking, 2009). Under Assumption ??, the
potential (1.12) is continuous and the following properties hold:

i) there exists a unique flow xmin, over the set of feasible flows, minimizing
Φ;

ii) correspondingly, there exists a unique positive minimum Φmin = Φ(xmin);

iii) in xmin, no agent can improve its own latency unilaterally, i.e., xmin is
at Wardrop equilibrium.

Property 1.1 states that, in the considered scenario, the set XW collapses
into a unique Wardrop equilibrium with job vector xmin, hereafter denoted
with xW .

1.2.3 Discrete-Time Control Law and Algorithm Con-
vergence

For the sake of presentation clarity, we choose to limit the analysis to the
single-commodity case only, i.e., |I| = 1, and, therefore, the index i will be
neglected.

Proposed Control Law

The system dynamics is therefore expressed component-wise by

xp[k + 1] = xp[k] + τ
∑
q∈P

(rqp[k]− rpq[k]), k = 0, 1, . . . , ∀p ∈ P , (1.13)

where τ is the sampling period and rpq[k] is the so-called migration rate from
path p ∈ P to path q ∈ P. Inspired by the algorithm in [66], the migration
rate is defined as

rpq[k] = xp[k]σpq[k]µpq[k], (1.14)

where
σpq[k] > 0, ∀p, q ∈ P , (1.15)
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is the control gain, which sets the rate with which the population share
of path p migrates to path q, and µpq[k] is the so-called migration policy,
representing the decision whether (and in which percentage) the population
share assigned to path p migrates to path q. Throughout this Section, we
consider the following initial conditions:{

xp[0] ≥ 0, ∀p ∈ P ,∑
p∈P xp[0] = d.

(1.16)

There is a variety of migration policies used in the literature for continuous-
time algorithms, e.g., the better response policy

µpq[k] =

{
0 if lp(xp[k])− lq(xq[k]) ≤ 0,

1 otherwise,
(1.17)

and the linear migration policy

µpq[k] =

{
0 if lp(xp[k])− lq(xq[k]) ≤ 0,
lp(xp[k])−lq(xq [k])

lmax
otherwise,

(1.18)

where lmax is the maximum latency value. By using these migration policies,
it can be shown that convergence cannot be guaranteed, however small the
sampling time τ is chosen (see, e.g., [67]). The proposed migration policy is
then a modified better response policy, defined as:

µpq[k] =

{
0 if lp(xp[k])− lq(xq[k]) ≤ αδ[k],

1 otherwise,
(1.19)

where α ∈ (0, 1) is a tuning parameter which affects the algorithm convergence
velocity, as examined below, and δ[k] is defined as the difference between
the maximum measured latency value of the loaded paths and the minimum
measured latency value, at time k, i.e.,

δ[k] := max
p∈P|xp[k]>0

lp(xp[k])−min
q∈P

lq(xq[k]). (1.20)

The proposed control law is expressed by equations (1.14), (1.15) and
(1.19), with the following control gain upper bound:

σpq[k] ≤ αδ[k]

τβmaxd|P|
, (1.21)
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The algorithm (1.13), (1.14), (1.15), (1.19), (1.20), and (1.21) resembles
the algorithm in [66]; besides the different expression (1.21) for σpq[k], the
main difference is the tolerance αδ[k] introduced in equation (1.19).

The system dynamics (1.13), under the control law (1.13), (1.14), (1.15),
(1.19), (1.20), and (1.21), yields, in vector form, the closed-loop system
dynamics

x[k + 1] = f(x[k]), x(0) ∈ X , (1.22)

with respect to which we conduct Lyapunov stability analysis.

Convergence Proof.

Lemma 1.1. Under Assumption 1.1, relying on the algorithm (1.13), (1.14),
(1.15), (1.19), (1.20), and (1.21), with initial conditions (1.16), the latency
variation of lp in time steps is bounded according to the following relation:

− (|P| − 1)

|P|
αδ[k] ≤ lp(xp[k + 1])− lp(xp[k]) ≤ 1

|P|
αδ[k]. (1.23)

Proof. In the worst case, at time k, no paths migrate their own population
to path p:

lp(xp[k + 1]) = lp

(
xp[k] + τ

∑
m∈P|m6=p

(rmp[k]− rpm[k])

)
≥

≥ lp

(
xp[k]− τ

∑
m∈P|m6=p

rpm[k]

)
.

(1.24)

Since βp is the Lipschitz constant of the latency function lp, it follows that

lp(xp[k + 1]) ≥ lp(xp[k])− βpτ
∑

m∈P|m6=p

rpm[k]. (1.25)

Considering equations (1.14), (1.19), and (1.21), the last term of equation
(1.25) is written as

βpτ
∑

m∈P|m6=p

rpm[k] =

= βpτ
∑

m∈P|m6=p

σpm[k]µpm[k]xp[k] ≤

≤ βpτ
∑

m∈P|m6=p

σpm[k]xp[k] ≤ αδ[k]

d|P|
∑

m∈P|m6=p

xp[k],

(1.26)
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where the last inequality holds since βp ≤ βmax. Since there are at most
(|P| − 1) terms in the last summation of equation (1.26) and since xp[k] ≤ d,
it holds that

βpτ
∑

m∈P|m6=p

rpm[k] ≤ αδ[k]

|P|
(|P| − 1). (1.27)

Similarly, in the worst case, at time k, the path q does not migrate its
population to any other paths:

lq(xq[k + 1]) ≤ lq(xq[k]) + βqτ
∑

n∈P|n6=q

rnq[k]. (1.28)

Also,

βqτ
∑

n∈P|n 6=q

rnq[k] = βqτ
∑

n∈P|n 6=q

σnq[k]µnq[k]xn[k]. (1.29)

Since µpq[k] ≤ 1, ∀p, q ∈ P , given that
∑

n∈P xn[k] = d, it holds that

βqτ
∑

n∈P|n6=q

rnq[k] ≤ βqτ
∑

n∈P|n6=q

σnq[k]xn[k] ≤ αδ[k]

d|P|
∑

n∈P|n6=q

xn[k] ≤ αδ[k]

|P|
.

(1.30)

It is shown below that the state space X is a positively invariant set.

Lemma 1.2. Under Assumption 1.1, X is a positively invariant set for the
nonlinear discrete-time system (1.22) with control law (1.14), (1.15), (1.19),
(1.20), and (1.21), with the initial conditions specified in (1.16).

Proof. It is shown in the following that, since the initial flow vector of the
considered system dynamics, x[0], lies in X , the flow vector x[k] lies in X
too, i.e., that a)

∑
p∈P xp[k] = d and b) xp[k] ≥ 0, ∀p ∈ P , ∀k ≥ 0.

a) It follows from equation (1.13) that∑
p∈P

(xp[k + 1]− xp[k]) = τ
∑
p∈P

∑
q∈P

(rqp[k]− rpq[k]) =

= τ

(∑
p∈P

∑
q∈P

rqp[k]−
∑
q∈P

∑
p∈P

rqp[k]

)
= 0,

(1.31)

and, therefore, that
∑

p∈P xp[k] =
∑

p∈P xp[0] = d, ∀k ≥ 0.
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b) By induction, since xp[0] ≥ 0, ∀p ∈ P , it is proven below that xp[k] ≥
0, ∀p ∈ P , ∀k ≥ 0. Assuming that xp[k] ≥ 0, ∀p ∈ P , for a given k, it
is then sufficient to prove that

xp[k + 1] = xp[k] + τ
∑
q∈P

(rqp[k]− rpq[k]) ≥ 0, ∀p ∈ P . (1.32)

Since xp[k] ≥ 0, from equation (1.14) it follows that rpq[k] ≥ 0. Thus,
the following inequality holds (in the worst case, no paths migrate part
of their population to path p):

xp[k + 1] ≥ xp[k]− τ
∑
q∈P

rqp[k], ∀p ∈ P . (1.33)

A sufficient condition for inequality (1.32) to hold is then

xp[k]− τ
∑
q∈P

rpq[k] ≥ 0, ∀p ∈ P . (1.34)

Recalling equations (1.14) and (1.20), equation (1.34) can be written as

xp[k]− τ
∑
q∈P

rpq[k] = xp[k]− τ
∑
q∈P

xp[k]σpq[k]µpq[k] =

= xp[k]

(
1− τ

∑
q∈P

σpq[k]µpq[k]

)
≥ 0, ∀p ∈ P .

(1.35)

By substituting the expression of σpq[k] from (1.21), we obtain the
condition

xp[k]− τ
∑
q∈P

rpq[k] ≥

≥ xp[k]

(
1− αδ[k]

βmaxd|P|
∑
q∈P

µpq[k]

)
>

> xp[k]

(
1− αδ[k]

βmaxd

)
≥ 0, ∀p ∈ P ,

(1.36)

where the second inequality holds since, considering that µqq[k] =
0, ∀k ≥ 0, the inner summation has at most (|P| − 1) terms equal to
1. If xp[k] = 0, the inequality (1.36) is verified. Instead, if xp[k] > 0,
equation (1.36) holds if

αδ[k]

βmaxd
≤ 1. (1.37)
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Given that 0 < α < 1, and that, by definition (1.20), δ[k] ≤
maxp∈P lp(xp[k]) ≤ lp(d), it follows that

αδ[k]

βmaxd
<

lp(d)

βmaxd
≤ 1, (1.38)

where the last inequality holds since, by the definition of the βp’s, it
holds that lp(d) ≤ βpd ≤ βmaxd.

We are now in a position to prove the following theorem.

Theorem 1.3. Under Assumption 1.1, xW is a globally asymptotically stable
equilibrium point for the nonlinear discrete-time system (1.13), (1.14), (1.15),
(1.19), (1.20), and (1.21), with initial conditions (1.16) and with total traffic
demand d > 0.

Proof. The following proof is based on Lyapunov’s direct method. Let L(x) :=
Φ(x)−Φmin be the candidate Lyapunov function, where Φ(x) is the potential
(1.12) and Φmin is its minimum value, which is unique thanks to Assumption
??.

Let ∆L(x[k]) := L(x[k+1])−L(x[k]) denote the difference of the Lyapunov
function L(x) along the solutions of system (1.13), (1.14), (1.15), (1.19), (1.20),
and (1.21).

∆L(x[k + 1]) = L(x[k + 1])− L(x[k]) =

=
∑
p∈P

∫ xp[k+1]

xp[k]

lp(ξ)dξ ≤

≤
∑
p∈P

(xp[k + 1]− xp[k])lp(xp[k + 1]) =

=
∑
p∈P

τ

(∑
q∈P

rqp[k]−
∑
q∈P

rpq[k]

)
lp(xp[k + 1]) =

= τ
∑
p∈P

∑
q∈P

rqp[k]lp(xp[k + 1])− τ
∑
p∈P

∑
q∈P

rpq[k]lp(xp[k + 1]) =

= τ
∑
q∈P

∑
p∈P

rpq[k]lq(xq[k + 1])− τ
∑
p∈P

∑
q∈P

rpq[k]lp(xp[k + 1]) =

= τ
∑
p∈P

∑
q∈P

rpq[k](lq(xp[k + 1])− lp(xq[k + 1])),

(1.39)

where the inequality holds from geometric considerations, as the latency
functions are strictly increasing.
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Indeed, if xp[k + 1] > xp[k], the upper plot of Figure 1.9 shows that the
quantity (xp[k+1]−xp[k])lp(xp[k+1]), represented by the area of the rectangle

with bold lines, is larger than the integral
∫ xp[k+1]

xp[k]
lp(ξ)dξ, represented by

the grey area. If xp[k + 1] < xp[k], the lower plot shows that the quantity
(xp[k]− xp[k + 1])lp(xp[k + 1]), represented by the area of the rectangle with

bold lines, is smaller than the integral
∫ xp[k]

xp[k+1]
lp(ξ)dξ, represented by the grey

area.

Figure 1.9: Geometrical considerations on the latency functions.

We now prove that the terms rpq[k](lq(xp[k + 1]) − lp(xq[k + 1])) of the
last summation are either negative or null, for any p, q ∈ P .

a) If rpq[k] = 0, the term is null.

b) It is shown below that, if rpq[k] > 0, it holds that lp(xq[k+1])− lq(xp[k+
1]) > 0, i.e., the considered term in (1.39) is negative. By Lemma 1.1,
it holds that

lp(xp[k + 1])− lq(xq[k + 1]) ≥

≥
(
lp(xp[k])− (|P| − 1)

|P|
αδ[k]

)
−
(
lq(xq[k]) +

1

|P|
αδ[k]

)
≥

≥ lp(xp[k])− lq(xq[k])− αδ[k].

(1.40)

Since we are considering the case rpq[k] > 0, it follows from equation
(1.19) that

lp(xp[k])− lq(xq[k]) > αδ[k], (1.41)
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which, from equation (1.40), yields that lp(xp[k+ 1])− lq(xq[k+ 1]) > 0.

Now we can prove the asymptotic convergence to xW by showing that
∆L(x[k + 1]) = 0 if and only if x[k] = xW .

If x[k] = xW , for any couple p, q ∈ P, it holds either that lp(xp[k]) ≤
lq(xq[k]) with xp[k] > 0 or that xp[k] = 0. In the latter case, it follows from
equation (1.14) that rpq[k] = 0. In the former case, equation (1.19) yields that
µpq[k] = 0 and, therefore, rpq[k] = 0. From the discussion above, it follows
that ∆L(x[k + 1]) = 0.

If x[k] 6= xW , there exist one or more couples of paths p, q ∈ P , such that
xp[k] > 0 and lp(xp[k])− lq(xq[k]) ≥ 0. Let p

′
and q

′
be the paths such that

p
′
= argmax(p∈P | xp[k]>0)lp(xp[k]) and q

′
= argminq∈P lq(xq[k]), respectively,

i.e., by definition (1.20), such that lp′ (xp′ [k])−lq′ (xq′ [k]) = δ[k], with xp′ [k] > 0.
Given that 0 < α < 1, it holds that lp′ (xp′ [k])− lq′ (xq′ [k]) > αδ[k] and, from
equations (1.14) and ((1.19), that rp′q′ [k] > 0. From the discussion above, it
follows that ∆L(x[k + 1]) < 0.

Remark 1.1. In the control law (1.14), the σpq’s are interpreted as the control
gains. Lemma 1.1 and Theorem 1.3 show that equation (1.21) sets dynamic
upper bounds on such control gains, with the twofold objective of keeping
the dynamics feasible and of driving the system trajectories towards xW .

Remark 1.2. Concerning the migration policy in equation (1.19), the key
elements for the convergence of the discrete-time case are the facts (i) that,
at any time step k, equation (1.19) sets a minimum latency separation αδ[k]
for the migration between two paths, and (ii) that such latency separation
vanishes with k, as the latency values converge.

Remark 1.3. As regards the convergence velocity of the considered closed-loop
dynamics (1.22), the value chosen for α sets a trade-off between the gain value
the upper bound (1.21) on the σpq’s is proportional to α – and the number of
flows selected for migrations – according to equation (1.19), at a given time
step k, the µpq’s are positive only for the path couples whose latencies differ
by a quantity larger than αδ[k]. See also the example simulation runs below.

1.2.4 Numerical Simulations

The proposed algorithm is here evaluated via numerical simulations performed
with MATLAB. The scenario is composed of |P| = 21 paths, which must
support the total traffic d = 1. The latency functions are described by the
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following equation:

lp(xp) =


0.1x2

p, p = 1, . . . , 7,

0.2x2
p, p = 8, . . . , 14,

0.3x2
p, p = 15, . . . , 21.

(1.42)

Equation (1.42) defines three groups of paths (heterogeneous path case),
each one characterized by the same latency function. Accordingly, the local
Lipschitz constant is computed as βp = maxξ∈[0,d] lp(ξ)/dξ = 0.2, for p ≤
7, βp = 0.4 for 8 ≤ p ≤ 14, βp = 0.6 for p ≥ 15.

With this setup, the value of the latency functions at the Wardrop equi-
librium is lW = 0.413 · 10−3 – note that lW can be analytically computed here
only because the latency functions (1.42) are completely known, whereas the
proposed algorithm assumes that the functions are unknown. Accordingly,
the equilibrium values of the population shares of the paths are xp = 0.0642
for p ≤ 7, xp = 0.0454 for 8 ≤ p ≤ 14, xp = 0.0371 for p ≥ 15. The sampling
time is set to τ = 0.1.

The first simulation runs address the tuning of the parameter α of the
control action, tehn we show some latency and population dynamics examples
as well as a qualitative comparison between the proposed algorithm and the
one in [68].

Convergence Time vs. Parameter α.

To evaluate the effect of the parameter α on the convergence time, simulation
runs starting from random initial states were simulated for values of α ranging
from 0.1 to 0.99. The convergence time is defined as the time step when
all the latency values lie close to the value at the equilibrium lW , within a
tolerance ε = 0.02. Fig. 1.10 shows the obtained convergence times, averaged
over 20 simulation runs.

In particular, Fig. 1.10 shows that the convergence time is slower for small
values of α, decreases with α, due to the fact that the σpq’s (i.e., the control
gains) increase with α, and finally increases again for values of α close to 1,
since only the paths with the larger and smaller latency values can exchange
their population (see the migration policy in (1.19)). Qualitative examples of
the population and latency dynamics are presented.

Examples of population and latency dynamics and comparison with
the controller adopted in [68]

We now present an example of simulation run under the proposed algorithm,
for different values of α, and under the algorithm in [68]. The latter is a



CHAPTER 1. LEARNING, LOAD BALANCING AND SECURITY 42

Figure 1.10: Convergence time (mean and std. deviation) vs. α.

Figure 1.11: Population dynamics (higher plot) and latency dynamics (lower
plot) with α = 0.85.

round-based algorithm. At every time step k, each path p ∈ P is activated
with probability γ. Each activated path decides to migrate to a given path
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Figure 1.12: Population dynamics (higher plot) and latency dynamics (lower
plot) with the algorithm in [68].

q ∈ P based on the following rule:

Pr{q is selected} =

{
1
|P| with probability βF
xq [k]

di
with probability (1− βF ),

(1.43)

where βF ∈ (0, 1) is the probability with which a random path is selected for
the migration (i.e., exploration) instead of selecting the path proportionally
to its population (i.e., exploitation). The migration from an activated path
to the selected one is still given by equation (1.14), with migration rate

σp = 1
|P| and migration probability µpq[k] = max

{
(lp[k]−lq [k])

η(lp[k]+ζ)
, 0

}
, where η

is the maximum value of the elasticity of the latency functions and ζ is a
positive value needed to avoid division by 0 if lp[k] = 0. In [68], the elasticity

is defined as η(ξ) := (x·dl(ξ))/dξ
l(ξ)

. The parameter α of the proposed algorithm

was set equal to 0.6, whereas the parameters of the algorithm in [68] were set
as follows: σpq = 1/21, ζ = 0.01, γ = 1/32, βF = 0.002, η = 2.

Fig. 1.11 and Fig. 1.12 show the dynamics of the latency values anof the
population obtained with the proposed algorithm, with α = 0.85, and with
the algorithm in [68], respectively, starting from the same initial population.
The figures highlight that, while the convergence velocities appear similar, the
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Figure 1.13: Population dynamics (higher plot) and latency dynamics (lower
plot) with α = 0.15.

dynamics of the proposed algorithm is much smoother, since the algorithm
in [68] relies on migration probabilities. For the same reason, even in the
long run, the algorithm in [68] produces oscillations around the value at the
equilibrium – in fact, it achieves an approximate equilibrium, see [68] for
details. The population dynamics (lower plots of the figures) also shows that
the population of the paths converges to the equilibrium values of the three
path groups defined by equation (1.42).

Fig. 1.13 shows the algorithm behaviour at values of α close to 0, starting
from the same initial population of Fig. 1.11 and Fig. 1.12: at each time step,
most of the paths exchange their population (according to equation (1.19) but
the convergence velocity is slow, given that the σpq’s are proportional to α.
Fig. 1.14 shows the algorithm behavior at values of α close to 1: at each time
step, only the paths with the largest and smallest latency values exchange
their populations, but the amount of population exchanged is large, given
the large value of α and, in turn, of the σpq’s. Mixed behaviors are obtained
along the allowed range of values (0, 1) of α (see, e.g., Fig. 2 for α = 0.85).
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Figure 1.14: Population dynamics (higher plot) and latency dynamics (lower
plot) with α = 0.99.

1.3 Lyapunov-Based Design of a Distributed

Wardrop Load Balancing Algorithm with

Application to Software Defined Network-

ing

Thanks to its characteristics, the proposed algorithm is suitable for the
Software Defined Networking (SDN) scenario, where service requests coming
from the network nodes, i.e., the switches, are managed by the so-called
SDN Controllers, playing the role of providers. The proposed approach
is aimed at dynamically balancing the requests of the switches among the
SDN Controllers to avoid congestion. We also suggest the adoption of SDN
Proxies to improve the scalability of the overall SDN paradigm and present an
implementation of the algorithm in a proof-of-concept SDN scenario, which
shows the effectiveness of the proposed solution with respect to the current
approach.

With the advent of cloud services, enterprises and carriers have found
themselves in need of evolving their network infrastructures to satisfy new
requirements, such as managing a higher demand for bandwidth and for re-
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sponsiveness to new data patterns (including machine-to-machine, data-center
and mobility traffic), scaling IT resources, sharing the same infrastructure
among different logically isolated networks, and applying network-wide poli-
cies.

In order to face these new challenges, the current research is focused on
the virtualization and elastic provisioning of the network resources within the
Software Defined Networking (SDN) paradigm. Such innovation is carried
out by different public/private initiatives: among others, the FP7 T-NOVA
and FI-Core research projects.

As defined by the Open Network Foundation (ONF), SDN is a network
architecture where network control is decoupled from forwarding and is directly
programmable. While the so-called forwarding plane (in charge of physically
routing the data packets) resides in the network nodes, i.e., in the switches,
all the intelligence related to network control is logically centralized into
a single software entity called SDN Controller, responsible for the network
behavior. In short, the SDN Controller is in charge of computing the routes
of the packets and it is directly programmable from the upper layer (i.e., the
application plane) through programmable interfaces.

The SDN architecture introduces some issues due to the necessity for the
switches to interact with the SDN Controller: any forwarding decision of a
given switch consists of a unit of workload, or job, for the SDN Controller.
Thus, the throughput and the latency of the SDN Controller may become
the performance bottleneck of the network. Therefore, even if the SDN
Controller is logically a single centralized entity, it is actually realized through
multiple entities, referred to as SDN Controllers for the sake of simplicity,
sharing the overall network load. The problem is then to balance the overall
workload of the SDN network among the different SDN Controllers. Currently,
proximity-based approaches are proposed, where, simply, each switch (and,
consequently, its workload) is associated with the closest SDN Controller.
However, this static approach is not effective, especially when the workload is
not evenly spatially distributed and/or is dynamic (which is always true in
communication networks). Therefore, load balancing algorithms are required
to dynamically associate the switches to the SDN Controllers with the overall
aim of equalizing the workload of the SDN Controllers.

In this Section, the performance of the SDN Controllers is defined by a
latency function, which describes how the response time of the SDN Controller
grows with its workload. The objective of the load balancing algorithm is
then to direct the requests of the switches to the SDN Controllers in such
a way that the values of the latency functions of the SDN Controllers are
equalized. The two main problems in the algorithm development are:
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• the fact that the latency functions are not known (e.g., the load/delay
curve of an SDN Controller depends on its specific hardware and software
implementation);

• a distributed approach is needed since a centralized approach would
require too much control traffic to exchange information among the
SDN Controllers and potentially thousands of switches.

In this Section, a distributed, non-cooperative and dynamic load balancing
algorithm is consequently developed on the ground of mean field game theory;
specifically, the algorithm considers each request from a switch as an agent
(whose decision is to determine the SDN Controller such a request has to
be routed to), and is based on the measured response time of the SDN
Controllers themselves: the algorithm is such that the agent decisions lead to
an equilibrium, known in mean field game theory as Wardrop equilibrium,
where the values of the latency functions of the SDN Controllers are equalized.

The main motivations behind this work are then (i) to prove, using
Lyapunov arguments, how the difference equation governing the global state
of the system (and macroscopically abstracting the microscopic evolution of
the single agents involved) converges to an arbitrarily small neighborhood of
a Wardrop equilibrium, and (ii) to show the effectiveness of such an approach
through its application to a real SDN scenario.

The work presented here was carried out within the FP7 T-NOVA project
(www.t-nova.eu), aimed at extending the emerging concept of SDN to the
efficient reconfiguration and elastic scaling of virtualized network function-
alities. Indeed, the proposed algorithm is embedded in the T-NOVA SDN
Control Plane, allowing the management of virtual networks over data-center
physical infrastructures. However, we further note that, since the algorithm
is developed within the research framework of Wardrop load balancing and
selfish routing, it can be applied to several problems and scenarios other than
the one considered here.

1.3.1 State of the Art and Proposed Innovations with
Respect to Software Defined Networks

The main SDN technology is defined by the OpenFlow standard [116], which
is an open protocol of communication between the forwarding plane (i.e., the
switches) and the control plane (i.e., the SDN Controller). The task of a
switch is simply to interpret the forwarding rules sent by the SDN Controller,
store them as forwarding tables and match incoming packets with the table
entries.
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The logical network architecture is shown in Fig. 1.15.a, where a single
(logical) SDN Controller manages N switches. Since the logic is shifted from
the switches to the SDN Controller, any forwarding decision consists of a
unit of workload for the SDN Controller. For instance, according to [94], in
large-scale scenarios (e.g., in a server cluster of 1.5× 103 machines) the SDN
workload has a mean arrival rate of about 105 OpenFlow messages per second.
Therefore, an architectural improvement (Fig. 1.15.b) consists in physically
distributing the SDN Control Plane among K SDN Controllers, arranged to
form a cluster, with a node playing the role of cluster coordinator [188].

A drawback of current SDN networks resides in the fact that the mapping
between the forwarding plane and the control plane, i.e., the association of
each switch to a given SDN Controller, is static. In fact, in the literature,
the problem of associating switches and SDN Controllers is known as “SDN
Controller placement problem,” and the proposed algorithms are mostly based
on the location of the SDN Controllers with respect to the switches see,
e.g., [84] presenting a comparison between brute-force and greedy algorithm
solutions, [100] presenting a heuristic approach, and [162] solving the problem
by adopting operational research theory. Since, in real networks, the network
workload varies in time, the main drawback of static mapping is the necessity
to find a new solution to the controller placement problem whenever some SDN
Controller workload exceeds its processing power (congestion occurrence).

To overcome this problem, a dynamic approach was preliminarily defined
in [38], where each switch dynamically decides the SDN Controller to be
associated with, based on the response time of the SDN Controllers. This
suggested approach is however not compliant with the standard SDN pro-
tocols and is not scalable, since each switch is required to explicitly receive
information about the current response time of all the SDN Controllers (in-
stead, each switch is able to measure the response time only of the SDN
Controller it is associated with). Therefore, in this Section, a new entity is
introduced, named SDN Proxy (see Fig. 1.15.c). The switches are statically
connected to the nearest SDN Proxy. Each SDN Proxy receives the requests
of its switches and has the task of forwarding them to one of the available
SDN Controllers, based on a load balancing algorithm as the one proposed
below. The introduction of the SDN Proxies is transparent to the OpenFlow
standard and improves the SDN scalability since their tasks are quite simpler
with respect to the ones of the SDN Controllers.

1.3.2 Proposed Wardrop Load Balancing Algorithm

First, we recall the basic definitions; then, we present the load balancing
algorithm and the convergence proof.
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Figure 1.15: SDN architectures: a. centralized static mapping, b. distributed
static mapping and c. distributed dynamic mapping.

Preliminaries on Wardrop Equilibrium and on Set Stability

Let I denote again a set of commodities with flow demands, or rates, di >
0, i ∈ I, generally expressed in jobs per unit of time. For the sake of simplicity,
each commodity i ∈ I is associated with a (source, destination) couple of
nodes, denoted with (si, ti). The di’s are also such that d :=

∑
i∈I d

i. Let
P denote again a set of providers, which are used to transmit the flows for
every commodity i ∈ I. All source nodes are connected by the network to the
available providers, which, in turn, connect them to the destination nodes.
As an example, we may think of the considered model as a description of a
network consisting of a set of edges, over which the controllers arrange proper
paths to connect source and destination nodes. In the considered scenario, the
SDN Controllers are the providers, the SDN Proxies identify the commodities,
and the di’s are their request loads, expressed in requests per unit of time.

Let the vector x = (xip)(p∈P,i∈I) be again the flow vector (in the literature
also referred to as population share or job vector), describing the overall
amount of jobs per unit or time of commodity i. Let the feasible state space
X be the same as (1.11).

Let xp :=
∑

i∈I x
i
p denote the load of provider p ∈ P , and let each provider

be characterized by a continuous cost function, referred to as latency function
and denoted with lp(·) : [0, d] → R+. The latency of a provider p is a
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function of its load xp, i.e., lp(xp) is the latency of controller p with load xp.
The following mild assumptions on the lp’s will be considered hereinafter.

Assumption 1.2. (Latency functions). The latency functions exhibit the
following properties.

(a) lp(x) is positive and non-decreasing with x ∈ [0, d],∀p ∈ P ;

(b) lp(x) is Lipschitz continuous in x ∈ [0, d], with Lipschitz constant βp,
∀p ∈ P .

An instance of the load balancing game is then

Γ =

{
P , (lp)p∈P , (si, ti, di)i∈I

}
. (1.44)

The load balancing problem is formulated below as the problem of deter-
mining the strategies which will lead the flow vector to reach an arbitrarily
small neighborhood of a Wardrop equilibrium. In Wardrop theory, stable
flow assignments are the ones in which no agent (i.e., no small portion of a
commodity directed from a source to a destination) can improve its situation
by changing its strategy (i.e., the set of used providers) unilaterally. This
objective is achieved if all agents reach a Wardrop equilibrium. Let us then
recover Assumption 1.1, Definition 1.2, and 1.1.

The following definition and theorem on set stability (i.e., on the stability
of a set of points in the state space) are also recalled with respect to the
nonlinear discrete-time dynamics (1.22).

Definition 1.3. (Positive definiteness, [167]). Let X be an invariant set for
system (1.22), let A be a closed subset of X and let d(x,A) := infy∈A |x− y|
be the distance from a point x ∈ X \ A. The function L(x) : X → R+ is
positive definite with respect to the set A ⊂ X if there exists an increasing
continuous function ψ : R+ → R+ such that ψ(0) = ψmin and ψ(d(x,A)) ≤
(x),∀x ∈ X \ A.

Let ∆L(x[k]) := L(x[k+ 1])−L(x[k]) denote the difference of a Lyapunov
function L(x) along the solutions of system (1.22). Lyapunov’s second method
can be applied to verify if a set is a Globally Asymptotically Stable Set (GASS)
as follows [167].

Theorem 1.4. (Globally Asymptotically Stable Set). Given a closed subset
A ⊂ X and a Lyapunov function L(x) in X \ A, if L(x) and −∆L(x[k]) are
positive definite with respect to A, then A is a GASS for system (1.22).
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Load Balancing Algorithm and Convergence Proof

Let the system dynamics (1.22) be expressed component-wise by

xip[k + 1] = xip[k] + τ ·
(∑
q∈P

riqp[k]−
∑
q∈P

ripq[k]

)
,

∀p ∈ P , ∀i ∈ I, k = 0, 1, . . . ,

(1.45)

where δ is the sampling period and ripq[k] is the so-called migration rate from
provider p to provider q. Inspired by the continuous-time algorithm in [68],
the migration rate is defined as:

ripq[k] = xip[k] · σipq[k] · µipq(lp(xp[k]), lq(xq([k])),

∀p, q ∈ P , ∀i ∈ I, k = 0, 1, . . . ,
(1.46)

where σipq[k] is the control gain, which sets the rate with which the population
share of provider p migrates to provider q, and µpq(lp, lq) is the so-called
migration policy, representing the decision whether (and in which percentage)
the population share assigned to provider p migrates to provider q. The
proposed migration policy has the following property:{

µipq(lp, lq) = 0, if lp ≤ lq + ε,

µipq(lp, lq) ∈ [µ, µ], 0 < µ < µ < +∞, otherwise,

∀p, q ∈ P , ∀i ∈ I, ε > 0,

(1.47)

where ε is a tolerance on the maximum acceptable mismatch between the
couples of latency values and µ and µ are positive lower- and upper-bounds,
respectively. As shown in the following, the tolerance ε is introduced since the
usual migration policies adopted in the continuous-time algorithms (obtained
from (1.47) by setting ε = 0) cannot guarantee convergence in the discrete-
time case, however small the sampling period (see, e.g., [67]). Let the total
migration rate from provider p to provider q be defined as rpq[k] :=

∑
i∈I r

i
pq[k].

For notational simplicity, whenever unambiguous, µipq[k] will be used in place
of µipq(lp(xp[k]), lq(xq([k])). Before analysing the algorithm convergence, the
following definition of ε-Wardrop equilibrium is introduced.

Definition 1.4. (ε-Wardrop equilibrium). A feasible flow vector x =
(xip)p∈P,i∈I is defined to be at an ε-Wardrop equilibrium for the instance Γ of
the load balancing game if, for each provider p ∈ P such that lp(xp) > 0, the
following relation holds:

lp(xp) ≤ lu(xu) + ε, ∀u ∈ P , for 0 < ε < l − l (1.48)
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where l := maxp∈P lp(d) and l := minp∈P lp(0) are the maximum and minimum
latency values, respectively. The set of all ε-Wardrop equilibria is the following
closed subset of X :

XW,ε :={x ∈ X , ε > 0 | lp(xp) ≤ lj(xj) + ε, lp(xp) > 0,

∀j ∈ P , ∀p ∈ P , ∀i ∈ I, 0 < ε < l − l|}.
(1.49)

In practice, at an ε-Wardrop equilibrium, the latencies of all the loaded
providers have the same value up to the tolerance ε. Hereafter, the following
assumptions on the latency functions and on the migration policy (1.47) will
be considered.

Assumption 1.3. The latency functions, the migration policy (1.47) and
the control gain exhibit the following properties.

(a) lp(x) is increasing with x ∈ [0, d],∀p ∈ P ;

(b) lp(x) is Lipschitz continuous in x ∈ [0, d], with Lipschitz constant
βp, ∀p ∈ P ;

(c) lp(0) = l, ∀p ∈ P ;

(d) µipq(lp, lq) is Lipschitz-continuous, ∀lp, lq ∈ [l, l], ∀i ∈ I;

(e) σipq[k] is constant and equal to σ = ε
|P|·d·βmax·µ·τ , where η := maxp∈V ηp;

(f) ε < l − l.

By imposing, via Assumption 1.3, that the latency functions are strictly in-
creasing, the Wardrop equilibrium and the corresponding flow vector, denoted
with lW and xW , respectively, are unique.

Definition 1.5. (Distance). Let the norm of a state be defined as ‖x‖ :=
maxp∈P(lp(xp)− lW ), and let the distance between a state x ∈ X \ XW,ε and
the set XW,ε be defined as d(x,XW,ε) := ‖x‖ −maxy∈XW,ε‖y‖ > 0.

Under Assumption 1.3, the set of Wardrop and ε-Wardrop equilibria can
be written as:

XW := {x ∈ X | ‖x‖ = 0} = {xW}; (1.50)

XW,ε := {x ∈ X , ε > 0 | ‖x‖ ≤ ε}. (1.51)

and the following properties hold.
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Property 1.2. The feasible set X , and the set of the ε-Wardrop equilibria
XW,ε are such that:

(P1) XW,ε = X if ε ≥ l − l;

(P2) X ⊃ XW,ε2 ⊃ XW,ε1 ⊃ {xW}, ∀ε1, ε2 | 0 < ε1 < ε2 < l − l;

(P3) XW,ε → {xW} as ε→ 0.

The set convergence
to an arbitrarily small neighbourhood of the Wardrop equilibrium is proven
by using the Beckmann, McGuire, and Winsten potential (1.12) to build
a candidate Lyapunov function. The following lemma demonstrates some
properties of the potential which will be used in the convergence proof of the
subsequent Theorem 1.6.

Lemma 1.5. (Properties of the potential). Under Assumption 1.3, the fol-
lowing properties hold for the nonlinear discrete-time system (1.45), (1.46),
(1.47), with total flow rate d > 0:

(L1) Φ(x) > Φmin, ∀x ∈ X \ {xW}, Φ(xW ) = Φmin;

(L2) Φ(x[k + 1])− Φ(x[k]) < 0,∀x[k] ∈ X \ XW,ε;

(L3) Φ(x[k + 1])− Φ(x[k]) = 0,∀x[k] ∈ XW,ε.

Proof. . Conditions (L1) hold thanks to Property 1.1. To verify condition
(L2), the variation of the Lyapunov function along any trajectory of the
considered system is written as follows:

∆Φ(x[k]) = Φ(x[k + 1])− Φ(x[k]) =
∑
p∈P

∫ xp[k+1]

xp[k]

lp(s)ds ≤

≤
∑
p∈P

(xp[k + 1]− xp[k])lp(xp[k + 1]) =

=
∑
p∈P

(
∑
q∈P

rqp[k]−
∑
q

rpq[k]) · τ · lp(xp[k + 1]) =

=
∑
p∈P

∑
q∈P

rqp[k] · τ · lp(xp[k + 1])−
∑
p∈P

∑
q∈P

rpq[k] · τ · lp(xp[k + 1]) =

=
∑
p∈P

∑
q∈P

rpq[k] · τ · lq(xq[k + 1])−
∑
p∈P

∑
q∈P

rpq[k] · τ · lp(xp[k + 1]) =

=
∑
p∈P

∑
q∈P

rpq[k] · τ · [lq(xq[k + 1])− lp(xp[k + 1])],

(1.52)
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where the inequality holds from geometrical considerations.
Indeed, the quantity (x2 − x1) · l(x2), represented by the area of the

rectangle with bold lines in Fig. 1.16, is larger than the integral
∫ x2
x1
l(s)ds,

represented by the grey area.

Figure 1.16: Geometrical considerations proving inequality (1.52).

The following shows that (i), if lp(xp[k])− lq(xq[k]) > ε, the corresponding
term of the summation in the last row of (1.52) is negative, whereas (ii), if
lp(xp[k])− lq(xq[k]) ≤ ε, then the term is null.

(i) If lp(xp[k]) − lq(xq[k]) > ε, from Assumptions 1.3.a)-1.3.c) it follows
that xp[k] > 0 and that lp(xp[k]) > 0. Moreover µipq[k] > 0 from
equation (1.47) and, thus, ripq[k] > 0, ∀i ∈ I. Now we need to show
that lp(xp[k+ 1])− lq(xq[k+ 1]) > 0. From equation (1.45) the following
inequality holds:

lp(xp[k + 1])− lq(xq[k + 1]) ≥

≥ lp

(
xp[k]−

∑
q∈P

rpq[k] · τ
)
−lq
(
xq[k] +

∑
p∈P

rpq[k] · τ
)
,

∀p, q ∈ P , k = 0, 1, . . .

(1.53)

In equation (1.53), the worst-case system dynamics over δ is considered,
in which no commodities migrate part of their population to provider
p and from provider q. From Assumption 1.3, since βmax is an upper-
bound for the largest derivative of the lp’s, it holds that

lp(xp[k])− lp
(
xp[k]−

∑
q∈P

rpq[k] · τ
)
≤ βmax ·

∑
q∈P

rpq[k] · τ ;

lq(xq[k] +
∑
p∈P

rpq[k] · τ)− lq(xq[k]) ≤ βmax ·
∑
p∈P

rpq[k] · τ.
(1.54)
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Since we are analysing the lp(xp[k])− lq(xq[k]) > ε case, the following
inequality holds:

lp(xp[k+1])− lq(xq[k+1])ε−βmax ·τ ·
(∑
q∈P

rpq[k]+
∑
p∈P

rpq[k]

)
. (1.55)

From equation (1.46) and Assumption 1.3.a), and considering that
xip[k] ≤ di, ∀i ∈ I, the following upper-bound holds:

ripq[k] = xip[k] · σipq[k] · µipq[k] ≤ di · σ · βmax, ∀p, q ∈ P , ∀i ∈ I. (1.56)

Then, considering that there are at most (|P| − 1) terms in the first
summation of the second term of (1.54), it is upper-bounded by∑

q∈P

rpq[k] =
∑
i∈I

∑
q∈P

ripq[k] ≤ σ · µ · (|P| − 1)d. (1.57)

Also, the second summation of the second term of (1.54) is upper-
bounded by:∑

p∈P

rpq[k] =
∑
i∈I

∑
p∈P

ripq[k] ≤ σ · µ ·
∑
i∈I

∑
p∈P

xip[k] ≤ σ · µ · d. (1.58)

From equations (1.56) and (1.57), we obtain that a sufficient condition
for the right-hand side of equation (1.54) to be non-negative is the
following:

ε ≥ |P| · σ · d · µ · βmax · σ, (1.59)

which holds by Assumption 1.3.e).

(ii) If lp(xp[k]) − lq(xq[k]) ≤ ε, rpq[k] = 0 by equations (1.46) and (1.47),
and the corresponding term of the summation in the last row of (1.52)
is null.

From (i) and (ii) it follows that property (L2) holds since, if x[k] 6∈ XW,ε
(i.e., there exists at least one couple (p, q) ∈ P2 such that lp(xp[k])−lq(xq[k]) >
ε, which, in turn, entails that xp[k] > 0), at least one term of equation (1.52)
is negative; property (L3) holds since, if x[k] ∈ XW,ε (i.e., for all couples
(p, q) ∈ P2 with lp(xp[k]) > 0 we have that lp(xp[k])− lq(xq[k]) ≤ ε), all the
terms of equation (1.52) are null.

Theorem 1.6. (ε-Wardrop equilibrium set as a GASS). Under Assumption
1.3, XW,ε is a GASS for the nonlinear discrete-time system (1.45), (1.46),
(1.47), with total flow rate d > 0.
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Proof. The proof is structured as follows: first, it is shown that the feasible
state space is a positively invariant set (A); secondly, the asymptotic set
stability is proven (B).

(A) Feasibility.

It is shown in the following that, since the initial job vector is feasible
(i.e., from Definition 1.11,

∑
p∈P x

i
p[0] = di and xip[0] ≥ 0,∀p ∈ P , ∀i ∈ I),

the job vector is feasible during the entire system dynamics. In fact, it follows
from equation (1.45) that:∑

p∈P

(xip[k + 1]− xip[k]) =
∑
p∈P

∑
q∈P

(riqp[k]− ripq[k]) · τ =
∑
p∈P

∑
q∈P

riqp[k] · τ−

−
∑
q∈P

∑
p∈P

riqp[k] · τ = 0,

(1.60)

and, therefore, that
∑

p∈P x
i
p[k] =

∑
p∈P x

i
p[0] = di, ∀k ≥ 0. By induction,

since xip[0] ≥ 0, ∀p ∈ P, and given equation (1.45), in order to prove that
xip[k] ≥ 0, ∀k ≥ 0, it is sufficient to assume that xip[k] ≥ 0, ∀p ∈ P , ∀i ∈ I,
for a given k, and to prove that

xip[k + 1] = xip[k] +
∑
q∈P

riqp[k]− ripq[k]) · τ ≥ 0,∀p ∈ P , ∀i ∈ I. (1.61)

In this respect, it can be observed that the following inequality holds
(considering that, in the worst-case, no commodities migrate part of their
population to provider p):

xip[k + 1] ≥ xip[k]−
∑
q∈P

ripq[k] · τ, ∀p ∈ P , ∀i ∈ I. (1.62)

From definition (1.47) it follows that ripp[k] = 0, so there are at most (|P|− 1)
terms in the summation of equation (1.61). Thus, considering that ripq[k] ≤
xip[k] · σ · µ, the condition in (1.61) is met if the following inequality holds:

xip[k]− xip[k] · (|P| − 1) · σ · µ · τ ≥ 0, ∀p ∈ P ,∀i ∈ I. (1.63)

If xp[k] = 0, inequality (1.62) is verified. If xp[k] > 0, inequality (1.62) is
verified provided that:

σ ≤ 1

((|P| − 1) · τ · µ)
, (1.64)

which holds by Assumption 1.3.e), considering that ε
βmax·λ < 1 (in fact, by

the definitions of βmax and l, it holds that βmax · λ ≥ l, and, by Assumption
1.3.f), it holds that l > ε).
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(B) Global asymptotic set stability.

Let L(x) := Φ(x) − Φmin be the candidate Lyapunov function, where
Φ(x) is the potential (1.12) and Φmin is its minimum value, which is unique
thanks to Assumption 1.3. If x ∈ XW,ε, from Lemma 1.5 it follows that L(x)
is positive definite and that ∆L(x[k]) = 0. If x ∈ X \ XW,ε, it is shown below
that L(x) and −∆L(x[k]) are positive definite with respect to the closed set
XW,ε.

B1. L(x) is positive definite with respect to XW,ε.
Let ψ : R+ → R+ be defined as follows: ψ(d(x,XW,ε)) := γ1d(x,
XW,ε), with γ1 > 0. By definition, we have that ψ(0) = 0 and that
ψ(d(x,XW,ε)) is increasing with d(x,XW,ε). We have to show that
ψ(d(x,XW,ε)) = γ1d(x,XW,ε) ≤ L(x) = Φ(x) − Φmin, ∀x ∈ X \ XW,ε,
i.e., that a value for γ1 exists such that the following inequality holds:

γ1 ≤
(Φ(x[k])− Φmin)

d(x[k],XW,ε)
, ∀k = 0, 1, 2, . . . (1.65)

Since x ∈ X \XW,ε, by definition we have that d(x,XW,ε) > 0; moreover,
d(x,XW,ε) is upper-bounded by (l − l) (by Assumption 1.3.d)). By

geometrical considerations, it turns out that Φ(x− Φmin >
ε2

4η
> 0 for

all x ∈ X \ XW,ε.
Indeed, let xW be the flow vector at the Wardrop equilibrium, i.e.,
lp(xp,W ) = lW , ∀p ∈ P, and let x ∈ X \ XW,ε be defined by the
vector (xp)p∈P = (xp,W + ∆xp)p∈P , where ∆xp is the difference (positive,
negative or null) between xp and xp,W . The difference between the
potential in x and the potential (1.12) at the equilibrium Φmin = Φ(xW )
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is then:

Φ(x)− Φ(xW ) =

( ∑
p∈P | ∆xp>0

∫ xp,W+∆xp

0

lp(s)ds+

+
∑

q∈P | ∆xq<0

∫ xq,W+∆xq

0

lq(s)ds+

+
∑

m∈P | ∆xm=0

∫ xm,W

0

lm(s)ds)−

−
∑
n∈P

∫ xn,W )

0

ln(s)ds

)
=

=
∑

p∈P | ∆xp>0

∫ xp,W+∆xp

xp,W

lp(s)ds−

−
∑

q∈P | ∆xq<0

∫ xq,W

xq,W+∆xq

lq(s)ds.

(1.66)

Considering the areas Bq and Aq depicted in Fig. 1.17, we can write:

Φ(x)− Φmin =
∑

p∈P | ∆xp>0

(∆xplW + Ap)−
∑

q∈P | ∆xq<0

(∆xqlW −Bq) =

=
∑

p∈P | xp>0

Ap +
∑

q∈P | ∆xq<0

Bq ≥

≥
∑

p∈P | ∆xp>0

(ε2
p)

(2βmax)
+

∑
q∈P | ∆xq<0

(ε2
q)

(2βmax)
,

(1.67)

where the last equality holds since Ap ≥
(ε2p)

(2βmax)
and Bq ≥

(ε2q)

(2βmax)
and

where εp := lp(xp)− lW and εq := lW − lq(xq). Since x ∈ X \XW,ε, there
exists at least a couple p

′
, q
′ ∈ P such that ∆xp′ > 0,∆xq′ < 0 and

εp′ + εq′ > ε. It follows that:

Φ(x)− Φmin

(ε2
p′

)

(2βmax)
+

(ε2
q′

)

(2βmax)
≥

(εp′ + εq′ )
2

(4βmax)
>

ε2

(4βmax)
. (1.68)

Therefore, according to such geometrical considerations, a suitable
choice for γ1 is γ1 = ε2

(4βmax(l−l)) .
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Figure 1.17: Geometrical considerations proving argument B1.

B2. −∆L(x[k]) is positive definite with respect to XW,ε.
Let ψ : R+ → R+ be defined as ψ(d(x,XW,ε)) := γ2d(x,XW,ε), with
γ2 > 0. Also, consider that ∆L(x[k]) = ∆Φ(x[k]) and that, from
Lemma 1.5, ∆Φ(x[k]) < 0, ∀x[k] ∈ X \ xW . We have to show that
ψ(d(x[k],XW,ε)) = γ2d(x,XW,ε) ≤ −∆L(x[k]) = −∆Φ(x[k]), ∀x[k] ∈
X \ XW,ε, i.e., that there exists a value for γ2 such that the following
inequality holds:

γ2 ≤
(−∆Φ(x[k]))

d(x[k],XW,ε)
, ∀k = 0, 1, 2, . . . (1.69)

For the numerator of equation (1.64), the following inequality holds (see
Lemma 1.5, equation (1.52)):

−∆Φ(x[k]) = −
∑
p∈P

∫ xp[k+1]

xp[k]

lp(s)ds ≥

≥
∑
p∈P

∑
q∈P

τ · rpq[k](lp(xp[k + 1])− lq(xq[k + 1])), ∀k = 1, 2, . . . ,

(1.70)

where the terms of the last summation are either null or positive. From
equations (1.54) and (1.58) it follows that lp(xp[k+1])− lq(xq[k+1]) ≥ 0.
Let us consider the provider p∗ which has the maximum latency value
at time k, i.e., p∗ = argmaxp∈P lp(xp[k]) We thus write from equations
(1.65), (1.46) and (1.47):

−∆Φ(x[k]) ≥ τ · xp∗ [k] · σ · µ. (1.71)

Since x[k] ∈ X \XW,ε, we know that lp∗(xp∗ [k])− lq(xq[k]) > ε, ∀q ∈ P ,
yielding lp∗(xp∗ [k]) > ε; since βmax is the upper-bound for the Lipschitz
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constants of the lp’s, we have that βmax · xp∗ [k] ≥ lp∗(xp∗ [k]) > ε. Thus,
recalling that d(x,XW,ε) ≤ (l − l), the following choice for γ2 lets

inequality (1.64) hold for all k = 0, 1, . . . : γ2 =
(τ ·ε·σ·µ)

(βmax·(l−l)
.

Remark 1.4. In the control law (1.46), σipq[k] can be interpreted as the control
gain, and the interpretation of Theorem 1.6 is that it sets an upper-bound on
the control gain, with the twofold objective of keeping the dynamics feasible
and of driving the system trajectories towards a neighbourhood of xW .

1.3.3 Proof-of-Concept Application to Software Defined
Networking

As discussed above, in order to manage the SDN Control Plane traffic in
large-scale networks, the currently adopted solutions rely on a Control Plane
adopting a logically centralized but physically distributed architectural model.
This model considers the Control Plane as distributed across a cluster of
multiple SDN Controllers. The OpenDaylight SDN Controller [117], an open-
source project of the Linux Foundation sponsored by a large consortium of
networking companies, introduced a cluster-based implementation: it runs on
a cluster of machines which share a distributed data store to maintain the
global view of the network.

At the same time, the OpenFlow protocol, since version 1.3, has regulated
its architectural model by defining the concept of SDN Controller for a switch.
This enabled two modes of operation when multiple SDN Controllers exist in a
network: master/slave interaction and equal interaction. In the master/slave
interaction each switch can be associated with all the SDN Controllers but
managed by only one (the master), responsible for all the events corresponding
to that switch, whereas the others (slaves) are used as backup controllers. On
the contrary, in equal interaction, each switch can be associated with multiple
SDN Controllers and have more than one master association, that is, several
equal associations.

We now show how the presented algorithm has been applied to enforce the
discussed load balancing mechanisms onto the distributed virtualized SDN
Controllers developed within the T-NOVA project. In particular, we present
the results obtained in a scenario where the considered SDN works in equal
interaction mode across a cluster of three OpenDaylight SDN Controllers
(Beryllium release). A set of virtual switches deployed with the Mininet
framework is connected to the set of SDN Controllers by means of SDN
Proxies. The switches are statically connected to the SDN Proxies. Each
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SDN Proxy is connected to all the SDN Controllers and can measure their
response time. Each SDN Proxy is a network proxy for the OpenFlow traffic,
developed in Python, and embeds the proposed load balancing algorithm.

Following the presented approach, each SDN Proxy decides to forward each
request, received from its switches, to a given SDN Controller, based on the
current response time of the SDN Controllers; the decisions are taken without
any communications among the switches and/or the controllers themselves.

In this case study, the latency associated with an SDN Controller is its
average response time. The response time grows with the controller load and
thus (i) it is a reliable indicator of the controller congestion status, (ii) it is a
non-decreasing function of the request rate and therefore a suitable latency
function, and (iii) it can be easily computed by the SDN Proxies, as explained
below.

The time-scale is divided into rounds of duration τ . At every round, the
latency is evaluated as follows.

• The SDN Proxy collects the last measurements of the response time of all
the SDN Controllers by measuring the delay between the transmission
of a request to an SDN Controller and its answer. Let lmeasp denote
the last measure of the response time of the SDN Controller p. If an
SDN Proxy has not sent a request to a given SDN Controller, say SDN
Controller p, in the last n rounds, it sends a fake request to the SDN
Controller p in order to update the response time measure.

• The value of the latency function is updated by a simple exponential
averaging approach: lp ← αlp + (1− α)lmeasp .

At round k, based on the updated latency values, the i-th SDN Proxy
computes the rates xip[k] to all the SDN Controllers p by means of the
proposed algorithm. Then, the i-th SDN Proxy sends each one of the requests
received during round k to one of the SDN Controllers following a weighted
round-robin scheduling, with weights proportional to the rates xip[k]. In the

implementation, the maximum latency value l coincides with the maximum
tolerated response time. In practice, the implementation of the control law
(1.46)-(1.47) is straightforward, except for the determination of the maximum
latency value l and of the maximum Lipschitz constant βmax.

In most cases, the latency value represents an actual measure of the
performance of the providers and can be upper-bounded according to realistic
considerations. The latency value is then set equal to l whenever the value of
the latency computed from the provider performance measures is larger than
l. For instance, in the described scenario, the latency represents the delay of
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the controller responses; in practice, there are Quality-of-Service constraints
which should be met by the provider, in terms of maximum response time,
defining the upper-bound l.

Table I: Implementation Parameters
Number of SDN Controllers |P| = 3
Number of SDN Proxies |I| = 2

Overall SDN Controller load d = 6

[
req
s

]
Maximum latency value l = 4 [s]
Minimum latency value l = 0 [s]

Maximum Lipschitz constant of the latency functions βmax = 2

[
s2

req

]
Latency tolerance ε = 0.25 [s]
Normalization parameter of the migration policy cµ = 0.25 [s−1]
Maximum value of the migration policy µ = 1
Sampling time τ = 1 [s]
Number of sampling times to send a fake request η = 1
Averaging constant α = 0.95

The Lipschitz constant of the latency functions, instead, must be estimated
on-line based on the actual controller responses. In real applications, the
latency derivative grows with the provider load (e.g., the typical load-delay
curve is often modelled in the theory of M/M/1 queues as l(x) = 1

d−x or
l(x) = x

d−x . Therefore, by limiting the maximum value of the latency functions
according to practical consideration (as described above), we also limit the
Lipschitz constants: the gain σipq[k] is then increased and, in turn, the system
dynamics is made faster. To simulate the SDN controller load, OpenFlow
control traffic was generated on the forwarding plane side at different request
rates. The three deployed SDN Controllers were assumed to be heterogeneous,
i.e., they were set up with different hardware specifications (respectively,
3/3/6 GB of RAM and 2/4/4 vCPUs) and therefore different processing
capabilities. Consequently, as shown in Fig. 1.18, their load-response time
curves are different. The maximum Lipschitz constant was estimated as
βmax := maxp∈P βp ≈ 2 [s2/req]. To validate the effectiveness of the load
balancing algorithm, different tests with generated OpenFlow control traffic
have been performed. The requests were generated according to an exponential
distribution with mean d = 6 [req/s] on the forwarding plane and then sent
to the SDN Proxies which implement the proposed algorithm, with migration
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policy defined as:

µipq(lp, lq) = µ(lp, lq) =

{
0 if lp ≤ lq + ε,

cµ(lp − lq) otherwise,
∀p, q ∈ P ,∀i ∈ I, ε > 0,

(1.72)
where cµ is a normalization constant. For comparison purposes, the same test
was run without SDN Proxies (i.e., without load balancing), and assuming
that the load is equally distributed among the SDN Controllers, i.e., each
SDN Controller receives, on average, 2 requests per second. The authors have
considered an implementation scenario with parameters as reported in Table
I.

Figure 1.18: Load-response time curves of the implemented SDN Controllers.
Solid line: SDN Controller 1; dashed line: SDN Controller 2; dotted line:
SDN Controller 3 .

Figs. 1.19-1.22 show the test results. Fig. 1.19 compares the response
times of the SDN Controllers in the test without load balancing (upper plot)
to the ones in the test with load balancing (lower plot): in the former case,
one of the SDN Controllers is congested and its response time rapidly grows
over 4 s, whereas, if load balancing is implemented, the response time of all
the SDN Controllers is kept well below 1 s. Correspondingly, Fig. 1.20 shows
that the latency values (which are simply exponential averages of the response
times) grow over the maximum tolerated latency l = 4 s if no load balancing
is implemented, whereas the latency of all the SDN Controllers is kept at
about 0.2 s if load balancing is implemented. Fig. 1.21 and Fig. 1.22 show
how the result is obtained. Fig. 1.21 shows that the load balancer is capable
of distributing the overall load among the SDN Controllers; in particular, it
feeds the worst performing SDN Controller (i.e., SDN Controller 1) with less
requests and the best performing SDN Controller (i.e., SDN Controller 3)
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Figure 1.19: Response time without load balancing (upper plot) and with
load balancing (lower plot). Solid line: SDN Controller 1; dashed line: SDN
Controller 2; dotted line: SDN Controller 3.

with more requests. Fig. 1.22 shows the shares of requests sent by the SDN
Proxies to the SDN Controllers.

We have proposed a Wardrop load balancing algorithm for SDN networks,
and introduced two innovations. From the methodological viewpoint, a
distributed, non-cooperative discrete-time load balancing algorithm, based on
mean-field game theory, was presented and proved to converge to an arbitrarily
small neighborhood of a Wardrop equilibrium. From an architectural point of
view, SDN Proxies for the OpenFlow traffic were introduced to improve the
scalability of SDN networks by dynamically dispatching the control workload
across the available SDN Controllers. To evaluate the effectiveness of the
proposed approach, a proof-of-concept implementation on a real SDN network
was carried out and the related performance test results were reported. The
proposed approach is scalable, since no communications among the switches
is needed and no centralized load balancing algorithm must be executed by
the SDN Controllers.

Future work is aimed at validating the algorithm on larger use cases.



CHAPTER 1. LEARNING, LOAD BALANCING AND SECURITY 65

Figure 1.20: Latency values without load balancing (upper plot) and with
load balancing (lower plot). Solid line: SDN Controller 1; dashed line: SDN
Controller 2; dotted line: SDN Controller 3.

Figure 1.21: Loads of the SDN Controllers (averaged with an exponential
average for clarity of the presentation). Solid line: SDN Controller 1; dashed
line: SDN Controller 2; dotted line: SDN Controller 3.
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Figure 1.22: Distribution of the loads of the SDN Proxies among the SDN
Controllers (averaged with an exponential average for clarity of the presenta-
tion). Solid line: SDN Controller 1; dashed line: SDN Controller 2; dotted
line: SDN Controller 3.

1.4 Optimization of Energy Storage System

Placement for Protecting Power Trans-

mission Grids Against Dynamic Load Al-

tering Attacks

Over the last years, the need for securing power grids against the danger of
cyber-physical attacks has been increasingly encouraging the development
of distributed intelligence technologies accompanied by appropriate security
enforcements. In particular, cyber-physical attacks have been targeting all
sectors of power systems, i.e., generation, distribution and control, and con-
sumption. In this respect, a suitable classification with meaningful examples
is given in [144]. More specifically, as concerns cyber-physical attacks target-
ing the generation sector, the interested reader is referred to [19] and [171];
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as concerns, instead, cyber-physical attacks targeting the distribution and
control sector, the reader is referred to [107] and [180].

This Section is focused on cyber-physical attacks targeting the consump-
tion sector. In particular, we are concerned with Load Altering Attacks
(LAAs) whose aim is to maliciously alter a group of remotely accessible yet
unsecured controllable loads, thus artificially creating power imbalances in
the power network responsible for frequency and load angle instability, and
consequently network blackout through sequential generator tripping.

LAAs can be classified into static ones, which abruptly modify the volume
of certain vulnerable loads una tantum, anddynamic ones (hereafter referred
to as D-LAAs), which not only determine the volume of the change enforced
onto the compromised load, but also establish the load trajectory over time.
D-LAAs can either be open-loop – such that the attacker is not capable of
monitoring the power grid in real-time and therefore assigns a pre-programmed
trajectory to the compromised load based on some available historical data
– or closed-loop. Whenever a closed-loop D-LAA is struck against a power
grid, the attacker continuously monitors the grid conditions through his own
installed sensors or by hacking into an existing monitoring infrastructure, and
consequently uses the feedback from the power grid frequency to alter the
victim load buses. Moreover, we distinguish between single-point closed-loop
D-LAAs, which compromise only the vulnerable load at one victim load
bus, and multi-point ones, which compromise the vulnerable loads at several
victim load buses in a coordinated fashion in order to maximize the attack
impact [5].

In this Section, based on the IEEE 39-bus test system, we design a
protection scheme against closed-loop single-point and multi-point D-LAAs
by formulating and solving a non-convex optimization problem subject to a
Lyapunov stability constraint. We take into account the most relevant power
system dynamics, and feedback control theory is here used as a tool to model
and build a remedy action against the attack: this adds to the already existing
results on the control-theoretic study of cyber-physical systems [142] [143].
The proposed protection scheme relies upon the proper installation of suitably-
sized Energy Storage Systems (ESSs) [61] [10] in order to mitigate the effects
of the ongoing D-LAA and preserve the power systems stability. In this
regard, ESS technology has significantly improved over the last years, with
possible applications starting to be investigated at transmission [74] [56],
distribution [130] [57], microgrid [102] and consumer [55] level. The presented
setup is also of practical interest due to its link to the concept of frequency-
responsive loads [121] [186], which are expected to support traditional power
plants in the provisioning of frequency regulation services.

In particular, this study has been carried out within the framework of
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the H2020 ATENA project, which is aimed at developing ICT networked
components for the detection of and reaction to adverse events in the context
of cyber-physical security for Critical Infrastructures (CI), where it is crucial
to prevent the propagation of damage to other CIs interdependent with the
power grid (see also the FP7 projects MICIE and CockpitCI as well as the
SHIELD framework and the related publications [47]).

This Section is organized as follows: Subsection 2.1 describes the math-
ematical model of the considered power transmission network subject to a
D-LAA; Subsection 2.2 proposes the adopted problem formulation for the op-
timization of ESS placement; eventually Subsection 1.4.3 reports the obtained
simulation results, showing the effectiveness of the proposed approach.

1.4.1 Mathematical Model of the IEEE 39-Bus Test
System Under a D-LAA

Figure 1.23: The IEEE 39-bus test system.

We now present the mathematical model for the IEEE 39-bus test system
based on the 10-machine New-England power network and depicted in Fig.
1.23: we will use this model for the design, relying upon ESSs, of a protection
scheme against D-LAAs. Let G and L represent the sets of generator buses
and load buses, respectively, across the grid. More in detail, the IEEE 39-bus
test system is made of 10 generator buses and 29 load buses, so we assume
that L = {1, . . . , 29} and G = {30, . . . , 39}. Let then N = G ∪ L represent
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the set of all buses across the grid. For a generic bus i ∈ N , the total amount
of power delivered can be separated into generator and load terms [144].
Namely, power flow equations can be written distinguishing the power amount
PG
i injected into the grid by each generator i ∈ G and the total power PL

i

absorbed by each load bus i ∈ L. By defining δi as the voltage phase angle
of the i-th generator bus, θi as the voltage phase angle of the i-th load bus
and Hij as the admittance value between the generic i-th and j-th buses, it
follows that

PG
i =

∑
j∈G

Hij(δi − δj) +
∑
j∈L

Hij(δi − θj), ∀i ∈ G

−PL
i =

∑
j∈G

Hij(θi − δj) +
∑
j∈L

Hij(θi − θj), ∀i ∈ L.
(1.73)

As regards the generator buses, the swing equations are adopted to model
the dynamic behavior of each generator i ∈ G, i.e.,

δ̇i = ωi

Mi(ωi) = PM
i − PG

i −DG
i ωi,

(1.74)

where ωi is the rotor frequency deviation at the i-th generator bus, Mi is
the rotor inertia associated with the i-th generator, PM

i is the mechanical
power input and DG

i ωi is the damping term, proportional to the frequency
deviation, ∀i ∈ G. We assume that the inertia Mi and the damping coefficient
DG
i are strictly positive In particular, according to [76], it is possible to

combine a turbine-governor control action with a load-frequency one into a
proportional-integral (PI) controller, aimed at keeping the rotor frequency at
its nominal level by pushing the frequency deviation ωi back to zero. Said PI
controller is represented by

PM
i = −

(
KP
i ωi +KI

i

∫ t

0

ωi

)
, KP

i , K
I
i > 0. (1.75)

Consequently, the rotor frequency dynamics in equation (1.74) can be
rewritten by expressing the mechanical power PM

i for each generator in terms
of frequency deviation ωi, as defined in (1.75). It follows that

Miω̇i = −
(
KP
i ωi +KI

i

∫ t

0

ωi

)
−PG

i −DG
i ωi, (1.76)

and, since the power PG
i injected by the generating unit is defined according

to (1.73) and the integral of the frequency deviation is equal to the voltage
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phase angle of the generator, we obtain, ∀i ∈ G,

Miω̇i = −KP
i ωi −KI

i δi−

−
∑
j∈G

Hij(δi − δj)−
∑
j∈L

Hij(δi − θj)−DG
i ωi.

(1.77)

After some manipulations, we have

−Miω̇i = (KP
i +DG

i )ωi+KI
i δi+

∑
j∈G

Hij(δi− δj) +
∑
j∈L

Hij(δi− θj), ∀i ∈ G.

(1.78)
As regards the load buses, instead, following [186] we use PL

i to define
the aggregate power consumption of (i) uncontrollable loads as well as of
(ii) controllable but frequency-insensitive ones. On the other hand, (iii)
controllable and frequency-sensitive loads can be assumed to increase linearly
with the frequency deviation at the load buses: it follows that the related
power consumption can be modeled by DL

i φi, where DL
i is the strictly positive

damping term of the i-th load bus and φi = −θ̇i is the frequency deviation at
each bus i ∈ L. We can rewrite (1.73), ∀i ∈ L, as follows,

θ̇i = −φi
−DL

i φi − PL
i =

∑
j∈G

Hij(θi − δj) +
∑
j∈L

Hij(θi − θj). (1.79)

Equations (1.74), (1.78), and (1.79) define the complete dynamical model
of the IEEE 39-bus test system depicted in Fig. 1.23. The power grid can
now be represented in the form of a linear state-space descriptor model. First
of all, we need to arrange the admittance values, appearing in equations
(1.78), and (1.79), into four different matrices, that is, (i) HGG, containing the
admittance values associated with the lines connecting buses in G; (ii) HGL,
containing the admittance values associated with the lines between generator
and load buses; (iii) HLG = (HGL)T ; (iv) HLL, containing the admittance
values associated with the lines connecting the buses in L. Therefore, the
complete admittance matrix of the power system is

H =

(
HGG HGL

HLG HLL

)
. (1.80)

Moreover, the inertia and damping values (Mi and DG
i , respectively) in

(1.78), as well as the damping terms DL
i in (1.79), can be collected into

properly-dimensioned diagonal matrices, namely M,DG, and DL. The same
considerations apply to the proportional and integral values KP

i and KI
i
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as well as to the load power consumptions PL
i . Eventually, by defining

δ =
(
δ1 . . . δ10

)T
as the vector of the voltage phase angles associated

with the generators, θ =
(
θ1 . . . θ29

)T
as the vector of the voltage phase

angles associated with the load buses, ω =
(
ω1 . . . ω10

)T
as the vector of

the frequency deviations of the generators, and φ =
(
φ1 . . . φ29

)T
as the

vector of the load frequency deviations, and considering δ, θ, ω, and φ as
state variables, the complete linear state-space descriptor model for the IEEE
39-bus test system is
I 0 0 0
0 I 0 0
0 0 −M 0
0 0 0 0



δ̇

θ̇
ω̇

φ̇

 =


0 0 I 0
0 0 0 −I

KI +HGG HGL KP +DG 0
HLG HLL 0 −DL



δ
θ
ω
φ

+

+


0
0
0
I

PL,

(1.81)

where the I’s are properly-dimensioned identity matrices.
Let us now plug a D-LAA into the system reported above. By definition,

a D-LAA is aimed at compromising a certain amount of vulnerable load in
specific grid areas and at controlling its evolution over time so that the overall
interconnected system is considerably altered and damaged. Therefore, in line
with [5], we regard power consumption at the load buses, i.e., PL, as the sum
of two contributions: part of the load consumption is identified as a protected
portion PLS, while PLV denotes the vulnerable unprotected portion of the
load:

PL = PLS + PLV . (1.82)

Let V ⊆ L be the set of victim load buses and let S ⊆ N be the set of the
positions of sensors which are capable of attack detection. Accordingly, let
KLG
vs ≥ 0 denote the attack gain at victim bus v ∈ V if the sensor bus s is

a generator bus (belonging to G), and KLL
vs′
≥ 0 denote the control gain of

the attacker at bus v ∈ V if the sensor bus s
′

is a load bus (belonging to L).
A D-LAA against the power grid can then be modelled by the proportional
controller

PLV
v = −KLG

vs ωs −KLL
vs′
φs′ , (1.83)

where ωs is the generator frequency deviation measured by a sensor bus s ∈ G,
and φs′ is the frequency deviation of the load buses measured by a sensor bus
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s
′ ∈ L. In particular, the D-LAA is such that the update of PLV is inversely

proportional to frequency deviation: namely, if ωs decreases (increases), then
the amount of vulnerable load increases (decreases), and the same holds with
respect to φs′ . Hence, equation (1.83) is a proportional controller modelling a
D-LAA against the power grid. By the way, note that other choices (such as
PID or PD controllers) are also possible to model such attacks. On this basis,
the power grid under attack is modelled by substituting (1.83) into (1.82),
and then into (1.81), thus obtaining

I 0 0 0
0 I 0 0
0 0 −M 0
0 0 0 0



δ̇

θ̇
ω̇

φ̇

 =


0 0 I 0
0 0 0 −I

KI +HGG HGL KP +DG 0
HLG HLL −KLG −DL −KLL



δ
θ
ω
φ

+


0
0
0
I

PL.

(1.84)

When the system is under attack, the attacker can compromise the grid
stability by properly modifying the controller gains, and, subsequently, the
amount of vulnerable unprotected load PLV . Formally, from a control-
theoretic point of view, the closed-loop system above becomes unstable
if controller gains KLG and KLL are capable of moving the system poles to
the right-hand side of the complex plane, that is, to the unstable region for
continuous-time linear systems.

1.4.2 Optimization of ESS Placement

As in [5], the idea is to exploit the notion of Lyapunov stability in combination
with an optimization criterion so as to guarantee power grid security in the
presence of a D-LAA characterized as in (1.83). More specifically, in this
Section it is proposed to solve the following problem: given a power grid
whose load buses are assumed to be potential victims to a D-LAA, determine
the minimum number of ESSs (with fixed size) and their exact locations in
order to protect the system against the ongoing D-LAA. In this respect, a
proper optimization problem can be defined where ESSs are modelled based
on feedback from the frequency deviations detected all across the power grid.
Let us assume that the term PLS, that is, the protected portion of the power
consumption PL at the load buses, be the power provided by a certain number
of ESSs at different locations in the power grid.

Let us suppose that the sensor bus s is necessarily a generator bus, i.e.,
s ∈ S ⊆ G, and consequently KLL is set to zero. The power provided by an
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ESS placed at the victim load bus v ∈ V can be modelled by a proportional
controller in the form

Pvs
LS = KLS

vs ωs, (1.85)

where KLS
vs ≥ 0 denotes the storage gain at each victim load bus v when

the sensor is located at generator bus s and ωs is the frequency deviation
measured at bus s. In other words, we assume that the ESS operating
conditions are strictly related to the power grid state and, therefore, to the
frequency deviations that occur as a result of the D-LAA being struck against
the power grid itself.

Neglecting the KLLφ term due to the assumption on the sensor bus, the
power consumption PL in (1.82) can be then rewritten as

PL = (KLS −KLG)ω. (1.86)

The resulting closed-loop system dynamics – modelling the power grid
subject to the D-LAA and to ESS control for attack mitigation – is obtained
by substituting (1.86) into (1.81) so as to have
I 0 0 0
0 I 0 0
0 0 −M 0
0 0 0 0



δ̇

θ̇
ω̇

φ̇

 =


0 0 I 0
0 0 0 −I

KI +HGG HGL KP +DG 0
HLG HLL KLS −KLG −DL



δ
θ
ω
φ

 .

(1.87)
The last row of the descriptor system above can be solved with respect to φ
and properly substituted in order to obtain an equivalent linear state-space
model, i.e.,  δ̇θ̇

ω̇

 = (A−BK)

δθ
ω

 , (1.88)

where

A =

 0 0 I
−(DL)−1HLG −(DL)−1HLL 0

−M−1(KI +HGG) −M−1(HGL) −M−1(KP +DG)

 ,

B =
(
0 (DL)−1 0

)T
,

K =
(
0 0 KLS −KLG

)
.

(1.89)

At this point, we can formulate the optimization problem. In particular,
according to Lyapunov’s stability theorem for linear systems, the system poles
are required to be kept inside the left-hand side of the complex plane. In
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this respect, the following linear matrix inequality has to hold if we want to
ensure Lyapunov stability, i.e.,

(A−BK)TX +X(A−BK) < 0, (1.90)

with K as in (1.89), thus implying that the stability of the overall system is
strictly related to (i) the entity of the D-LAA against the power grid, and to
(ii) the ESS size.

Before formulating the optimization problem, a feasibility constraint on
the entity of the D-LAA has to be formulated. Namely, we assume that
the attack intensity cannot be greater than the difference between the total
vulnerable load at victim load bus v (PL

v ) and the power provided by the
corresponding ESS. In other words, the more power the ESSs provide, the
less effective the D-LAA against the power grid is.

KLG
vs ω

max
s ≤ (PL

v − PLS
v )

2
=

(PL
v −KLS

vs ωs)

2
, (1.91)

where ωmaxs denotes the maximum admissible frequency deviation for generator
s before its over or under frequency relays trip [5]. Another constraint to
be enforced can be expressed in terms of the ESS size. Namely, the storage
control gain is limited according to the following relation:

KLS
vs ω

max
s ≤ PLS,max

v , (1.92)

where PLS,max
v is the maximum power provided by the ESS, expressed in

p.u. Under these constraints, the optimization problem can be formulated as
follows.

Problem 1.1. (Optimization of number and location of ESSs protecting the
power grid against a D-LAA). Given the total vulnerable load PL at victim
load bus v ∈ V and given a proper ESS size, determine the minimum number
and the exact location of ESSs so that the power grid is asymptotically stable,
that is,

min‖KLS‖0 (1.93)

subject to

X > 0,

X = XT ,

Eqs. (1.90), (1.91), and (1.92), ∀v ∈ V .
(1.94)

By minimizing the l0-norm of vector KLS (i.e., the vector listing all energy
storage control gains KLS

vs at v ∈ V and s ∈ S), it is possible to determine the
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minimum number and the optimal location of the ESSs to be installed in the
power grid in order to prevent a D-LAA in the form (1.83) from compromising
the overall system stability. However, note that a solution to this problem
is not easily found, because solving a cardinality minimization problem is
NP-hard [131], and due to the presence of the non-convex quadratic constraint
defined by (1.91). For the former problem, an approximation is needed to
reduce the computational complexity. A common choice is the minimization
of the l1 norm, characterized by sparse feasible solutions (i.e., solutions which
have null elements) [160]. Generally, a non-convex optimization problem may
have multiple solutions, it may be infeasible or it can take exponential time to
determine the global minimum across all admissible solution regions. In order
to overtake non-convexity, we exploit a two-step solution approach, adapted
from [5] and inspired by the coordinate descent method whose convergence
is guaranteed [16]. First, note that inequality (1.91) has to turn into an
equality when attempting to solve Problem 1.1. In fact, if (1.91) holds as
a strict inequality, when the optimal solution is found, one could think of
reducing the value of PLS and consequently lower the objective function, thus
contradicting the optimality status. It then follows that the constraint in
(1.91) should be rewritten as an equality, making KLG

vs act as a slack variable,
i.e.,

KLG
vs ω

max
s =

(PL
v −KLS

vs ωs)

2
. (1.95)

This way, we reduce the decision variables of the optimization problem to
KLS and X, since KLG

vs is now univocally defined by the vulnerable loads and
the power injected by the ESSs. Nevertheless, these two variable sets are still
coupled through the attack control gain KLG

vs and the non-convex constraint
defined by equation (1.95). To this end, the problem is split up into the two
following coupled subproblems.

• Step (1). Initially, the storage control gain vector KLS is assumed to be
constant, thus easily determining the attack control gain KLG

vs according
to constraint (1.95). This way, we can solve a feasibility problem over
variable X, i.e.,

min ‖KLS‖1 (1.96)

subject to

X > 0,

X = XT ,

Eqs. (1.90) and (1.95), ∀v ∈ V ,
(1.97)

where the decision variables are the entries of matrix X. Such a feasi-
bility problem can also be classified as a semi-definite program [20].
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• Step (2). Next, we take the solution X of the feasibility problem above
as a constant and we solve Problem 1.1 over KLS only, i.e.,

min‖KLS‖1 (1.98)

subject to
Eqs. (1.90), (1.92), and (1.95), ∀v ∈ V , (1.99)

where the decision variables are the entries of KLS.

These two steps are iterated until convergence is reached. In particular,
note that the ESS number and placement is assessed, as a result of the
optimization procedure: the non-zero elements of the resulting KLS vector
identify the optimal number and location of the ESSs to be deployed.

1.4.3 Simulation Results

The simulations presented in this section have been carried out using MAT-
LAB: in particular, the authors relied upon the CVX package for determining
a numerical solution to Problem 1.1 according to the two-step iterative pro-
cedure explained above. As regards the values of the parameters of the
transmission lines, of the inertia (i.e., M) and damping coefficients (i.e., DG)
of generators, of the generator controller gains (i.e., the KP

i s) and of the
damping coefficients for each dynamic load (i.e., the DL

i s), such values are
chosen as in [5]. In particular, the controller parameters are set in order to
keep the overall system stable during normal operations, i.e., in the absence
of an attack. The nominal system frequency is 60 Hz. We assume that the
over-frequency relays of the generators trip at 62 Hz, whereas the under-
frequency relays trip at 58 Hz. Consequently, i.e., ωmaxs = 2

60
. The vulnerable

loads at each load bus are reported in Table 4.3. Note that, unlike [5] we
are assuming the power loads reported in Table I to be entirely vulnerable.
Therefore, in our scenario, the way chosen to protect them is by relying on
the power provision allowed by suitably-deployed ESSs.

First Attack Scenario

With respect to the 10-machine New-England power network depicted in Fig.
1.23, in the first attack scenario we assume that only a subset of vulnerable
loads can be regarded as potential victims to a D-LAA. Let us consider as
potential victims only the load buses identified by V = {6, 16, 19, 23, 29}
and let us assume that the sensor capable of detecting the ongoing attack is
located at generator bus s = 33 ⊂ G. Let us also assume that the vulnerable
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Table 1.1: Vulnerable Loads at each Load Bus (PL).

Load Bus v PL
v (p.u.) Load Bus v PL

v (p.u.) Load Bus v PL
v (p.u.)

1 4 11 4 21 6.7
2 4 12 4.1 22 4
3 7.2 13 4 23 9.8
4 9 14 4 24 7
5 4 15 7.2 25 6.2
6 7 16 10.9 26 5.4
7 6.3 17 4 27 6.8
8 9.2 18 5.6 28 6.1
9 4 19 5.6 29 15.1
10 4 20 10.3 - -

loads at the victim load buses are PL =
(
7 10.9 5.6 9.8 15.1

)T
and let

the ESS size be equal to the available load at the victim load buses. This
last assumption implies that the initial values of the storage control gains
are set to PL

2ωmaxs
. Starting from control gains initialized to the maximum

admissible values, the iterative algorithm discussed above is run so as to solve
this instance of Problem 1.1. Since we intend to determine the minimum
number of ESSs and their exact location in the power grid, the obtained
simulation results claim that, by introducing one ESS located at load bus
no. 19 with storage capacity equal to 5.6 p.u., the power grid remains stable
under the considered D-LAA.

Second Attack Scenario

In the second attack scenario, we still assume that the sensor detecting the
D-LAA is located at generator bus s = 33 and that the victim load buses
are V = {6, 16, 19, 23, 29}. This time, however, we intend to analyze the
impact of the ESS size on the optimization problem solution: by contrast
with the previous scenario, where the ESS size is fixed and initialized to PL

2ωmaxs
,

we now consider different sizes and assess how the power provided by the
ESSs influences the feasibility of the optimization problem. To this end, we
assume that the power provided by the ESSs starts from 1 p.u. The iterative
algorithm is run for each different size in order to determine whether the
corresponding problem for the determination of the optimal ESS location is
solvable. Starting from ESSs with unit size, the problem is solved; then, by
increasing the size by one unit at a time, the problem is solved again. Such
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a procedure is repeated until convergence to a constant number of ESSs is
obtained, with no further increase in the number of ESSs as the size grows.
In particular, the optimal ESS placement problem turns out to be infeasible
for ESS sizes equal to 1 p.u., 2 p.u., and 3 p.u.: indeed, for such values, the
iterative algorithm proposed above is not able to determine an admissible
solution such that the overall system stays stable under attack. Note that,
instead, at 4 p.u., it is possible to determine an exact number of ESSs (i.e., 2)
such that the overall system stability is ensured. For sizes of 5 p.u. or greater,
just one ESS is sufficient to guarantee stability under the considered D-LAA.

Figure 1.24: Convergence result of the iterative algorithm solving Problem 1
in the first attack scenario.

In this Section a protection scheme making use of energy storage systems
for improving power system reaction to closed-loop dynamic load altering
attacks is presented. The problem is formulated as a non-convex optimization
problem subject to a Lyapunov stability constraint for the autonomous
representation of the power system obtained after linearization and application
of the attack and frequency control laws. The reported results show how the
proposed two-step iterative algorithm allows to determine a solution to the
problem of optimizing the number and location of energy storage systems,
ensuring grid stability. Yet, the deployability of the resulting solution depends
on the availability on the market of suitably-sized energy storage systems.
Future work will be aimed at tackling the presented problem by means of a
greedy method for finding a sparse solution, namely the so-called matching
pursuit one, with the aim of comparing the related results with those obtained
by minimizing the l1 norm of the storage control gain vector. Moreover, we will
consider the placement of energy storage systems for reducing the possibility
of designing undetectable attacks as well as for their usage in support of
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secondary regulation services.



Chapter 2

State of the Art on Distributed
Coordination of Multi-Agent
Systems

This Chapter discusses some of the most interesting results in the state of the
art on distributed coordination of multi-agent systems. In particular, it gives
an overview stretching from first-order systems [45] [33] [176] [139] [129] [41] to
second-order systems [153] [152] [173] [106], through Lyapunov-based analysis
and control, also with specific focus on networked Lagrangian systems [161]
[36] [37] [118], on the one hand, and on sampled-data control [82] [72] [73] [184],
on the other hand.

More specifically, this Chapter is organized as follows: Section 2.1 dis-
cusses discrete-time and continuous-time consensus in first-order systems;
Section 2.2 discusses how consensus is achieved with respect to second-order
systems and in particular to mass-spring-damper systems; Section 2.3 dis-
cusses consensus in 2D with rotation matrices; then Section 2.4 proposes a
Lyapunov-based approach to the analysis and control of nonlinear multi-agent
models; eventually, Sections 2.5 and 2.6 provide an in-depth discussion of
some interesting results (with the related simulations) concerning distributed
leaderless coordination of networked Lagrangian systems and sampled-data
coordinated tracking for single-integrator multi-agent dynamics, respectively.
The investigation of these results has laid the foundation for the innovative
work discussed in the subsequent Chapter 3.

80
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2.1 First-Order Systems

2.1.1 Discrete-Time Consensus in Linear Systems

Given an undirected graph G = (V , E) characterized by n := |V| nodes,
playing the role of agents, we can represent, in discrete time, the dynamics of
each agent as follows [176] [129]:

xi[k + 1] =
∑

j∈Ni[k]∪{i}

βij[k]xj[k], ∀vi ∈ V . (2.1)

The βij’s represent the weights of the communication links and Ni is the
neighbour set of agent vi, ∀i ∈ V. In short, the discrete-time dynamics is
computed as the weighted average of the neighbours’ current states at time k.

In particular, the following condition holds∑
j∈Ni[k]∪{i}

βij[k] = 1, βij ≥ 0. (2.2)

According to (2.1) and (2.2), let us consider, for instance, the discrete-time
system dynamics:

x1[k + 1] =
1

4
x1[k] +

1

4
x2[k] +

1

4
x4[k] +

1

4
x5[k]

x2[k + 1] =
1

3
x1[k] +

1

3
x2[k] +

1

3
x5[k]

x3[k + 1] =
1

2
x2[k] +

1

2
x3[k]

x4[k + 1] =
1

3
x1[k] +

1

3
x4[k] +

1

3
x5[k]

x5[k + 1] =
1

4
x1[k] +

1

4
x2[k] +

1

4
x4[k] +

1

4
x5[k],

(2.3)

which, can be expressed, in vector form, as

x[k + 1] = Dx[k], i.e.,
x1[k + 1]
x2[k + 1]
x3[k + 1]
x4[k + 1]
x5[k + 1]

 =


1
4

1
4

0 1
4

1
4

1
3

1
3

0 0 1
3

0 1
2

1
2

0 0
1
3

0 0 1
3

1
3

1
4

1
4

0 1
4

1
4



x1[k]
x2[k]
x3[k]
x4[k]
x5[k]

 ,
(2.4)

where x[k] = col
(
x1[k] . . . x5[k]

)
. This matrix D is very similar to the

adjacency matrix in continuous-time linear multi-agent systems, except for



CHAPTER 2. DISTRIBUTED COORDINATION 82

the main diagonal. The reason why the elements in the diagonal are nonzero
is that each node xi at time k+ 1 uses also the information related to its own
previous state xi[k].

Namely, the main characteristic of matrix D is that it is a stochastic
matrix, i.e.,

D


1
1
...
1
1

 = 1


1
1
...
1
1

 (2.5)

This is actually a special adjacency matrix such that 1 is an eigenvalue and

1 =
(
1 1 . . . 1 1

)T
is the corresponding eigenvector, thus ensuring that

the row sum of D equals 1. Indeed, a right stochastic matrix is a real square
matrix, with each row summing to 1.

We intend to reach consensus on this dynamics, i.e., for any initial condi-
tions xi[0] we want to show that xi[k]→ xj[k], ∀vi ∈ V and for some vj ∈ V
such that vj 6= vi.

In particular, the solution to the discrete-time system is given by:
x1[k]
x2[k]

...
x5[k]

 = Dk


x1[0]
x2[0]

...
x5[0]

 . (2.6)

So, if we make Dk converge to identical rows, we can eventually show a
consensus result.

The proof of the consensus result relies on Gershgorin’s disk theorem [119]:
if we know the entries of a matrix, we can roughly estimate where the
eigenvalues are located. Given, for instance, matrix D = [dij ], (i) for each row
we remove the diagonal entries, then (ii) we take the off-diagonal entries only
and we add them up. Eventually, (iii) we use the diagonal entries as a center
and we draw n circles with radii:

Ri(D) =
∑

j=1,j 6=i

|dij|, i = 1, . . . , n. (2.7)

Then, the union of these circles, i.e.,

∪ni=1 {z ∈ C : |z − dii| ≤ Ri(D)} ≡ G(D), (2.8)

tells us where the eigenvalues of D are located. In other words, the eigenvalues
of D will not fall outside the circle G(D), which, in turn, as shown in Fig. 4.8,
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stays entirely within the unit circle, assuming the entries of D to be those
specified by (2.4).

Figure 2.1: Circles with radius Ri(D), i = 1, . . . , n for matrix D in equation
(2.4) according to Gershgorin’s disk theorem.

Note that, in the considered case, we have only one eigenvalue equal to 1.
Therefore, it happens that

lim
k→∞
Dk = pqT −→

1
...
1

qT (2.9)

where p is the right eigenvector associated with the eigenvalue in 1 and q is
the left eigenvector associated with the eigenvalue in 1.

Proposition 2.1. The presence of a spanning tree in the graph G and the fact
that there is at least one strictly positive diagonal entry in D are necessary
and sufficient conditions to have a unique eigenvalue in 1.

Proof. A spanning tree of an undirected graph is a subgraph that is a tree –
i.e., an undirected subgraph in which any two nodes are connected by exactly
one path – including all the nodes of G, with the minimum possible number
of edges. Given this definition, Prop. 2.1 is proven in [119].
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However, by Gershgorin’s disk theorem, we know that 1 is the largest
eigenvalue in D. The corresponding right eigenvector is

p =

1
...
1

 , (2.10)

whereas the corresponding left eigenvector q must be such that the sum of
its entries equals 1. So, we have

lim
k→∞


x1[k]
x2[k]

...
x5[k]

 = lim
k→∞
Dk


x1[0]
x2[0]

...
x5[0]

 =


1
1
...
1

qT


x1[0]
x2[0]

...
x5[0]

 . (2.11)

In this last equation, the product qTx[0] will essentially tell us the final values
which the system converges to.

The reason the weighted average works is because D is a stochastic matrix.
If, instead, we zero the diagonal elements of D (that is, we assume that each
agent is not using its own information any more) and we make sure that
all elements on the rows add up to 1, we obtain a special stochastic matrix.
However, in this case, there might be two eigenvalues equal to 1 with just one
independent eigenvector, and the network dynamics would not converge.

Let us consider the undirected graph depicted in Fig. 2.2 in order to show
another interesting result concerning where the system converges to. Once
again, the link weights are set equal to 1.

Figure 2.2: An example of undirected graph.

Its D matrix is the following:
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D =


1
2

1
2

0 0 0
1
3

1
3

1
3

0 0
0 1

4
1
4

1
4

1
4

0 0 1
3

1
3

1
3

0 0 1
3

1
3

1
3

 . (2.12)

Let us make this a symmetric matrix by adjusting the weights. Under the
dynamics (2.4, if D is symmetric, Dk for a high value of k (say, e.g., 100) has
all identical rows, which means that we have reached consensus among all
agents. Let us now write down the matrix after the adjustment to simmetry.

D′ =


1
2

1
2

0 0 0
1
2

1
4

1
4

0 0
0 1

4
1
4

1
4

1
4

0 0 1
4

1
2

1
4

0 0 1
4

1
4

1
2

 . (2.13)

Indeed, this time q is identical to p, i.e.,

pqT =


1
1
...
1

(1 1 . . . 1
)
. (2.14)

Instead, if we cut one edge from the graph in Fig. 2.2, i.e., if we consider
the graph depicted in Fig. 2.3, Dk does not converge because the graph does
not contain a spanning tree any more.

Figure 2.3: The undirected graph in Fig. 2.2 after cutting one edge.
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What if the original D is not such that the row sum is equal to 1? Let us
assume that D is such that the row sum is not equal to 1, then we will have
instability for Dk because the eigenvalues of D are all outside the unit circle.

We can also consider a directed graph, such as the one in Fig. 2.4.

Figure 2.4: A directed graph with a spanning tree rooted in agent 2.

Will the agents achieve consensus in this case? This graph contains a tree.
In fact, agent 2 is the only agent which passes information to any other agent:
hence, agent 2 dominates and consensus will be achieved at a final value of
x2[0], i.e.,

xi[k]→ x2[0], ∀i ∈ {1, 2, . . . , 5}, (2.15)

because agent 2 is the root of the spanning tree.

Figure 2.5: Directed graph obtained from the graph in Fig. 2.4 by adding an
edge from agent 1 to agent 2.
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If we add an edge from agent 1 to agent 2 in the graph shown in Fig. 2.4,
we obtain the graph shown in Fig. 2.5, that is, we still reach consensus but
this time towards 1

2
x1[0] + 1

2
x2[0], since agents 1 and 2 contribute to the final

consensus value, both of them having paths to any other node in the graph.
So, in the directed graph case, the presence of a spanning tree is a necessary

condition for consensus. Strong connection – i.e., the condition when it is
possible to reach any node starting from any other node by traversing edges
in the directions in which they point – is sufficient but not necessary.

2.1.2 Continuous-Time Consensus in Linear Systems

When dealing with continuous-time systems such as

ẋ = u, (2.16)

if we need to track a constant reference r, we can manage to do it by resorting
to a proportional controller u = −K(x− r). The tracking error will then be

e = x− r, (2.17)

and the related error dynamics will be

ė = −Ke. (2.18)

If the reference signal is not constant, the proportional controller u =
−K(x− r) will not work any more, as there will be an additional term in the
error dynamics, i.e.,

ė = ẋ− ṙ = −Ke− ṙ. (2.19)

The only way the proportional controller works is if r is constant.
Based on this, given an undirected graph G = (V , E) characterized by

n := |V| nodes playing the role of agents, let us consider the multi-agent
system

ẋi = ui,∀vi ∈ V , (2.20)

where xi is the position of the i-th agent and ui is the velocity command of
the i-th agent. If we want to achieve consensus, we need to design ui using
local information to drive all the xi’s to be identical.

Let us now recall the proportional feedback case. We want the agents’
states to converge to the same final value. Yet, we do not know the convergence
point a priori, otherwise we would set ui = −K(xi − r), with r being the
desired convergence value. Therefore, we can enforce the following control
law:

ui = −
∑
j∈Ni

(xi − xj) = −
∑
j∈Ni

(
xi −

∑
j∈Ni∪{i} xj

|Ni|+ 1

)
, ∀vi ∈ V . (2.21)
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This way, each agent is pushing itself towards one of his neighbours until
at some point the agents will stop. It is the same as if each agent pushed
itself towards the center between itself and its neighbours. We can also put a
weight αij(t) in the control law, i.e.,

ẋi(t) = −
∑

j∈Ni(t)

αij(t)(xi(t)− xj(t)), ∀vi ∈ V . (2.22)

By closing the loop and writing this in vector form, we obtain
ẋ1

ẋ2
...
ẋn

 = −L


x1

x2
...
xn

 (2.23)

The −L matrix is the negative Laplacian matrix associated with the
underlying graph G: the control law is based on negative feedback, thus the
negative Laplacian matrix appears in the closed-loop system dynamics. In
compact form, we have:

ẋ = −Lx. (2.24)

The weights are not necessarily unit values, yet they have to be positive
values. Moreover, the row sum in the Laplacian always equals zero. The
Laplacian matrix is such that 0 is an eigenvalue with an eigenvector of all
ones,

L


1
1
...
1

 = 0


1
1
...
1

 . (2.25)

By Gershgorin’s disk theorem, all the eigenvalues of the Laplacian matrix
fall within the right hand-side of the complex plane. So, −L is such that all
its eigenvalues are with non-positive real parts.

The presence of one eigenvalue in zero implies marginal stability. However,
if there are two eigenvalues in zero, we cannot say anything in terms of
stability.

We now generalize the notion of spanning tree, adopted in undirected
graphs according to the matrix-tree theorem (see p. 28 in [119]), to the
context of directed graphs, introducing the notion of rooted out-branching.

Definition 2.1. A directed graph G contains a rooted out-branching as a
subgraph if it does not contain a directed cycle and if it has a node vr (i.e.,
the root node) such that for every other node v ∈ V there exists a directed
path from vr to v.
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Hence, the following property holds.

Proposition 2.2. The graph contains a rooted out-branching if and only if
L has a simple zero eigenvalue.

Proof. Refer to pp. 51-53 in [119] and p. 7 in [155].

So, if the system is marginally stable (e.g., L has a simple zero eigenvalue),
where does the system converge? We know from linear systems theory that
if a generic linear system ẋ = Ax is asymptotically stable, then x(t) → 0.
Instead, if ẋ = Ax is marginally stable, then x(t)→ ker A.

The subspace ker A in this case is span{
(
1 . . . 1

)T}. Hence, the system

dynamics stops at a set spanned by
(
1 . . . 1

)T
. For ker A to be spanned by(

1 . . . 1
)T

only, we need L to have a simple zero eigenvalue, i.e., no more
than one eigenvalue in zero, or, equivalently, we need the directed graph to
contain a rooted out-branching.

Remark 2.1. If the directed graph is strongly connected, then a fortiori we
certainly must have L with a simple zero eigenvalue. Hence, the presence of
a rooted out-branching is a necessary and sufficient condition for the zero
eigenvalue to be simple, whereas strong connection is just a sufficient condition
for that to happen.

Let us consider a weighted graph represented by the following Laplacian
matrix:

L =


0 0 0 0 0
−1 1 0 0 0
0 −1.5 1.5 0 0
0 −2 0 2 0
0 0 0 −1 1

 (2.26)

Incidentally, this is a lower-triangular matrix. Moreover, the addition/removal
of one edge to/from the graph does not change the number of zero eigenvalues.

Hence, summing up, as concerns continuous-time consensus algorithms,
the fact that L has a unique eigenvalue in 0 is a necessary and sufficient
condition for the presence of a rooted out-branching and for the achievement
of consensus.

Instead, as concerns discrete-time consensus algorithms, the fact that D
in (2.4) has a unique eigenvalue in 1 is a necessary and sufficient condition for
the presence of a rooted out-branching and for the achievement of consensus.

In particular, the consensus equilibrium value is the following:

lim
t→∞

xi(t) =
n∑
j=1

(cjxj(0)). (2.27)
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This is nothing but the weighted average of the initial conditions of the
different agents. Strong connection means that everybody has a path to
everybody else, thus implying that all agents contribute to the consensus
condition with different weights, yielding weighted average consensus.

Figure 2.6: A weighted directed graph.

If the graph not only exhibits strong connection but is also balanced, i.e.,
for every node the total incoming weight is the same as the outcoming weight,
then all nodes contribute to the consensus achievement with the same weight,
thus allowing the system to reach average consensus. Note that an undirected
graph is balanced already by default (see, e.g., Fig. 4.2).

As a result of the considerations above, if we have just a rooted out-
branching, then only the root node of the rooted out-branching will contribute
to the final consensus value!

Definition 2.2. A digraph is said to be weakly connected if its disoriented
version is connected, that is, if its disoriented version is such that there always
exists a path between every pair of nodes and there are no unreachable nodes.

Definition 2.3. A digraph is said to be balanced if, for every node, the
in-degree (i.e., the number of head ends adjacent to the considered node) and
the out-degree (i.e., the number of tail ends adjacent to the considered node)
are equal.

Based on these two definitions, we can state Prop. 2.3.
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Proposition 2.3. For every initial condition x0, the diffusively coupled multi-
agent system (2.24) reaches the so-called average consensus

x′e = lim
t→∞

x(t) =
1

n
1n1

T
nx0 =

=
(∑n

i=1
x0,i
n

∑n
i=1

x0,i
n

. . .
∑n

i=1
x0,i
n

)T (2.28)

if and only if it is weakly connected and balanced.

Proof. See Theorem 3.17 at p. 56 in [119].

Instead, should µ(λ1) > 1, then the multi-agent system (2.24) would
converge to a different GAS equilibrium state than (2.28).

Proposition 2.4. Weak connectedness of the digraph G and the absence
of a rooted out-branching in G are sufficient conditions for the algebraic
multiplicity of the zero eigenvalue to grow above 1, i.e., µ(λ1) = k > 1,
yielding rank(L) = n − k. In such a case, the GAS equilibrium state the
diffusively coupled multi-agent system (3.1) converges to is given by

x′′e = lim
t→∞

x(t) = u1v
T
1 x0 + u2v

T
2 x0 + . . .+ ukv

T
k x0, (2.29)

where u1, . . . ,uk are k distinct and linearly independent eigenvectors asso-
ciated with the zero eigenvalue of L (i.e., Lui = 0, i = 1, . . . , k) such that
{u1, . . . ,uk} is a basis of ker L := U .

Note that the GAS equilibrium condition x′′e does not imply that the
same value is reached for all the components of the state vector x, as it occurs,
instead, in (3.14) and (2.28). In the following Section, we will therefore
investigate how to lead suitable groups (more precisely, cells) of agents to
converge each to the same final value, thus yielding multi-consensus.

In particular, the solution to (2.24) is given by:

x(t) = e−Ltx(0). (2.30)

Let us consider a directed graph represented by the following Laplacian
matrix:

L =


1 0 0 0 −1
−1 2 0 0 −1
0 −1 1 0 0
−1 0 0 1 0
0 0 0 −1 1

 (2.31)
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Figure 2.7: Directed graph with Laplacian matrix (2.31)

Note that e−Lt is a stochastic matrix. The columns of L denote the out-
going edges and they determine who contributes to the consensus. Moreover,
if L is symmetric, then it means that the graph is undirected.

In particular, the graph represented by the Laplacian matrix (2.31) is
shown in Fig. 2.7.

Namely, the graph shown in Fig. 2.7 is such that it has three rooted
out-branchings with roots in nodes 1, 4, and 5, respectively.

If we add an edge from node 3 to node 2 to the graph in Fig. 2.7 (as
shown in Fig. 2.8), we still do not have a rooted out-branching starting from
node 3, so node 3 will not contribute to the final consensus value.

Figure 2.8: Directed graph with Laplacian matrix (2.31) when adding an edge
from node 3 to node 2
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2.1.3 A Few Hints about Switching Topologies Inter-
connecting First-Order Systems

As regards continuous time, let A(t) ∈ Rn×n and L(t) ∈ Rn×n be, respectively,
the adjacency matrix and the nonsymmetric Laplacian matrix associated
with the directed graph G(t) := [V(t), E(t)]. Suppose that A(t) is piecewise-
continuous and such that its positive entries are both uniformly lower and
upper-bounded (i.e., aij(t) ∈ [a, a], where 0 < a < a, if (j, i) ∈ E(t) and
aij(t) = 0 otherwise). Let t0, t1, . . . be the time sequence corresponding to
the times when A(t) switches, assuming that ti − ti−1 ≥ tL, ∀i = 1, 2, . . .
with tL a positive constant. Consensus is reached for the closed-loop system
ẋi = −

∑n
j=1 aij(t)(xi − xj) if there exists an infinite sequence of contiguous,

nonempty, uniformly bounded time intervals [tij , tij+1
, j = 1, 2, . . ., starting

at ti1 = t0, with the property that the union of G(t) across each such interval
has a rooted out-branching [155].

As regards discrete time, instead, the interested reader is referred to [104]
and [85].

2.2 Second-Order Systems

So far, we have considered a first-order model for agent i, i.e., ẋi = ui,
where xi is the state and ui is the control input. We solved the problem of
the distributed coordination of the overall multi-agent system by relying on
proportional negative feedback control,

ui = −
∑
j∈Ni

αij(xi − xj), ∀vi ∈ V , (2.32)

implying that, by making each agent push itself towards the center of it and
its neighbours, consensus is eventually achieved.

Let us now consider double-integrator systems. The corresponding model
is given by:

ẍi = ui, (2.33)

i.e., {
ẋi = vi

vi = ui.
(2.34)

In this respect, a differential-drive robot in the inertial frame is shown in
Fig. 2.9.

A body frame is then attached to such a differential-drive robot in Fig.
2.10.
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Figure 2.9: A differential-drive robot in the inertial frame.

Figure 2.10: A differential-drive robot in its body frame.

The position of the robot in the inertial frame is (x, y). Its orientation is
represented by the variable θ. We assume the presence of two control inputs,
i.e., the linear speed v and the angular speed ω. In particular, when v = 1
and ω = 0, the robot goes straight. Instead, when v = 0 and ω = const., then
the robot spins. The situation when v = const. and ω = const. implies that
the robot draws a circle. Moreover, from the point of view of implementation,
robots convert linear speed and angular velocity into the velocity of the left
wheel on the one side and of the right wheel on the other side, which are then
converted into the related motor voltages.

The kinematic model of the considered robot is given by the following
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equations: 
ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω.

(2.35)

This is clearly a nonlinear system. We have two control inputs and the
system is nonholonomic because there is a nonholonomic constraint. Such
a nonholonomic constraint is ẋ sin θ − ẏ cos θ = 0. This constraint is always
true, since a mobile robot cannot move sideways (e.g., a car cannot park by
moving sideways)! This means that:{

θ = 0 =⇒ ẏ = 0,

θ = π
2

=⇒ ẋ = 0.
(2.36)

This causes difficulties in controlling the considered mechanical system. If we
want to stabilize such a system, there does not exist a continuous controller
driving the state of the system to zero, but we need to use either a discon-
tinuous controller or a time-varying one [22]. It is then difficult to design v
and ω so that x→ 0 and y → 0. A possible solution consists in controlling
the point (xh, yh) rather than the center (x, y). In other words, the same
system expressed in the coordinates (xh, yh) admits a stabilizing continuous
controller.

Hence, we change coordinates in the following way:{
xh = x+ L cos θ,

yh = y + L sin θ,
(2.37)

where L is the axial distance between the two wheels. Such a change of
coordinates leads to the following two-dimensional linear system:{

ẋh = ẋ+ L(− sin θ)θ̇ = v cos θ − Lω · sin θ,
ẏh = ẏ + L(cos θ)θ̇ = v sin θ + Lω · cos θ,

(2.38)

which, in compact form, becomes(
ẋh
ẏh

)
=

(
cos θ −L sin θ
sin θ L cos θ

)(
v
ω

)
(2.39)

where we define

(
cos θ −L sin θ
sin θ L cos θ

)
as T (θ), which is an invertible matrix.

T (θ) is invertible if L 6= 0 because det(T (θ)) 6= 0. Moreover, the following
relation holds (

v
ω

)
= T−1(θ)

(
ux
uy

)
, (2.40)
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where ux and uy are new inputs to be designed. Hence, we have(
ẋh
ẏh

)
=

(
ux
uy

)
. (2.41)

This is a simple linear system with a two-dimensional state. Thus, we find
ourselves in the same modeling framework as ẋ = u, except for the fact that
x is now two-dimensional.

At this point, our design objective is to drive (xh, yh) to the origin by
means of proportional feedback, i.e., by relying on{

ux = −Kxh
uy = −Kyh.

(2.42)

Alternatively, we may be interested in driving (xh, yh) to track (xr, yr), i.e., a
time-varying reference trajectory, by relying on the control law{

ux = ẋr −K(xh − xr)
uy = ẏr −K(yh − yr).

(2.43)

This last design strategy requires us to know the changing rate of the reference
signal because r(t) is assumed to represent a time-varying trajectory. By
means of controller (2.43), the (xh, yh) point of the robot is guaranteed to
follow the specified trajectory r(t) (see Fig. 2.11).

Figure 2.11: A differential-drive robot, under controller (2.43), manages to

track the reference trajectory r(t) =
(
xr(t) yr(t)

)T
.

Bearing this in mind, we can now apply the control law (2.32) to multi-
robot systems. By performing the change of coordinates (3.18), we convert a
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nonlinear model into a linear model without any approximation. Yet, there
are two drawbacks: through (3.18), (i) we actually lose the control orientation,
i.e., θ, and (ii) we are considering a position that is slightly off the center.
Moreover, through this approach, (iii) we can make the error small, but we
still need to check that the inputs do not become extremely big.

The main problem lies in the unobservability of θ, as a result of the
transformations made to get from (2.35) to (2.38). So, the dynamics of θ
represents the zero dynamics of the entire system. Yet, this zero dynamics
has been shown to be stable – even if not asymptotically stable [168] – and
this is why the presented design strategy works.

In particular, if v = const. and w = const., the open-loop robot (nonlinear
single robot) moves in circle. The design objective is to control (xh, yh) in
(2.38) so as to drive it according to a trajectory. However, when there is a
sharp turn, the limits of the model are shown because the vehicle can go
backwards and the controller can only guarantee that (xh, yh) tracks correctly.

In order to get from (2.35) to (2.38), we need to apply feedback lineariza-
tion but it creates the above-mentioned problem from the point of view of
implementation, even though it is sure that (xh, yh) tracks correctly.

Given these limitations, let the control laws below be applied onto system
(2.38), i.e., {

uxi = −
∑
gxijkij(xhi − xji)

uyi = −
∑
gyijkij(yhi − yji), ∀vi ∈ V ,

(2.44)

then we have consensus for the considered multi-agent system of robots.
When the formation control problem is addressed, instead, we are inter-

ested in ensuring that a set of final desired destinations are eventually reached,
e.g., (rd1, r

d
2, r

d
3, r

d
4) when considering a group of four agents.

Figure 2.12: An example of formation control.

For instance, with respect to Fig. 2.12, we may need to make the depicted
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four agents (i) maintain a square shape, and simultaneously (ii) reach their
destination.

Let us assume that the robots start from arbitrary initial positions. Let
the robot positions be denoted with the vector

ri =

(
xhi
yhi

)
, ∀vi ∈ V . (2.45)

Therefore, the four error vectors, measuring the distance of the robot positions
from the final desired destinations are represented by (rd1− r1), (rd2− r2), (rd3−
r3), (rd4 − r4). If these four error vectors,

rd1 − r1,

rd2 − r2,

rd3 − r3,

rd4 − r4,

(2.46)

are kept the same, then the directions are parallel (since the robots start
from different initial conditions) and thus the robots maintain the desired
formation.

So, the corresponding mathematical model becomes:

ṙi = ui, ∀vi ∈ V . (2.47)

In this respect, if we choose ui = −
∑

j∈Ni αij(ri − rj), then the agents will
rendez-vous, i.e., ri → rj,∀i 6= j. If instead we consider the following design,
the differences (rdi − ri) will be pushed towards each other, thus ensuring
formation control, i.e.,

ui = −
∑
j∈Ni

αij[ri − rdi − (rj − rdj )] = −
∑
j∈Ni

aij[(ri − rj)− (rdi − rdj )]. (2.48)

This way, the agents maintain the desired formation. We can think of this
as a consensus algorithm pushing (ri − rdi ) to be the same as (rj − rdj ) or,
equivalently (ri− rj) to be the same as (rdi − rdj ), thus maintaining the desired
shape.

Nonetheless, in order to get to the desired final destination, we still need
to introduce an additional term −K(ri − rdi ) for each agent, i.e., to design
the following control law:

ui = −
∑
j∈Ni

αij[(ri − rdi )− (rj − rdj )]−K(ri − rdi ) =

= −
∑
j∈Ni

αij[(ri − rj)− (rdi − rdj )]−K(ri − rdi ),
(2.49)
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where the first term is in charge of preserving formation and the second term
is in charge of ensuring that the final destination is reached. If we care more
about the shape, we just have to make K smaller and increase αij.

Let us now outline the relation between
(
v ω

)T
and the speed of the

wheels, i.e., there is a linear relationship holding in the following form:

v =
vl + vr

2
, (2.50)

where v is the overall linear velocity, vl is the linear velocity of the left wheel
and vr is the linear velocity of the right wheel. Instead,

ω =
vr − vl
L

, (2.51)

where L stands for the axial distance between the two wheels. In particular,
vl and vr convert to proper voltages for low-level control.

We can now consider the double-integrator dynamics:{
ẋi = vi

v̇i = ui,
(2.52)

where xi is the state, and ui is the acceleration command.
In general, the dynamics of a mobile robot can be represented by the

following equation:
mẍ = ftotal, (2.53)

which, more specifically, becomes:{
Mv̇ = F − Ffriction
Jω̇ = τ − τfriction.

(2.54)

For the differential-drive robot, the overall dynamic model is the following:

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω,

Mv̇ = F − Ffriction,
Jω̇ = τ − τfriction.

(2.55)

This is a sufficiently accurate dynamic model and it is such that the state
variables are x, y, θ, v and ω, while the control inputs are F and τ , i.e., forces
and torques.
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In general, with reference to second-order systems, if we take the kinematic
model (2.35) and we perform feedback linearization onto it, we obtain a single
integrator in the form (2.41).

Instead, if we take the dynamic model (2.55) and we perform feedback
linearization onto it, we obtain a double-integrator structure. The control
inputs are F and τ .

We now choose again xh, yh in the following way:{
xh = x+ L cos θ,

yh = y + L sin θ.
(2.56)

By differentiating (2.55) twice (thus calculating
(
ẍh ÿh

)T
), and then

by choosing F and τ so as to cancel the nonlinear terms (i.e., performing
feedback linearization) in the following way(

F
m
Lτ
J

)
=

(
Ffriction

m
+ Lω2

Lτfriction
J

− vω

)
+

(
cos θ sin θ
− sin θ cos θ

)(
ux
uy

)
, (2.57)

we get the double-integrator structure:{
ẍh = ux

ÿh = uy.
(2.58)

Note that L cannot be zero, otherwise we cannot recover τ . Moreover, the
zero dynamics here is proven to be stable [151].

Incidentally, let us now design a consensus algorithm for double integrators.
Let us consider a single system, i.e.,

ẍ = u, (2.59)

or, equivalently, {
ẋ = v

v̇ = u.
(2.60)

If we want to stabilize this system, we can use a PD controller

u = −K1x−K2ẋ, (2.61)

where K2 represents the damping term.
The resulting closed-loop system will be

ẍ = −K1x−K2ẋ, (2.62)
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i.e.,
ẍ+K2ẋ+K1x = 0. (2.63)

The corresponding characteristic polynomial is

s2 +K2s+K1 = 0 (2.64)

with K1 > 0, K2 > 0, which is necessary according to the Routh criterion.
Recall that s2 + 2ζωns + ω2

n = 0 is such that the 2ζωns term introduces
damping. Actually, if we want to stabilize a second-order system, we need
some damping term K2.

Hence, if we apply ui = −
∑

j∈Ni αij(xi−xj) in a multi-agent second-order
system, this will not work because there is no damping. So, we need to
introduce an additional damping term

ui = −
∑
j∈Ni

αij(xi − xj)−Kvi, (2.65)

where this −Kvi term represents self-damping negative feedback.
If we have such a damping term, the result is that{

xi → xj (constant),

vi → 0,
(2.66)

provided that the graph contains a spanning tree and K is large enough.
Hence, damping is necessary and should be strong enough.

What if, instead, we use the following control law,

ui = −
∑
j∈Ni

αij(xi − xj)−K
∑
j∈Ni

αij(vi − vj), (2.67)

that is, if we use relative damping? Under this control, we will have{
xi → xj,

vi → vj (constant),
(2.68)

provided that the graph contains a spanning tree and that K is large enough.
This way, there is damping, but we are pushing one agent’s velocity towards
his neighbours’ velocity. Put another way, the position becomes the same
and the velocity becomes the same for all agents.

Let us now outline the difference between the two control laws: under
(2.65), the robots meet at the same point and stop (i.e., vi = 0). Under (2.67),
the robots meet at the same point and end up moving at the same velocity
but may not stop (i.e., vi → vj).
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Let us carry out some analysis on the multi-agent system subject to (2.65):
we plug such a controller into the original model and we take a look at the
closed-loop system. We obtain

ẋ1

ẋ2
...
ẋn
v̇1

v̇2
...
v̇n


=

(
0 I
−L −KI

)


x1

x2
...
xn
v1

v2
...
vn


, (2.69)

i.e., 

ẋ1

ẋ2
...
ẋn
v̇1

v̇2
...
v̇n


= A



x1

x2
...
xn
v1

v2
...
vn


, (2.70)

with A =

(
0 I
−L −KI

)
.

What about the eigenvalues and eigenvectors of A?(
0 I
−L −KI

)(
w
z

)
= λ

(
w
z

)
(2.71)

We need to solve these two equations:{
z = λw

−Lw −Kz = λz
(2.72)

It turns out that the generic eigenvalue of A, λ, is related to the eigenvalues
of L. If we replace z = λw in −Lw −Kz = λz, we get

− Lw −Kλw = λ2w =⇒ −Lw = (λ2 +Kλ)w. (2.73)

The quantity (λ2 + Kλ) is therefore an eigenvalue of −L with w as the
eigenvector. So, if µi, i ∈ {1, . . . , n} is an eigenvalue of L, then λ2+Kλ = −µi.



CHAPTER 2. DISTRIBUTED COORDINATION 103

This is a second-order equation, thus implying that every eigenvalue of L (i.e.,
µi) corresponds to two eigenvalues of A, i.e., λ1 and λ2. In other words, given
λ2 +Kλ = −µi, we solve for λ and find the eigenvalues of A. Each eigenvalue
of L corresponds to two eigenvalues of A.

Since L is such that µ1 = 0 and the others µi : Re[µi] < 0, ∀i ∈ {2, . . . , n},
then the zero eigenvalue of L corresponds to two eigenvalues of A: λ1+ =
0, λ1− = −K, because λ2 +Kλ = 0 yields λ(λ+K) = 0.

When all eigenvalues have no complex part, if µi > 0, we deduce that

λ2 +Kλ+ µi = 0 (2.74)

is such that all λi : Re[λi] > 0. So all the eigenvalues of the A matrix have neg-
ative real parts, except for the only eigenvalue in the origin, thus implying that
A is marginally stable: so, defining x(t) = col(x1(t), x2(t), . . . , xn(t), v1(t),
v2(t), . . . , vn(t)), we have that x(t)→ kerA.

Let, instead, the solutions of (2.74) be equal to an imaginary number
aj: in this case, we need K > K∗ (for some computable K∗) to make sure
that the corresponding eigenvalue falls in the left hand-side of the complex
plane. So, if µi is complex, then we need a large enough K. If the graph
is a directed tree, all the eigenvalues are real and K might be any number
(there is no need to make it large enough). Also, if the graph is undirected,
then the Laplacian matrix is symmetric and a symmetric matrix has all real
eigenvalues, so A is easy. L can therefore have complex eigenvalues in the
case of a directed graph only.

When µi = 0, then λ1+ = 0, λ1− = −K. So, let us now look at the
corresponding eigenvector. If λ = 0, then −Lw = (λ2 + Kλ)w = 0w, thus
implying that

w =


1
1
...
1

 (2.75)

and

z =


0
0
...
0

 . (2.76)
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So, the corresponding eigenvector of A is

1
1
...
1
0
0
...
0


. (2.77)

From linear systems theory,

(
x
v

)
→ Im

(
1
0

)
. So xi → xj and all the vi’s

will converge to 0. The x’s will be the same, the v’s will be 0.
Instead, if K < K∗, then A will have eigenvalues in the right hand-side of

the complex plane and the control strategy (2.65) will not work.
Let us now consider the case of relative damping represented by (2.67):

in this case, the dynamic matrix is more complicated.

ẋ1

ẋ2
...
ẋn
v̇1

v̇2
...
v̇n


=

(
0 I
−L −KL

)


x1

x2
...
xn
v1

v2
...
vn


, (2.78)

i.e., 

ẋ1

ẋ2
...
ẋn
v̇1

v̇2
...
v̇n


= A′



x1

x2
...
xn
v1

v2
...
vn


, (2.79)

with A′ =

(
0 I
−L −KL

)
. What about the eigenvalues and eigenvectors of
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A′? This time, we need to solve the following equations:(
0 I
−L −KL

)(
w
z

)
= λ

(
w
z

)
=⇒ (2.80)


z = λw,

−Lw −KLz = λz =⇒ −Lw −KλLw = λ2w.

=⇒ −L(1 +Kλ)w = λ2w.

(2.81)

This implies that

− Lw =
λ2

1 +Kλ
w. (2.82)

Let us assume µi as an eigenvalue of L, then −(1 +Kλ)µi should be equal to
λ2,

− (1 +Kλ)µi = λ2. (2.83)

If µi is an eigenvalue of L, then −(1 +Kλ)µi is an eigenvalue of −L(1 +Kλ).
Then

λ2 +Kµiλ+ µi = 0 =⇒ (2.84)

λ =
−Kµi ±

√
(Kµi)2 − 4Kµ2

i

2
. (2.85)

This is the relationship between the eigenvalues of A′ and those of L. In
particular, from this equation we have

µ1 = 0 =⇒ λ± = 0. (2.86)

If µ1 is 0, there are two corresponding eigenvalues in 0 for A′ and they are
repeated. The matrix A (under control law (2.65)) had one zero eigenvalue.
The matrix A′, instead, (under control law (2.67)) has two zero eigenvalues
with one independent eigenvector (so, this time the dynamic matrix of the
system is unstable). So the system is unstable, but, under (2.67), the relative
positions become the same, so the consensus is still reached.

If the eigenvalues of L are positive, then Re[λ] < 0 where the λ’s are the
eigenvalues of A′ and K > 0. If the graph is a tree or undirected, any positive
K works. If the graph is arbitrary and λ± = aj with aj an imaginary number,
then we need to set λ± and identify the lower bound K∗, above which the
algorithm works (i.e., for K > K∗).

The overall system is unstable, but the error dynamics (group dynamics)
is stable.
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So the solution to this linear differential equation is

x1(t)
...

xn(t)
v1(t)

...
vn(t)


eA
′t



x1(0)
...

xn(0)
v1(0)

...
vn(0)


. (2.87)

Provided that (i) the graph contains a spanning tree and (ii) the gain K is
large enough, then A′ has two zero eigenvalues and all the others are on the
left hand-side of the complex plane.

First, eA
′t can be rewritten in the following way:

eA
′t = PeJtP−1, (2.88)

where

P =
(
generalized eigenvectors arranged by columns

)
, (2.89)

J =


0 1 . . . . . .
0 0 . . . . . .
. . . . . . λ3 . . .
. . . . . . . . . λ4

 . (2.90)

This J matrix has clearly two zero eigenvalues and is such that Re[λi] < 0.
At steady state, the blocks associated with the λi’s vanish. Only the blocks
associated with the zero eigenvalues are left. Since

lim
t→∞

eJt =


1 t 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (2.91)
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then

lim
t→∞

eA
′t = lim

t→∞
PeJtP−1 =

lim
t→∞

(
generalized eigenvectors arranged by columns

)


1 t 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

×
×
(
generalized eigenvectors arranged by rows

)
.

(2.92)

We only care about the first two columns and rows, since everything else goes
to zero. Namely, the first two columns of P are

col1(P ) =



1
1
...
1
0
0
...
0


, (2.93)

col2(P ) =



0
0
...
0
1
1
...
1


, (2.94)

while the first two rows of P are

row1(P ) =
(
q1 . . . qn 0 . . . 0

)
, (2.95)

row2(P ) =
(
0 . . . 0 q1 . . . qn

)
, (2.96)

where
(
q1 . . . qn

)
is the left eigenvector of L associated with the zero

eigenvalue and
∑n

i=1 qi = 1, qi ≥ 0.
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We now recall that

L


1
1
1
...
1

 = 0 (2.97)

where


1
1
1
...
1

 is the right eigenvector of L. Instead,

(
q1 . . . qn

)
L = 0 (2.98)

and

(
q1 . . . qn

)


1
1
...
1

 = 1 (2.99)

Indeed, with respect to single integrators, the left eigenvector of L determines
the final equilibrium point.

We also recall that
lim
t→∞

(λ−1A′)m = pqT , (2.100)

where q is the left eigenvector. The left eigenvector of L indeed determines
the way we converge to the consensus condition.

It turns out that row1(P) and row2(P ) are the left generalized eigenvectors
of the two zero eigenvalues of A′. Hence, (2.92) converges to


1
1
...
1

qT t


1
1
...
1

qT

0


1
1
...
1

qT


. (2.101)
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In the single integrator case, it was

lim
t→∞

e−Lt =


1
1
...
1

qT =⇒ xi(t) =
n∑
i=1

qixi(0), ∀vi ∈ V . (2.102)

The weights were determined by the graph (i.e., by the eigenvectors of L).
Instead, what will then the final result be in the considered case?

x1(t)
...

xn(t)
v1(t)

...
vn(t)


= eA

′t



x1(0)
...

xn(0)
v1(0)

...
vn(0)


=⇒ (2.103)

{
xi(t)→

∑n
i=1 qixi(0) + t

∑
qivi(0),

vi(t)→
∑n

i=1 qivi(0).
(2.104)

The agents converge and then they maintain speed according to the Jordan
decomposition. The speed they maintain is weighted by the left generalized
eigenvectors of L. This is what happens in the case of relative damping.

So far, we have considered fixed graphs only. What happens in the case
when the graph is changing? The absolute damping algorithm becomes{

ẋi = vi

v̇i = −
∑

j∈Ni(t) αij(xi − xj)−Kvi,
(2.105)

whereas the relative damping algorithm becomes:{
ẋi = vi

v̇i = −
∑

j∈Ni(t) aij(xi − xj)−K
∑

j∈Ni(t) aij(vi − vj).
(2.106)

So, when the graph is changing over time, if the union of the graphs (over some
time interval) contains a spanning tree, then the absolute damping algorithm
(2.65) converges. In such a case, we would have time-varying matrices, i.e.,
given L(t), we would have that

A(t) =

[
0 I

−L(t) −KL(t)

]
, (2.107)
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ẋ1(t)
...

ẋn(t)
v̇1(t)

...
v̇n(t)


= A(t)



x1(t)
...

xn(t)
v1(t)

...
vn(t)


. (2.108)

The idea behind this approach is that, if the union of the graphs contains
a spanning tree sufficiently often, then (2.65) works. Instead, this is not true
for (2.67).

For instance, let us consider the time-varying graph shown in Fig. 2.13.
We need to check the presence of a spanning tree in the union graph. This

Figure 2.13: An example of time-varying graph. The union graph is reported
in the bottom part of the figure.

has to be checked repeated times, on each interval.
If, for any t, there exists a T > 0 such that∫ t+T

t

L(s)ds (2.109)

contains a spanning tree, then convergence is preserved. The integral (2.109)
represents the union graph analytically. This is the analytical sufficient
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condition in continuous time. In discrete time, this is also a necessary
condition.

In general, we have verified that, if an agent has no neighbour, then in
first-order consensus it stops: it is stable under the considered consensus
protocol. Instead, in second-order consensus, if an agent has no neighbour,
then it stops under absolute damping, while it does not stop but but keeps
moving under relative damping. This is why the condition on the union graph
does not work under (2.67).

Let us now consider the case of a switching graph, i.e., of a networked
system

ẋ = A(t)x (2.110)

such thatA(t) switches within the topologies represented by the set {A1, A2, . . . ,
Am}. Even if each Ai is stable, the whole system

ẋ = Aix, i = 1, . . . , n, (2.111)

can still be unstable. This is why there is a lot of ongoing research in the
field switching systems. In particular, by enforcing a condition such that the
switching time ti+1 − ti is greated than a lower bound – in other words, if we
do not jump too fast from one graph to another – we can preserve stability.

Also in the case of a second-order algorithm, we can switch from one
graph to another. Let us then define our new states to be the relative errors,

x̃ =



x1 − x2

x2 − x3
...

xn−1 − xn
v1 − v2

...
vn−1 − vn


, (2.112)

thus yielding
x̃ = Ã(t)x̃. (2.113)

If we switch from one graph to another without going too fast, we can have
stability, i.e., by ensuring that ti+1 − ti stays greater than a suitable lower
bound. This is a very conservative result. For this case, however, we require
that the graph contains a spanning tree for each time instant, at each switch.
We are switching in this case from one graph which can guarantee consensus
to another graph which can guarantee consensus. Hence, we just have to
make sure that we do not switch extremely fast.
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2.2.1 Interconnection of n Mass-Spring-Damper Sys-
tems

Let us now consider how a system of n mass-spring-dampers behaves under
absolute damping and under relative damping, respectively.

Figure 2.14: A system of n = 2 mass-spring-dampers.

What if we push the second mass towards the first mass in Fig. 2.14?
The variables x1 and x2 are the related coordinates. If we use the absolute
position and the relative velocity, we obtain:{

mẍ1 = −kx1 − b(ẋ1 − ẋ2)

mẍ2 = −kx2 − b(ẋ2 − ẋ1).
(2.114)

Let e = x1 − x2, then we have:

më = −ke− 2bė =⇒ më+ 2bė+ ke = 0. (2.115)

This is a classical second-order system and hence we have a second-order
polynomial, so that m, b, k > 0 =⇒ e→ 0. Thus, the error converges to 0
and, consequently, the displacement x1 − x2 will get to 0. Namely, x1(t) and
x2(t) will have oscillating trajectories. These are indeed couples of harmonic
oscillators.

Instead of having just two pieces connected with each other, let us assume
that we have n. In such a case, the corresponding model becomes:

mẍi = −kxi − b
∑
j∈Ni

(ẋi − ẋj), ∀i ∈ 1, . . . , n =⇒ (2.116)

The total force is the elastic force associated with the spring plus the damping
effect relative to the neighbours.

=⇒ ẍi =
k

m
xi −

b

m

∑
(ẋi − ẋj) (2.117)
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Thus, comparing with the previous strategy, we are using here absolute
position and relative velocity, i.e.,{

ẋi = vi

v̇i = −αxi −
∑

j∈Ni βij(vi − vj)
(2.118)

This way, the agents are going to meet (yielding consensus) and oscillate,
generating some motion patterns.

Let us assume that xi is in 2D. If the state is (x, y) and the y-variable
is separated from the x-variable by 90 degrees, then each agent oscillates
describing a circle. The system dynamics can therefore be written in the
following way: 

ẋ1

ẋ2
...
ẋn
v̇1
...
v̇n


= A



x1

x2
...
xn
v1
...
vn


(2.119)

where

A =

[
0 I
−αI −L

]
. (2.120)

In order to compute the eigenvalues of matrix A, we write:

A

[
w
z

]
= λ

[
w
z

]
=⇒

[
0 I
−αI −L

] [
w
z

]
= λ

[
w
z

]
=⇒{

z = λw

−αw − Lz = λz =⇒ −αw − λLw = λ2w =⇒ −λLw = (λ2 + α)w.

(2.121)
Hence, the eigenvalue for (−λL) is just (λ2 + α). So, defining µi as the

eigenvalue of L, we have:
− λµi = λ2 + α. (2.122)

Then,
µi = 0 =⇒ λ± = ±

√
αj, (2.123)

where j is the imaginary unit. Namely, the zero eigenvalue maps into two
eigenvalues on the imaginary axis. But all the other eigenvalues are mapped
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into the left hand-side of the complex plane. So, the system is marginally
stable.

Furthermore, the integral of (2.119) can be written as:

x1(t)
x2(t)

...
xn(t)
v1(t)
v2(t)
...vn(t)


= eAt



x1(0)
x2(0)

...
xn(0)
v1(0)
v2(0)

...
vn(0)


=⇒ (2.124)

=⇒



cos(
√
at)


1
1
1
...
1

qT − 1√
a

sin(
√
at)


1
1
1
...
1

qT

−
√
a sin(

√
at)


1
1
...
1

qT cos(
√
at)


1
1
...
1

qT


·



x1(0)
x2(0)

...
xn(0)
v1(0)
v2(0)

...
vn(0)


, (2.125)

where q =
[
q1 . . . qn

]
, with qi ≥ 0,

∑n
i=1 qi = 1, is once again the left

eigenvector of L associated with the zero eigenvalue. Hence, ∀vi ∈ V ,

xi(t)→ cos(
√
at)

n∑
j=1

qjxj(0)− 1√
α

sin(
√
αt)

n∑
j=1

qjvj(0), (2.126)

vi(t)→ −
√
α sin(

√
αt)

n∑
j=1

qjxj(0) + cos(
√
αt)

n∑
j=1

qjvj(0). (2.127)

So, the solutions agree both on the position and on the velocity. The agents
reach consensus but they do not stop, instead they oscillate – due to the
presence of cosines and sines, recall the fundamental relation a cos(ωt) +
b sin(ωt) =

√
a2 + b2 cos(ωt + φ). Namely,

√
α tells us how fast the whole

system is oscillating. The magniture of the oscillations is instead given by√
a2 + b2 which in (2.127) corresponds to:√√√√( n∑

j=1

qjxj(0)

)2

+

(
1√
α

n∑
j=1

qjvj(0)

)2

. (2.128)
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Let us now consider the case of leader-following coordination of a multi-
agent system. Let us assume that we have a leader agent characterized by
some dynamics, e.g., (ẋ0 = v0, v̇0). The leader agent (i.e., agent 0) does not
receive any information, but he just gives information out, as it is assumed
to be the only root node in the considered graph. In this case, all the agents

Figure 2.15: An example of leader-following topology.

will converge to the path dictated by agent 0, because the only spanning tree
in this graph has root in node 0. Let the dynamics of agent 0 will be{

ẋ0 = v0

v̇0 = −αx0,
(2.129)

with initial conditions x0(0) and v0(0). The initial trajectory can be specified
so that the x-component is cos(t) and the y-component is sin(t). The solution
for agent 0 is then:

x0(t) = cos(
√
αt)x0(0) +

1

α
sin(
√
αt)v0(0)

v0(t) = −
√
α sin(

√
αt)x0(0) + cos(

√
αt)v0(0).

(2.130)

With such a topology, everybody will follow this leader. By tuning x0(0) and
v0(0), we specify the trajectory. The agents follow the circles in synchrony.

What if the graph is changing? In the case of switching graphs, we need
to check that each graph contains a spanning tree. If this is true, then the
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algorithm works. If the graphs are strongly connected and balanced and α is
fixed, we do not even care about how fast we switch. All these algorithms
can also be applied to differential-drive robots after feedback linearization.

2.3 Consensus in 2D with Rotation Matrices

Let us recall consensus algorithms for single-integrator systems. We consider:

ẋi = ui

ui = −
∑
j∈Ni

aij(xi − xj), (2.131)

where xi can be a scalar, or it can belong to R2, etc. depending on the
application. Hence, xi ∈ R, or xi ∈ R2, or xi ∈ R3. etc. We now choose xi to
be a vector. For instance, let xi represents the position in 2D:

xi =

(
rxi
ryi

)
. (2.132)

In this case, we have an x-coordinate and a y-coordinate.
Let us now change controller (2.32) (adopted above for single-integrator

systems) into

ui = −R(θ)
∑
j∈Ni

aij(xi − xj). (2.133)

where R(θ) is a rotation matrix premultiplying the sum of the position
differences. In 2D,

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
. (2.134)

Given a generic vector, if we multiply it by R(θ) we are rotating it clockwise.
The properties of rotation matrices are (i) det(R(θ)) = 1 and (ii) there are
two complex conjugate eigenvalues, ejθ, e−jθ. When we multiply by a rotation
matrix, we are rotating, we are changing direction a little bit. Without R(θ),
we will always move towards the center of our neighbours without rotating
(i.e., algorithm (2.32)). If we multiply by R(θ), the agents will continuously
adjust their angle, they will not go straight towards the consensus condition
but they will converge with a spiral movement (i.e., algorithm (2.133)), yet
only provided that θ is kept small enough. If θ increases, the agents will move
around periodic orbits without converging. In other words, if θ goes above
some critical value, then the agents may spiral out, causing instability.

Incidentally, in 3D, we have a rotation matrix R(a, θ) where a is the axis
around which the rotation occurs (axis and angle determine this 3×3 matrix).
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If a =
(
0 0 1

)T
, we will be rotating about the z-axis. The inverse of R

is equal to the transpose of R. We will rotate vector v about axis a with
angle θ when we multiply v by R(a, θ). Moreover, R(a, θ) in 3D has three
eigenvalues: 1, ejθ, e−jθ.

Before applying the control algorithm (2.133), let us introduce the Kro-
necker product, denoted with the ⊗ symbol: given

A =

a11 a12 a13

a21 a22 a23

a31 . . . a33

 , (2.135)

and

B =

[
b11 b12

b21 b22

]
, (2.136)

the Kronecker product consists in multiplying each entry of A by the entire
B matrix, so we have:

A⊗B =


a11

[
b11 b12

b21 b22

]
a12

[
b11 b12

b21 b22

]
a13

[
b11 b12

b21 b22

]
. . . . . . . . .

. . . . . . a33

[
b11 b12

b21 b22

]
 . (2.137)

Namely, the eigenvalues of A⊗B are equal to the eigenvalues of A times
the eigenvalues of B, i.e., λi(A) ·λj(B),∀i, j: hence, each eigenvalue of A gets
multiplied by each eigenvalue of B. All these will be the eigenvalues of the
Kronecker product. E.g., if the eigenvalues of A and B are

σ(A) = {1, 2}, (2.138)

σ(B) = {3, 4}, (2.139)

then the eigenvalues of A⊗B are

σ(A⊗B) = {1 · 3, 1 · 4, 2 · 3, 2 · 4}. (2.140)

So, the closed-loop dynamics under (2.32) can be written as:ẋ1
...
ẋn

 = −(L⊗ Im)

x1
...
xn

 , xi ∈ Rm. (2.141)

This is a convenient way of representing consensus on vectors because xi is a
vector and not a scalar, otherwise Ln×n would not be multipliable by each
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component of x which is an m× 1 vector. In particular, the eigenvalues of
L⊗ Im are the eigenvalues of L, each repeated m times.

Let us now, instead, discuss the closed-loop dynamics under (2.133), i.e.,
ẋ1

ẋ2
...
ẋn

 = −(L⊗R(θ))


x1

x2
...
xn

 , xi ∈ Rm. (2.142)

Figure 2.16: A simple example of directed graph.

For instance, if we consider the very simple directed graph shown in Fig.
2.16, for agent 2 we have

u2 = −R(θ)(x2 − x1). (2.143)

Note that

L⊗R(θ) =

[
0(2×2) 0(2×2)

−R(θ) R(θ)

]
. (2.144)

By computing this Kronecker product, we multiply each entry of L by R(θ),
thus making all the eigenvalues rotate. So, the eigenvalues of the Kronecker
product will be exactly the eigenvalues of L times the eigenvalues of R(θ).
Depending on θ, we have different behaviours (e.g., as periodic orbits) if after
the multiplication the eigenvalues fall on the imaginary axis.

Note also that
− (L⊗R(θ)) = (−L)⊗R(θ) (2.145)

The eigenvalues of −L are all with negative real parts except for one eigenvalue
located in the origin if the graph contains a spanning tree. Instead, R(θ)
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has the three above-mentioned eigenvalues. Hence, (−L) ⊗ R(θ) will have
twelve eigenvalues, each eigenvalue of L multiplied by each eigenvalue of R(θ).
Multiplying by e−jθ means to rotate by θ counter-clockwise. Multiplying by
ejθ, instead, means to rotate by θ clockwise.

Instead, what about the eigenvectors? Even if we repeat the eigenvalues,
we also multiply the eigenvectors. The eigenvectors of (−L)⊗R(θ) are the
eigenvectors of (−L), each, Kronecker multiplied by each eigenvector of R(θ).
So, the new eigenvectors are all independent. So, is the new system stable?
If θ is small, then the new system keeps marginally stable.

What happens if we rotate by a large amount of degrees? The angle may
be so big as to induce new eigenvalues on the imaginary axis, thus generating
oscillations (and consequently periodic orbits). If θ is extremely big, it may
occur that the new eigenvalues fall in the right hand-side of the complex
plane, thus causing the system to go unstable (i.e., the agents will spiral out).
This is what happens for first-order systems.

Let us see what happens for second-order systems.

ẍi = ui or, equivalently,

{
ẋi = vi,

v̇i = ui.
(2.146)

Let us adopt the control law acting on relative position plus absolute
damping, i.e.,

ui = −R(θ)
∑
j∈Ni

aij(xi − xj)−Kvi. (2.147)

We introduce, in a similar way as before, the rotation matrix, thus yielding:

ui = −R(θ)
∑
j∈Ni

aij(xi − xj)−KR(θ)
∑
j∈Ni

aij(vi − vj). (2.148)

Previously, we said that, if θ is small, then the agents spiral in. If, instead,
θ = θ∗ (where θ∗ identifies a critical angle accounting for marginal stability),
they describe periodic orbits; if θ is big, they spiral out.

Moreover, by relying on R(a, θ), given the axis a of rotation, the agents
can move on a plane perpendicular to this axis. The center of the orbits is the
weighted average of the initial conditions. If we want to monitor something on
the ground, we need to move on a plane perpendicular to the z-axis. What if
you want to explicitly specify the target location to monitor in order to circle
around that target? We fix the initial condition of one agent as the point
you want to monitor, then you make sure that there is only one spanning
tree rooted in that agent. Under (2.148), without the rotation, the agents
converged and then kept going due to relative damping. With rotation, the
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agents keep tracking a circular orbit but the center moves. The Laplacian
still plays an important role here. The center of the orbits is determined by
the consensus algorithm. In the second-order algorithm, without rotation,
previously we had that:

A =

[
0 I
−L KI

]
(2.149)

Now, with the rotation, we have

A′ =

[
0 I

−L⊗R(θ) KI

]
(2.150)

We can also introduce a leader in any of these cases: we just have to make
it the root of the only directed spanning tree in the graph.

2.4 Lyapunov-based Analysis and Control of

Nonlinear Models

Nonlinear multi-agent systems will be now investigated by means of Lyapunov
stability theory.

Given a single-integrator
ẋ = u, (2.151)

let us assume that we want to drive x to the origin. We can do that by relying
on the control law

u = −Kx. (2.152)

The closed-loop system is therefore

ẋ = −Kx. (2.153)

Hence,
x(t) = e−Ktx(0) (2.154)

which goes to zero exponentially. So, this controller works. However, if the
initial error is big, our control error can be huge!

Instead, we could use the following controller:

u = −Ksat(x), (2.155)

with

sat(x) =


1, x > 0

0, x = 0,

−1, x < 0.

(2.156)
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The closed-loop system dynamics becomes

ẋ = −Ksat(x). (2.157)

What is the solution to this differential equation? We can use a Lyapunov
candidate function instead.

V =
1

2
x2. (2.158)

The adoption of such a Lyapunov function yields

V̇ =
∂V

∂x
ẋ = xẋ = x(−Ksat(x)) = −Kxsat(x) < 0 x 6= 0. (2.159)

When x is positive, this V̇ returns a negative value. When x is negative, this
V̇ returns a negative value too!

So V̇ < 0, ∀x 6= 0.
Let us now review some aspects of nonlinear systems and control which

will turn useful for investigating multi-agent system stability in the nonlinear
domain.

Given an LTI system ẋ = Ax, in general stability is determined by
analyzing the eigenvalues of A. Instead, if we have a nonlinear system, say
ẋ = f(x), there is no matrix, there are no eigenvalues. It is also hard to figure
out the solution. This ẋ = f(x) is a closed-loop system, so the control action
is already embedded. Let us compare an LTI system with a nonlinear one.
The former can be represented as

ẋ = A1x+Bu (2.160)

with control law
u = −Kx, (2.161)

yielding
ẋ = (A1 −BK)x. (2.162)

This is the closed-loop LTI system. Instead,

ẋ = f1(x, u) (2.163)

with control law
u = φ(x) (2.164)

yields
ẋ = f(x) (2.165)

This is the closed-loop nonlinear system.
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Let us analyze the stability of the system. In classical control, stability
implies that for any bounded input signal, the output will be bounded too.
But in nonlinear systems and Lyapunov control, stability is intepreted in
terms of the system behaviour with respect to the equilibrium conditions. In
general, an equilibrium condition is identified by a point in the state space
such that, if the state starts at that point, the state will remain there. Hence,
when we investigate stability in nonlinear systems, we need to aim at an
equilibrium position.

For instance, let us assume that we want to keep a pendulum at 45◦. An
angle of 45◦ is not an equilibrium point for the pendulum. So, we must use
feedback in order to produce a force such that the pendulum is kept at 45◦.

How to find equilibrium points? We just have to solve f(x) = 0 and,
therefore, look for the set {x : f(x) = 0}. In general, the equilibrium point
might not be 0, but it can be made such by just a simple variable change.

So, we can state that the equilibrium point x = 0 of ẋ = f(x) is

• stable if ∀ε > 0,∃δ = δ(ε) > 0 such that ‖x(0)‖ < δ =⇒ ‖x(t)‖ <
ε, ∀t ≥ 0;

• unstable if it is not stable;

• asymptotically stable if it is stable and if ∃δ > 0 such that, if ‖x(0)‖ <
δ =⇒ limt→∞‖x(t)‖ = 0.

Asymptotic stability means that the trajectory is not just stable but will
eventually approach the equilibrium point. The Lyapunov approach allows to
test this definition.

Let us now recall the concept of Lyapunov stability. Let x = 0 be an
equilibrium point of ẋ = f(x). Let D ⊂ Rn be a domain containing x = 0.
Let V (x) be a continuously differentiable function such that V (0) = 0 and
V (x) > 0 in D \ {0}, and V̇ (x) ≤ 0 in D. This implies that x = 0 is stable.
Instead, V̇ (x) < 0 in D \ {0} implies that x = 0 is asymptotically stable.

Let us say for some reason that we are able to generate a plot and show all
the possible ways the trajectory will move from any initial condition. Then,
by means of such simulations we can certainly determine if the system is
stable or not! But this is feasible just in 2D. In 3D, this is not feasible any
more. In this respect, Lyapunov helps us. Namely, V̇ (x) ≤ 0 in D means
that V can never grow above its initial value.

This is just a sufficient condition which, by the way, is very useful for
studying a lot of physical systems, easily offering insight about the energy-like
function represented by the Lyapunov candidate V .
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Figure 2.17: A pendulum.

The dynamics of the pendulum shown in (2.17) is given by:

mlθ̈ = −mg sin θ − klθ̇ (2.166)

This is a nonlinear system because of the sin θ term.
Let us choose the state as {

x1 = θ,

x2 = θ̇,
(2.167)

then the state space representation of such a system becomes:{
ẋ1 = x2,

ẋ2 = g
l

sinx1 − k
m
x2,

(2.168)

with x2 ∈ (−π, π).
This is the classical mathematical model for the pendulum adopted in

systems theory.
The equilibrium points are (0, 0) and (π, 0). For the equilibrium point

(0, 0), let us carry out some analysis by means of the Lyapunov approach.
For simplicity, let us consider the following model{

ẋ1 = x2,

ẋ2 = −a sinx1 − bx2,
(2.169)

with a > 0, b > 0. By experience, in general V (x) = 1
2

∑n
i=1 x

2
i with x ∈ Rn.

In this case, we choose V = 1
2
x2

1 + 1
2
x2

2. This is such that V (0) = 0. Therefore,

V̇ =
∂V

∂x
ẋ =

∂V

∂x1

ẋ1 +
∂V

∂x2

ẋ2 = x1ẋ1 + x2ẋ2 =

= x1x2 + x2(−a sinx1 − bx2) = x1x2 − ax2 sinx1 − bx2
2.

(2.170)
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We do not like the first two terms. Instead, the third term is always less than
0. So the function V we suggested does not work because it cannot tell us
what is going on in the considered system.

What if we change the Lyapunov function V ? For instance, we can choose:

V = a(1− cosx1) +
1

2
x2

2, (2.171)

where the first term is positive because cosx1 ∈ [−1, 1] and the second term
is positive too.

By deriving we obtain

V̇ =
∂V

∂x1

ẋ1 +
∂V

∂x2

ẋ2 = a sinx1ẋ1 +
∂V

∂x2

ẋ2 =

= a sinx1x2 + x2(−a sinx1 − bx2) =

= a sinx1 · ẋ2 − ax2 · sinx1 − bx2
2 = −bx2

2 ≤ 0.

(2.172)

Now the first two terms cancel out. The third term is always negative.
This is only negative semi-definite because x1 is not involved in the above

inequality. The variable x1 does not show here, so we need to adjust the V if
we want to show negative definiteness. We can therefore choose

V =
1

2

[
x1 x2

] [p11 p12

p21 p22

] [
x1

x2

]
. (2.173)

Our approach is to select p11, p12, p21 and p22 in order to cancel the indefi-
nite terms in V̇ until we end up in a situation where V̇ < 0.

Another useful approach is, instead, La Salle’s invariance principle. In
(2.172) we had

V̇ = −bx2. (2.174)

So, we have that
V̇ = 0 =⇒ x2 = 0. (2.175)

Let us say that at some point x2 = 0 =⇒ V̇ = 0. Recall system (2.169).
If x2 = 0, ẋ2 is not necessarily equal to 0, so ẋ2 might be changing. Since
V̇ < 0, over time, if x2 = 0, x1 6= 0, then V decreases.

In particular, the only way we can make V stop decreasing is by setting{
x1 = 0

x2 = 0.
(2.176)

So, the system must be asymptotically stable. This is the rationale behind
La Salle’s invariance principle:

V̇ = 0 =⇒ x2 = 0. (2.177)
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Ifx2 = 0, then
setting ẋ2 = 0 =⇒ x1 = 0. (2.178)

The only way to make ẋ2 = 0 is to zero x1.
In general, La Salle’s invariance principle can be stated as follows.

Theorem 2.5. [96] Let Ω ⊂ D be a compact set that is positively invariant
with respect to ẋ = f(x). Let V : D → R be a continuously differentiable
Lyapunov candidate function such that V̇ ≤ 0 in Ω. Let E be the set of all
points in Ω where V̇ = 0. Let M be the largest invariant set in E. Then
every solution starting in Ω approaches M as t→∞.

Let us now extend this machinery to multi-agent systems:{
ẋi = ui

ui = −
∑

j∈Ni aij(xi − xj),
(2.179)

i.e., in vector form,
ẋ = −Lx. (2.180)

For this linear system, we can use a nonlinear algorithm to show conver-
gence.

We propose a quadratic Lyapunov candidate function:

V (x) =
1

2
xTx =

1

2
x2

1 +
1

2
x2

2 + . . .+
1

2
x2
n. (2.181)

Hence, its derivative along the system trajectories is

V̇ =

(
∂V

∂x

)T
ẋ = xT ẋ = −xTLx. (2.182)

Now, if the graph is undirected, L is symmetric. The eigenvalues of L are on
the right hand-side of the complex plane plus at least one eigenvalue in the
origin. This implies that L is symmetric and positive semi-definite. So V̇ is
negative semidefinite. If the graph is undirected and connected, then L has a
simple zero eigenvalue, yielding

V̇ = −xTLx ≤ 0. (2.183)

This way, we show stability, but not asymptotic stability and hence no
consensus is proved yet.
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We therefore resort to La Salle’s invariance principle. The expression
xTLx be equal to 0 only when

xTLx = 0 =⇒ x = c


1
1
...
1

 . (2.184)

The vector of all ones is the eigenvector associated to the zero eigenvalue.
If the graph is not connected, the first equality is still true, but the second
equality is not.

Yet, so far, we have only assumed the graph as un undirected graph. For
undirected graphs, this is how we show asymptotic stability by Lyapunov
thanks to the fact that L is symmetric. For directed graphs, using the
Lyapunov algorithm is more complicated because L is not symmetric.

Indeed, in the case of directed graphs, L is not symmetric. The quantity

xTLx = xT
L+ LT

2
x (2.185)

is not non-negative anymore, because L is not symmetric.
Given a symmetric matrix A, it is said to be Positive Definite (PD) if and

only if the eigevalues of (A + AT ) > 0. Instead, it is Positive SemiDefinite
(PSD) if and only if the eigenvalues of (A+ AT ) ≥ 0.

xTAx > 0 ∀x 6= 0⇐⇒ PD ⇐⇒ eigs(A+ AT ) > 0

xTAx ≥ 0 ∀x⇐⇒ PSD ⇐⇒ eigs(A+ AT ) ≥ 0
(2.186)

If A is not symmetric, instead we exploit the following relation:

xTAx = xT
A+ AT

2
x, (2.187)

and work on A+AT

2
.

The problem here is that A+AT

2
is not a Laplacian matrix, which makes

the directed case more complicated to deal with.
The Lyapunov approach usually works well in the undirected case. If the

graph is directed, we can recover a similar proof only if the graph is strongly
connected and balanced, resorting to the following relation:

xTAx = xT
A+ AT

2
x =

xTAx

2
+
xTATx

2
. (2.188)

The first term is a scalar and is equal to the second.
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Let us now use a nonlinear control algorithm

ui = −
∑
j∈Ni

aijφ(xi − xj), ∀vi ∈ V . (2.189)

Let φ be an odd function, i.e.,{
φ(x) = −φ(−x)

φ(0) = 0.
(2.190)

For instance, we can interpret φ as a saturation function in order to avoid
large control errors. This could allow to enforce a constraint such as the
norm of ui being upper bounded by a constant number. By introducing a
saturation function we are pre-specifying the upper bound for the control
effort, and this is independent from the initial conditions of xi and xj.

Given ẋi = ui, under (2.189), the closed-loop system becomes

ẋi = −
∑
j∈Ni

aijφ(xi − xj), ∀vi ∈ V . (2.191)

Does this system reach consensus? The Laplacian matrix this time is no
longer a suitable choice for showing this. So, let us use a simpler Lyapunov
candidate function:

V =
1

2
xTx =

1

2
x2

1 +
1

2
x2

2 + . . .+
1

2
x2
n. (2.192)

The derivative of this Lyapunov candidate function along the system trajec-
tories is:

V̇ =
∂V

∂x1

ẋ1 +
∂V

∂x2

ẋ2 + . . .+
∂V

∂xn
ẋn =

= x1ẋ1 + x2ẋ2 + . . . =

= x1

(
−
∑
j∈Ni

aijφ(xi − xj)
)

+ . . .+ xn

(
−
∑
j∈Nn

anj(xn − xj)
)
.

(2.193)

Let us assume that the graph is undirected and connected. Let us say
that agent 2 is a neighbour of agent 1. Because the graph is undirected, its
Laplacian is symmetric. So, (2.193) becomes

V̇ = −1

2

n∑
i=1

∑
j∈Ni

aij(xi − xj)φ(xi − xj) ≤ 0. (2.194)
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Here, the product (xi − xj)φ(xi − xj) is always positive due to the fact that
φ is an odd function. So, V̇ ≤ 0.

But this goes to 0 only when the arguments of the odd function go to
zero.

More precisely, xi → xj,∀i, j, only if the graph is connected. Instead, if
the graph is not connected, only the connected parts of the graph are such
that xi → xj.

For instance, let us consider the very simple example of disconnected
graph depicted in Fig. 2.18 below. In this case, equation (2.194) still holds,

Figure 2.18: An example of disconnected graph.

but, for node 1, we consider only node 2 as its neighbour. Similarly, for node
3, we consider only node 4 as its neighbour:

− 1

2
a12(x1 − x2)φ(x1 − x2)− 1

2
a21(x2 − x1)φ(x2 − x1). (2.195)

Hence, we will have

x1 → x2

x2 → x1

x3 → x4

x4 → x3.

(2.196)

Instead, x2 will not converge to x3.
Let us now consider the case of interconnected robotic arms. We refer

to 2R manipulators, such as the one depicted in Fig. 2.19 below. Such
manipulators are typically modelled by resorting to the modelling framework
of Euler-Lagrange systems, which is generally given by the following equation:

M(q)q̈ + C(q, q̇, q̇) + g(q) = u. (2.197)
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Figure 2.19: Representation of the 2R planar robot manipulator.

This is a nonlinear system, where M(q) represents the inertia matrix and is
both symmetric and positive definite, q represents the generalized coordinates,
C(q, q̇, q̇) represents the vector of centrifugal torques, u is the control torque,

and q =
(
θ1 θ2

)T
accounts for the joint angles. In particular, Ṁ(q)−2C(q, q̇)

is skew-symmetric.
Recall that if a matrix A is skew-symmetric, then AT = −A =⇒ xTAx =

0. This implies that a quadratic form of any x will give us 0. Indeed,
xTAx = xT (A+AT

2
)x = 0 because A is skew-symmetric (i.e., A+ AT = 0).

Moreover, qd represents the vector of the constant desired generalized
coordinates.

The objective is actually to design u such that q→ qd.
We choose to design the following consensus algorithm for multi-robotic

arm coordination:

u = g(q)−KP (q− qd)−KDq̇. (2.198)

We are considering a PD controller, where the first term accounts for gravity
compensation, the second term is the proportional term and the third term
is the derivative term. In particular, we need to know g(q) exactly: this is a
drawback.

We are considering a nonlinear system plus a nonlinear controller: so, it
is overall nonlinear. Hence, we conduct Lyapunov analysis. We are looking
for an equilibrium point in (q = qd, q̇ = 0, q̈ = 0). We want this to be the
equilibrium point.

M(q)q̈ + C(q, q̇)q̇ = −KP (q− qd)−KDq̇. (2.199)

Let us now compute the error dynamics. Let the error signal be

q̃ = q− qd. (2.200)
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The new system state is therefore (q̃, q̇). In this respect, we carry out
Lyapunov analysis by means of the following Lyapunov candidate:

V =
1

2
q̃T q̃ +

1

2
q̇T q̇. (2.201)

Its derivative along the system trajectories is

V̇ = q̃T ˙̃q + q̇T q̈ = . . . (2.202)

This Lyapunov candidate does not work if we replace the expression of q̈
obtained from (2.199) into (2.202).

So, we choose the following Lyapunov candidate, instead,

V =
1

2
q̃TKP q̃ +

1

2
q̇TM(q)q̇. (2.203)

With respect to this Lyapunov candidate, the derivative along the system
trajectories yields

V̇ =
1

2
˙̃qTKP q̃+

1

2
q̃TKP

˙̃q+
1

2
q̈TM(q)q̇+

1

2
q̇TṀ(q)q̇+

1

2
q̇TM(q)q̈. (2.204)

In particular,
1

2
˙̃qTKP q̃ =

1

2
q̃TKP

˙̃q (2.205)

and
1

2
q̈TM(q)q̇ =

1

2
q̇M(q)q̈. (2.206)

Hence, (2.204) becomes

V̇ = q̃TKP q̃ + q̇TM(q)q̈ +
1

2
q̇TṀ(q)q̇. (2.207)

From (2.199), we know that

M(q)q̈ = −C(q, q̇)q̇−KP q̃−KDq̇. (2.208)

Hence, thanks to (2.208), we get

V̇ = q̇TKP q̃ + q̇T (−C(q, q̇)q̇−KP q̃−KDq̇) +
1

2
q̇TṀ(q)q̇ =

= q̇TKP q̃− q̇TC(q, q̇)q̇− q̇TKP q̃− q̇TKDq̇ +
1

2
q̇TṀ(q)q̇ =

= −q̇TKDq̇ ≤ 0.

(2.209)
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This results yields that
V̇ ≡ 0 =⇒ q̇ = 0 (2.210)

where the notation ≡ 0 means that V̇ equals 0 forever.
From (2.208), imposing q̇ = 0 implies that q̈ = 0. So what remains is

q̃ = 0, that is, q = qd. So we have shown that (qd, 0, 0) is a GAS equilibrium
point for the considered multi-agent system.

Therefore, with reference to the mathematical model

M(q)q̈ + C(q, q̇)q̇ + g(q) = u, (2.211)

assuming that qd represents the constant desired generalized coordinates,
under the control law

u = g(q)−KP (q− qd)−KD(q̇), (2.212)

the Lyapunov function (2.201) works. It is a positive definite candidate
function because M is positive definite and KP is positive definite too.

Defining the error signal as

q̃ = q− qd, (2.213)

the derivative of the Lyapunov candidate function along the system trajectories
yields

V̇ = . . . = −q̇TKDq̇ ≤ 0. (2.214)

Thus, we achieve tracking because, no matter where we start from, q→ qd.
For instance, such a model can represent multiple robotic arms (see Fig.

2.20), i.e.,

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = ui, i = 1, . . . , n. (2.215)

Let us assume there are no constraints on the q’s. These robots are networked
according to the following control law:

ui = gi(qi)−
∑
j∈Ni

(qi − qj)−Kiq̇i. (2.216)

In particular, the aim of such controller design is that we want to synchro-
nize the multiple robot arms.

With respect to such a controller, we can use the Lyapunov function
approach. The Lyapunov function is the sum of a bunch of components. In
this case, we have a group Lyapunov function, i.e., the sum of everything:

V =
1

4

n∑
i=1

∑
j∈Ni

‖qi − qj‖2 +
1

2

n∑
i=1

q̇Ti Mi(qi)q̇i. (2.217)
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Figure 2.20: Multiple robotic arms.

The norm term in the equation above does not represent the tracking error,
but the relative error. This is because

n∑
i=1

∑
j∈Ni

‖qi − qj‖2 = 2qT (L⊗ Im)q. (2.218)

We use this form because that is good for showing that such a term is positive
definite. Moreover, the reason for that Kronecker product is that qi ∈ Rm.

Previously, we used

xTLx =
1

2

n∑
i=1

∑
j∈Ni

aij(xi − xj)2, xi ∈ R,x ∈ Rn. (2.219)

Instead, now we are using

xT (L⊗ Im)x =
1

2

n∑
i=1

∑
j∈Ni

aij‖xi − xj‖2, xi ∈ Rm,x ∈ Rm×n. (2.220)

In vector form, we now have that (2.217) can be rewritten as

V =
1

2
qT (L⊗ Im)q +

1

2
q̇TM(q)q̇, (2.221)

and this is a more concise version of V . The first term represents some sort
of potential energy, whereas the second term represents some sort of kinetic
energy. In particular,

q̇ =

q̇1
...
q̇n

 , (2.222)
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and

M(q) =

M1(q1) . . . . . .

. . .
. . . . . .

. . . . . . Mn(qn)

 . (2.223)

Let us now compute V̇ .

V̇ = q̇T (L⊗ Im)q +
1

2
q̈M(q)q̇ +

1

2
q̇TṀ(q)q̇ +

1

2
q̇TM(q)q̈. (2.224)

The second term in the equation above is a scalar. The last term is the scalar
transpose of the second term, so they must be the same, i.e., (2.224) becomes

V̇ = q̇T (L⊗ Im)q + q̇TM(q)q̈ +
1

2
q̇TṀ(q)q̇. (2.225)

From the closed-loop system, we have

M(q)q̈ = −C(q, q̇)q̇− (L⊗ Im)q−Kq̇, (2.226)

with

C(q, q̇) =

C1(q1, q̇1) . . . . . .

. . .
. . . . . .

. . . . . . Cn(qn, q̇n)

 , (2.227)

K =

K1 . . . . . .

. . .
. . . . . .

. . . . . . Kn

 , (2.228)

namely, for each i,

Mi(qi)q̈i = −Ci(qi, q̇i)q̇i −
∑
j∈Ni

(qi − qj)−Kiq̇i. (2.229)

If we put (2.226) into (2.225), we get:

V̇ = q̇T (L⊗ Im)q + q̇T (−C(q, q̇))q̇− q̇T (L⊗ Im)q+

+
1

2
q̇TṀ(q)q̇− q̇TKq̇ =

= −q̇TKq̇ ≤ 0.

(2.230)

The second and fourth term cancel out due to the skew simmetry of Ṁ − 2C.
Hence, we have that V̇ is negative semi-definite. So, we resort to La Salle’s
invariance principle.

{V̇ = 0} = {(q, q̇) : q̇ = 0} (2.231)
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Therefore, we have that q̇i = 0 in (2.229) implies q̈i = 0. So, for (2.229) to
hold, it is necessary that ∑

j∈Ni

(qi − qj) = 0 (2.232)

If the graph is connected, then we have

Lx = 0 =⇒ x = c


1
1
...
1

 , (2.233)

thus implying synchronization.
If the graph is disconnected, the agents will not synchronize, but just the

connected subcomponents of the graph will be synchronized.
In all these cases (nonlinear), the graph is undirected because otherwise

the cancellations in the Lyapunov arguments cannot be made anymore.
Instead, let us now use:

ui = gi(qi)−
∑
j∈Ni

(qi − qj)−K
∑
j∈Ni

(q̇i − q̇i). (2.234)

In this case, there is also relative damping: under (2.234), will the robot
synchronize and then continue to move on? Unfortunately, (2.234) does not
work because for the overall model (qi = qj, q̇i = q̇j) may not be an equilibrium
point. But this result can be achieved by following adaptive control ideas.

Let us now consider a second-order model, i.e., the double integrator case,{
ẋi = vi

v̇i = ui.
(2.235)

Let us resort to the control law

ui = −
∑
j∈Ni

(xi − xj)−K
∑
j∈Ni

(vi − vj). (2.236)

For the single-integrator case, we used Lyapunov analysis to show that

ẋi = ui (2.237)

works with
ui = −

∑
j∈Ni

aijφ(xi − xj), (2.238)
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where φ(·) is an odd kind of saturation function.
We now try to copy the previously presented approach and change the

linear function with a nonlinear function in the second-order model, for
instance a saturation function in order to ensure that the input command is
properly bounded.

ui = −
∑
j∈Ni

aijφ(xi − xj)−
∑
j∈Ni

aijφ(vi − vj) (2.239)

For single-integrators it is easy. For double integrators, it is more difficult
because we are controlling an intermediate state, the acceleration, but we
need to get to the velocity. Let us assume again that we have an undirected
graph.

Let us choose the following Lyapunov function

V =
1

2

n∑
i=1

∑
j∈Ni

aij

∫ xi−xj

0

φ(τ)dτ +
1

2

n∑
i=1

v2
i . (2.240)

We integrate the function φ from 0 to the difference (xi − xj). We do not use
φ2 because it will not work. Let us see what V̇ is:

V̇ =
1

2

n∑
i=1

∑
j∈Ni

aijφ(xi − xj)(ẋi − ẋj) +
n∑
i=1

viv̇i, (2.241)

where ẋi = vi and ẋj = vj.
V̇ is very similar to the controller. For instance, we can select the function

φ as tanh, i.e., ∫
tanh(·) = log(cosh(·)). (2.242)

If we put (2.239) into (2.241), these substitutions cause some cancellations,
thus leading to

V̇ = −
n∑
i=1

vi
∑
j∈Ni

aijφ(vi − vj) =

= −
n∑
i=1

∑
j∈Ni

aij(vi − vj)φ(vi − vj) ≤ 0

(2.243)

In the last equality a nonnegative quantity appears, due to the property
that φ that is an odd function.

V̇ is negative semidefinite. This says that the velocities are to be the same
(vi = vj). But for this to be true, due to La Salle’s invariance principle, the
positions have to be the same, too (xi = xj,∀i, j).
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2.4.1 Leader Following

In the consensus problem, if we have a leader, we can introduce the leader to
specify who is guiding. We can assume to have

• Leader 0 (ẋ0 = u0, u0 = 0);

• Followers from 1 to n,

(
ẋi = ui, ui = −

∑
j∈Ni aij(xi − xj)

)
.

What is the control input for agent 0? Agent 0 has no incoming neighbours,
so its input is 0. The leader is indeed a root node in the graph. So, the leader
will not move, but the other agents will move towards him.

Figure 2.21: An example of leader-following topology.

We are going to use a consensus algorithm except for the fact that there
is one node with no neighbours.

u1 = −a10(x1 − x0),

u5 = −a52(x5 − x2),

...

(2.244)

Whenever there is a leader who receives no information and passes his infor-
mation to all the other agents, as long as there is a tree, all the other agents
will converge to the position of the leader himself, i.e.,

xi → x0 (constant). (2.245)

This is a consensus algorithm and therefore requires x0 not to move. So, the
leader is not moving and the other agents will converge to him.
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Yet, there is still a limitation to consider: what if the leader wants to
follow a specified trajectory, that is, arbitrary trajectory x0(t), and we want
the others to track it?{

ẋ0(t) = u0(t) with x0(t) arbitrary,

ẋi = ui.
(2.246)

How to design ui in order to track x0? We could choose:

ui = −K(xi − x0). (2.247)

Does this controller work for tracking purposes? The closed-loop system will
be

ẋi = −K(xi − x0), ∀i ∈ {1, . . . , n}. (2.248)

Let the error signal be defined as

e = xi − x0, (2.249)

then the error dynamics is given by

ė = ẋi − ẋ0 = −Ke− ẋ0. (2.250)

Unfortunately, such an approach does not work. So, to solve this, we introduce
feedforward

ui = ẋ0 −K(xi − x0). (2.251)

Hence, the closed-loop system becomes

ẋi = ẋ0 −K(xi − x0). (2.252)

Given the error signal
e = xi − x0, (2.253)

the error dynamics is
ė = −Ke. (2.254)

If we have one single leader followed by one agent, we can use a proportional
controller plus a feedforward term. But proportional plus feedforward does
not work if we have a bunch of followers (more than one) who want to follow
the leader.

In this case, the tracking algorithm for the followers is

ui = −βsgn
(∑
j∈N i

aij(xi − xj)
)
, (2.255)
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where Ni is the neighbour set of node i, including the leader itself. This is a
sliding mode controller with

sgn(x) =


1 x > 0,

0 x < 0,

−1 x < 0.

(2.256)

The controller switches back and forth depending on the sign of the error. An
important condition for this to work is that the leader passes his information
to all the other followers plus the graph for the followers has to be undirected.

Figure 2.22: A simple example of graph for showing leader following under
the sliding mode controller (2.255)

Hence, the algorithm (2.255) is guaranteed to track. Let us set x̃i = xi−x0,
accounting for the tracking error for each agent.

˙̃xi = ẋi − ẋ0 = −βsgn
(∑
j∈N i

(x̃i − x̃j)− ẋ0

)
. (2.257)

Now, let us resort to Lyapunov stability analysis. If we put this in vector for,
we are going to have:

˙̃x = −βsgn(M x̃)− 1ẋ0, (2.258)

with

M = L+

a10 . . . . . .

. . .
. . . . . .

. . . . . . an0

 , (2.259)

This is the tracking error dynamics in vector form.
Namely, with respect to the interconnection of agents shown in Fig. 2.22,

we have, for instance,

u2 = −βsgn((x2 − x0) + (x2 − x4) + (x2 − x5)), (2.260)
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where the whole expression between parentheses represents N 2. The (x2−x0)

term comes from

a10 . . . . . .

. . .
. . . . . .

. . . . . . an0

 x̃. The (x2 − x4) + (x2 − x5) term, instead,

comes from the M x̃ part.
Let us now use a positive definite V . M is a positive definite matrix if

and only if the leader has a path to all the other agents. We choose:

V =
1

2
x̃TM x̃. (2.261)

These are sums of pairwise differences. Its derivative along the system
trajectories is

V̇ = x̃TM ˙̃x = x̃M(−βsgn(M x̃)− 1ẋ) =

= −β(M x̃)T sgn(M x̃)− (M x̃)T1ẋ0 ≤
≤ −β‖M x̃‖1 − ‖M x̃‖1 · |ẋ0| < 0

(2.262)

We assume that β > |ẋ0|, so that |ẋ0| is upper bounded. By this assumption,
the algorithm works and V̇ < 0, thus yielding the desired tracking result.

2.5 Networked Lagrangian Systems

Following the observations made in Section 2.3, this Section briefly moves
from point models in distributed multi-agent coordination to more realistic
Lagrangian models. A class of mechanical systems including autonomous
vehicles, robotic manipulators, walking robots, etc. are Lagrangian systems.
In particular, we focus on fully-actuated Lagrangian systems. Our objective is
to drive a team of agents modeled by Euler-Lagrange equations to achieve the
desired relative deviations on thier vectors of generalized coordinates through
local interaction.

Let us consider a team of n agents with Euler-Lagrange equations given
by

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi, i = 1, . . . , n, (2.263)

where qi ∈ Rp is the vector of generalized coordinates, Mi(qi) ∈ Rp×p is
the symmetric positive-definite inertia matrix, Ci(qi, q̇i)q̇i ∈ Rp is the vector
accounting for the Coriolis and centrifugal torques, gi(qi) is the vector of
gravitational torques, and τi ∈ Rp represents the vector of torques enforced
by the actuators associated with the i-th agent. Throughout the subsequent
analysis, we assume that the following assumptions hold.
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Assumption 2.1. (Boundedness). For any i, there exist positive constants
km, km,
kC , kC1 , kC2 , and k∗g such that Mi(qi)− kmIp is positive semidefinite, Mi(qi)−
kmIp is negative semidefinite, ‖gi(qi)‖ ≤ kg, ‖Ci(x, y)‖ ≤ kC‖y‖, and ‖Ci(x, z)·

w − Ci(y, v)w‖ ≤ kC1‖z − v‖‖w‖ + kC2‖x − y‖ · ‖w‖ · ‖z‖ for all vectors
x, y, v, w ∈ Rp.

Assumption 2.2. (Skew-symmetry property). Ṁi(qi) − 2Ci(qi, q̇i) is skew-
symmetric (i.e., yT [Ṁi(qi)− 2Ci(qi, q̇i)]y = 0 for all y ∈ Rp).

Assumption 2.3. (Linearity in the parameters). Mi(qi)q̈i + Ci(qi, q̇i)q̇i +
gi(qi) = Yi(qi, q̇i, q̈i)Θi, where Yi(qi, q̇i, q̈i) is the regressor and Θi is the constant
parameter vector for the i-th agent.

Define q := [qT1 , . . . , q
T
n ]T , and q̇ := [q̇T1 , . . . , q̇

T
n ]T . Also, define M(q) :=

diag [M1(q1), . . . ,Mn(qn)], C(q, q̇) := diag [C1(q1, q̇1), . . . , Cn(qn, q̇n)], and
g(q) := [gT1 (q1), . . . , gTn (qn)]T .

2.5.1 Distributed Leaderless Coordination

Let us define q̆ij := δi − δj, where δi ∈ Rp is constant. Here q̆ij denotes
the constant desired relative deviation on vectors of generalized coordinates
between agents i and j. Our objective here is to design a distributed leaderless
coordination algorithm for the networked Lagrangian system (2.263) such
that qi(t)− qj(t)→ q̆ij and q̇i(t)→ 0p as t→∞. Before presenting such an
algorithm, we need the following lemma.

Lemma 2.6. [154] Let ψ : R→ R be a continuous odd function with ψ(x) > 0
for x > 0. Suppose that ζi ∈ Rp, φi ∈ Rp, K ∈ Rp×p, and D := [dij] ∈ Rn×n.
If D is symmetric, then

1

2

n∑
i=1

n∑
j=1

dij(ζi−ζj)Tψ[K(φi−φj)] =
n∑
i=1

ζTi

{ n∑
j=1

dijψ[K(φi−φj)]
}
. (2.264)

Let us now consider a coordination algorithm in the form

τi = gi(qi)−
n∑
j=1

aij(qi − qj − q̆ij)−
n∑
j=1

bij(q̇i − q̇j)−Kiq̇i, (2.265)

where i = 1, . . . , n, aij is the (i, j)-th entry of the adjacency matrix A ∈
Rn×n associated with the undirected graph GA := (V , EA) characterizing
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the interaction among the n agents for qi, bij is the (i, j)-th entry of the
adjacency matrix B ∈ Rn×n associated with the undirected graph GB :=
(V , EB) characterizing the interaction among the n agents for q̇i, and Ki ∈ Rp×p

is a symmetric positive definite matrix. Moreover, GA and GB are allowed to
be different.

Theorem 2.7. [154] Using control law (2.265) for the networked Lagrangian
system (2.263), qi(t)− qj(t)→ q̆ij and q̇i(t)→ 0p, i, j = 1, . . . , n as t→∞ if
the graph GA is undirected connected and the graph GB is undirected.

Proof. Using control law (2.265), the networked Lagrangian system (2.263)
can be written as

d

dt
(qi − qj − q̆ij) = q̇i − q̇j,

d

dt
q̇i = −M−1

i (qi)

[
Ci(qi, q̇i), q̇i +

n∑
j=1

aij(qi − qj − q̆ij)+

+
n∑
j=1

bij(q̇i − q̇j)Kiq̇i

]
.

(2.266)

Let q̆ := [q̆T1 , . . . , q̆
T
n ]T with q̆i := qi − δi, and K := diag(K1, . . . , Kn). Let

LA and LB be, respectively, the Laplacian matrix associated with GA and
with GB. Note that both LA and LB are symmetric positive semidefinite
because both GA and GB are undirected. Let q̆ be a column stack vector of
all qi − qj − q̆ij, where i < j and aij > 0 (i.e., agents i and j are neighbours).
Define x := [q̆T , q̇T ]T . Let us now consider the Lyapunov function candidate
for system (2.266) as

V (t,x) =
1

2
q̆T (LA ⊗ Ip)q̆ +

1

2
q̇TM(q)q̇. (2.267)

Because the graph GA is undirected, then we can write

q̆T (LA ⊗ Ip)q̆ =
1

2

n∑
i=1

n∑
j=1

aij‖qi − qj − q̆ij‖2. (2.268)

It then follows that V is positive definite and decrescent with respect to x.
The derivative of the Lyapunov candidate function V is given by:

V̇ (t,x) = q̇T (LA ⊗ Ip)q̆ +
1

2
q̈TM(q)q̇ +

1

2
q̇TṀ(q)q̇ +

1

2
q̇TM(q)q̈ =

= q̇T (LA ⊗ Ip)q̆ + q̇TM(q)q̈ +
1

2
q̇TṀ(q)q̇,

(2.269)
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by using the fact that M(q) is symmetric. Using control law (2.265), system
(2.266) can be written in a vector form as

M(q)q̈ = −C(q, q̇)q̇− (LA ⊗ Ip)q̆− (LB ⊗ Ip)q̇−Kq̇. (2.270)

Recall that Ṁ(q)− 2C(q, q̇) is skew-symmetric. By applying (2.270), the
derivative of V can be rewritten as

V̇ (t,x) = −q̇T (LB ⊗ Ip)q̇− q̇TKq̇ ≤ 0. (2.271)

Let now W (t,x) := q̇T (LA ⊗ Ip)q̆. Then, |W (t, x)| ≤ ‖q̇‖‖(LA ⊗ Ip)q̆‖.
Inequality (2.271) implies that V [t,x(t)] ≤ V [0,x(0)], ∀t ≥ 0, which in turn
implies that ‖q̆‖ and ‖q̇‖ are bounded. Since (LA ⊗ Ip)q̆ is a column stack
vector of all

∑n
j=1 aij(qi − qj − q̆ij), i = 1, . . . , n, it follows that ‖(LA ⊗ Ip)q̆‖

is bounded. It follows that |W (t,x)| is bounded along the solution trajectory.
At this point, the derivative of W along the solution trajectories of (2.270)

is

Ẇ (t,x) = q̈T (LA ⊗ Ip)q̆ + q̇T (LA ⊗ Ip)q̇ =

= −q̇TCT (q, q̇)M−1(q)(LA ⊗ Ip)q̆−
− q̆T (LA ⊗ Ip)M−1(q)(LA ⊗ Ip)q̆−
− q̇T (LB ⊗ Ip)M−1(q)(LA ⊗ Ip)q̆− q̇TKM−1(q)(LA ⊗ Ip)q̆+

+ q̇T (LA ⊗ Ip)q̇.
(2.272)

Note that ‖q̇‖ is bounded. It follows from Assumpt. 2.1 that ‖M−1(q)‖
and C(q, q̇)q̇ are bounded. Therefore, Ẇ (t,x) can be written as Ẇ (t,x) =
g[β(t),x], where g is continuous in both arguments and β(t) is continuous
and bounded. On the set Ω := {(q̆, q̇)|V̇ = 0}, q̇ = 0np and Ẇ (t,x) becomes

Ẇ (t,x) = −q̆T (LA ⊗ Ip)M−1(q)(LA ⊗ Ip)q̆. (2.273)

Note that M−1(q) is symmetric positive definite. It follows from Assumpt.
2.1 that

q̆T (LA ⊗ Ip)M−1(q)(LA ⊗ Ip) ≥
1

km
‖(LA ⊗ Ip)q̆‖2. (2.274)

In particular, note that ‖(LA ⊗ Ip)q̆‖2 is positive definite with respect to
q̆. Moreover, on the set Ω, there exists a class K function, α(·), such that
‖(LA ⊗ Ip)q̆‖2 ≥ α(‖q̆‖). Therefore, for all x ∈ Ω, |Ẇ (t,x)| ≥ 1/kmα(‖q̆‖).
We conclude from this that the equilibrium of (2.266) (i.e., ‖q̆‖ = 0 and ‖q̇‖ =
0) is uniformly asymptotically stable, thus implying that qi(t)− qj(t)→ q̆ij
and q̇i(t)→ 0p as t→∞ because GA is undirected connected.
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2.5.2 Simulation

We now simulate a scenario where six two-link revolute joint arms are co-
ordinated through local interaction according to the algorithm (2.265). For
simplicity, we assume each arm to be identical. The Euler-Lagrange equation
of each two-link revolute joint arm is given above. In particular, the inertia
matrix, the vector of Coriolis and centrifugal torques, and the vector of
gravitational torques are given by

Mi(qi) =

[
Θi(1) + 2Θi(2) cos[qi(2)] Θi(3) + Θi(2) cos[qi(2)]
Θi(3) + Θi(2) cos[qi(2)] Θi(3)

]
,

Ci(qi, q̇i) =

[
−Θi(2) sin[qi(2)]q̇i(2) −Θi(2) sin[qi(2)][q̇i(1) + q̇i(2)]
Θi(2) sin[qi(2)]q̇i(1) 0

]
,

gi(qi) =

[
Θi(4)g cos[qi(1)] + Θi(5)g cos[qi(1) + qi(2)]

Θi(5)g cos[qi(1) − qi(2)]

]
,

(2.275)

where qi := [qi(1), qi(2)]
T , g = 9.8 m/s2 is the acceleration due to gravity, Θ :=

[Θi(1),Θi(2),Θi(3),Θi(4),Θi(5)] = [m1l
2
c1 +m2(l21 + l2c2) + J1 + J2,m2l1lc2,m2l

2
c2 +

J2,m1lc1 +m2l1,m2lc2].
Here the masses of links 1 and 2 are, respectively, m1 = 1 kg and m2 =

0.8 kg, the lengths of links 1 and 2 are, respectively, l1 = 0.8 m and l2 = 0.6 m,
the distances from the previous joint to the center of mass of links 1 and 2
are, respectively, lc1 = 0.4 m and lc2 = 0.3 m, and the moments of inertia of
links 1 and 2 are, respectively, J1 = 0.0533 kg/m2 and J2 = 0.024 kg/m2.

For simplicity, we assume that the graphs GA and GB are identical. Fig.
2.23 shows GA (equivalently, GB) for the six two-link revolute joint arms. The
control parameters for algorithm (2.265) are Ki = I2, i = 1, . . . , 6, aij =
bij = 1 if (i, j) ∈ EA (or EB), q̆ij = 02. We let qi(0) = [π

7
i, π

8
i]T rad and

q̇(0) = [0.1i− 0.4,−0.1i+ 0.5]T rad/s, where i = 1, . . . , 6.
Figs. 2.25-2.27 show, respectively, the joint angles, their derivatives, and

the control torques of the six robot arms using control law (2.265). The joint
angles of all arms achieve coordination while their derivatives converge to
zero.

2.6 Sampled-Data Control

We will now briefly investigate distributed multi-agent coordination in a
sampled-data setting. In particular, we will examine a distributed sampled-
data algorithm for coordinated tracking where a group of followers with
single-integrator dynamics, by interaction with their neighbours at discrete-
time instants, intercepts a dynamic leader who is a neighbour of only a
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Figure 2.23: Graph GA (equivalently, GB) for six two-link revolute joint arms.
An edge between i and j denotes that agents i and j are neighbours. The
graph is undirected connected.

Figure 2.24: Simulink block scheme of control law (2.265) plugged into the
networked Lagrangian system described in the current Subsection.

subset of the followers. In this respect, a PD-like discrete-time algorithm
is proposed and we consequently study the conditions that must hold on
the interaction graph, on the sampling period, and on the control gain in
order to guarantee stability under directed fixed interaction, remaining within
quantitative bounds for the tracking errors.
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Figure 2.25: Joint angles of the six robot arms using control law (2.265).

Figure 2.26: Joint angle derivatives of the six robot arms using control law
(2.265).

2.6.1 Sampled-Data Coordinated Tracking for Single-
Integrator Dynamics

In multi-agent coordination, it often happens that the agents are able to
interact with the neighbouring agents only intermittently rather than con-
tinuously, e.g., due to low bandwidth, unreliable communication channels,
limited sensing capabilities, or power and cost constraints.

In particular, a multi-agent system with intermittent interaction, where
agents with continuous-time dynamics are controlled on the basis of informa-
tion coming from their neighbours and updated at discrete-time instants, can
be treated as a sampled-data system consisting of multiple networked sub-



CHAPTER 2. DISTRIBUTED COORDINATION 146

Figure 2.27: Control torques of the six robot arms using control law (2.265).

systems. This is why we are motivated to study also distributed multi-agent
coordination in a sampled-data setting, and we explicitly consider the effect
of sampled-data control on the stability of the agents. Hence, we will now
focus on sampled-data coordinated tracking for single-integrator dynamics.

Let us assume that, in addition to n followers, labeled as agents or followers
from 1 to n, with single-integrator dynamics, there exists a dynamic leader,
defined as agent 0, whose position is denoted with x0(t) ∈ Rm. The leader
is assumed to be either physical or virtual. Let G := (V , E) be the directed
graph characterizing the interaction among the n followers. Let G := (G, E)
be the directed graph accounting for the interaction among the leader and
the followers corresponding to G.

Let us briefly recall a Proportional-Derivative-like (PD-like) continuous-
time coordinated tracking algorithm proposed in [151] as

ui(t) =
1∑n

j=0 aij

n∑
j=1

aij{ẋj(t)− γ[xi(t)− xj(t)]}+

+
ai0∑n
j=0 aij

{ẋ0(t)− γ[xi(t)− x0(t)]}, ∀vi ∈ V ,
(2.276)

where aij, i, j = 1, . . . , n is the (i, j)-th entry of the adjacency matrix A ∈
Rn×n associated with the directed graph G, ai0 > 0, i = 1, . . . , n, if the leader
is a neighbour of follower i and ai0 = 0 otherwise, and γ is a positive gain.
The objective of control law (2.276) is to guarantee that xi(t) − x0(t) →
0m, i = 1, . . . , n, as t → ∞. Note that (2.276) requires that each follower
obtains instantaneous measurements of the neighbours’ velocities and also
the leader’s velocity if the leader is a neighbour of the follower. This might
not be a realistic requirement in practical applications. So, we propose a
discrete-time coordinated tracking algorithm.
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Hence, we consider a sampled-data setting where the agents have continuous-
time dynamics while the measurements are made at discrete sampling times
and the control inputs are enforced via zero-order hold as

ui(t) = ui[k], kT ≤ t < (k + 1)T, i = 1, . . . , n, (2.277)

where k denotes the discrete-time index, T denotes the sampling period,
and ui[k] is the control input at t = kT . By using direct discretization, the
continuous-time system can be discretized as

xi[k + 1] = xi[k] + Tui[k], i = 1, . . . , n, (2.278)

where xi[k] is the position of follower i at t = kT . We propose a PD-like
discrete-time coordinated tracking algorithm as

ui[k] =
1∑n

j=0 aij

[
xj[k]− xj[k − 1]

T
− γ(xi[k]− xj[k])

]
+

+
ai0∑n
j=0 aij

[
x0[k]− x0[k − 1]

T
− γ(xi[k]− x0[k])

]
,

(2.279)

where x0[k] denotes the leader’s position at time t = kT , and
xj [k]−xj [k−1]

T
and

x0[k]−x0[k−1]
T

are used to approximate (namely, via the backward Euler method),
respectively, ẋj(t) and ẋ0(t) by noting that xj[k + 1] and x0[k + 1] cannot
be accessed at t = kT . Note that using (2.279), each follower’s position is
updated based on its current position and its neighbours’ current and previous
positions as well as the leader’s current and previous positions if the leader is
a neighbour of the considered follower. The PD-like discrete-time control law
(2.279) can easily be implemented in practice. In the following, we assume
that all agents are in a one-dimensional space (i.e., m = 1) for the simplicity
of presentation. However, all results are still valid for any high-dimensional
space if we introduce the Kronecker product.

Let us analyze the tracking error dynamics as a result of the enforcement
of the coordinated tracking algorithm (2.279). Let the tracking error for
follower i be denoted with εi[k] := xi[k] − x0[k]. It follows that the error
dynamics for the closed-loop system using (2.279) can be written as

εi[k + 1] = εi[k] +
T∑n
j=0 aij

n∑
j=1

aij

[
εj[k]− εj[k − 1]

T
− γ(εi[k]− εj[k])

]
+

+
Tai0∑n
j=0 aij

(
x0[k]− x0[k − 1]

T
− γεi[k]

)
−

− (x0[k + 1]− x0[k])

∑n
j=1 aij∑n
j=0 aij

(x0[k]− x0[k − 1]),

(2.280)
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which can then be written in vector form as

ε[k+1] = [(1−Tγ)In+(1+Tγ)D−1A]ε[k]−D−1Aε[k−1]+Xr[k], (2.281)

where D := diag{
∑n

j=0 a1j, . . . ,
∑n

j=0 anj}, ε[k] := [ε1[k], . . . , εn[k]]T ,A is the
adjacency matrix associated with G, andXr[k] := (2x0[k]x0[k−1]−x0[k+1])1n.

Setting Y [k + 1] :=

[
ε[k + 1]
ε[k]

]
, it follows from (2.281) that

Y [k + 1] = ÃY [k] + B̃Xr[k], (2.282)

with

Ã :=

[
(1− Tγ)In + (1 + Tγ)D−1A −D−1A

In 0n×n

]
, (2.283)

and B̃ :=

[
In

0n×n

]
.The solution of (2.282) is then

Y [k] = ÃkY [0] +
k∑
i=1

Ãk−iB̃Xr[i− 1]. (2.284)

In particular, note that the eigenvalues of Ã play an important role in
determining the value of Y [k] as k →∞. We therefore study the eigenvalues
of Ã. Before moving on, first we study the eigenvalues of D−1A.

Lemma 2.8. [155] Suppose that in G the leader has directed paths to all
followers from 1 to n. Then, D−1A satisfies ‖(D−1A)n‖∞ < 1 and D−1A
has all eigenvalues within the unit circle.

Proof. Note that in G, if the leader has directed paths to all followers, then
each follower has at least one neighbour, that is,

∑n
j=0 aij > 0, i = 1, . . . , n.

Hence, D−1 exists and (2.279) is well defined. Note also that D−1mathcalA
is nonnegative and each row sum of D−1A is less than or equal to one.
Therefore, it follows that ‖D−1A‖∞ ≤ 1. Denote i1 as the set of followers
that are the children of the leader, and ij, j = 2, . . . , κ, as the set of followers
that are the children of followers in ij−1 but are not in ir, r = 1, . . . , j − 2.
Because the leader has directed paths to all followers from 1 to n, there are
at most n edges from the leader to all followers from 1 to n, which implies
that κ ≤ n. Let wi and yTi denote, respectively, the i-th column and row
of D−1A. When the leader has directed paths to all followers from 1 to n,
assume that the k-th follower is a child of the leader, i.e., ak0 > 0. It follows
that yTk 1n = 1 − ak0∑n

j=0 akj
< 1. The same property also applies to the other
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elements in the set i1. Similarly, assume that the l-th follower (one follower
in the set i2) is a child of the k-th follower (one follower in the set i1), which
implies that alk > 0. It follows that the sum of the l-th row of (D−1A)2 can
be written as yTl

∑n
i=1 wi ≤ qTl 1n = 1− alk∑n

j=0 akj
< 1. In addition, the sum of

the k-th row of (D−1A)2 is less than one. A similar analysis shows that each
row sum of (D−1A)κ) is less than one when the leader has directed paths
to all followers from 1 to n. That is, ‖(D−1A)κ‖∞ < 1. Because κ ≤ n and
‖D−1A‖∞ ≤ 1, the condition that ‖(D−1A)n‖∞ < 1 holds. For the second
statement, note that ρ[(D−1A)n] ≤ ‖(D−1A)n‖∞. Because ‖(D−1A)n‖∞ < 1,
then ρ[(D−1A)n] < 1, which implies that ρ(D−1A) < 1.

We now study the conditions under which all the eigenvalues of Ã stay
inside the unit circle.

Lemma 2.9. [155] Suppose that in G the leader has directed paths to all
followers from 1 to n. Let λi be the i-th eigenvalue of D−1A. Then, τi > 0

holds, where τi = 2|1−λi|2(2[1−Re(λi)]−|1−λi|2)
|1−λi|4+4[Im(λi)]2

. If the positive scalars T and γ
satisfy

Tγ < min{1, min
i=1,...,n

τi}, (2.285)

then Ã is such that all its eigenvalues stay within the unit circle.

Proof. When the leader has directed paths to all followers from 1 to n, the
previous lemma implies that |λi| < 1. It follows that |1 − λi|2 > 0 and
|1−λ1|2 = 1− 2Re(λi) + [Re(λi)]

2 + [Im(λi)]
2 < 2[1−Re(λi)], thus implying

that τi > 0. Note that the characteristic polynomial of Ã is given by

det(zI2n − Ã) =

= det

([
zIn − [(1− Tγ)In + (1 + Tγ)D−1A] D−1A

−In zIn

])
=

= det([zIn − (1− Tγ)In − (1 + Tγ)D−1A]zIn +D−1A) =

= det([z2 + (Tγ − 1)z]In + [1− (1 + Tγ)z]D−1A).

(2.286)

Since λi is the i-th eigenvalue of D−1A, we can get that det(zIn +D−1A) =∏n
i=1(z+ λi). It follows that det(zI2n− Ã) =

∏n
i=1{z2 + (Tγ− 1)z+ [1− (1 +

Tγ)z]λi}. Hence, the roots of det(zI2n − Ã) = 0 satisfy the condition

z2 + [Tγ − 1− (1 + Tγ)λi]z + λi = 0. (2.287)

At this point, we recall that each eigenvalue of D−1A, λi, corresponds to two
eigenvalues of Ã. Instead of computing the roots of (2.287) directly, we apply
the bilinear transformation z = s+1

s−1
to (2.287) to get

Tγ(1− λi)s2 + 2(1− λi)s+ (2 + Tγ)λi + 2− Tγ = 0. (2.288)
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Since the bilinear transformation is an exact point-to-point mapping from
the interior of the unit circle in the complex z-plane to the open left hand-side
of the complex s-plane, it follows that (2.287) has all roots within the unit
circle if and only if (2.288) has all roots in the open left hand-side of the
complex plane.

In the following, we determine the conditions on T and γ under which
(2.288) has all roots in the open left hand-side of the complex plane. Letting
s1 and s2 denote the roots of (2.288), it follows from (2.288) that

s1 + s2 = − 2

Tγ
, (2.289)

and

s1s2 =
(2 + Tγ)λi + 2− Tγ

Tγ(1− λi)
. (2.290)

Noting that (2.289) implies that Im(s1)+Im(s2) = 0, we define s1 = a1+jb
and s2 = a2−jb, with j accounting for the imaginary unit. In particular, s1 and
s2 have negative real parts if and only if a1a2 > 0 and a1 + a2 < 0. Moreover,
(2.289) implies a1 + a2 = − 2

Tγ
< 0 because Tγ > 0. We now show a sufficient

condition on T and γ such that a1a2 > 0 holds. By substituting the definitions
of s1 and s2 into (2.290), we have a1a2 + b2 + j(a2 − a1)b = (2+Tγ)λi+2−Tγ

Tγ(1−λi) ,
implying that

a1a2 + b2 = −2 + Tγ

Tγ
+

4[1−Re(λi)]
Tγ|1− λi|2

, (2.291)

(a2 − a1)b =
4Im(λi)

Tγ|1− λi|2
. (2.292)

It follows from (2.292) that b = 4Im(λi)
Tγ(a2−a1)|1−λi|2 . Taking into account that

(a2 − a1)
2 = (a1 + a2)

2 − 4a1a2 = 4
T 2γ2
− 4a1a2, After some manipulation,

(2.291) can be written as

K1(a1a2)2 +K2a1a2 +K3 = 0, (2.293)

with K1 := T 2γ2|1 − λi|4, K2 := −|1 − λi|4 + (2 + Tγ)Tγ|1 − λi|4 − 4[1 −
Re(λi)]Tγ|1−λi|2, and K3 := 1

Tγ
{4[1−Re(λi)]|1−λi|2− (2 +Tγ)|1−λi|4}−

4[IM(λi)]
2.

It can be computed that K2
2 − 4K1K3 = {|1−λi|4 + (2 +Tγ)Tγ|1−λi|4−

4[1−Re(λi)Tγ|1− λi|2}2 + 16T 2γ2|1− λi|4[Im(λi)]
2 ≥ 0, which implies that

(2.293) has two real roots. Because |λi| < 1, it is straightforward to show that
K1 > 0. Therefore, a sufficient condition for a1a2 > 0 is that K2 < 0 and
K3 > 0. When 0 < Tγ < 1, since |1 − λi|2 < 2[1 − Re(λi)], it follows that
K2 < −|1−λi|4+(2+Tγ)Tγ|1−λi|4−2Tγ|1−λi|4 = |1−λi|4[−1+(Tγ)2] ≤ 0.
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Similarly, when 0 < Tγ < τi, it follows that K3 > 0. Hence, if the positive
scalars γ and T satisfy (2.285), all the eigenvalues of Ã stay inside the unit
circle.

We now apply Lem. 2.9 in order to derive the main result of this subsection.

Theorem 2.10. [155] Assuming that the leader’s position x0[k] satisfies∣∣∣∣x0[k]−x0[k−1]
T

∣∣∣∣≤ x (i.e., the changing rate of x0[k] is bounded), and in G the

leader has directed paths to all followers from 1 to n, when the positive
scalars γ and T satisfy (2.285), using control law (2.279) for system (2.278),
the maximum tracking error of the n followers is ultimately bounded by
2Tx‖(I2n − Ã)−1‖∞.

Proof. It follows from (2.279) that

‖Y [k]‖∞ ≤ ‖ÃkY [0]‖∞ +

∥∥∥∥ k∑
i=1

Ãk−iB̃Xr[i− 1]

∥∥∥∥
∞
≤

≤ ‖Ãk‖∞‖Y [0]‖∞ + 2Tx

∥∥∥∥k−1∑
i=0

Ãi
∥∥∥∥
∞
‖B̃‖∞,

(2.294)

where we have used the fact that

‖Xr[i]‖∞ = ‖(2x0[i]− x0[i− 1]− x0[i+ 1])1n‖∞ ≤ 2Tx, (2.295)

for all i because

∣∣∣∣x0[k]−x0[k−1]
T

∣∣∣∣≤ x. When the leader has directed paths

to all followers from 1 to n, it follows from Lemma 2.9 that Ã has all
eigenvalues within the unit circle if the positive scalars T and γ satisfy
condition (2.285). Hence, limk→∞‖

∑k−1
i=0 Ã

i‖∞ = ‖(I2n − Ã)−1‖∞. Also note
that ‖B̃‖∞ = 1. Therefore, we have that ‖Y [k]‖∞ is ultimately bounded
by 2Tx‖(I2n − Ã)−1‖∞. At this point, the theorem follows by noting that
‖Y [k]‖∞ denotes the maximum tracking error of the n followers.

Remark 2.2. The ultimate bound of the tracking errors using the PD-like
discrete-time coordinated tracking algorithm (2.279) is proportional to the
sampling period T . As T approaches zero, the tracking errors will go to zero
ultimately when the changing rate of the leader’s position is bounded and
the leader has directed paths to all followers from 1 to n.
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2.6.2 Comparison Between the Proportional-Like and
Proportional-Derivative-Like Discrete-Time Co-
ordinated Tracking Algorithms

A proportional-like (P-like) continuous-time coordinated tracking algorithm
is given as represented by

ui(t) = −
n∑
j=1

aij[xi(t)− xj(t)]− ai0[xi(t)− x0(t)], (2.296)

where aij, i = 1, . . . , n, j = 0, . . . , n, are defined as in (2.276). Instead, a
P-like discrete-time coordinated tracking algorithm for (2.278) is represented
by

ui[k] = −
n∑
j=1

aij(xi[k]− xj[k])− ai0(xi[k]− x0[k]). (2.297)

Letting εi and ε be defined as above, we write the error dynamics associated
with the closed-loop system (2.278) under control law (2.297) as

εi[k+1] = εi[k]−T
n∑
j=1

aij(εi[k]−εj[k])−Tai0εi[k]−(x0[k+1]−x0[k]), (2.298)

with i = 1, . . . , n. This can be written in vector form as

ε[k + 1] = Qε[k]− (x0[k + 1]− x0[k])1n, (2.299)

where Q := In − TL − Tdiag(a10, . . . , an0) with L being the nonsymmetric
Laplacian matrix associated with G. Note that Q is nonnegative when
0 < T < mini=1,...,n

1∑n
j=0 aij

.

Lemma 2.11. [155] Suppose that in G the leader has directed paths to all
followers from 1 to n. When 0 < T < mini=1,...,n

1∑n
j=0 aij

, all eigenvalues of

Q stay inside the unit circle.

Theorem 2.12. [155] Suppose that the leader’s position x0[k] satisfies∣∣∣∣x0[k]−x0[k−1]
T

∣∣∣∣≤ x, and in G the leader has directed paths to all followers

from 1 to n. When T < mini=1,...,n
1∑n

j=0 aij
, using control law (2.297) for

(2.278), the maximum tracking error of the n followers is ultimately bounded
by x‖[L+ diag{a10, . . . , an0}]−1‖∞.
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Proof. The solution of equation (2.299) is

ε[k] = Qkε[0]−
k∑
i=1

Qk−i(x0[k]− x0[k − 1])1n. (2.300)

The proof of Lemma 2.11 and Theorem 2.12 follows from the proof of
Theorem 2.10 by taking into account that ‖ε[k]‖∞ denotes the maximum
tracking error of the n followers.

Remark 2.3. In contrast with the results in Theorem 2.10, the ultimate bound
of the tracking errors using the P-like discrete-time coordinated tracking
algorithm (2.297) with a dynamic leader is not proportional to the sampling
period T . In fact, even when T approaches zero, the tracking errors using
(2.297) are not guaranteed to go to zero ultimately. The comparison between
Theorems 2.10 and 2.12 shows the benefit of the PD-like discrete-time coordi-
nated tracking algorithm over the P-like discrete-time consensus algorithm
when there exists a dynamic leader who is a neighbour of only a subset of
the followers. As a special case, when the leader’s position is constant (i.e.,
x = 0), it follows from Theorems 2.10 and 2.12 that the tracking errors
will go to zero ultimately using both the P-like and PD-like discrete-time
coordinated tracking algorithms. Yet, in this case, the coordinated tracking
problem reduces to a coordinated regulation problem because the leader’s
position is constant.

2.6.3 Simulation Example

This subsection shows a simulation example of the PD-like discrete-time
coordinated tracking algorithm (2.279). To show the benefit of the PD-like
discrete-time coordinated tracking algorithm, the related simulation result
obtained by applying the P-like discrete-time coordinated tracking algorithm
(2.297) is also presented.

We consider a team consisting of four followers and a leader represented
by the directed graph G given by Fig. 2.28. The adjacency matrix of such a
graph is

A =


0 0 0 0 0
0 0 1 0 0
0 1 0 1 0
1 1 0 0 0
0 0 1 1 0

 . (2.301)

In particular, the graph topology is such that the leader has directed paths
to all four followers. We let aij = 1 if agent j is a neighbour of agent i
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Figure 2.28: Directed graph G associated with four followers and one leader.
An arrow from j to i denotes that agent j is a neighbour of agent i.

and aij = 0 otherwise. For both control laws (2.279) and (2.297), we let
x1[0] = 3, x2[0] = 1, x3[0] = −1, and x4[0] = −2. For control law (2.279), we
also let xi[−1] = 0, i = 1, . . . , 4. The dynamic leader’s position is chosen as
x0[k] = sin(kT ) + kT .

Figs. 2.29 and 2.30 show the positions xi and the tracking errors xi − x0

by using control law (2.279) when T = 0.3 s and γ = 1. In particular, Fig.
2.30 shows that the tracking errors are relatively large. Figs. 2.31 and 2.32
show, instead, xi and xi − x0, respectively, by using control law (2.279) when
T = 0.1 s and γ = 3. From Fig. 2.32, it can be seen that the tracking
errors are very small ultimately. Indeed, the tracking errors become smaller
if the amplitude of the sampling period is reduced. Figs. 2.33 and 2.34 show,
respectively, xi and xi− x0 by using control law (2.279) when T = 0.25 s and
γ = 3. Note that, in this case, the product Tγ is larger than the positive
upper bound derived in Theorem 2.10. Therefore, the tracking errors become
unbounded. Instead, Figs. 2.35 and 2.36 show, respectively, xi and xi− x0 by
using (2.297) when T = 0.1 s and γ = 3. By comparing Figs. 2.36 and 2.32,
it can be seen that the tracking errors obtained using control law (2.297) are
much larger than those achieved using control law (2.297) under the same
conditions.
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Figure 2.29: Agent positions as a result of distributed discrete-time co-
ordinated tracking using the PD-like discrete-time algorithm (2.279) with
T = 0.3 s and γ = 1.

Figure 2.30: Agent tracking errors as a result of distributed discrete-time
coordinated tracking using the PD-like discrete-time algorithm (2.279) with
T = 0.3 s and γ = 1.
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Figure 2.31: Agent positions as a result of distributed discrete-time co-
ordinated tracking using the PD-like discrete-time algorithm (2.279) with
T = 0.1 s and γ = 3.

Figure 2.32: Agent tracking errors as a result of distributed discrete-time
coordinated tracking using the PD-like discrete-time algorithm (2.279) with
T = 0.1 s and γ = 3.
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Figure 2.33: Agent positions as a result of distributed discrete-time co-
ordinated tracking using the PD-like discrete-time algorithm (2.279) with
T = 0.25 s and γ = 3.

Figure 2.34: Agent tracking errors as a result of distributed discrete-time
coordinated tracking using the PD-like discrete-time algorithm (2.279) with
T = 0.25 s and γ = 3.
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Figure 2.35: Agent positions as a result of distributed discrete-time coordi-
nated tracking using the P-like discrete-time algorithm (2.297 with T = 0.1 s
and γ = 3 [155].

Figure 2.36: Agent tracking errors as a result of distributed discrete-time
coordinated tracking using the P-like discrete-time algorithm (2.297 with
T = 0.1 s and γ = 3 [155].



Chapter 3

Multi-Consensus and Almost
Equitable Graph Partitions

3.1 Introduction

In this Chapter, devoted to multi-consensus over static networks, we explore
the interdependency between the convergence properties of the considered
multi-agent system – defined so that the rate of change of each agent’s
state is governed by the sum of its relative states with respect to the other
neighbouring units – and the structural attributes of the underlying network
topology.

In general, consensus in multi-agent systems has attracted a lot of attention
due to a wide variety of applications, such as vehicle or robot formation
control, swarming, attitude alignment, flocking, rendez-vous problems, and
coordinated decision making. Reaching a consensus in a multi-agent system
means that the agents’ states converge to a common value [150]. After the
pioneering works by Vicsek et al. [176] and Jadbabaie et al. [88], a thorough
theoretical framework about consensus has been given in [138], [139] and [119].
The consensus problem has also been widely investigated in more complex
systems, such as nonlinear [108,129,141] or high-order systems [99,151,155].
Also, over the last years, there has been an increasing interest in the redesign
of the network topology under feedback in order to achieve desired consensus
or synchronization objectives [9, 24,25,46,109].

Yet, multi-agent systems may sometimes be required to achieve not just a
single global consensus value, but different consensuses in different groups,
that is, different parts of a multi-agent system are expected to eventually
achieve different consensus states simultaneously. Such a situation is defined
as multi-consensus (or cluster/group consensus). In general, multi-consensus

159
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is currently proving to be more momentous than single consensus in control
science, physics, brain science, computer science and economics, with a
relevant number of applications, such as space-based interferometers, the
design of surveillance and reconnaissance systems, and distributed wireless
sensor networks, where sensors have to be arranged into different groups, each
with a different searching purpose in a different searching area. Hence, it is of
great significance to study the behaviour of multiple agents achieving several
types of consensus simultaneously. Recently, there have been some interesting
investigations in this respect, such as [17], where, in the context of opinion
dynamics, the agents are proven to converge to different clusters so that the
agents belonging to each cluster share a common opinion. In [92], within each
group, the agents cooperate and reach a consensus state. However, in that
setting, agents in non-independent subsystems actually do not reach agreement
in the common sense. Yu and Wang in [183] further studied the cluster
consensus of multi-agent systems in directed networks with time-varying
topologies and delays by dividing the network into several corresponding
subnetworks. In [110], the cluster consensus problem is investigated in directed
networks of nonlinearly coupled multi-agent systems by using pinning control.
Other interesting works investigating multi-consensus of continuous-time
nonlinearly coupled multi-agent systems are [2], [111] and [105]. Moreover,
in [34] discrete-time multi-agent systems with a linear protocol and a time-
varying topology are discussed. Yet, in the existing literature about the
cluster consensus of multi-agent systems, the clusters of agents are formed
artificially and the number of clusters is not determined on the basis of the
digraph Laplacian matrix.

In particular, this Chapter is aimed at shedding light on the relationship
between the number of formed clusters and the structural properties of the
digraph Laplacian matrix. Hence, we tackle the problem of multi-consensus,
being inspired by the most recent results on the relationship between a specific
kind of graph partitions (namely, the so-called almost equitable ones) and
geometric control theory, especially by the invariance properties associated
with such graph partitions [29,133,164]. Indeed, the almost equitability of
a graph partition is an important graph-theoretical property which admits
an interesting geometrical interpretation [4, 113, 128, 185] and thus can be
profitably used to set and solve networked analysis and control problems
relying on a geometric approach. In particular, the mathematical foundation
for the results presented in this paper has been laid by the seminal work [32]
by Caughman and Veerman, where for the first time a block lower triangular
structure is given for the Laplacian matrix of digraphs such that algebraic
multiplicity of the zero eigenvalue is larger than one.

The purpose of this Chapter is therefore to analyze in detail the multi-
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consensus problem and relate it to the notion of almost equitable graph
partition, by providing a clear formalism for examining how the network
topology determines some properties of the dynamic evolution and of the
steady-state behaviour of a multi-agent system. In this Chapter, we focus
on the analysis of multi-consensus behaviours of linearly coupled multi-agent
systems over static network topologies only. The relationship between the
digraph Laplacian and the number of clusters is highlighted. A necessary and
sufficient condition for the global asymptotic stability of multi-consensus in
the considered multi-agent system is eventually provided. The topological
arrangement proposed highlights that, as in the single-consensus case, also in
the multi-consensus one the steady-state values are influenced only by nodes
playing the role of digraph roots.

All the contents of this Chapter belong to the paper [127], which is
currently under review. The Chapter is organized as follows. Section 3.2
provides background information and notation. Sections 3.3 and 3.4 recall
the notions of single consensus, multi-consensus and almost equitable graph
partition, thus setting the stage for the subsequent Section 3.5, which shows
the main result relating multi-consensus and almost equitable graph partitions,
by (i) providing a necessary and sufficient condition for the global asymptotic
stability of multi-consensus and (ii) identifying how many different consensuses
can be achieved based on the properties of the digraph Laplacian matrix.
Concluding remarks in Section 3.6 end the Chapter.

3.2 Notation

Let us consider an unweighted directed graph (or digraph) of order n repre-
sented by G := (V , E), where V = {w1, . . . , wn} is a finite nonempty node set
and E ⊆ V × V is an edge set of ordered pairs of nodes, called edges. For two
distinct nodes wi, wj ∈ V, we have (wi, wj) ∈ E if there is an edge from wi
to wj with wi being the tail and wj being the head of the edge: hence, wi is
said to be a neighbour of wj. We call any subset ρ of V a cell of V .

A digraph G contains a rooted out-branching as a subgraph if it does not
contain a directed cycle and if it has a node wroot (i.e., the root node) such
that for every other node w ∈ V there exists a directed path from wroot to w.

We call a collection of cells, given by π = {ρ1, ρ2, . . . , ρk}, a partition of
V if ρi ∩ ρj = ∅, whenever i 6= j, and ∪ki=1ρi = V . For a cell ρ ⊆ V , we define
the characteristic vector of ρ as p(ρ) ∈ Rn such that:

pi(ρ) =

{
1 if vi ∈ ρ,
0 otherwise.
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For a partition π = {ρ1, ρ2, . . . , ρk}, we define the characteristic matrix of π as
P (π) =

(
p(ρ1) p(ρ2) . . . p(ρk)

)
. With Im P (π), we denote the range space

of P (π), that is, the span of the column vectors of P (π). A partition π1 is
said to be finer than another partition π2, or alternatively π2 is coarser than
π1, if each cell of π1 is a subset of some cell of π2. With the symbol ρtr, we
denote a generic trivial cell, i.e., a cell containing one node only.

Moreover, let 1n represent the n-dimensional vector of all ones and let

the vectors e1 =
(
1 0 0 . . . 0

)T
, e2 =

(
0 1 0 . . . 0

)T
, . . . , en =(

0 0 . . . 0 1
)T

denote the standard basis of Rn. Let GLn(R) be the
general linear group of all n× n invertible matrices and let Tn(R) ⊆ GLn(R)
be the set of the n! permutation matrices TP . Recall that a permutation
matrix is a square matrix obtained from the identity matrix of the same size by
a permutation of rows and it is always row-equivalent to the identity matrix.
Furthermore, every permutation matrix TP is orthogonal, i.e., T TP = T−1

P .
Before presenting the main contribution of this paper, some well-known

facts are reported for the sake of completeness.

3.3 Recalls on Single Consensus and on Multi-

Consensus

For the purposes of multi-agent system analysis and in order to investigate the
related consensus properties, the literature typically refers to the multi-agent
system model

ẋ = −Lx, (3.1)

consisting of n > 1 agents labeled by the node set V, that is, each agent
corresponds to a specific node of the underlying digraph G. The state vector
is therefore defined as x(t) := col(x1(t), . . . , xn(t)), with xi(t) denoting the
state of node (or agent) wi at time t. The matrix L = (lij) ∈ Rn×n, with
(i, j) ∈ {1, . . . , n} × {1, . . . , n}, denotes the in-degree Laplacian matrix of the
unweighted digraph G.

In particular, we are interested in examining the steady-state behaviour of
system (3.1) in the case when the underlying digraph admits a single consensus
value or multiple consensuses. A preliminary topological characterization in
terms of connectedness is needed in order to specify how different consensus
situations are reached.

Definition 3.1. [119] We distinguish among four different topologies in
terms of connectedness.
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• A digraph is said to be weakly connected if its disoriented version is
connected, that is, if its disoriented version is such that there always
exists a path between every pair of nodes and there are no unreachable
nodes.

• A digraph is said to be a rooted digraph if it is weakly connected and
it contains at least one rooted out-branching.

• A digraph is said to be strongly connected if there always exists a
directed path between every pair of nodes and there are no unreachable
nodes.

• A digraph is said to be balanced if, for every node, the in-degree (i.e.,
the number of head ends adjacent to the considered node) and the
out-degree (i.e., the number of tail ends adjacent to the considered node)
are equal.

Remark 3.1. A strongly connected digraph is both weakly connected and
rooted, but the converse is not necessarily true. Moreover, a balanced digraph
is strongly connected, but the converse is not necessarily true.

Definition 3.1 will be used to specify how the degree of connectedness of
the network topology underlying the dynamics (3.1) impacts on the consensus
value that is eventually reached. In this respect, we now give the definition
of single consensus and multi-consensus, respectively.

Definition 3.2. Given a digraph G, a single consensus, or simply consensus,
is achieved when the differences between the state trajectories of all nodes in
V converge to zero as time goes to infinity, i.e.,

lim
t→∞

[xi(t)− xj(t)] = 0,

∀i, j | wi, wj ∈ V .
(3.2)

Definition 3.3. Given a digraph partition π = {ρ1, ρ2, . . . , ρk}, multi-consensus
is defined as the condition when:

• the differences between the state trajectories of nodes belonging to the
same cell of π converge to zero as time goes to infinity, i.e.,

lim
t→∞

[xi(t)− xj(t)] = 0,

∀i, j | wi ∈ ρβ, wj ∈ ρβ, i 6= j, β = 1, . . . , k;
(3.3)
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• the differences between the state trajectories of nodes belonging to
different cells of π do not converge to zero, i.e.,

lim
t→∞
|xi′(t)− xj′(t)| > 0 (3.4)

holds for each wi′ ∈ ρβ and wj′ ∈ ρβ′ with β 6= β′.

Multi-consensus is equivalent to the asymptotic stability of the following
multi-consensus manifold with respect to partition π:

Mπ = {x ∈ Rn| xi = xj, ∀i, j |
wi ∈ ρβ, wj ∈ ρβ, i 6= j, β = 1, . . . , k}.

(3.5)

As known, consensus or multi-consensus is achieved depending on the
algebraic multiplicity, µ, of the zero eigenvalue (e.g., see [182]). First of all,
we make a few interesting statements, borrowed from the literature – namely,
from [151] and [119] – and reformulated so as to recover the classical consensus
and multi-consensus definitions.

Proposition 3.1. [119] The presence of at least one rooted out-branching
in a weakly connected digraph G is equivalent to the condition that (i) the
algebraic multiplicity of the zero eigenvalue of the Laplacian matrix L be
unitary, i.e., µ(λ1 = 0) = 1, and (ii) all the other eigenvalues of L have
positive real parts.

Proof. Refer to Proposition 3.8, page 51 in [119].

With this in mind, we recall the following result.

Proposition 3.2. [119] Any rooted digraph underlying the dynamics (3.1) is
such that the states of its nodes converge to a unique Globally Asymptotically
Stable (GAS) consensus c, i.e.,

x∞ = 1n · c, with c = vT1 x0. (3.6)

Proof. The proof, as is well known, immediately follows from the spectral
factorization of the exponential of the square matrix (−L), i.e.,

x(t) = e−Ltx0 = (u1v
T
1 )x0 + T

n∑
i=2

(
e−J(λi)t

)
T−1x0, (3.7)
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where the second term comes from the Jordan decomposition of L, i.e., from
L = T−1J(Λ)T with

J(Λ) =


0 0 . . . 0
0 J(λ2) . . . 0
...

...
...

...
0 . . . 0 J(λn)

 . (3.8)

Due to Proposition 3.1, the eigenvalues λ1, . . . , λn of L must be such that

λ1 = 0 and 0 < Re[λ2] ≤ . . . ≤ Re[λn]. (3.9)

Hence, considering that u1 = 1n and that the second term in (3.7) vanishes
at steady state, we easily recover (3.6).

Remark 3.2. If the digraph is balanced, L is symmetric and v = 1n: thus,
classical average consensus is recovered, i.e., c =

∑n
i=1

x0,i
n

, where x0,i is the
initial condition of the state of each digraph node, for i = 1, . . . , n.

A deeper understanding of such results can be gained by making use of
the properties of the Laplacian matrix L when the digraph is rooted. For
that, the following definition is instrumental.

Definition 3.4. Let I∗ denote the maximal invariant subset of V under the
action of L. Formally,

I∗ : {wi ∈ V | Lp(ρtrwi) =
l∑

j=1

αjp(ρ
tr
wj

)}, (3.10)

where l := |I∗|, αj ∈ Z, and p(ρtrwi) denotes the characteristic vector of a
trivial cell containing node wi only.

Remark 3.3. Given I∗ defined as in Definition 3.4, then:

I∗ ≡ V \ Q, (3.11)

where Q denotes the subset of the root nodes of the digraph.

Remark 3.4. The set I∗ is empty if and only if the digraph is strongly
connected.

Proposition 3.3. If I∗ ≡ ∅, then the permutation matrix

TP : T−1
P =

(
∀ p(ρtrw1

) . . . p(ρtrwl)
)
, (3.12)
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where the ∀ symbol denotes any suitable basis completion consisting of char-
acteristic vectors of trivial cells, yields the following block lower triangular
structure:

L = TP L T−1
P =

(
R 0
K1 K

)
, (3.13)

where R and K are square matrices of order (n− l) and l, respectively.

Proof. The proof immediately follows from (3.10) by noting that the charac-
teristic vectors p(ρtrw1

), . . . , p(ρtrwl) are linearly independent. Note that, instead,
the first (n − l) columns of T−1

P can be accounted for as the characteristic
vectors of as many trivial cells, each containing one of the digraph root
nodes.

Indeed, from the point of view of dynamics, Q acts as a dominating/inde-
pendent subset of network nodes, while I∗ acts as the dominated/dependent
one.

With this in mind, we can further detail Proposition 3.2 as follows.

Theorem 3.4. A rooted digraph underlying the dynamics (3.1) is such that
the states of its nodes converge to a unique GAS consensus defined as:

x∞ = 1n · c, with c = vT1 x0 =
r∑
i=1

vri · x0,i, (3.14)

where r := |Q|, v1 yields vT1 u1 = 1 (with u1 and v1 being the right and left
eigenvectors associated with the zero eigenvalue of L, respectively), the vri ’s
are the components of vr, defined as the vector such that the left eigenvector

v1, in the x = TP x coordinates, takes the form v1 =
(
vr 0

)T
, and the

x0,i’s are the components of x0, denoting the initial conditions of the system
expressed in the x-coordinates. Moreover, each vri , i = 1, . . . , r, is such that
vri 6= 0 and

∑r
i=1 v

r
i = 1.

Proof. In the x = TP · x coordinates, the left eigenvector vT1 takes the form(
(vr)T 0

)
, i.e., it has the last components equal to 0, since R in (3.13) is

a Laplacian matrix. This proves that only the initial conditions of the root
nodes influence the consensus value that is eventually achieved. Moreover,
since (vr)T is a left eigenvector,

∑r
i=1 v

r
i = 1. It remains to prove that all

the vri ’s are nonzero. This follows from the observation that if one or more
elements of vr were zero, then the corresponding network nodes would belong
to I∗.
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From Theorem 3.4, as the intuition suggests, we infer that only the digraph
root nodes influence the achieved consensus value. Equation (3.14) specifies
such an influence. As a particular case, note that, if the digraph is strongly
connected, all the network nodes are root nodes and must therefore influence
the achieved consensus value (i.e., all the coefficients of vT must be nonzero).

Instead, if µ(λ1) > 1, then the multi-agent system (3.1) converges to a
different GAS equilibrium state than (3.14) or the average consensus. In the
following, whenever µ(λ1) > 1, we will refer to such a quantity simply as µ.

Proposition 3.5. Weak connectedness of the digraph G and the absence
of a rooted out-branching in G are sufficient conditions for the algebraic
multiplicity of the zero eigenvalue to grow above 1, i.e., µ > 1, yielding
rank(L) = n− µ. In such a case, the GAS equilibrium state the multi-agent
system (3.1) converges to is given by

x′∞ = lim
t→∞

x(t) = (u1v1)Tx0 + (u2v2)Tx0+

+ . . .+ (uµvµ)Tx0,
(3.15)

where u1, . . . ,uµ are µ distinct and linearly independent eigenvectors asso-
ciated with the zero eigenvalue of L (i.e., Lui = 0, i = 1, . . . , k) such that
{u1, . . . ,uµ} is a basis of ker L := U .

Proof. It easily follows from the proof of Proposition 3.2, with the only
difference that in this case we recover (3.15) since, by assumption, λ1 =
λ2 = . . . = λµ = 0 and λµ+1, . . . , λµ are such that their real parts are strictly
positive.

Note that the ui eigenvectors, for i = 1, . . . , µ, are always such that∑µ
i=1 ui = 1n. Note also that the GAS equilibrium condition (3.15) does not

imply that the same value is reached for all the components of the state vector
x, as it occurs, instead, in (3.6) and (3.14). In the following Section, we will
therefore investigate the properties the network topology has to fulfil in order
to allow the agents belonging to suitable clusters (more precisely, cells) of
nodes to converge each to the same final value, thus yielding multi-consensus
according to Definition 3.3.

In particular, according to Proposition 3.2 and Definition 3.3, it is possible
to numerically compute the distinct consensus values achieved by the agents
and, therefore, to identify the different cells ρi, i = 1, . . . , ω, the agents will
form at steady state. Such computations could pave the way for the design
of a heuristic procedure that is suitable for calculating the almost equitable
partition π∗AE, which will be introduced in Section 3.5.
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From now till the end of this Section, we will rely on the results appearing
in [32] to recall some important properties and introduce our main contribution.
In fact, still taking into account the situation when µ > 1, there exists a
redenomination of nodes yielding a suitable lower-triangularization of the
Laplacian matrix (distinct from the one given by (3.13)), namely allowing to
interpret the digraph topology in terms of reaches and thus giving further
insight into the kernels of digraph Laplacians.

More in detail, given a Laplacian matrix L associated with the digraph
G, we write wj  wi if there exists a directed path from node wj to node
wi. In this respect, for any node wj, we define the reachable set from wj,
R(wj), to be the set containing wj and all nodes wi such that wj  wi. The
maximal reachable set from wj, Rmax(wj), is called a reach [3, 32]. Given
the reach Rmax(wj) from a node wj ∈ V , then we define wj as the reach root
node, that is, the root node for Rmax(wj), since, by definition of reachable
set, wj  wi, ∀wi ∈ Rmax(wj).

Let R1, . . . ,Rµ denote the reaches of G. For each reach Ri, we define the
exclusive part of Ri to be the set Hi = Ri \ ∪j 6=iRj. Likewise, we define the
common part of Ri to be the set Ci = Ri \ Hi. Let C = ∪µi=1Ci denote the
union of the common parts of all the reaches.

Proposition 3.6. The algebraic multiplicity of λ1 = 0 as an eigenvalue of L
equals the number, µ, of reaches of G.

Proof. Refer to Theorem 3.2 in [32].

As a result of this, by means of a coordinate change that suitably reorders
the digraph nodes, L takes the following lower-triangular form:

L =



L1 0h1×h2 . . . 0h1×hµ 0h1×δ
0h2×h1 L2 . . . 0h2×hµ 0h2×δ

...
...

. . .
...

...
0hµ×h1 0hµ×h2 . . . Lµ 0hµ×δ
M1 M2 . . . Mµ M


, (3.16)

where the Li’s are hi × hi Laplacian matrices associated with the Hi’s, the
Mi’s are δ× hi matrices, and M is a square matrix of order δ associated with
the union of the common parts of all the digraph reaches (i.e., with C), with
hi := |Hi|, and δ := |C|.

The Laplacian matrix L, as given in (3.16), is the result of a coordinate
transformation that makes use of permutation matrices and yields a mere
reordering of the network nodes. This is outlined in Proposition 3.7.
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Proposition 3.7. Let perm : GLn(R) → GLn(R) be a bijective function
accounting for the permutation transformation, i.e., the transformation rear-
ranging the ei vectors, for i = 1, . . . , n, by column, in the following way:(

e1 . . . en
)

= perm
(
e1 . . . en

)
. (3.17)

Then, there always exists a coordinate change

x = TP x (3.18)

with T−1
P chosen as

T−1
P =

(
e1 . . . en

)
, (3.19)

yielding
TP L T−1

P = L =⇒ ẋ = −L x, (3.20)

with L expressed in the lower-triangular form (3.16).

Example 3.1. Consider a digraph with Laplacian matrix

L =


1 0 −1 0 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
−1 −1 0 2 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

 , (3.21)

which is not in the lower-triangular form (3.16). This Laplacian matrix is such
that µ = 2 and the two right eigenvectors associated with the zero eigenvalue
are

u1 =


1
0
1
1
2

0
1

 , u2 =


0
1
0
1
2

1
0

 . (3.22)

Such eigenvectors suggest a coordinate change in the form (3.18)-(3.19),
defined as 

x1

x2

x3

x4

x5

x6

 =


x1

x3

x6

x2

x5

x4

 =⇒ x =


eT1
eT3
eT6
eT2
eT5
eT4

x, (3.23)
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thus yielding

L =


1 −1 0 0 0 0
0 1 −1 0 0 0
0 −1 1 0 0 0
0 0 0 1 −1 0
0 0 0 −1 1 0
1 0 0 1 0 1

 , (3.24)

which is clearly expressed in the lower-triangular form (3.16), with

L1 =

1 −1 0
0 1 −1
0 −1 1

 , L2 =

(
1 −1
−1 1

)
,

M1 =
(
1 0 0

)
, M2 =

(
1 0

)
, M = −2,

(3.25)

and H1 = {w1, w3, w6}, H2 = {w2, w5}, C = {w4}, as shown in Fig. 3.1.

Figure 3.1: Digraph topology proposed in Example 1 and its interpretation
in terms of reaches as suggested by (3.16).

From the computational point of view, such a permutation can be obtained
from the digraph properties outlined above or, equivalently, by calculating
the eigenvectors of the Laplacian matrix and by determining a suitable basis
for the eigenspace of dimension µ, as further detailed in Section 3.5. Note
that such a basis always exists.
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3.4 Almost Equitable Partitions

An important issue in investigating networked dynamical systems is to infer
certain network properties from the network topology, which is generally
represented by the underlying network digraph. In this respect, some notions
from graph theory, in particular the concept of graph partition, have proved
rather useful and are reviewed in this Section, since they lay the foundation
for the subsequent results reported in Section V.

A well-known case of graph partition is the equitable partition, which
groups nodes with constant in-degree into cells [77]. The concept of almost
equitable partition (AEP) – also defined as external equitable partition in [133],
or relaxed equitable partition in [113] – is less restrictive, demanding that the
in-degree from nodes in a cell is constant with respect to any other cell but
not within each cell.

With respect to the digraph G, for a given cell ρ ⊆ V, we denote the
neighbourhood of node wj restricted to cell ρ with

N (wj, ρ) = {wi ∈ ρ : (wi, wj) ∈ E}. (3.26)

First, we provide a graph-theoretical definition of an AEP.

Definition 3.5. (Almost Equitable Partition) [29, 128] A partition πAE =
{ρ1, ρ2, . . . , ρk} is said to be an AEP of G if, for each i, j ∈ {1, 2, . . . , k}, with
i 6= j, there exists an integer dij such that |N (w, ρj)| = dij for all w ∈ ρi,
where |N | denotes the cardinality of the set N . In other words, a partition
such that each node in ρi has the same number of neighbours in ρj, for all
i, j with i 6= j, is an AEP.

The property of almost equitability is equivalent to the invariance of the
subspaces generated by the characteristic vectors of its cells. So, we can also
give an equivalent definition of an AEP, yet this time provided in terms of
invariant subspaces.

Definition 3.6. (Alternative to Definition 3.5) A partition πAE is said to
be an AEP if and only if LP (πAE) ⊂ Im P (πAE). Hence, the notion of
almost equitability of πAE with respect to G is equivalent to the concept of
L-invariance of Im P (πAE).

Indeed, by making use of geometric tools, one immediately recovers the
quotient graph representation [133].
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Remark 3.5. If πAE is an AEP of G, then, following the proof of Lemma 7
in [128], we have

LP (πAE) = P (πAE)LπAE (3.27)

where LπAE is the Laplacian matrix associated with the quotient graph of G
over πAE, i.e.,

(LπAE)ij =

{
−dij if i 6= j,

si otherwise,
(3.28)

where si =
∑

j 6=i dij.

Example 3.2. Consider a digraph G characterized by the following Laplacian
matrix

L =


0 0 0 0 0
0 0 0 0 0
0 −1 1 0 0
0 0 −1 2 −1
−1 −1 −1 0 3

 . (3.29)

This Laplacian matrix is such that µ = 2 and, by Definition 3.6, the digraph
partition π = {{w1}, {w2, w3}, {w4},
{w5}} is an AEP for G since LP (π) ⊂ Im P (π), with

P (π) =


1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (3.30)

The usefulness of such notions is widely documented in the recent literature:
e.g., in [128], sufficient conditions in terms of AEPs are derived for diffusively
coupled networked systems to be disturbance decoupled, and also conditions
for guaranteeing the solvability of the disturbance decoupling problem under
feedback are provided.

3.5 Main Result Relating Multi-Consensus and

Almost Equitable Graph Partitions

We are now in a position to present the main contribution of the paper, thus
outlining and clarifying how the network topology determines some of the
properties of the dynamic evolution and of the steady-state behaviour of a
multi-agent system in the form (3.1). Namely, with respect to Proposition
3.3, when µ = 1, we can make the following statement.
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Proposition 3.8. A partition πAE with characteristic matrix in the x-
coordinates

P (πAE) =

 1n−l 0(n−l)×l

0l×(n−l) Il,

 , (3.31)

i.e., such that it divides all the root nodes of G, represented by R, in (n− l)
trivial cells and collects the rest of the digraph nodes in another separate
cell, with Il the identity matrix of order l, is an AEP of a digraph G whose
Laplacian is such that µ = 1.

Proof. Since

LP (πAE) =

(
0 0
M1 M

)
(3.32)

with P (πAE) as in (3.31), then

LP (πAE) ⊂ span

(
0(n−l)×l
Il

)
=

= span

{(
0
e1

)
, . . . ,

(
0
el

)}
,

(3.33)

with e1, . . . el denoting the standard basis of Rl.

Proposition 3.9. Given L as the Laplacian of a weakly connected digraph G
with µ = 1, all the nodes in I∗ have the same in-degree evaluated with respect
to the Q set.

Proof. According to Proposition 3.8,(
L 0
M1 M

)(
0(n−l)×1

1l

)
=

(
0(n−l)×1

M1l

)
. (3.34)

Moreover, by Definition 3.6, being the partition πAE with characteristic
matrix as in (3.31) an AEP of G, then(

0(n−l)×1

M1l

)
∈ span

(
0(n−l)×1

1l

)
, (3.35)

which, by Definition 3.5, implies that all the nodes in I∗ have the same
in-degree evaluated with respect to the Q set.

Example 3.3. Consider a directed graph G with Laplacian matrix

L =


1 0 −1 0
0 1 −1 0
−1 0 1 0
−1 0 −1 2

 . (3.36)
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Let us exchange the agent denoted by w3 with the agent denoted by w2, so
we choose

T−1
P =

(
e1 e3 e2 e4

)
. (3.37)

Then, we obtain

L = TP L T−1
P =

=


eT1
eT3
eT2
eT4




1 0 −1 0
0 1 −1 0
−1 0 1 0
−1 0 −1 2

(e1 e3 e2 e4

)
=

=

(
R 0
K1 K

)
,

(3.38)

with R =

(
1 −1
−1 1

)
, K1 =

(
0 −1
−1 −1

)
, K =

(
1 0
0 2

)
.

Hence, in order to obtain the transformed Laplacian (3.13), we need to
have preliminarily identified the I∗ and Q sets.

More in general, considering the situation when µ > 1, the Li matrices,
for i = 1, . . . , µ, in (3.16) identify each a balanced subgraph Hi of G, for
i = 1, . . . , µ, respectively, and such subgraphs Hi are disconnected from each
other. Instead, the union of the common parts of all the reaches, C, certainly
contains all the leaves in the digraph. Also, note that the assumption of
weak connectedness, according to the dynamics ẋ = −Lx with L as in (3.16),
implies that each node in C can be reached starting from any node in each of
the Hi’s.

At this point, following Proposition 3.3, we present an interesting result,
especially concerning the eigenvectors associated with the zero eigenvalue of
L.

Proposition 3.10. Given L as the Laplacian of a weakly connected digraph
G with µ > 1, after a suitable reordering of the network nodes, such a matrix
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can be rewritten in the form

L
′

= T
′

P L (T
′

P )−1

(
R1 0
K11 K1

)
0h1×h2 . . . 0h1×hµ 0h1×δ

0h2×h1

(
R2 0
K12 K2

)
... 0h2×hµ

...

...
...

. . .
...

...

0hµ×h1 0hµ×h2
...

(
Rµ 0
K1µ Kµ

)
0hµ×δ

M1 M2 . . . Mµ M


,

(3.39)

where each

(
Ri 0
K1i Ki

)
block accounts for the corresponding Li block, for

i = 1, . . . , µ, in L (given as in (3.16)), as a result of a coordinate change in
the form (3.18)-(3.19) with permutation matrix T

′
P , and also M is the same

as in (3.16) and accounts for the C set, whose nodes are reachable by any
Hi, i = 1, . . . , µ. Moreover, a possible basis for the kernel of L, i.e., for U ,
generated by the ui’s, takes the form {u1, . . . ,uµ}, where

u1 =


1h1
0
...
0
γ1

 , u2 =


0

1h2
...
0
γ2

 , . . . ,uµ =


0
0
...

1hµ
γµ

 , (3.40)

with

γi =


γiw1

γiw2
...
γiwδ

 , (3.41)

such that 0 < γiwj < 1,∀i ∈ {1, . . . , µ},∀j ∈ {1, 2, . . . , δ}, and
∑µ

i=1 γ
i = 1δ.

Moreover, the corresponding left eigenvectors vi, for i = 1, . . . , µ, take the
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form

v1 =



(
vr1

0

)
h1

0
...
0
0
...
0


, v2 =



0(
vr2
0

)
h2

...
0
0
...
0


, . . . ,

. . . , vµ =



0
0
...(

vrm
0

)
hµ

0
...
0


,

(3.42)

where ri := |Qi| ≤ hi, with Qi denoting the subset of the roots of the balanced
subgraph Hi, for i = 1, . . . , µ.

Proof. By applying Proposition 3.3 to each Li block, for i = 1, . . . , µ, given
as in (3.16), we obtain (3.39). For the rest of the proof, refer to Theorem 3.2
in [32].

Note that each ui is associated with each Hi, while the vector γi in each
ui is associated with C, i.e., with the union of the common parts of all the
reaches, and hence must satisfy the relation

∑µ
i=1 γ

i = 1δ.
Moreover, proceeding analogously to the proof of Theorem 3.4, in the x =

T
′
P · x coordinates, the left eigenvectors take the form (3.42) and, specifically,

the vrzi ’s, for i = 1, . . . , rz and z = 1, . . . , µ, are such that vrzi 6= 0 and∑µ
i=1 v

rz
i = 1.

Example 3.4. Consider a directed graph G with Laplacian matrix

L =


2 0 0 −1 −1
−1 2 −1 0 0
0 0 0 0 0
0 0 0 0 0
−1 −1 0 0 2

 . (3.43)
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Let us reorder the nodes so that the agents denoted with w3 and w4 come
first, i.e., let us choose

(T
′

P )−1 =
(
e4 e3 e1 e2 e5

)
, (3.44)

then we obtain

L = T
′

P L (T
′

P )−1 =


eT4
eT3
eT1
eT2
eT5



×


2 0 0 −1 −1
−1 2 −1 0 0
0 0 0 0 0
0 0 0 0 0
−1 −1 0 0 2

(e4 e3 e1 e2 e5

)
=

=

L1 0 0
0 L2 0
M1 M2 M

 ,

(3.45)

with L1 =
(
0
)
, L2 =

(
0
)
, M1 =

−1
0
0

, M2 =

 0
−1
0

, M =

 2 0 −1
−1 2 0
−1 −1 2

.

Example 3.5. Consider a directed graph G with Laplacian matrix

L =



6 0 −1 −1 0 −1 −1 −1 0 −1
0 1 0 0 0 −1 0 0 0 0
0 −1 5 −1 −1 −1 0 0 −1 0
−1 0 −1 5 0 0 −1 −1 −1 0
0 0 0 0 1 0 0 −1 0 0
0 −1 0 0 0 1 0 0 0 0
0 −1 0 0 0 −1 2 0 0 0
0 0 0 0 −1 0 0 1 0 0
−1 −1 −1 0 −1 0 0 0 5 −1
−1 −1 −1 −1 0 0 0 −1 −1 6


. (3.46)

Let us exchange the agent denoted by w1 with the agent denoted by w6, the
agent denoted by w3 with the agent denoted by w7, and the agent denoted
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by w4 with the agent denoted by w8: so we choose a coordinate change with
permutation matrix

(T
′

P )−1 =
(

e6 e2 e7 e8 e5 e1 e3 e4 e9 e10

)
. (3.47)

Then, we obtain the transformed Laplacian matrix

L = T
′

PL(T
′

P )−1 =

=



1 −1 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0
−1 −1 2 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0
−1 0 −1 −1 0 6 −1 −1 0 −1
−1 −1 0 0 −1 0 5 −1 −1 0
0 0 −1 −1 0 −1 −1 5 −1 0
0 −1 0 0 −1 −1 −1 0 5 −1
0 −1 0 −1 0 −1 −1 −1 −1 6


,

(3.48)

with

L1 =

 1 −1 0
−1 1 0
−1 −1 2

 ,

L2 =

(
1 −1
−1 1

)
,

(3.49)

and where, in the original x-coordinates, w2 and w6 are the reach root nodes
of H1, and w5 and w8 are the reach root nodes of H2.

Proposition 3.10 can be interpreted as an extension of the related result
in [32] concerning the left and right eigenvectors associated with the Laplacian
matrix of a weakly connected digraph with µ > 1.

We are now in a position to generalize Proposition 3.8 to the case when
µ(λ1) = k > 1, that is, when the Laplacian can be turned into the form
(3.39).

Proposition 3.11. A partition π′AE = {{H1}, {H2}, . . . , {Hµ}, ρµ+1, ρµ+2, . . . ,
ρµ+δ} with characteristic matrix in the x-coordinates

P (π
′

AE) =



1h1 0h1×1 . . . 0h1×1 0h1×δ
0h2×1 1h2 . . . 0h2×1 0h2×δ

...
...

...
...

...
0hµ×1 0hµ×1 . . . 1hµ 0hµ×δ

0δ×1 0δ×1 . . . 0δ×1 Iδ,


(3.50)
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i.e., such that it collects all the nodes belonging to each Hi into a separate cell
and the rest of the digraph nodes each into a trivial cell ρµ+j for j = 1, . . . , δ,
with Iδ denoting the identity matrix of order δ, is an AEP of a digraph G
whose Laplacian is such that µ > 1.

Proof. Since

LP (πAE) =

(
0 0 . . . 0 0
M1 M2 . . . Mµ M

)
(3.51)

with P (πAE) as in (3.50), then

LP (πAE) ⊂ span

(
0(h1+...+hµ)×δ)

Iδ

)
=

= span

{(
0
e1

)
, . . . ,

(
0
eδ

)}
,

(3.52)

with e1, . . . eδ denoting the standard basis of Rδ.

With this in mind, we can show the interesting result proposed by Theorem
3.12. But, first, we ought to make a few observations.

Assuming that µ = 2, two fundamental relations follow from the properties
of the Laplacian matrix and of its eigenvectors as well as from Proposition
3.10: {

M11h1 +M21h2 +M1δ = 0

M11h1 +Mγ1 = 0.
(3.53)

These two relations imply that

M21h2 +Mγ2 = 0, (3.54)

with γ2 = 1− γ1 according to Proposition 3.10. Since M is nonsingular, it
follows from (3.53) that

γ1 = −M−1M11h1 . (3.55)

Remark 3.6. If M11h1 = M21h2 , then γ = 1δ
2

, thus implying that the states
of all the nodes in the C set converge to the same value.

Remark 3.7. In general, the components of the γi’s are such that

γiwj < 1, j = 1, . . . , δ. (3.56)

Otherwise, they would account for nodes belonging not to the C set, but to
the Hi’s.
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Remark 3.8. The value of the components of the γi’s, for i = 1, . . . , k, do not
depend on the location of the links connecting the Hi’s with the C set (i.e.,
they do not depend on the location of the nonzero elements appearing in the
columns of the Mi matrices).

Example 3.6. Let us consider a digraph characterized by the Laplacian
matrix

L =


0 0 0 0
0 0 0 0
1 0 −2 1
0 1 0 −1

 . (3.57)

For such a digraph, the C set can be shown to contain only node w3. Let,
absurdly, H1 = {w1},H2 = {w2}, and C = {w3, w4}. Then, Mγ1 = −M11,
i.e., (

−2 1
0 −1

)
γ1 =

(
−1
0

)
, (3.58)

which implies that

γ1 =
(

1
2

0
)T
, γ2 = 1− γ1 =

(
1
2

1
)T
. (3.59)

Similarly, since Mγ2 = −M21, we have(
−2 1
0 −1

)
(1− γ1) =

(
0
−1

)
, (3.60)

implying that

1− γ1 =
(

1
2

1
)T
. (3.61)

Then, according to Proposition 3.10, the eigenvectors associated with the
zero eigenvalue are

u1 =
(
1 0 1

2
0
)T
, (3.62)

u2 =
(
0 1 1

2
1
)T
. (3.63)

It is then clear from eigenvector u2 that node w4, assumed to belong to C,
belongs instead to H2.

We now outline a particular condition, related to AEPs, that will be
instrumental in proving the subsequent Theorem 3.12. This is aimed at
determining an AEP, denoted with π∗AE, that is coarser than π

′
AE and such

that its k < δ cells in C are as many as the groups of identical components
in the γi vectors, i = 1, . . . , µ. Indeed, such k cells in C can be proved to
identify the different clusters the considered multi-agent system is divided
into at steady state.
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Remark 3.9. A necessary external condition for a subset of nodes in C to
compose a cell of an AEP that is coarser than π

′
AE (only with respect to the

trivial cells ρµ+j, j = 1, . . . , δ, accounting for the nodes in C) is that they
have the same in-degree with respect to each Hi, i = 1, . . . , µ. This reflects
into a property of the row sums of each Mi matrix in (3.39), for i = 1, . . . , µ:
more precisely, in the δ-dimensional vector Mi1hi , the components that are
associated with nodes belonging to the same cell ρj, j = 1, . . . , k, must be
equal.

Theorem 3.12. A necessary and sufficient condition for two nodes in C to
belong to the same cell ρ of an AEP is that the components of the γi vectors,
i = 1, . . . , µ, associated with the nodes belonging to cell ρ are equal.

Proof. For the sake of clarity, let the nodes in C be denoted with w1, . . . , wδ and
let ρ1, . . . , ρk denote k cells – each with cardinality ζi := |ρi| ≥ 0 (i = 1, . . . , k)
so that

∑k
i=1 ζi = δ – partitioning C in the following way:

ρ1 = {w1, . . . , wζ1},
ρ2 := {wζ1+1, . . . , wζ1+ζ2},
...

ρk := {wζ1+...+ζk−1+1, . . . , wδ}.

(3.64)

Furthermore, the condition that, for each cell ρj, j = 1, . . . , k, the elements
of the γi vectors, i = 1, . . . , µ, associated with the nodes belonging to cell ρj
be equal can be formalized as follows:

γiw1
= . . . = γiwζ1

:= τ i1,

γiwζ1+1
= . . . = γiwζ1+ζ2

:= τ i2,
...

γiwζ1+...ζk−1+1
= . . . = γiwδ := τ ik,

∀i ∈ {1, 2, . . . , µ},

(3.65)

where γiwj denotes the element of the γi vector that is associated with node

wj in C according to (3.64), and τ ij ∈ R, for j = 1, . . . , k, i = 1, . . . , µ.
Let us first apply the coordinate change

x = T
′

P · x =


x1

x2
...

xk
xδ

 , (3.66)
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where T
′
P is the permutation matrix yielding the transformed Laplacian matrix

(3.39). By means of a further coordinate change with respect to the nodes in
C only (identified by xδ in the x-coordinates), i.e., by relying on

x̃ = T
′′

P · x =


x1

x2
...

xk
x̃δ

 , (3.67)

we reorder the nodes in C, identified in the new x̃-coordinates by x̃δ, so that

x̃δ =



xw1

...
xwζ1
xwζ1+1

...
xwζ1+ζ2

...
xwζ1+...+ζk−1

...
xwδ



. (3.68)

We now have that the system dynamics is expressed by ˙̃x = −L̃x̃, where

L̃ =



L1 0 · · · 0 0
0 L2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Lµ 0

M̃1 M̃2 · · · M̃µ M̃


, (3.69)

whose only difference from L is due to the reordering of the nodes belonging
to C.

(Necessity) We need to prove that if the cells ρ1, . . . , ρk form an AEP among the
nodes of the C set according to (3.64), then, for each cell ρj, j = 1, . . . , k, the
elements of the γi vectors, i = 1, . . . , µ, associated with the nodes belonging
to cell ρj are equal, i.e., (3.65) holds.

By assumption, for each cell ρj, j = 1, . . . , k, the sum of the columns of
M̃ associated with the node belonging to cell ρj is a linear combination of the
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characteristic vectors of the cells ρj, j = 1, . . . , k, which the C set is assumed
to be partitioned into, i.e.,

M̃p(ρj) =
k∑
η=1

εjηp(ρη), j = 1, . . . , k. (3.70)

In particular, condition (3.70) is equivalent to saying that each node belonging
to any cell ρj, j = 1, . . . , k, has the same in-degree evaluated with respect
to any other cell ρθ, for θ ∈ {1, . . . , k} \ {j}. Moreover, since ρ1, . . . , ρk are
cells forming an AEP of the C set by assumption, then the matrix product
M̃p(ρj), j = 1, . . . , k, is invariant with respect to any further addition of
edges inside such cells.

On the other hand, since

ũ1 =
(
1h1 0 . . . 0 γ̃1

)T
, . . . , ũµ =

(
0 0 . . . 1hµ γ̃µ

)
(3.71)

are right eigenvectors of L̃ in (3.69), it follows that

M̃i1hi + M̃γ̃i = 0, i = 1, . . . , µ. (3.72)

With this in mind, M̃ can be rewritten in the following form:

M̃ =


Γ11 Γ12 . . . Γ1k

Γ21 Γ22 . . . Γ2k
...

...
. . .

...
Γk1 Γk2 . . . Γkk

 , (3.73)

where each Γjz block is a ζj × ζz matrix.
In particular, the sum of the columns of the main diagonal blocks Γjj,

each being a nonsingular square matrix of order ζj, for j = 1, . . . , k, yields a
vector with as many components as the cardinality of cell ρj, j = 1, . . . , k.
Moreover, such a sum is a vector whose components are all equal to a positive
integer constant, i.e.,

Γjj1ζj = σ1ζj , σ ∈ Z+, j = 1, . . . , k. (3.74)

Note also that each off-diagonal block Γjz, j = 1, . . . , k, z = 1, . . . , k, z 6=
j, is such that its row sums are all equal to a nonnegative integer constant,
i.e.,

Γjz1ζz = φ1ζz , φ ∈ N. (3.75)

In plain words, equations (3.70) and (3.74) remain invariant with respect
to any change in the position, along the rows, of the ones appearing in the
off-diagonal blocks of M̃ .
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Hence, (3.70), (3.72), (3.74), and (3.75), relying on Remark 3.9, imply
that:

M̃γ̃i =


Γ11 Γ12 . . . Γ1k

Γ21 Γ22 . . . Γ2k
...

...
. . .

...
Γk1 Γk2 . . . Γkk


γ̃

i
1
...
γ̃ik

 =

=
k∑
j=1

τ ijp(ρj) = τ i1


1ζ1
0ζ2
...

0ζk

+ τ i2


0ζ1
1ζ2
...

0ζk

+

+ . . .+ τ ik


0ζ1
0ζ2
...

1ζk

 , i = 1, . . . , µ,

(3.76)

where, for each i, 0ζi is a vector whose ζi components are all zeros. This
allows to recover the thesis, i.e., that the solution γ̃i to (3.76) is such that
γi = (T

′′
P )−1γ̃i, with γ̃ij = τ ij1ζj , for i = 1, . . . , µ, and j = 1, . . . , k, yields (3.65)

for a partition of C defined as in (3.64).

(Sufficiency) We now need to prove that, if, for each cell ρj, j = 1, . . . , k, the
elements of the γi vectors, i = 1, . . . , µ, associated with the nodes belonging
to cell ρj are equal (as in (3.65)), then the cells ρ1, . . . , ρk form an AEP among
the nodes of the C set as in (3.64).

First of all, let ρ1, . . . , ρk denote a generic partition of C. The assumption
that, for each cell ρj, j = 1, . . . , k, the elements of the γi vectors, i = 1, . . . , µ,
associated with the nodes belonging to cell ρj are equal can be formalized as
follows:

γi =
k∑
j=1

τ ijp(ρj), i = 1, . . . , µ, (3.77)

with τ ij ∈ R, for i = 1, . . . , µ, j = 1, . . . , k.
So, we need to prove that (3.72) and (3.77) imply that ρ1, . . . , ρk actually

form an AEP of C. Indeed, if, after the coordinate change (3.66), (3.67), and
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(3.68), we substitute (3.77) into (3.72), we get:

M̃i1hi +


Γ11 Γ12 . . . Γ1k

Γ21 Γ22 . . . Γ2k
...

...
. . .

...
Γk1 Γk2 . . . Γkk

 · T ′′P ·
( k∑
j=1

τ ij p(ρj)

)
= 0,

i = 1, . . . , µ.

(3.78)

Such a relation holds only if, in the δ-dimensional vector M̃i1hi , the com-
ponents that are associated with nodes belonging to the same cell ρj are
equal, for each cell ρj, j = 1, . . . , k. Since, by Remark 3.9, this is a necessary
condition for ρ1, . . . , ρk to form an AEP of C, then (3.72) and (3.77) imply
(3.70), thus recovering the thesis required for the desired sufficiency proof.

From Theorem 3.12, it follows that the characteristic vectors of the cells of
a suitable almost equitable partition denoted with π∗AE (with respect to which
π′AE is finer) identify each a different set of nodes whose states converge to
the same steady-state value. More precisely, according to the lower-triangular
structure (3.16), the cells of π∗AE are identified by the Hi’s, on the one hand,
and by a suitable sub-partition ρ1, . . . , ρk of C (yielding the relevant property
outlined by Theorem 3.12), on the other hand.

Corollary 3.13. The partition π∗AE := {{H1}, {H2}, . . . , {Hk}, ρµ+1, ρµ+2,
. . . , ρµ+k}, with k < δ, defined so that each cell ρµ+j , for j = 1, . . . , k,
groups the nodes in C associated with equal components of the γi vectors (for
i = 1, . . . , µ), is the coarsest AEP of G, provided that we exclude the trivial
partition π = ρ ≡ {V}.

Proof. The proof follows from Theorem 3.12 and from the fact that a node
appearing in any of the Hi’s and a node appearing in C cannot belong to the
same cell of an AEP.

We can now state the final result linking multi-consensus to the notion of
AEP.

Corollary 3.14. A multi-agent system in the form (3.1), characterized by an
underlying weakly connected digraph G with Laplacian matrix such that µ > 1,
achieves multi-consensus with respect to groups of nodes which coincide with
the cells of partition π∗AE: namely, for each i = 1, . . . , µ, the nodes belonging to
Hi converge to a value which depends on the initial conditions of the reach root
nodes of Hi, whereas, for each j = 1, . . . , k, the nodes belonging to cell ρµ+j

in C converge to a distinct convex combination of the consensuses achieved
within the Hi’s (i = 1, . . . , µ).
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Proof. The proof follows from Proposition 3.5 and Theorem 3.12. Indeed, let
us apply a coordinate change x = (T

′′
P · T

′
P ) x as in (3.66), (3.67) and (3.68),

where each xi groups the nodes belonging to Hi, for i = 1, . . . , µ, and xδ
groups all the nodes belonging to C. Let the vector of the initial conditions
of the transformed system be denoted with x0 and composed internally as
follows:

x0 =




xr10

0
...
0


h1

xr20

0
...
0


h2

...
x
rµ
0

0
...
0


hµ



, (3.79)

where, consistently with the coordinate change due to (3.66), (3.67) and
(3.68), each xrz0 vector collects the initial conditions of the reach root nodes
of Hz only (i.e., of the nodes belonging to Qz), for z = 1, . . . , µ.

Then, according to Proposition 3.5, the state of the transformed multi-
agent system ẋ = −Lx, with L as in (3.39), converges to a GAS equilibrium
state

x
′

∞ =



1h1
0
...
0

τ 1
1 1ζ1
...

τ 1
k1ζk


r1∑
i=1

vr1i · x
r1
0,i +



0
1h2
...
0

τ 2
1 1ζ1
...

τ 2
k1ζk


r2∑
i=1

vr2i · x
r2
0,i+



CHAPTER 3. MULTI-CONSENSUS AND GRAPH PARTITIONS 187

+ . . .+



0
0
...

1hµ
τµ1 1ζ1

...
τµk 1ζk


rµ∑
i=1

v
rµ
i · x

rµ
0,i =

=



1h1 · c1

1h2 · c2

...
1hµ · cµ

1ζ1 ·
∑µ

z=1 τ
z
1 c

z

...
1ζk ·

∑µ
z=1 τ

z
k c

z


, (3.80)

where xrz0,i is the i-th component of the xrz0 vector in (3.79), and the scalars
c1, . . . , cµ are such that

cz =
rz∑
ξ=1

vrzξ · x
rz
0,ξ, (3.81)

for z = 1, . . . , µ, with τ ji ∈ R for i = 1, . . . , ζj and j = 1, . . . , k, and vrzξ
denoting the ξ-th component of the vrz vector introduced in (3.42), for
ξ = 1, . . . , rz. Note that the extrema of the sums are chosen so as to consider
the initial conditions of the nodes belonging to Qi only (i = 1, . . . , µ).

Remark 3.10. The γi vectors, for i = 1, . . . , µ, appearing in the last equality
of (3.80) have δ components which can be divided into groups of k < δ
equal components (i.e., as many as the cells of π∗AE in C) as a consequence of
Theorem 3.12. Hence, a system in the form (3.1), with underlying digraph G
such that µ > 1, yields µ + k distinct consensuses, satisfying, according to
Definition 3.3,

x→Mπ∗AE . (3.82)

Such a number of distinct consensuses is equal to the cardinality of π∗AE.

This implies that a group of nodes belonging to C converge to the same
steady-state value if and only if they can be proved to belong to the same cell
of partition π∗AE. Such a situation at steady state is clearly a multi-consensus
one. In this respect, the examples reported above – namely, those with
digraphs such that the Laplacian matrix has µ > 1 – yield the following
multi-consensus results.
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As regards Example 1, the steady state of the related multi-agent system
yields 3 distinct consensuses: one for nodes w1, w3 and w6 belonging to H1,
one for nodes w2 and w5 belonging to H2, and the last one for the only node
belonging to C.

As regards Example 4, the steady state of the related multi-agent system
yields 5 distinct consensuses: one for node w4 representing H1, one for node
w3 representing H2, and one for each of the three trivial cells into which C
can be partitioned.

As regards Example 5, the steady state of the related multi-agent system
satisfies Theorem 3.12, Definition 3.13 and Corollary 3.14 with µ = 2 and k = 2
– i.e., π∗AE = {{H1}, {H2}, ρ3, ρ4}. Hence, it yields 4 distinct consensuses: one
for nodes w2, w6 and w7 composing H1, one for nodes w5 and w8 composing
H2, one for nodes w1 and w3 composing ρ3, and one for nodes w4, w9 and w10

composing ρ4, where ρ3 and ρ4 are two cells such that ρ3 ∪ ρ4 = C, according
to the transformed Laplacian matrix (3.48).

Finally, as regards Example 6, the steady state of the related multi-agent
system yields 3 distinct consensuses: one for node w1 representing H1, one
for nodes w2 and w4 composing H2, and one for node w3 accounting for C.

3.6 Conclusion

In this Chapter, the multi-consensus problem in multi-agent systems has
been investigated by putting the Laplacian matrix of the underlying digraph
in a form which specializes the one proposed by Caughman and Veerman
in [32] and thus gives insight into the topological structure of the networked
system itself. On this basis, it is shown that multi-consensus is achieved when
the underlying digraph admits a suitable almost equitable partition denoted
with π∗AE. In particular, according to the definitions given above, on the one
hand, a consensus is achieved for the states of all the nodes belonging to
the exclusive part of each digraph reach, while, on the other hand, different
consensuses are achieved by the states of the nodes belonging to the union of
the common parts of all the reaches, each of these consensuses being a convex
combination of the influences of the exclusive reaches. More precisely, the
total number of distinct consensuses achieved by the multi-agent system is
equal to the number of cells of partition π∗AE. By contrast with the existing
literature, in this paper the relationship between the number of cells and the
Laplacian is outlined. The results shown in this paper are obtained only for
a group of agents whose individual dynamics lies in a one-dimensional space.

We are currently drawing up techniques for efficiently computing the
eigenvectors associated with the zero eigenvalue of the digraph Laplacian
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according to the structure introduced in Proposition 3.10, especially in the
context of complex networks – namely, networks with an extremely large
number of agents, with large algebraic multiplicity of the zero eigenvalue of
the Laplacian matrix, and yielding a large number of distinct consensuses.

Moreover, further study will be focused on multi-consensusability, on the
one hand, when the single agents evolve in n-dimensional spaces (n > 1)
and, on the other hand, in multi-agent systems with switching topologies and
subject to time delays.



Chapter 4

Sampled-Data Design with
Aerospace Applications

This Chapter discusses the design and simulation of multirate sampled-data
nonlinear feedback control laws in the context of PVTOL maneuvering in
the presence of input delays (see Section 4.1) and of spacecraft quasi-halo
orbit following about the L2 translunar libration point (see Section 4.2), as
proposed in [157] [158]. In particular, it presents some slight improvements
(compared to the existing literature) in terms of feedback finite discretizability,
which can be exploited to achieve satisfactory performance results by means
of suitable control designs, even in the presence of input delays.

4.1 On the Exact Steering of Finite Sampled

Nonlinear Dynamics with Input Delays

Actuator and sensor delays are among the most common phenomena that
arise in engineering practice, which is why the compensation of such delays
has become an active area of research during the last five decades (e.g., see
[170], [8], [114], [43] and [115]). In particular, the control (e.g., stabilization) of
dynamical systems with input delays can be performed by means of a predictor-
based approach and recent studies have shed light on new opportunities for
predictor feedback, such as its extension to nonlinear systems (e.g., see [98]
and [75]).

While studying time-delay systems in continuous time typically relies
on setting an infinite dimensional problem, the presence of input delays in
discrete time can be dealt with by considering appropriate extensions of the
dynamics. In this case, the design of a controller is greatly simplified as
long as the problem can be re-stated in terms of its sampled-data equivalent

190
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model. For instance, considering continuous-time input-affine dynamics
which admit finitely computable discrete-time equivalent models (e.g., see
[122], [52], and [123]), a sampled-data predictor-based stabilizing and delay-
compensating controller can be designed. Such an approach has been proposed
in [125] and then applied to the example of a wheeled mobile robot in
[175]. The aim of the present paper consists in showing how this approach –
consisting of a piecewise-continuous overall control law obtained by combining
preliminary continuous predictor feedback with multirate digital control – can
be successfully extended to nonlinear dynamics with a non-zero drift term
exhibiting, through preliminary state feedback and a change of coordinates, a
finitely computable discrete-time equivalent model. In particular, the delay-
free multirate digital control law introduced in [126] is completed with a state
predictor for compensating the input delays.

In general, computing the state predictor in a nonlinear context is a
very challenging task which almost always compels the designer to resort to
approximate models. Nevertheless, should the system turn out to be finitely
computable under some suitable state feedback and coordinate transformation,
there will be a significant advantage as, in such a case, we can determine the
desired control law exactly.

An interesting case study, which is frequently encountered in the literature,
is represented by the Planar Vertical Take-Off and Landing (PVTOL) aircraft.
This dynamical system is based on a simplified aircraft model with a minimal
number of states and inputs. It is well known in the control community as it
retains the main features that must be considered when designing control laws
for a real aircraft. It has attracted and still continues attracting the attention
of researchers as it offers the opportunity to pose challenging nonlinear
control problems. Over the years, several control designs for stabilization and
trajectory tracking have been proposed for the PVTOL aircraft model (e.g.,
see [81], [165], [112], and [137]).

Although the list of works on PVTOL aircraft control we have given is
not even remotely exhaustive, to the best of our knowledge all the results
available in the literature, except for [69], assume that there is no delay in the
inputs. Nonetheless, such a delay, due to sensors and information processing,
is often present in practice. For instance, in [140] the position and roll angle
of the aircraft are measured by means of a vision system that induces a delay
of approximately 40 ms.

Referring to the dynamics of a PVTOL aircraft as an example of slightly
non minimum-phase system or ε non minimum-phase system [81], in [54]
the authors pointed out that, under suitable ε-dependent state feedback and
change of coordinates, the PVTOL aircraft dynamics admits a finite sampled
representation. Therefore, a preliminary feedback and a change of coordinates
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render the modified dynamics directly invertible under a digital controller of
a suitable multirate order. The introduction of a digital control loop brings to
a piecewise-continuous control law which can steer the state from any initial
value to any prefixed final one. Our contribution consists in showing that the
exact steering control result is preserved even in the presence of input delays
as long as we resort to predictor feedback.

4.1.1 Theoretical Framework

General Remarks on Sampled-Data Design

Let us consider the continuous-time input-affine dynamics

Σ : ẋ(t) = f(x(t)) + g(x(t))u(t) =

= f(x(t)) +
m∑
i=1

gi(x(t))ui(t)
(4.1)

where x ∈M ⊂ Rn denotes the continuous-time state of the system, u ∈ U ⊂
Rm and f, g1 . . . , gm are real analytic vector fields on the smooth manifold
M ⊂ Rn.

The sampled-data equivalent model of (4.1) is given by

ΣD := x[k + 1] =

exp

{
TsLf(x)+

∑m
i=1 ui[k]gi(x)

}
(Id)

∣∣∣∣
x=x[k]

=

= F (Ts;x[k], u[k]),

(4.2)

where Ts denotes a sampling period that is small enough to guarantee the
convergence of the series expansion manipulated, and the inputs ui are
assumed to be constant over time intervals of length Ts.

Definition 4.1. If there exists a function F : M × U0 →M,U0 ⊂ U, sum of
the series in (4.2), such a function F can be denoted as the sampled closed
form of (4.1). Therefore, (4.2) is said to be a Computable Exact Sampled
Representation (C-ESR) of (4.1) whenever a closed form for F (Ts;x[k], u[k])
exists. Moreover, if the formal exponential series in (4.2) is finite, that is, ∃k
such that for any (x, u) ∈ M × U the series is zero ∀k ≥ k and ∀u[k] ∈ U ,
then (4.2) is said to be the finite discretization of (4.1) or, alternatively, a
Finitely Computable Exact Sampled Representation (FC-ESR) of (4.1).
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Definition 4.2. It is worthy of note that finitely discretizable dynamics are
transformed, under coordinate changes, into sampled closed representations,
that is, an FC-ESR, under a generic diffeomorphism, is transformed into a
C-ESR. Therefore, the notion of finite discretizability is not coordinate free,
whereas the existence of closed forms is.

In particular, with the aim of further understanding the proposed ideas
in the framework of sampled-data representations of nonlinear systems with
a drift term as in (4.1), the following interesting commutation relations will
now be outlined.

By discretizing the system (4.1) first and applying some coordinate trans-
formation ξ = Φ(x) afterwards, we get exactly the same system as the one we
obtain by applying the same change of coordinates first and then discretizing,
that is, ΣDΦ ≡ ΣΦD.

In a similar way, by applying some continuous-time state feedback γ first
and then the coordinate transformation Φ, we get the same system as the
one we obtain by applying the same coordinate transformation first and then
the state feedback γ expressed in the new coordinates ξ, that is, ΣγΦ ≡ ΣΦγ.

Furthermore, discretizing, applying some discrete-time feedback γD and
changing the coordinates is exactly the same as performing the last two
modifications the other way around, that is, ΣDγDΦ ≡ ΣDΦγD .

By contrast, applying the state feedback γ first and then performing the
discretization is not the same as discretizing and later applying the discrete-
time feedback γD, that is, in general ΣγD 6≡ ΣDγD , unless we use a specific γ?D
which has turned out to be capable of bridging such a gap. This is exactly the
multirate digital controller, so long as we assume that the multirate degrees
ri of each input are such that

∑
ri = n.

Similarly, ΣDΦγD 6≡ ΣγΦD in general, but the multirate controller γ?D is
such that ΣDΦγ?D

≡ ΣγΦD.
The relations above can be summarized in the proposition below.

Proposition 4.1. In the context of sampled-data representations of nonlinear
systems with a drift term, the following relations hold:

ΣDΦ ≡ ΣΦD,

ΣγΦ ≡ ΣΦγ,

ΣDγDΦ ≡ ΣDΦγD ,

ΣDγ?D
≡ ΣγD,

ΣDΦγ?D
≡ ΣγΦD.
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Figure 4.1: Commutation properties within the framework of nonlinear
systems with a drift term.

Sampled-data design under input delays

Let us now investigate how the general properties discussed above can be
fruitfully employed for designing an exact steering controller for nonlinear
dynamics with delays in the inputs.

In particular, studying the sampled-data equivalent model of a time-delay
system allows to overcome the problem of infinite dimensionality that arises
in continuous time. Moreover, the preservation of feedback finite discreti-
zability under input delays overcomes the difficulty that arises in predictor
computability. Indeed, it allows us to compute the state predictor exactly,
i.e., without resorting to approximate models.

Following [122] and [52], we will now consider the assumption below.

Assumption 4.1. There exist a change of coordinates

ξ = Φ(x) (4.3)

and preliminary state feedback

u = γ(x, v) = γ0(x) + γ1(x)v, (4.4)
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under which the dynamics (4.1) is transformed into the finitely discretizable
system

ΣγΦ : ξ̇ = f̃(ξ) + g̃(ξ)v = f̃(ξ) +
m∑
i=1

g̃i(ξ)vi. (4.5)

Moreover, with reference to the sampled-data equivalent model of (4.5), which
is given by

ΣγΦD := ξ[k + 1] =

exp

{
TsLf̃(ξ)+

∑m
i=1 g̃i(ξ)vi[k]

}
(Id)

∣∣∣∣
ξ=ξ[k]

=

= F (Ts; ξ[k], v[k]),

(4.6)

we assume that there exists a multirate sampled-data control law (playing the
role of γ?D in Section 2.1)

v[k] = F−1(Ts; ξ[k], ξ[k + 1]) := γ?D(ξ[k], ξ[k + 1]) (4.7)

which satisfies a specific control objective (e.g., steering the evolution of (4.6)
to a given target position ξ(k + 1) = ξfinal in one step of amplitude Ts).

Our aim is now to show that finite sampling under coordinate transforma-
tion and feedback is preserved even in the presence of input delays, as long
as we employ a predictor-based controller. Let us consider, for instance, an
input delay that is a multiple of the sampling period Ts, i.e.,

Στ : ẋ = f(x) + g(x)u(t− τ) (4.8)

where τ = NTs with N ∈ Z+. By resorting to the same change of coordinates
as in (4.3) and to the following preliminary state feedback

u(t− τ) = γ(x(t), v(t− τ)) = γ0(x(t)) + γ1(x(t))v(t− τ),

we get the input-delayed transformed representation of the system dynamics

Στ(γΦ) : ξ̇ = f̃(ξ) + g̃(ξ)v(t− τ).

In the presence of an input delay τ = NTs, we can use the following solution

u(t−NTs) = γ(x(t), v(t−NTs)) =

= γ0(x(t)) + γ1(x(t))v[k −NTs],

for t ∈ [kTs, (k + 1)Ts[, where we choose v[k −NTs] = γ?D(ξ[k], ξfinal).



CHAPTER 4. SAMPLED-DATA DESIGN IN AEROSPACE 196

Such a controller can be rewritten in terms of the predicted state z(t) =
ξ(t+NTs) as

v[k] = γ?D(z[k], ξfinal). (4.9)

This way, we recover, with respect to the predicted state z, the delay-free and
delay-compensating controller

u(t) = γ(z(t), v[k]) = γ0(z(t)) + γ1(z(t))v[k], (4.10)

for t ∈ [kTs, (k + 1)Ts[. The discrete-time state predictor values z[k] can be
computed – with suitable initial conditions (z[0], v[−1], . . . , v[−N ]) – directly
from the sampled dynamics (4.6) through N compositions as

z[k] = F ′(Ts; ξ[k], v[k − Ts], v[k − 2Ts], . . . , v[k −NTs]), (4.11)

and this expression turns out to be finite as (4.5) has been assumed to be
finitely discretizable.

Therefore, thanks to a suitable change of coordinates and preliminary
state feedback, an exact point-to-point steering controller can be computed in
the delay-free case and, in the presence of input delays, a steering controller
based on the state predictor can be exactly computed, too. As a result, we
can state the following proposition.

Proposition 4.2. By employing the same change of coordinates (4.3) and
preliminary state feedback (4.4) as in the undelayed case, feedback finite
discretizability of a nonlinear system with a drift term is maintained in the
presence of input delays thanks to the predictor-based control law in (4.9)-
(4.10).

In general, this strategy can be applied to all input-affine nonlinear
dynamics admitting, through preliminary transformations (i.e., change of
coordinates plus state feedback) exact sampled-data equivalent dynamics.

Hence, feedback finite discretizability ensures that the implementation
of the predictor-based controller designed on the basis of the discrete-time
equivalent model (which is modified by feedback) can be realized by applying
to the system with input delays the same control law as in the undelayed
case. This allows us to state another proposition, thus adding a further result
to those presented at the end of Section 2.1.

Proposition 4.3. In a nonlinear system with a drift term described by (4.1),
the insertion of a time delay τ and the application of a finitely discretizing
feedback do commute with each other, i.e.,

Σ(γΦD)τ ≡ Στ(γΦD)
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Figure 4.2: The insertion of a time delay τ and the application of a finitely
discretizing feedback commute with each other.

4.1.2 The PVTOL Example

Figure 4.3: The PVTOL aircraft (front view).

The mathematical model of a PVTOL aircraft, under the usual simplifying
assumptions, takes the following form

ẍ = − sin(θ)u1(t− τ1) + ε cos(θ)u2(t− τ2)

ÿ = cos(θ)u1(t− τ1)− 1 + ε sin(θ)u2(t− τ2)

θ̈ = u2(t− τ2)

(4.12)

The variables x and y denote the horizontal and vertical position of the
aircraft, respectively. θ is the roll angle that the aircraft makes with the
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horizon, the control inputs u1 and u2 represent, respectively, the total thrust
and the angular acceleration (rolling moment) and τ1 > 0 and τ2 > 0 are the
delays acting on them. The constant term (−1) is the normalized gravitational
acceleration. Note that the coefficient ε = (J tan(α))/(mgl) 6= 0 represents
the coupling between the rolling moment and the lateral acceleration of the
aircraft [137]. Since ε explicitly depends on the physical parameters of the
aircraft that can be measured, the assumption that ε is known is justified. In
the expression above, J represents the moment of inertia of the aircraft, α
the fixed angle of the wings with respect to the horizontal line, m the mass
of the aircraft, l the wing length and g the acceleration due to gravity.

The equations (4.12) are equivalent to a six-dimensional dynamical system
in the form of (4.1), i.e., η̇ = f + g1u1 + g2u2, where the state space variables
are collected in the vector

η =
(
x ẋ y ẏ θ θ̇

)
,

the drift vector field is

f = η2
∂

∂η1

+ η4
∂

∂η3

− ∂

∂η4

+ η6
∂

∂η5

and the two delayed inputs u1 and u2 act along the two vector fields

g1 = − sin(η5)
∂

∂η2

+ cos(η5)
∂

∂η4

g2 = ε cos(η5)
∂

∂η2

+ ε sin(η5)
∂

∂η4

+
∂

∂η6

,

respectively.
As stated in [83] and [52], the design procedure sketched in the previous

section requires the vector fields f, g1, g2 describing the given dynamics to
be transformed in order for the resulting vector fields f̃ , g̃1, g̃2 to generate a
nilpotent distribution. Therefore, as shown in [54], we consider the feedback

u =

( 1
cos(η5)

+ εη2
6

−2η2
6 tan(η5)

)
+

( 1
cos(η5)

0

0 cos2(η5)

)
v, (4.13)

which plays the role of the state feedback (4.4) introduced above. The feedback
(4.13) makes it possible to compute a change of coordinates which brings the
vector fields to a certain polynomial subtriangular form, thus achieving finite
discretizability. According to [52] and [54], we may choose the following state
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space diffeomorphism

ξ = Φ(η) =



y
ẏ

tan(θ)
x
θ̇

cos2(θ)

ẋ

+ ε



cos(θ)

−θ̇ sin(θ)
0

− sin(θ)
0

−θ̇ cos(θ)

 .

In these new coordinates the system dynamics is described by the following
vector fields

f̃ = ξ2
∂

∂ξ1

+ ξ5
∂

∂ξ3

+ ξ6
∂

∂ξ4

− ξ3
∂

∂ξ6

g̃1 =
∂

∂ξ2

− ξ3
∂

∂ξ6

g̃2 =
∂

∂ξ5

.

Then, assuming for now the absence of time delays on the control inputs,
we get the following finite sampled dynamics

ξ1[k + 1] = ξ1[k] + Tsξ2[k] +
T 2
s

2!
v1[k]

ξ2[k + 1] = ξ2[k] + Tsv1[k]

ξ3[k + 1] = ξ3[k] + Tsξ5[k] +
T 2
s

2!
v2[k]

ξ4[k + 1] = ξ4[k] + Tsξ6[k]− T 2
s

2!
ξ3[k](1 + v1[k])+

− T 3
s

3!
ξ5[k](1 + v1[k])− T 4

s

4!
v2[k](1 + v1[k])

ξ5[k + 1] = ξ5[k] + Tsv2[k]

ξ6[k + 1] = ξ6[k]− Tsξ3[k](1 + v1[k])+

− T 2
s

2!
ξ5[k](1 + v1[k])− T 3

s

3!
v2[k](1 + v1[k])

Now, following the procedure described in [122], i.e., denoting the multirate
degree of v1 and v2 with r1 and r2, respectively, we choose r1 = 2 and r2 = 4,
which lead us to a solvable system of equations satisfying the condition
r1 + r2 = 6. Such a choice for the multirate degrees guarantees that, by
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setting

v1[k] = v1,i in

[(
k +

i− 1

2

)
Ts,

(
k +

i

2

)
Ts

[
for i = 1, 2,

v2[k] = v2,i in

[(
k +

i− 1

4

)
Ts,

(
k +

i

4

)
Ts

[
for i = 1, 2, 3, 4,

(4.14)

the resulting finite multirate discrete-time dynamics

ξ[k + 1] = F (Ts; ξ[k], v1,1, v1,2, v2,1, v2,2, v2,3, v2,4) =

= F (Ts; ξ[k], v[k])
(4.15)

will be fully invertible with respect to the control inputs vi,j for any value of
ξ[k] and ξ[k + 1], thus giving

v[k] = F−1(Ts; ξ[k], ξ[k + 1]). (4.16)

Hence, having fixed an initial state ξinitial as well as the desired final one
ξfinal, v1 and v2 in (4.14) can be computed from (4.15) by a simple map
inversion, due to the polynomial expression of (4.15) with respect to vi,j,
once ξ[k] = ξinitial = Φ(ηinitial) and ξ[k + 1] = ξfinal = Φ(ηfinal) are posed.
The final control scheme is then composed of the continuous feedback (4.13)
together with the digital one in the form (4.16).

Introducing an input delay τ1 = τ2 = NTs with N ∈ Z+ in (4.12), the same
approach can be performed in order to control the corresponding input-delayed
transformed dynamics

ξ̇1 = ξ2

ξ̇2 = v1(t−NTs)
ξ̇3 = ξ5

ξ̇4 = ξ6

ξ̇5 = v2(t−NTs)
ξ̇6 = −ξ3 − ξ3v1(t−NTs),

(4.17)

by resorting to the following piecewise-continuous overall solution

u(t−NTs) =

( 1
cos(η5(t))

+ εη2
6(t)

−2η2
6(t) tan(η5(t))

)
+

+

( 1
cos(η5(t))

0

0 cos2(η5(t))

)
v[k −NTs]
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with v[k −NTs] = F−1(Ts; ξ[k], ξfinal) and F−1 obtained from map inversion
of the finite multirate sampled dynamics (4.15) when setting ξ[k + 1] = ξfinal.

Such a controller can be rewritten in terms of the predicted state z(t) =
ξ(t+NTs) as

v[k] = F−1(Ts; z[k], ξfinal). (4.18)

This way, we recover, with respect to the predicted state z, the delay-free
and delay-compensating controller (4.10), where the discrete-time predictor
dynamics, required to calculate v[k], can be easily computed from the multirate
sampled dynamics (4.15) through N compositions as (4.11), with suitable
initial conditions (z[0], v[−1], . . . , v[−N ]) so that z[0] = ξ[N ].

4.1.3 Simulation Results

The above results have been verified on an elementary maneuver for the
PVTOL motion, aimed at achieving some lateral displacement, i.e., moving
the aircraft from the starting position (x, y) = (0, 0) to a predetermined final
one, say, (x, y) = (1, 0). This maneuver is usually addressed in the literature
as a case study (e.g., see [81]). A steering maneuver from the initial state
ηinitial = (0, 0, 0, 0, 0, 0)T to the final one ηfinal = (1, 0, 0, 0, 0, 0)T has been
simulated, corresponding to a lateral displacement of about 10 meters, with
the parameter ε = 0.8.

It is worthy of note that the presented multirate digital approach brings
to an overall control law u which turns out to be piecewise-continuous, as
it combines the continuous-time state feedback with the piecewise-constant
control v.

Should we try to use the multirate controller (4.13)-(4.16) in the presence
of input delays without employing any state predictor, it is clear that such
an approach would not work: as soon as an input delay τ is introduced in
the system dynamics, the controller will not generate the right input signal
any more.

However, in the presence of an input delay τ1 = τ2 = NTs and assuming
N = 1 for the sake of simplicity, by means of the predictor feedback (4.10)-
(4.18) the convergence of the dynamical system to the desired final position
will be achieved in two sampling steps. In other words, the closed-loop system
is delay-compensated only after the predictor-based controller “kicks in” at
t = Ts.

Under the above assumptions on the values of τ1, τ2 and N and choosing
the sampling time Ts = 10 s, the results shown in Figs. 4.4-?? are obtained.
The dashed lines in Figs. 4.4-4.5 depict the behaviour of the state variables
under the multirate controller (4.13)-(4.16) in the undelayed case, whereas the
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solid lines depict the behaviour of the state variables under the predictor-based
control law (4.10)-(4.18) in the delayed case.

In Fig. 3 the dashed lines show the control inputs ui for i = 1, 2 in the
undelayed case, whereas the solid lines show ui(t − τi) for i = 1, 2 in the
delayed case under the predictor-based controller.

Figure 4.4: Ts = 10 s: the solid line represents x versus t in the delayed case,
whereas the dashed line represents it in the undelayed case.

Moreover, Table 1 collects the values of the integral
∫
u2

2(t)dt (referring to
the delayed case shown in Fig. 3), which can be considered as an “energy-like”
function E(Ts). The corresponding contribution due to u1 is negligible.

Table 4.1: Normalized values of E(Ts)

Time E(Ts)
10 0
15 1.63
20 3.26

The illustrated example is intended to show the effectiveness of the pro-
posed control strategy and to check the validity of the formulae presented in
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Figure 4.5: Ts = 10 s: the solid lines represent y and θ versus t in the delayed
case, whereas the dashed lines represent them in the undelayed case.

the previous sections.

4.1.4 Conclusions

Although in general the computation of the state predictor for a nonlinear
system is a very challenging task – sometimes even almost impossible to
solve – and requires the designer to rely on approximate models, we have
outlined the interesting role played by feedback finite discretizability, which
offers us the opportunity to calculate the exact state predictor whenever some
specific preliminary transformations are operated on the nonlinear dynamics
under scrutiny. Moreover, we have shown that feedback finite discretizability
commutes with the insertion of a time delay in the nonlinear dynamics. From
a practical point of view, we have also illustrated the possibility of applying
the theoretical results for nonlinear systems with delays in the inputs to a
case study, namely a physical system, designing an exact delay-compensating
piecewise-continuous steering controller. Yet, much remains to be done, e.g.,
extending the obtained results to the case when the exact values of the delays
are unknown and also achieving good performances in terms of the robustness
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Figure 4.6: Ts = 10 s: the solid lines represent u1(t − Ts) and u2(t − Ts)
versus t in the delayed case, whereas the dashed lines represent u1 and u2 in
the undelayed case.

of the presented control scheme with respect to disturbances.

4.2 Sampled-Data Stabilization Around the

L2 Translunar Libration Point

Space missions near the Lagrangian points (also known as libration points) of
the Sun-Earth system and of the Earth-Moon system have always attracted
significant attention for their strategic benefits in long-term astronomical
observation. In particular, ARTEMIS-P1 has been the first spacecraft to
navigate to and perform station-keeping operations around the Earth-Moon
L1 and L2 libration points.

Halo orbits around the L2 translunar libration point in the Earth-Moon
system have the property of ensuring visibility both from the dark side of the
Moon and from the Earth at any time. Hence, they offer the opportunity to
establish a bridge for radio communications, which is a crucial problem for
space missions planning to use the dark side of the Moon either as a powerful
observation point or as a launch site for low-frequency radio astronomy, deep
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space observation, solar system exploration and other scientific researches in
a low-gravity environment. However, it is well known that L2 is unstable,
which implies the instability of any equilibrium trajectory around L2. Hence,
an active control is necessary in order to maintain the spacecraft as close
as possible to the nominal orbit. In this respect, several control methods
have been proposed [62] [63] [21] [149] [95] [90]. In particular, the authors
of [51] and [53] highlight the advantage that nonlinear control turns out to
have over linear control in terms of energy consumption as well as in terms of
robustness with respect to the approximation that is intrinsic to the reference
determination. This paper investigates the design and simulation of sampled-
data nonlinear feedback control laws for tracking prescribed quasi-halo orbits
around the L2 translunar libration point.

Even interplanetary CubeSats could be exploited in order to fulfill such
a technological task, as they allow less costly missions due to their reduced
power, mass and volume as well as due to their less demanding launch
requirements, provided that the related issue of fitting big science within a
small package is properly dealt with [177].

Figure 4.7: Halo orbit around the L2 translunar libration point.
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4.2.1 Quasi-Halo Orbit Following via Nonlinear
Regulation

State-Space Representation

Let us first recall the following state-space representation of the dynamics
of a satellite of mass m3 � m1,m2 within the framework of the Restricted
Three-Body Problem, as given in [53]:

ẋ = f(x, z) +Gu =

(
f1(x)
f2(x, z)

)
+Gu

y = Cx.

(4.19)

In particular, in the mathematical model above, x(t) ∈ R6 and z(t) ∈ R4 are
such that

x(t) =

(
x1(t)
x2(t)

)
=



ξr(t)
ηr(t)
ζr(t)

ξ̇r(t)
η̇r(t)

ζ̇r(t)

 , z(t) =


β(t)
β2(t)

β̇(t)
µ(1− µ)α(t)

 =


z1(t)
z2(t)
z3(t)
z4(t)

 , (4.20)

where α(t) and β(t) are periodic functions – introduced in [62] and used
in [53] in order to define this model – whose average value is equal to zero,
and µ = m2

m1+m2
≈ 0.012149, with m1 and m2 (such that m1 > m2) the masses

of the Earth and of the Moon, respectively. Moreover,

f1(x) = x2,

f2(x, z) = −Mx1 − 2Nx2 − (2Mx1 + 2Nx2)z1 −Mx1z2−

−Nx1z3 −
1− µ

|x1 − d1,r(z4)|3
(x1 − d1,r(z4))−

− µ

|x1 − d2,r(z4)|3
(x1 − d2,r(z4)),

where

M = RT (θ)
∂2R(θ)

∂θ2
=

−1 0 0
0 −1 0
0 0 0

 , N = RT (θ)
∂R(θ)

∂θ
=

0 −1 0
1 0 0
0 0 0

 ,

d1,r(z4(t)) =

−µ− z4(t)
1−µ

0
0

 , d2,r(z4(t)) =

1− µ+ z4(t)
µ

0
0

 ,
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G =

(
0
I

)
, and C =

(
I 0

)
. In particular,

R(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


is the rotation matrix describing the orientation of the rotating reference
frame Oξrηrζr with respect to a given inertial reference frame Oξηζ, θ(t)
denotes the angle between ξ and ξr, and the inputs u are external controls
acting on ẋ2, i.e., on the accelerations along the axes of the rotating reference
frame. For the sake of brevity, the index ‘(t)’ is omitted, where possible, in
continuous-time signals. Assuming that perturbations due to solar gravity
and solar radiation pressure can be neglected, equation (4.19) describes the
evolution of the considered continuous-time input-affine system.

Disturbance Model and Reference Trajectories

Let us now briefly analyze the disturbance term z(t). According to [62], the
periodic functions α(t) and β(t) can be expressed as

α(t) =
∞∑
h=1

ahe
h cos(ht+ φ), β(t) =

∞∑
k=1

bke
k cos(kt+ φ),

where e is the eccentricity of the elliptical motion of the two-body (Earth-
Moon) rotating system. Since in the present case e ≈ 0.0549, we can consider
either the first term of each power series

α(t) ≈ α1(t) = a1e cos(t+ φ), β(t) ≈ β1(t) = b1e cos(t+ φ),

or the first two terms

α(t) ≈ α2(t) = a1e cos(t+ φ) + a2e
2(1 + cos 2(t+ φ)),

β(t) ≈ β2(t) = b1e cos(t+ φ) + b2e
2 cos 2(t+ φ),

with a1 = −1, a2 = 1
2
, b1 = 2, and b2 = 5

2
. Then, according to (4.20), the

perturbation z(t) can be approximated either at the first order, z(t) ≈ z′(t),
or even at the second order, z(t) ≈ z′(t) + z′′(t), where

z′(t) =


b1e cos(t+ φ)

0
−b1e sin(t+ φ)

µ(1− µ)a1e cos(t+ φ)

 , (4.21)



CHAPTER 4. SAMPLED-DATA DESIGN IN AEROSPACE 208

z′′(t) =


b2e

2 cos(2(t+ φ))
b21
2
e2(1 + cos(2(t+ φ)))
−2b2e

2 sin(2(t+ φ))
µ(1− µ)a2e

2(1 + cos(2(t+ φ)))

 . (4.22)

As regards instead the reference trajectory for our control task, in the
present work we will take into account two possible quasi-halo orbits. The
first one can be regarded as one of the equilibrium trajectories of the lin-
earized dynamics of (4.19) assuming eccentricity e = 0 and making a proper
modification so as to ensure satellite visibility from the Earth. Namely, such
a trajectory is given by the first three components of the following unforced
evolution:

ẋ =
∂f(x, 0)

∂x

∣∣∣∣
x=xe

x, (4.23)

where
xe =

(
L2 0 0 0 0 0

)T ≈ (1.1556 0 0 0 0 0
)T

gives the coordinates, in the rotating reference frame, of one of the five equi-
librium points of the nonlinear dynamics f in the absence of the disturbances
z(t) (i.e., f(xe, 0) = 0), namely the coordinates of the so-called L2 translunar
libration point. It can be verified that periodic solutions for (4.23) exist. Given
a suitable choice of x(t0), with t0 = 0, we have

qho1(t) := x1(t) =

−k(1−c1+Ω2)
2Ω

cos Ωt
k sin Ωt
k cos Ωzt

 , (4.24)

where

c1 =
1− µ

(L2 + µ)3
+

µ

(L2 − 1 + µ)3
≈ 3.18989,

Ω ≈ 1.8636 rad/s and Ωz ≈ 1.78 rad/s are the natural frequencies, and k
must be chosen so that it is small enough for the orbit to be as close as
possible to the libration point and large enough for the satellite to stay visible
from the Earth. As shown in [51], a good choice for k is 0.02. Moreover, to
ensure visibility at all times, Ωz must be replaced by Ω, thus obtaining a
reference trajectory which is no more an equilibrium one for system (4.23).

Another quasi-halo orbit, which approximates a halo one with greater
precision than orbit (4.24), can be obtained as a periodic equilibrium solution
of the linearized dynamics of (4.19) assuming this time the presence of a
non-zero perturbation z(t) approximated at the first order. This means that
such a quasi-halo orbit is given, for suitable initial conditions x(t0), by the
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first three components of the following unforced evolution:

ẋ =
∂f(x, 0)

∂x

∣∣∣∣
x=xe

x+ P (x)|x=xez
′, (4.25)

where P (x) = ∂f(x,z)
∂z
|z=0, which, computed at x = xe, coincides with matrix P

of equation (2.7) in [53]. It can be verified that the simplest periodic solutions
of (4.25) are of the form

qho2(t) := x1(t) =

−k(1−c1+Ω2)
2Ω

cos Ωt+ eh1 cos(t+ φ)
k sin Ωt+ eh2 sin(t+ φ)

k cos Ωzt

 , (4.26)

where Ωz must be replaced by Ω, as previously explained. In particular,

h1 = − 1

2c1(1− c1)
{(2− c1)[4L2 − 2c2µ(1− µ)]− 4L2}, (4.27)

h2 = − 1

2c1(1− c1)
{−2[4L2 − 2c2µ(1− µ)] + 4L2(1 + c1)}, (4.28)

and

c2 =
1

(L2 + µ)3
− 1

(L2 − 1 + µ)3
≈ −210.88468.

Therefore, in the rotating reference frame, given the two quasi-halo orbits
discussed above, the corresponding reference trajectories for the state of
system (4.19), to be described around the translunar libration point L2, are

xr,1(t) =

qho1(t) +

L2

0
0


qḣo1(t)

 xr,2(t) =

qho2(t) +

L2

0
0


qḣo2(t)

 . (4.29)

Nonlinear Regulation
with State and Disturbance Measurement

Following the methodological approach of nonlinear regulation with state and
disturbance measurement discussed in [86], [53] introduces two interesting
control laws designed with the aim of enforcing (i) asymptotically stable
dynamics for the errors ei(t) = x(t)− xr,i(t), i = 1, 2, that is, for the errors
between the real and the desired values of the state for the two cases of
xr,1(t) and xr,2(t) in (4.29), and (ii) the simultaneous rejection of the periodic
disturbances z(t), considering either the first-order approximation or the
second-order one.
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Nonlinear Regulation for the Quasi-Halo Orbit qho1

Assuming to consider only the first-order contribution of z(t), the distur-
bances (4.21) can be rewritten in the following form:

z′(t) =


b1e 0
0 0
0 −b1e

µ(1− µ)a1e 0

(cos(t+ φ)
sin(t+ φ)

)
:= T1wz,1(t), (4.30)

where wz,1(t) is a solution to

ẇz,1 = Sz,1wz,1, with Sz,1 =

(
0 −1
1 0

)
. (4.31)

The reference trajectory, in this case given by yr(t) = qho1(t), can be rewritten,
according to (4.24), as yr(t) := −Q1wr,1(t), where

wr,1(t) =

(
cos Ωt
sin Ωt

)
and Q1 =

k(1−c1+Ω2)
2Ω

0
0 −k
−k 0

 .

Defining

ω(t) =

(
ω1(t)
ω2(t)

)
:=

(
wz,1
wr,1

)
,

we obtain the so-called exosystem, exhibiting linear dynamics in this case,
namely

ω̇ = Sω, with S =

(
Sz,1 0
0 Sr,1

)
and Sr,1 =

(
0 −Ω
Ω 0

)
, (4.32)

while Sz,1 is given by (4.31). The corresponding regulation-based control law
designed in [53] is

u(t) = −f2(π(ω(t)))− P (π(ω(t)))T1ω1(t)−Q1S
2
r,1ω2(t)+

+K(x(t)− π(ω(t))) := γqho1(ω(t), π(ω(t)), x(t)).
(4.33)

where π(ω(t)) is chosen as a Ck (with k > 1) mapping, defined in the
neighborhood of ω = 0 with π(ω(0)) = 0, such that the regulator equations
(8.14) in [86] are satisfied. Such a control law can then be plugged in the
original nonlinear system (4.19), thus leading to the achievement of the desired
objective in terms of asymptotic tracking and disturbance rejection.

Nonlinear Regulation for the Quasi-Halo Orbit qho2
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In this case, we choose to take into account also the presence of z′′(t). In
particular, similarly to what has been done in (4.30), the disturbances (4.22)
can be rewritten in the form z′′(t) := T2wz,2(t), where wz,2(t) is a solution to

ẇz,2 = Sz,2wz,2, with Sz,2 =

0 −2 0
2 0 0
0 0 0

 .

The reference trajectory, which is given in this case by yr(t) = qho2(t), can
be rewritten, according to (4.26), as yr(t) := −Q2wr,2(t), where

wr,2(t) :=


cosωt
sinωt

cos(t+ φ)
sin(t+ φ)

 =

(
wr,1(t)
wz,1(t)

)

is a solution to

ẇr,2 = Sr,2wr,2 =

(
Sr,1 0
0 Sz,1

)
wr,2,

Q2 =

k(1−c1+Ω2)
2Ω

0 −h1e 0
0 −k 0 −h1e
−k 0 0 0

 ,

Sz,1 is given by (4.31), Sr,1 is given by (4.32) and the hi’s, for i = 1, 2, are
given by (4.27) and (4.28), respectively. Defining

ω(t) =

ω1(t)
ω2(t)
ω3(t)

 :=

wr,1(t)
wz,1(t)
wz,2(t)

 =

(
wr,2(t)
wz,2(t)

)
,

the exosystem for the present case is therefore described by

ω̇ = Sω, where S =

(
Sr,2 0
0 Sz,2

)
.

The corresponding regulation-based control law designed in [53] is

u(t) = −f2(π(ω(t))− P (π(ω(t))(T1ω2(t) + T2ω3(t))−Q2S
2
r,2

(
ω1(t)
ω2(t)

)
+

+K(x(t)− π(ω(t))) := γqho2(ω(t), π(ω(t)), x(t)),

(4.34)

which, plugged in the original nonlinear system (4.19), achieves the desired
objective in terms of asymptotic tracking and disturbance rejection.
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4.2.2 Sampled-Data Design by Emulation

Sampled-data controllers can be used with different purposes: from (i) the
reproduction of the controller behaviours (i.e., controller discretization with
possible continuous redesign) to (ii) the settlement of specific control objectives
either at the sampling instants or in the inter-sampling (i.e., direct digital
control) – see [70] for a detailed study of these control techniques in the linear
context.

In the nonlinear context, the first approach is pursued by computing the
continuous-time control law and maintaining it constant over the predefined
sampling period: such a method of design is called emulation [123]. According

Figure 4.8: Sampled-data design by emulation.

to this last approach, we have therefore implemented a sampled-data emulated
controller, which, receiving an input that consists of samples of ω(t), π(ω(t))
and x(t), produces an output that should approximate the output of the
continuous-time control laws (4.33) and (4.34), depending on the reference
trajectory set by the exosystem. So, the control design is conducted as if
the control system were continuous, then, after selecting a suitable sampling
period, the controller γqhoi (with i = 1, 2) is digitized and the resulting
sampled-data design is used in place of the continuous one (see Fig. 4.8 and
the related block in red). The corresponding control samples u[k] are then
held in order to produce the continuous signal u(t) which will act upon the
physical process under control.

4.2.3 Remarks on Sampled-Data Design

The second approach discussed at the beginning of the previous section
consists in designing a controller on the basis of the sampled-data equivalent
model for the original continuous-time system. This will now be done with
the purpose of improving the performances in terms of orbit following, with
respect to the emulated controller. In this sense, roughly speaking, it can
even be considered as a “redesign” procedure. Before introducing such an
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improved controller, let us first recall some basic ideas about sampled-data
design [123] [124] [157].

Let us consider the following continuous-time input-affine system, ΣC(f, h),

ẋ(t) = f(x(t)) + g(x(t))u(t)

y(t) = h(x(t)),
(4.35)

where x(t) ∈ Rn, u(t) ∈ Rq, y(t) ∈ Rp with p ≤ n and f(·, ·) and h(·) are
analytic in their arguments. Performing an m-th order multirate sampling
means that the control signals are actuated faster than the rate which the
data are measured at: u(t) is consequently assumed to be constant over
subintervals of amplitude δ̄ = δ

m
,

ui := u

[
k +

(
i− 1

m

)]
= u(kδ + τ) for (i− 1)δ̄ ≤ τ < iδ̄, i = 1, . . . ,m,

thus allowing m different control values on each interval of length δ, i.e.,
ui = u[k + ( i−1

m
)] is active and constant for all t ∈ [kδ + (i − 1)δ̄, kδ + iδ̄[

where 1 ≤ i ≤ m. We describe the so-called multirate sampled-data equivalent
of order m of ΣC by the following discrete-time state-space representation,
ΣD(F δ

MR, h),

x[k + 1] = F δ
MR(x[k], u1, . . . , um)

y[k] = h(x[k]),

where

F δ
MR(x, u1, . . . , um) = eδ̄(f+gu1) ◦ · · · ◦ eδ̄(f+gum)x[k] =

= eBC H m(δ̄(f+gu1),...,δ̄(f+gum))x[k],
(4.36)

if x[0] = x(0) implies x[k] = x(kδ), k ≥ 0, and consequently y[k] = y(kδ), that
is, if the discrete-time state behaviour x[k] matches the continuous-time one
x(t) at the sampling instants. In particular, the expression BC H m represents
the Baker-Campbell-Hausdorff exponent associated with the non-commutative
composition of m exponential operators, i.e., eBC H m(f1,...,fm) := ef1 ◦ . . . ◦ efm .

In particular, F δ
MR is nothing but the m-time composition of the single-

rate sampled-data equivalent dynamics of (4.35). For any constant input
u[k] and δ small enough, the convergence of the series expansion for the
exponential function in (4.36) is assumed to hold. Such a ΣD is said to give an
Exact Sampled Representation (ESR) of ΣC . It becomes a Computable-Exact
Sampled Representation (C-ESR) if a closed form exists for F δ

MR and a Finitely
Computable-Exact Sampled Representation (FC-ESR) when the resulting
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series expansion in δ is of finite order. An exact calculus being difficult,
it is in practice usual to consider an Approximate Sampled Representation
(ASR) at a fixed order, corresponding to the truncation of the aforementioned
series expansion. Once we have computed the sampled-data equivalent of ΣC ,
we can re-state the control problem in terms of ΣD(F δ

MR, h) and choose the
control law accordingly. In the literature such an approach is called multirate
direct digital design.

The remarks above will prove useful for showing how a multirate sampled-
data controller, which we will now define as the improved controller, sensibly
enhances the performances in terms of reference tracking with respect to the
previously discussed emulated controller.

4.2.4 Multirate Quasi-Halo Orbit Following

Starting from the input-affine satellite dynamics in (4.19), according to the
definitions given in the previous section, we now compute the corresponding
multirate ASR, choosing to truncate the Taylor series expansion of (4.36) at
the first order. Hence, for the first semiperiod we have

x

[
k +

1

2

]
= x[k] +

δ

2

{(
f1(x[k])

f2(x[k], z[k])

)
+Gu[k]

}
=

=

(
x1[k]
x2[k]

)
+
δ

2

(
f1(x[k])

f2(x[k], z[k])

)
+
δ

2

(
03×3

I3×3

)
u[k].

In particular, as the active control variables are assumed to be u4, u5 and u6,
by resorting to a multirate approach of order 2 we can write the following:

u[k] =

(
ua[k]
ub[k]

)
=


u1[k]
u2[k]
u3[k]
u4[k]
u5[k]
u6[k]

 =


0
0
0

u4[k]
u5[k]
u6[k]

 ,

with

u4[k] = u41, u4

[
k +

1

2

]
= u42,

u5[k] = u51, u5

[
k +

1

2

]
= u52,

u6[k] = u61, u6

[
k +

1

2

]
= u62.
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As a result of this choice, for the second semiperiod we have

x[k + 1] = x

[
k +

1

2

]
+
δ

2

(
f1(x[k + 1

2
])

f2(x[k + 1
2
], z[k + 1

2
])

)
+
δ

2
Gu

[
k +

1

2

]
. (4.37)

Taking into account that f2(x[k + 1
2
], z[k + 1

2
]) can be rewritten as follows

f2

(
x

[
k +

1

2

]
, z

[
k +

1

2

])
= f ′2

(
x[k], z[k], z

[
k +

1

2

])
−

− 2N
δ

2
ub[k]

(
1 + z1

[
k +

1

2

])
if we separate a term depending on the state and on the disturbances from
a term depending on the control inputs, and taking into account that, as a
result,(

f1(x[k + 1
2
])

f2(x[k + 1
2
], z[k + 1

2
])

)
=

(
x2[k] + δ

2
f2(x[k], z[k])

f ′2(x[k], z[k], z[k + 1
2
]

)
+

+
δ

2

(
I

−2N(1 + z1[k + 1
2
])

)
ub[k] =

:= f ′
(
x[k], z[k], z

[
k +

1

2

])
+g

(
z

[
k +

1

2

])
ub[k],

eventually (4.37) becomes the following:

x[k + 1] = x[k] +
δ

2
f(x[k], z[k]) +

δ

2
Gu[k] +

δ

2
f ′
(
x[k], z[k], z

[
k +

1

2

])
+

+
δ

2
g

(
z

[
k +

1

2

])
ub[k] +

δ

2
Gu

[
k +

1

2

]
=

= x[k] +
δ

2

(
f(x[k], z[k]) + f ′

(
x[k], z[k], z

[
k +

1

2

]))
+

+
δ

2

[(
0

I + g(z[k + 1
2
])

) (
0
I

)](
u[k]

u[k + 1
2
]

)
.

(4.38)

By rewriting (4.38) as follows

x[k + 1] := x[k] +
δ

2
f̃

(
x[k], z[k], z

[
k +

1

2

])
+
δ

2
g̃

(
z

[
k +

1

2

])(
u[k]

u[k + 1
2
]

)
,

(4.39)
we have now determined the expression of the multirate controlled dynamics
of the satellite, where the multirate inputs are each (acting respectively on
ξ̈r, η̈r, ζ̈r) of degree 2.
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At this point, we choose to force such dynamics to be equal to

x[k + 1] = PDx[k] +BDKπ(ω[k]), (4.40)

with either xr,1(t) or xr,2(t) as the chosen reference trajectory. Note that
(4.40) corresponds to an almost exact discretization of an asymptotically
stable linear system

ẋ(t) = Ã(t) + B̃v(t), with v(t) = K(π(ω(t))− x(t)), i.e.,

ẋ = (Ã− B̃K)x+ B̃Kπ(ω),

with K chosen according to the rules of eigenvalue assignment in continuous
time, PD = e(Ã−B̃K)δ, BD =

∫ δ
0
e(Ã−B̃K)sB̃ds, and Ã and B̃, for instance, as

given in [?]. Therefore, the asymptotically stable linear dynamics (4.40) can
be forced via feedback onto the multirate satellite model (4.39), thus ensuring
the achievement of the prescribed orbit-following objective. In other words,

by performing map inversion, we choose the inputs
(
u[k] u[k + 1

2
]
)T

so that
(4.39)≡(4.40), i.e., we choose the following multirate control law:(

u[k]
u[k + 1

2
]

)
= g̃−1

(
z

[
k +

1

2

])
·
[

2

δ
·
(
PDx[k] +BDKπ(ω[k])− x[k]

)
−

− f̃
(
x[k], z[k], z

[
k +

1

2

])]
,

(4.41)

where z[k + 1
2
] can be easily computed from the samples of either z(t) ≈ z′(t)

in (4.21) or z(t) ≈ z′(t) + z′′(t) in (4.22), depending on the chosen order
of approximation of the disturbances. We refer to (4.41) as the improved
controller.

4.2.5 Discussion

We now briefly discuss the main weaknesses and strengths of the presented
approach. This is done by highlighting three important points that may be
responsible of raising concern when resorting to a digital controller (e.g., the
emulated or the improved one).

• First of all, the measurements the presented control laws resort to
are entirely dependent on the availability of state feedback with the
sampling frequency the digital control system is working at. Yet, in
space missions it may happen either that state feedback is not available
with a very high frequency, or worse, that the state of the controlled
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system is not available for direct measurement at all. If the latter is the
case, it is still possible to exploit the measurements of the outputs of the
controlled system, along with the knowledge of its dynamics, in order
to lead the overall closed-loop system to the desired control objective,
as occurs, for instance, in nonlinear output regulation.

• We have designed the improved controller (4.41) on the basis of a
multirate ASR at the first order of the original satellite continuous-time
nonlinear dynamics (4.19). This has been done in order for the reader
to have a good grasp of the methodological approach followed, without
getting lost in the details of the calculations. Of course, relying on
higher-order ASR’s of (4.19) would yield better-performing multirate
digital control laws, as an increasing order of approximation means that
we are drawing closer and closer to an exact solution. Nonetheless, in
comparison with (4.41), designing such further-improved controllers is
just a matter of computational effort: the methodological approach is
exactly the same so long as the necessary condition for performing the
map inversion of (4.39) that leads to (4.41) is satisfied, that is, the sum
of the multirate degrees ri of each of the available inputs must be equal
to the dimension n of the state vector,

∑q
i=1 ri = n (in the considered

case, n = q = 6, r1 = r2 = r3 = 0, r4 = r5 = r6 = 2).

• Multirate digital design succeeds in forcing the state of the controlled
system to exhibit the desired behaviour; in other words, the improved
controller works as a finite settling time or deadbeat compensation –
because the controlled system settles in a finite number of sampling
periods – combined with trajectory tracking control – where the trajec-
tory to be followed is one of the two quasi-halo orbits xr,1(t) and xr.2(t)
in (4.29).

4.2.6 Simulations

The designed control laws have been tested in the MATLAB/Simulink envi-
ronment. The following simulation results show that the improved controller
sensibly enhances the performances with respect to the emulated controller.
Both the emulated and the improved controllers have been applied to the
original nonlinear satellite model (4.19).

For the sake of simplicity, in the simulations the disturbances modelling
the perturbation due to eccentricity are not assumed to be measurable, which
is why we have computed our control laws from the state and the output of
a generator (i.e., the exosystem) modelling such disturbances with known
frequency and amplitude.
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Table 4.2: Values of E(t) with δ = 1
9

s and xr,1(t) as the reference trajectory.

controller
time instant (s)

0.1 0.3 2.5 5 7.5 10

emulated 6.91 30.49 98.08 102.20 103.00 103.10
improved 4.14 5.05 6.40 7.26 8.85 9.70

Table 4.3: Values of E(t) with δ = 1
9

s and xr,2(t) as the reference trajectory.

controller
time instant (s)

0.1 0.3 2.5 5 10 20 25

emulated 9.21 36.24 114.40 119.50 120.30 121.40 122.00
improved 5.61 6.49 7.93 9.25 11.73 16.13 18.34

Figs. 4.9-4.10 show the trajectory described by the spacecraft in the ξr-ηr
plane, once it has been posed exactly in the L2 translunar libration point with
zero velocity (i.e., initial condition in L2), for both control strategies (i.e.,
under the emulated and under the improved controller) and for both cases of
reference choice xr,1(t) and xr,2(t), assuming δ = 1

9
s. Also, the evolution over

time of the related piecewise-constant control inputs ub(t) is depicted.
In particular, below a certain threshold for the sampling period, the

two control strategies exhibit very similar tracking performances (i.e., for
δ < δ̃ = 1

9
s). However, as soon as the length of the sampling period rises

above a specific threshold (i.e., δ ≥ δ̃), the closed-loop system under the
emulated controller goes entirely unstable. Instead, the improved controller
preserves its stabilizing behaviour (see Fig. 4.11), even when the system’s
state is measured with lower sampling frequency, thus ensuring the desired
result in terms of orbit following. Another difference is in the energy required
for performing the tracking task: in this respect, the integral

∫ t
t0=0
|u(τ)|2dτ

can be considered as an “energy-like” function E(t) whose values under the
emulated and the improved controller (considering the case when δ = 1

9
s) are

collected in Tables 1 and 2. In particular, the time horizon for the simulations
with the reference trajectory xr,2(t) has been set to 25 s in order to let the
satellite’s state produce a graphically meaningful description of the desired
quasi-halo orbit (see Figs. 4.10-4.11). Indeed, as shown by the evolution
over time of the integral introduced above, the improved controller entails a
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(a) (b)

(c) (d)

Figure 4.9: Subplots (a) and (b) show the trajectories described by the
spacecraft in the ξr-ηr plane under the emulated and the improved controller,
respectively, with x(0) = xe, δ = 1

9
s and xr,1(t) as the reference trajectory.

Subplots (c) and (d) show the piecewise-constant control inputs ub(t) plotted
over time (measured in conventional seconds) for the emulated and the
improved controller, respectively, with δ = 1

9
s and xr,1(t) as the reference

trajectory.

less expensive control action with respect to the emulated one – not only at
first, when moving from the initial position to the desired orbit, but on the
whole, even during the orbit maintenance phase.

Moreover, as δ is raised above the threshold δ̃, the energy contribution
required by the improved controller for following the desired orbit does not
experience a significant growth with respect to the values reported in Tables 1
and 2. This is another reason why a properly designed sampled-data multirate
controller should be preferred to the emulated one.
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(a) (b)

(c) (d)

Figure 4.10: Subplots (a) and (b) show the trajectories described by the
spacecraft in the ξr-ηr plane under the emulated and the improved controller,
respectively, with x(0) = xe, δ = 1

9
s and xr,2(t) as the reference trajectory.

Subplots (c) and (d) show the piecewise-constant control inputs ub(t) plotted
over time (measured in conventional seconds) for the emulated and the
improved controller, respectively, with δ = 1

9
s and xr,2(t) as the reference

trajectory.

4.2.7 Conclusions

From the presented simulations, it is possible to conclude that, with respect
to the emulation of a continuous-time regulation-based controller satisfying
the tracking requirements, there are some advantages to relying instead on
a properly designed sampled-data multirate stabilizing controller – namely,
this last one yields better results in terms of the amplitude of the control
variables and allows to use larger sampling periods.

We must point out that all of the proposed sampled-data control laws are
designed on the basis of approximations, more or less accurate, of the nonlinear
satellite model. This means that there is some unknown nonlinear contribution
from the system whose effect is equivalent to an unknown disturbance term. In
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(a) (b)

(c) (d)

Figure 4.11: Subplots (a) and (c) show the trajectories described by the
spacecraft in the ξr-ηr plane under the improved controller, with x(0) =
xe, δ = 1

7
s, xr,1(t) as the reference trajectory in (a) and xr,2(t) as the

reference trajectory in (c). Subplots (b) and (d) show the piecewise-constant
control inputs ub(t) plotted over time (measured in conventional seconds) for
the improved controller, with δ = 1

7
s, xr,1(t) as the reference trajectory in

(b) and xr,2(t) as the reference trajectory in (d).

this respect, the simulation results suggest that a certain degree of robustness
is guaranteed by the proposed control schemes. Further studies will address
the investigation of such robustness aspects.

In general, the closer the initial state is to the reference orbit that has to
be described, the more satisfactory the performances yielded by the proposed
sampled-data control laws will be. Moreover, a sampled-data control law
exhibits its major drawback during the phase when the satellite is reaching
the desired orbit, especially if the same control strategy is employed both
for orbit acquisition and maintenance. Therefore, a reasonable solution to
the overall control problem could consist in a “mixed” strategy, using first a
continuous-time nonlinear regulator while performing orbit acquisition, and
then a sampled-data multirate controller for ensuring orbit maintenance.



Conclusions and Future Work

Across different fields, scientists are making a dramatic progress and pushing
network analysis and design to its limits. In engineering, in particular,
researchers study how to coordinate individual physical devices into a coherent
whole with the aim of performing a common task. This has given rise to
an exciting research field, i.e., the field of networked multi-agent dynamical
systems, with several applications requiring high adaptivity and scalability.
Such objectives are typically pursued by designing distributed algorithms that
rely only on local interaction in order to achieve global group behaviours.

This PhD thesis presents and discusses the activities carried out by the
PhD candidate (i) from the point of view of the applications of networked multi-
agent systems in the context of Italian and European research projects (see
Chapter 1), and (ii) from the point of view of the innovative methodological
results obtained during the three-year PhD programme (see Chapters 2, 3
and 4).

In particular, in the PLATINO project, focused on the telecommunications
domain (see Chapter 1), a Multi-Agent Reinforcement Learning based ap-
proach to Quality of Experience (QoE) Control has been proposed, enabling
a dynamic Class of Service selction aimed at reducing the error between
the personalized Perceived QoE and the personalized Target QoE levels by
properly driving the control procedures that handle the underlying networks.
The related algorithm is characterized by a very good degree of scalability,
but assumes the time-invariance of the Target QoE level. So, further studies
are being conducted based on concept drift in telecommunication systems in
order to address the case of a time-varying Target QoE. Moreover, further
research is currently being carried out, based on a combinatorial multi-armed
bandit approach to cooperative online learning, in order to overcome the
centralized paradigm and consequently develop a solution where QoE Control
functions are fully distributed into the agents.

In the T-NOVA project, still focused on the telecommunications domain
(see Chapter 1), a distributed non-cooperative load balancing algorithm
based on mean field game theory is proposed: it is proved to asymptotically
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converge to the exact Wardrop equilibrium, in contrast with the existing
discrete-time algorithms which converge to approximate Wardrop equilibria
only. Future work will be aimed at analyzing the effects of time delays and of
communications constraints which may hinder the migration among network
paths. Moreover, a Wardrop load balancing algorithm was implemented in a
real SDN network, achieving convergence to an arbitrarily small neighborhood
of a Wardrop equilibrium (thus yielding set stability). In this respect, a proof-
of-concept implementation is provided and future work will be aimed at
validating the algorithm on larger use cases.

In the ATENA project, focused on the domain of power networks (see
Chapter 1), a protection scheme for power transmission grids making use of
energy storage systems in support of primary frequency regulation services
for improving reaction to closed-loop dynamic load altering attacks has
been proposed. Such a protection scheme allows to solve an optimization
problem subject to a Lyapunov stability constraint for the autonomous
representation of the power system obtained after linearization and application
of the attack and frequency control laws. The reported results show that the
proposed iterative algorithm allows to determine a solution to the problem of
optimizing the number and location of energy storage systems while ensuring
grid stability. Nonetheless, the deployability of the obtained solution depends
on the availability on the market of suitably-sized energy storage systems.
Future work will be aimed at tackling the same problem by means of alternative
methods for finding a sparse solution, on the one hand, and reformulating
the problem in order to exploit energy storage also as a support to secondary
regulation services, on the other hand.

After extensively discussing the above-mentioned project-related results,
the focus of the thesis is shifted from the applications to the methodological
framework, first of all by providing an overview on the control-theoretic
methods for the distributed coordination of multi-agent systems (see Chapter
2). Such an overview ranges from first- and second-order mathematical models
to networked Lagrangian systems and sampled-data control, thus paving the
way for the research results presented in the subsequent Chapter.

Chapter 3 introduces multi-consensus and provides insight into how the
network topology determines the properties of the dynamical evolution of a
multi-agent system, ultimately showing that at steady-state the agents group
into properly organized clusters whose composition is dictated by a suitable
graph partition which is proved to be almost equitable. Future work will be
aimed at exploiting the notion of almost equitable partition in order to alter
the network topology, by enforcing a control action onto properly chosen lead
nodes, with the aim of achieving desired multi-consensus conditions.

Eventually, Chapter 4 discusses the results achieved with respect to
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sampled-data design in the aerospace domain. In particular, the exact com-
putation of the state predictor is shown for a nonlinear system that admits a
finite-order sampled-data equivalent model under feedback. In this respect, an
exact delay-compensating piecewise-continuous steering controller is designed
and simulated on the mathematical model of a Planar Vertical Take-Off and
Landing aircraft with delays in the inputs. Future work will be aimed at
extending the obtained results to the case when the exact values of the delays
are unknown and at achieving good performances in terms of robustness
with respect to disturbances. Also, the problem of spacecraft quasi-halo
orbit following around the L2 translunar libration point via continuous-time
nonlinear regulation is investigated. In this respect, a multirate sampled-data
stabilizing control law is compared with the sampled-data controller designed
by emulation of the continuous-time nonlinear regulator, showing that the
former yields sensibly better tracking performances than the latter. Since the
discussed sampled-data control laws are designed on the basis of approxima-
tions of nonlinear models, the simulation results suggest that a certain degree
of robustness is guaranteed. Further studies will address the investigation of
such robustness aspects.

All in all, this PhD thesis gives an overview of the challenges and research
opportunities arising in the field of networked dynamical systems, together
with some interesting accomplishments, both from the point of view of
practical applications (as regards the simulations and implementations devised
in the context of the PLATINO, T-NOVA and ATENA projects) and from
the methodological point of view (see Chapters 2 and 3). A concise digression
is devoted to sampled-data control with aerospace applications (see Chapter
4): its contents account for a brief follow-up to the work carried out by the
PhD candidate, namely in the period ranging from his M.Sc. thesis and the
end of the first year of the PhD programme.

It is worth recalling that, while carrying out this research, the PhD
candidate benefited greatly not just from Sapienza, Università di Roma, but
also from the collaboration and exchange with the Laboratoire des Signaux
et Systèmes (L2S) at Centrale Supélec, Université Paris-Saclay within the
context of the co-tutelle with the Ecole Doctorale de Sciences et Technologies
de l’Information et de la Communication (ED STIC).
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Mots clés : Stabilisation, systèmes non linéaires, systèmes discrèts et à données échantillonées, 

systèmes multi-agents, réseaux complexes, consensus. 

Résumé : L'objectif de cette thèse de doctorat est 

(i) d'étudier et de développer des méthodes 

d’analyse et de commande de systèmes de 

contrôle en réseau linéaires et non linéaires et (ii) 

de montrer le potentiel de ces approches dans des 

applications complexes pertinentes. À cet égard, 

la théorie des systèmes à plusieurs agents, la 

théorie des graphes algébriques et le consensus 

sont des outils méthodologiques les plus 

intéressants. Une attention particulière est 

accordée à la caractérisation des relations entre, 

d'une part, la topologie du graphe de 

communication qui sous-tend l'évolution du 

système à plusieurs agents considéré et, d'autre 

part, les propriétés spectrales de la matrice 

Laplacienne associée au graphe lui-même. Le 

contrôle d'un groupe d'agents autonomes est 

étudié sous différents angles.  

Le principal objectif de contrôle est de s’assurer 

que les agents travaillent ensemble de manière 

coopérative, où la coopération représente la 

relation étroite entre tous les agents de l'équipe, 

le partage de l'information jouant un rôle 

important.  

En particulier, beaucoup de problèmes de 

consensus/accord/ synchronisation /rendez-vous 

sont étudiés afin de guider un groupe d’agents 

vers un état commun. Le consensus est étudié 

dans un contexte à temps discret parce que la 

dynamique du système est en general continue 

alors que les mesures et les entrées de contrôle 

sont des données échantillonnées. En outre, la 

théorie des jeux est utilisée pour faire face aux 

problèmes de coordination distribués à plusieurs 

agents, avec une application aux réseaux connus 

sous le nom de Software Defined Networks. À 

cet égard, on peut montrer que, sous des 

protocoles correctement conçus, les joueurs 

convergent vers un équilibre unique de Wardrop.  

On concentre l’attention sur le contrôle distribué, 

car cette approche présente des avantages 

évidents par rapport à la centralisation, comme 

l'évolutivité et la robustesse. Pourtant, le contrôle 

distribué a également ses propres inconvénients : 

avant tout, un inconvénient est que chaque agent 

ne peut pas prédire efficacement le 

comportement global du groupe en se basant 

uniquement sur des informations locales.  

Une certaine attention est également accordée à 

la nécessité de sécuriser les réseaux électriques 

contre le danger des attaques cyber-physiques 

grâce au développement de technologies 

d'intelligence distribuée. À cet égard, sur la base 

de topologies de réseaux d'énergie réalistes, nous 

présentons brièvement la conception d'un 

schéma de protection contre les attaques 

dynamiques à un point et à points multiples en 

boucle fermée. Nous formulons et résolvons un 

problème d'optimisation non convexe soumis à 

une contrainte de stabilité de Lyapunov pour la 

représentation à plusieurs agents autonome d'un 

réseau électrique obtenue après la linéarisation et 

l'application des lois d’attaque et de contrôle de 

fréquence.  

Finalement, nous présentons des résultats 

obtenus sur : le pilotage exact de la dynamique 

non linéaire finie à données échantillonnées avec 

des retards sur les entrées, au sujet de la 

stabilisation à données échantillonnées et de la 

poursuite de l'orbite quasi-halo autour du point 

de libration translunaire L2, et au sujet des 

algorithmes heuristiques basés sur des méthodes 

d'apprentissage par renforcement à plusieurs 

agents capables d'effectuer un contrôle adaptatif 

optimal de qualité de service / qualité de 

l’expérience dans des scénarios sans modèle. 
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Abstract : The objective of this PhD thesis is (i) 

to investigate and develop methods for the 

analysis and design of linear and nonlinear 

networked control systems and (ii) to show the 

potential of such approaches in relevant complex 

applications. In this respect, multi-agent systems 

theory, algebraic graph theory and consensus are 

the most interesting methodological tools, and 

specific attention is paid to the characterization of 

the relationships between, on the one hand, the 

topology of the communication graph that 

underlies the evolution of the considered multi-

agent system and, on the other hand, the spectral 

properties of the Laplacian matrix associated with 

the graph itself. 

The control of a group of autonomous agents is  

investigated from different perspectives. The main 

control objective is to make sure that the agents 

work together in a cooperative fashion, where 

cooperation accounts for the close relationship 

among all agents in the team, with information 

sharing playing an important role.  

In particular, various problems regarding 

consensus/agreement/synchronization/rendezvous 

are investigated with the specific aim of driving a 

group of agents to some common state. Consensus 

is investigated in a discrete-time setting due to the 

fact that the system dynamics is normally 

continuous while the measurements and control 

inputs might only be made in a sampled-data 

setting. Moreover, game theory is relied upon in 

order to cope with distributed multi-agent 

coordination problems, with application to 

Software Defined Networks. In this respect, it can 

be shown that, under properly designed protocols, 

the players converge to a unique Wardrop 

equilibrium. 

We focus on distributed control, since this 

approach shows obvious benefits over 

centralization, such as scalability and 

robustness. Yet, it also has its own drawbacks: 

among all, one drawback is that each agent 

cannot effectively predict the overall group 

behaviour based on only local information.  

Some attention is also devoted to the need for 

securing power grids against the danger of 

cyber-physical attacks through the development 

of distributed intelligence technologies 

accompanied by appropriate security 

enforcements. In this respect, based on realistic 

power network topologies, we briefly present 

the design of a protection scheme against 

closed-loop single-point and multi-point 

dynamic load altering attacks. This is done by 

formulating and solving a non-convex 

optimization problem subject to a Lyapunov 

stability constraint for the autonomous multi-

agent representation of a power system 

obtained after linearization and application of 

the attack and frequency control laws. 

Eventually, we show some other results 

achieved in terms of the exact steeering of finite 

sampled nonlinear dynamics with input delays, 

of sampled-data stabilization and quasi-halo 

orbit following around the L2 translunar 

libration point, and of heuristic algorithms 

based on multi-agent reinforcement learning 

methods capable of performing optimal 

adaptive Quality of Service/Quality of 

Experience control in model-free scenarios. 
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