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Abstract: One of the standard predictions of the agency theory is that more incentives can be
given to agents with lower risk aversion. In this paper, we show that this relationship may be
absent or reversed when the technology is endogenous and projects with a higher efficiency are
also riskier. Using a modified version of the Holmstrom and Milgrom’s framework, we obtain that
lower agent’s risk aversion unambiguously leads to higher incentives when the technology function
linking efficiency and riskiness is elastic, while the risk aversion–incentive relationship can be positive
when this function is rigid.
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1. Introduction

One of the main results of the agency theory is the trade-off between incentives and insurance.
Lower agent’s risk aversion allows the principal to provide more incentives by making the payment
of the agent more related to output, while higher uncertainty increases the gains from insuring the
agent and reduces the pay-for-performance sensitivity (e.g., Holmstrom and Milgrom [1] ). However,
the empirical works testing the link between uncertainty and incentives have found mixing results
(e.g., Rao and Hanumantha [2], Allen and Lueck [3], Aggarwal and Samwick [4], Core and Guay [5],
and Wulf [6]). In many cases, the empirical findings are even in contradiction with the standard
predictions of the theory as they document a positive (rather than negative) correlation between
observed measures of uncertainty and the provision of incentives (see Prendergast [7] for an extensive
discussion on this point).

Some recent contributions on the matching literature (e.g., Wright [8], Legros and Newman [9],
Serfes [10,11], and Li and Ueda [12]) has attempted to offer a theoretical justification of the above
cited results. The explanation provided has been based on the endogenous matching between principals
and agents by introducing the heterogeneity on managers’ degree of risk aversion (Wright [8]), on the
assortative matching between risk-averse agents and riskier principals (Serfes [10]), or on the matching
between agents and firms that differ, respectively, for the level of productivity and riskiness (Li and
Ueda [12]).

Differently from the logic developed in the matching models, in this paper, we propose an
alternative and simpler explanation of the relationship between risk and incentives based on the
endogeneity of the technology adopted by the principal. In particular, we show that the traditional
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relationship between agent’s risk aversion and optimal incentive may be absent or reversed when the
technology is endogenous and projects with higher efficiency are also riskier.

To describe the mechanisms at work in our theory, we propose a modified version of the
Holmstrom and Milgrom’s [1] framework, where the principal can choose among a continuous set of
projects where those with higher efficiency are also characterized by higher riskiness. While the
employment of Holmstrom and Milgrom’s framework implies some simplifying assumptions
(such as constant absolute risk aversion utility function, quadratic costs and normally distributed
shocks), it allows us to describe the mechanisms at work in a clear and simple model that generates
closed-form solutions.

We obtain that lower agent’s risk aversion unambiguously leads to higher incentives only
when the technology function linking risk and efficiency is elastic, while the risk aversion–incentive
relationship can be positive when this function is rigid. This is because a lower risk aversion of the agent
makes it optimal for the principal the adoption of a riskier and a more efficient technology. While the
higher efficiency of the new technology (as well as the lower agent’s risk aversion) allows the principal
to give more incentives to the agent, its higher riskiness makes the provision of incentives more costly
which works in the direction of reducing the optimal degree of the pay-for-performance sensitivity.

In other words, whereas less risk averse agents would normally induce the principal to provide
more incentives, they also lead her to choose more productive and riskier technologies. The higher
efficiency of the new technology also pushes towards an increase of incentives but the higher riskiness
works in the opposite direction making it optimal their reduction. The relative strength of this latter
effect is related to the elasticity of technology function linking efficiency and riskiness, and it is higher
the lower such elasticity. When this situation occurs, the relationship between the agent’s degree of
risk aversion and incentives becomes positive.

As we anticipated above, our work is related to the matching literature that addresses the
issue of the link between uncertainty and incentives. In particular, by introducing competition for
heterogeneous managers, who differ in their degrees of risk aversion, Wright [8] proves that a negative
or positive relationship between agents’ risk and incentives is possible and depends on the relative risk
aversion of the managers and the riskiness of the environments. Serfes [10] shows that, whereas under
efficient positive assortative matching (in which higher risk-averse agents are optimally matched with
riskier principals) the traditional trade-off between risk and incentives holds, under efficient negative
assortative matching (lower risk-averse agents are matched with riskier principals) this trade-off can fail
to hold, in particular when matching curves are very steep. Li and Ueda [12] show, instead, that, if the
agents differ only in their productivity, safer firms will offer high-powered incentives schemes, in this
way capturing the higher productive workers at the endogenous matching. Legros and Newman [9]
look in general at the sufficient conditions for monotone matching when the utility between partners
is not fully transferable. In an application to principal–agent model, they show that when the agents’
risk aversion does not decline too quickly, the agents with lower risk aversion (or higher wealth) are
matched to principals with safer projects.1 It is worth noting that, differently from matching models,
where both principals and agents can select endogenously their partners, in our model the principal
only decides the technology to adopt (with its peculiar riskiness) and the bonus paid to the agent to
incentivize his effort. Here, neither the principal nor the agent is allowed to select its preferred partner.

The paper is organized as follows. In Section 2, we describe the framework, and Section 3 provides
the solution of the model. Section 4 presents the comparative statics analysis of the effect of a reduction

1 This could also explain the counterintuitive tendency of wealthier peasants to tend safer crops than poor peasants in
medieval sharecropping (Ackerberg and Botticini [13]). A few other authors have contributed to this important relationship
in principal–agent models. Among them, Mookherjee and Ray [14] who model an infinitely repeated interaction among
principals and agents randomly matched at each period, Barros and Macho-Stadler [15]who look into a situation where
several principals compete for an agent and Dam and Castrillo [16]who propose a model to analyze an economy with
several principals and agents in order to characterize the set of stable outcomes.
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of the agent’s risk aversion on incentives. Section 5 provides a discussion on our framework and on a
modified version of it. Section 6 concludes.

2. The Framework

We consider a moral hazard model as in Holmstrom and Milgrom [1]. The principal decides
the technology and is risk neutral. The agent is risk averse and has a constant absolute risk aversion
(CARA) utility function u with a coefficient of absolute risk aversion equal to r, i.e.,

u = − exp {−rx} , (1)

where x is the agent’s payoff. Total output is equal to

y = e + ε, (2)

where e is the agent’s action (e.g., effort) and ε is an (unobservable) random variable normally
distributed with zero mean and variance σ2. The technology is characterized by quadratic costs,
so that the agent’s cost of action is

c(e) =
k
2

e2, (3)

where k is a constant representing the efficiency of the technology employed. Better technologies are
characterized by a lower cost parameter k and vice-versa. The agent’s reservation utility is equal to δ.

We here modify the Holmstrom and Milgrom’s framework by assuming the existence of a given
set of technologies (or projects) with different levels of efficiency and riskiness among which the
principal can choose. In particular, we assume a trade-off between efficiency and riskiness so that
technologies with a higher volatility σ2 also have a lower marginal cost of effort, i.e.,

k ≡ k(σ2) with k′ ≡ dk
dσ2 < 0, (4)

where k > 0 for all σ2 ∈ (0, σ̄2).2 For simplicity, the function k(·) is assumed to be a continuous
and differentiable in σ2. As we shall see, the following conditions on the technology function
ensure that an interior solution for the optimal technology always exists: (i) k′′ large enough,
(ii) limσ2→0(−k′/rk2) > 1, and (iii) limσ2→σ̄2 k′ = 0.

The timing of events in our framework is the following: (1) the principal decides the optimal
technology and the agent’s payment scheme; and (2) the agent optimally chooses the action.

In the next sections, we determine the choices of the principal and of the agent, and analyze the
effects of a variation of the agents’ risk aversion on the optimal payment scheme of the agent.

3. The Equilibrium

We solve the problem by determining the optimal payment scheme and the agent’s action for a
given technology.3 Then, we determine the optimal technology choice of the principal.

Holmstrom and Milgrom [1] show that a linear payment is optimal in the above framework,
so that the agent’s payment can be written as s (y) = βy + α, where α and β are constants optimally

2 As it will be clear next, if the technological relationship between efficiency and riskiness would be reversed, i.e., k′ > 0,
then the equilibrium outcome would be trivial as the optimal choice of the principal is always the more efficient and
safer technology.

3 We here omit some details of the analysis as the complete description of the solution can be found in Holmstrom
and Milgrom [1].
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chosen by the principal that have to be determined. Taking into account Equations (1)–(3) and the
distribution of the shock, the agent’s expected utility is

E {− exp {−r [s (y)− c (e)]}} = − exp
{
−r[βe + α− (1/2)ke2 − (1/2)rβ2σ2]

}
,

and therefore his maximization problem can be written as

max
e

βe + α− (1/2)ke2 − (1/2)rβ2σ2. (5)

The first order condition of this problem is

β = ek.

Substituting this latter condition into Equation (5), and then setting the expression (representing
the agent’s certainty equivalent) equal to δ gives4

α = −(1/2)ke2 + (1/2)rβ2σ2 + δ.

Hence, the principal’s maximization problem becomes

max
e

π = E[y− s(y)] = e− (1/2)ke2 − (1/2)rk2e2σ2 − δ, (6)

which gives the following well-known second best solution for the agent’s action5

e∗ =
1

k(1 + rkσ2)
. (7)

Using the fact that β = ek, it follows that the optimal share of output paid to the agent is

β∗ =
1

1 + rkσ2 , (8)

and the optimal fixed payment is

α∗ =
−1 + rkσ2

2k(1 + rkσ2)2 + δ. (9)

Let now σ2
∗ denote the variance of the optimal project. This is the solution of the following

maximization problem of the principal

max
σ2

π∗ =
1

2k(1 + rkσ2)
− δ, (10)

subject to the technological constraint in Equation (4).6

The first order condition of this problem is

dπ∗

dσ2 = − k′ + 2rkk′σ2 + rk2

2k2(1 + rkσ2)2 = 0, (11)

4 It is worth remarking that in this framework the principal own the technology and, therefore, she will always offer a
payment scheme giving the agent an expected utility equal to his reservation utility (i.e., the agent’s certainty equivalent) δ.

5 The first order condition of the problem in Equation (6) is dπ/de = 1− ke− rk2eσ2 = 0 and the second order condition is
always satisfied as d2π/de2 = −k− rk2σ2 < 0.

6 It is immediate that the maximized expected profit π∗ (for a given technology) is obtained from the substitution
of Equation (7) into Equation (6).
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and, therefore, the variance σ2
∗ of the optimal project is implicitly defined by the following equation:

F(σ2) ≡ −k′ − 2rkk′σ2 − rk2 = 0, (12)

where k ≡ k(σ2) and k′ ≡ k′(σ2).7 The effort cost parameter for the optimal technology follows
from Equation (4) and it is k(σ2

∗).
As the existence of a unique global maximum σ2

∗ will be useful for the comparative static analysis,
we restrict the attention to the set of functions k(σ2) representing the technological relation between
efficiency and riskiness that ensures this outcome. A unique maximum requires that the profit function

π∗ in Equation (10) is increasing for σ2 < σ2
∗ and decreasing for σ2 > σ2

∗ , that is dπ∗/dσ2
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σ2
∗ with σ2

∗ as the
unique maximum. In other words, a unique maximum requires that

dF(σ2)/dσ2 = −4rkk′ − 2r(k′)2σ2 − k′′(1 + 2rkσ2) < 0. (13)

The first component of Equation (13) is positive (as k′ < 0), the second is negative while the third
one has the opposite sign of k′′. Therefore, while k(σ2) can generally be concave or convex, a sufficient
condition for Equation (13) to hold is that k(σ2) is sufficiently convex, i.e., that k′′ is positive and large
enough.

The existence of an interior solution σ2
∗ ∈ (0, σ̄2) to the equation F(σ2) = 0 in Equation (12)

is guaranteed when limσ2→0 F(σ2) > 0 and limσ2→σ̄2 F(σ2) < 0 given that F(σ2) is monotonically
decreasing in σ2. As the second component of Equation (12) is nonnegative, a sufficient condition that
guarantees that limσ2→0 F(σ2) > 0 is that limσ2→0(−k′) > limσ2→0 rk2, i.e., that limσ2→0(−k′/rk2) > 1,
so that the sum of the first and third component of F(σ2) is strictly positive.8 From limσ2→σ̄2 k′ = 0
and k ≡ k(σ̄2) > 0 follows that the first two components of Equation (12) tend to zero as σ2 reaches
the upper bound σ̄2; hence, limσ2→σ̄2 F(σ2) = −rk2 < 0.

The following proposition summarizes these results.

Proposition 1. The principal chooses the technology with the variance σ2
∗ implicitly defined by Equation (12)

and with the level of efficiency k(σ2
∗) defined in Equation (4). The agent optimally chooses the action e∗ reported

in Equation (7) and the coefficients of the linear payment scheme β∗ and α∗ are defined by Equations (8) and (9)
with k ≡ k(σ2

∗) and σ2 ≡ σ2
∗ respectively.

4. Agent’s Risk Aversion and the Provision of Incentives

In this section, we analyze how a variation in the agent’s risk aversion affects the provision of
incentives when, as, in our framework, such a variation also induces a change in the technology
adopted. We then provide the conditions for a positive relationship between agent’s risk aversion
and incentives and finally illustrate our analysis in the case where the technology function k(σ2) has a
specific functional form.

4.1. The Effects of a Change of the Agent’s Risk Aversion on Incentives

We first note that a reduction in the agent’s risk aversion increases the riskiness σ2
∗ as well as

the efficiency (k(σ2
∗) goes down) of the technology chosen by the principal. Indeed, by applying the

implicit function theorem to Equation (12), we obtain that

7 Note that the first two components of Equation (12) are positive, while the third one is negative.
8 For example, this is always the case if k is bounded and limσ2→0(−k′) = +∞.
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∂σ2
∗

∂r
= − ∂F/∂r

∂F/∂σ2 = − −2rkk′σ2 − k2

−4rkk′ − 2r(k′)2σ2 − k′′(1 + 2rkσ2)
< 0, (14)

as the denominator is negative from the second order condition of maximization problem in
Equation (10) and the numerator is also negative since the first order condition in Equation (12)
implies that −2rkk′σ2 − k2 = k′/r < 0.

Now, we show that, while the reduction of the agent’s risk aversion induces the principal
to provide more incentives by increasing the agent’s payment related to the output for any given
technology adopted (it is immediate from Equation (8) that β∗ is decreasing in r), this result may
no longer hold if the lower risk aversion of the agent leads the principal to change the technology
employed (i.e., its efficiency and riskiness). In this case, the characteristics of the new technology may
affects the optimal provision of incentives in ways that counterbalance the former (standard) effect.

The total effect of a reduction of the agent’s risk aversion on the optimal share β∗ of output paid
to the agent is obtained by total differentiation of Equation (8), which gives

dβ∗

dr
=

∂β∗

∂r
(−)︸︷︷︸

direct effect (−)

+
∂β∗

∂σ2
(−)

∂σ2

∂r
(−)︸ ︷︷ ︸

indirect riskiness effect (+)

+
∂β∗

∂k
(−)

∂k
∂σ2
(−)

∂σ2

∂r
(−)︸ ︷︷ ︸

indirect efficiency effect (−)

. (15)

Let us now analyze each of these effects generated by a decrease in agent’s risk aversion on β∗ in
detail. The first component in Equation (15) represents the (standard) direct effect of a reduction of r on
β∗, namely the effect on β∗ if the same technology is employed. This component is equal to

∂β∗

∂r
= − kσ2

(1 + rkσ2)2 , (16)

and it is always negative as a lower agent’s risk aversion makes it optimal for the principal to give
more incentives and less insurance to the agent, which requires increasing the payment related to
output (i.e., β∗).

The other two components in Equation (15) represent the indirect effect of the reduction of r on
β∗, i.e., the effect caused by a change in the technology employed (following by the reduction of the
agent’s risk aversion) on the incentives provided by the principal to the agent. From Equation (14) we
know that the new technology is characterized by a higher riskiness and a higher efficiency which
generate two opposing effects on β∗.

The higher riskiness σ2
∗ of the new project adopted when the agent’s risk aversion decreases

makes it optimal the provision of more insurance and less incentives to the agent as

∂β∗

∂σ2 = − rk
(1 + rkσ2)2 < 0. (17)

In other words, a reduction of r increases the riskiness of the optimal technology (∂σ2
∗/∂r < 0,

see Equation (14)) and this increases the payment β∗ related to output (see Equation (17)). We call this
the riskiness effect and it has the opposite sign of the (standard) direct effect generated by the reduction
of the agent’s risk aversion r.

However, the new technology is also characterized by a higher efficiency (i.e., a lower cost of
effort k), which makes it optimal an increase of incentives as

∂β∗

∂k
= − rσ2

(1 + rkσ2)2 < 0. (18)
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Specifically, a reduction of r leads to the adoption of a project which has a lower k (together with
a higher σ2), and this increases the payment β∗ related to output. We call this the efficiency effect and it
has the same sign of the direct effect caused by a lower r.9

Hence, the net indirect effect due to the adoption of a riskier and more efficient technology may
in general lead to an increase or a decrease of incentives. In particular, the following three situations
may arise.

(i) When the efficiency effect dominates the riskiness effect, the net indirect effect has the same
sign of the (standard) direct effect. Therefore, a lower agent’s risk aversion increases the incentives
that the principal provides to the agent; in other words, β∗ increases as r lowers because the additional
indirect effect generated by the change of the technology employed on the payment scheme reinforces
the standard effect.

(ii) When instead the riskiness effect prevails over the efficiency effect, the net indirect effect
due to the change of the technology adopted (generated by a less risk averse agent) implies that the
principal may find it optimal to reduce the incentives provided to the agent. As in this case the indirect
effect has the opposite sign of the (standard) direct effect, the final effect on the compensation scheme
depends on which of these two effects prevails. If the indirect effect is not strong enough to more than
compensate the (standard) direct effect, then the final effect is the same of that one described at the
previous Point (i).

(iii) If the indirect effect more than compensate the (standard) direct effect, then the principal will
find it optimal to decrease the incentives provided to the agent by reducing the share β∗ of the agent’s
payment related to the output as r goes down.

This latter case is the most interesting for our theory as it represents the situation where the change
of technology adopted induces a variation in the sign of the relationship (relative to the standard
theory) between the agent’s risk aversion and the degree of incentives provided by the principal to
the agent. As a condition for observing a positive (rather than a negative) relationship between risk
aversion and incentives is the dominance of the riskiness effect on the efficiency effect, so that the
indirect effect has the opposite sign of the standard direct effect, we now try to understand under what
conditions this situation is more likely.

4.2. Agent’s Risk Aversion and Incentives: The Conditions for a Positive Link

Let us first analyze the case where the net indirect effect has the same sign of the direct effect,
so that dβ∗/dr in (15) is always negative and, therefore, a lower agent’s risk aversion leads to more
incentives (this is the case described above at Point (i)).

From the last two components in the right-hand side of Equation (15), we know that the indirect
effect is negative if

∂σ2

∂r

(
∂β∗

∂σ2 +
∂β∗

∂k
∂k

∂σ2

)
≤ 0.

As from Equation (14), ∂σ2/∂r is always negative, it is immediate to see that the above inequality
requires that

∂β∗

∂σ2 +
∂β∗

∂k
k′ ≥ 0, (19)

where k′ ≡ ∂k/∂σ2. Using Equations (17) and (18), we obtain that the inequality in Equation (19) is
satisfied when the following condition holds.

9 A straightforward comparison shows that, differently from our model, the endogenous matching models only consider
the direct and the indirect riskiness effect (e.g., Serfes [10]), but not the indirect efficiency effect. Thus, whereas under positive
assortative matching the riskiness effect is negative (since riskier principals attract more risk-averse agents), under negative
assortative matching the indirect riskiness effect is positive (since now riskier principals are matched with less risk-averse
agents) and the final effect of risk on incentives may, in this case, be ambiguous.
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Condition 1. The elasticity Ekσ of the technology function k(σ2) with respect to the variance is weakly greater
than 1, i.e.,

Ekσ ≡ −k′
σ2

k
≥ 1.

To better understand the intuition behind the result leading to Condition 1, let us again recall
that a necessary condition for observing a positive (rather than a negative) relationship between risk
aversion and incentives is the dominance of the riskiness effect on the efficiency effect, so that the
indirect effect goes in the opposite direction of the (standard) direct effect and may eventually prevail
over the latter. Otherwise, the usual relationship between risk aversion and incentives described in
Case (i) holds.

The reduction of the agent’s risk aversion induces the principal to adopt a more efficient and
riskier technology. The higher riskiness of the technology makes it optimal for the principal to reduce
the incentives (and increase the insurance) to the agent by making the payment more related to output
(this riskiness effect leads to a reduction of β∗). The fact that the technology is more efficient induces
instead the principal to increase the incentives to the agent by making his payment more related to
output (this efficiency effect increases β∗). Now, if the function k(σ2) is elastic, then, for any given
increase in the riskiness σ2 of the new technology employed (and therefore for any given size of the
riskiness effect), the increase in the efficiency of the selected technology (going in the standard direction)
will be large. In turn, this will make more likely that the efficiency effect dominates the riskiness effect.
Condition 1 simply states that the required threshold on elasticity Ekσ for this phenomenon to take
place is 1. When, conversely, the function k(σ2) is rigid (namely for Ekσ < 1) and Condition 1 does
not hold, an increase in the riskiness of the adopted technology implies that the efficiency effect may
dominate the riskiness effect.

In other words, the elasticity of the technology function Ekσ positively affects the size of the
efficiency effect relative to the riskiness effect. Given that the latter effect needs to prevail over the
former to reverse the standard relationship between agent’s risk aversion and incentives, the elasticity
Ekσ needs to be relatively small (i.e., Condition 1 does not have to hold) for this to happen.

It is also important to emphasize that Ekσ < 1 does not guarantee a positive relationship between
the agent’s degree of risk aversion and incentives as the (standard) direct effect could more than
compensate the (net) indirect effect, i.e., the situation described at Point (ii) above could apply.
However, when this does not happen and the riskiness effect is stronger than the sum of the direct
effect and the efficiency effect (i.e., Case (iii) applies), a higher agent’s risk aversion may lead to a
reduction of the incentive provided by the principal (i.e., to a reduction of β∗). This is the case when
dβ∗/dr in (15) is positive. By substituting Equations (14), (16), (17), and (18) into Equation (15) and
rearranging terms, we obtain that dβ∗/dr > 0 occurs when the elasticity Ekσ of the technology function
is lower than a given threshold Êkσ, i.e., if the following condition holds.10

Condition 2. The elasticity Ekσ of the technology function k(σ2) with respect to the variance is smaller than a
threshold Êkσ < 1, i.e.,

Ekσ ≡ −k′
σ2

k
< 1− 2rkk′(σ2)2 + k2σ2

4r2kk′ + 2r2(k′)2σ2 + rk′′(1 + 2rkσ2)
≡ Êkσ.

The following proposition summarizes these results.

10 Note that the threshold Êkσ is not necessarily always positive. Clearly, when Êkσ < 0, Condition 2 can never be satisfied
and there is always a negative relationship between the agent’s degree of risk aversion and the incentives provided by the
principal as in the standard principal–agent framework.
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Proposition 2. A reduction in the agent’s risk aversion r generates two effects on the optimal share of output
β∗ paid to the agent. The direct effect always increases β∗, while the indirect effect due to the higher riskiness
and efficiency of the new technology adopted can lead to an increase or a decrease of β∗. The following results
may be obtained.

(i) When Condition 1 is satisfied, both the direct and indirect effects have the same sign and a lower agent’s
risk aversion r unambiguously increase β∗ (i.e., ∂β∗/∂r < 0) as in the standard principal–agent model.

(ii) When Condition 1 does not hold, the total effect of r on β∗ can either be negative or positive, depending on
the magnitude of the direct and of the indirect effects.

(iii) When Condition 2 holds, the indirect effect have the opposite sign of the direct effect and larger size;
therefore, a lower agent’s risk aversion r unambiguously decreases β∗ (i.e., dβ∗/dr > 0), which is an
opposite result to the one usually obtained in the standard principal–agent model.

To further clarify this point in more detail, we consider below a specific functional form for the
relationship between the cost parameter k of the agent and the risk of the project expressed by σ2.

4.3. An Example

We assume that the function representing the technological set k(σ2) has a specific functional form
characterized by constant elasticity, i.e., k = (σ2)−η , with σ2 ∈ (0, ∞) and η ∈ (0, 1/2).11 This means
that k is finite and positive for all σ2, k′ = −ηk(σ2)−1 < 0, and k′′ = η(η + 1)k(σ2)−2 > 0.

The first order condition in Equation (12) of the principal’s maximization problem can be
rewritten as

F(σ2) ≡ η
(

σ2
)−1
− r (1− 2η)

(
σ2
)−η

= 0, (20)

which implies that the variance of the optimal technology is equal to

σ2
∗ =

[
η

r (1− 2η)

] 1
1−η

. (21)

As we showed for the general case, the function F(σ2) has the same sign of dπ∗/dσ2. From
Equation (20), we obtain that

dF(σ2)

dσ2 = −η
(

σ2
)−2

+ rη (1− 2η)
(

σ2
)−η−1

,

which is negative for all σ2 < [r (1− 2η)]
− 1

1−η ≡ σ̄2. The parameter η < 1/2 implies that σ2
∗ < σ̄2

and, therefore, that the function F(σ2) is decreasing at σ2 = σ2
∗ . As there is no other point at which

F(σ2) = 0 (from Equation (21), it is immediate that σ2
∗ is unique), it follows that F(σ2) > 0 for all

σ2 < σ2
∗ and F(σ2) < 0 for all σ 2>σ2

∗ . This in turn implies that dπ∗/dσ2
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σ2
∗ and therefore

that σ2
∗ is the unique maximum.

From η < 1/2, it follows that Condition 1 does not hold (as Ekσ = η < 1) and the indirect effect is
positive, i.e., the change of technology induced by the lower agent’s risk aversion r leads to a reduction
of β∗ (the riskiness effect dominates the efficiency effect). This indirect effect opposes to the direct
effect which instead pushes for an increase in β∗. The total effect of a reduction of r on β∗ can be
computed by substituting Equations (16)–(18) and ∂σ2

∗/∂r (which is obtained from Equation (21)) into
Equation (15). This leads to ∂β∗/∂r = 0 which means that, in this special case, the direct and indirect
effect of a change in r on β∗ exactly offset each other and therefore that a reduction in the agent’s risk
aversion leaves the fraction of output paid to the agent unchanged.

11 As will be clear below, η < 1/2 is necessary to obtain an interior solution.



Games 2018, 9, 6 10 of 13

From Equation (20), we also obtain that

∂2π

∂σ2∂r
= η

(
σ2
)η−1

+ (2η − 1) , (22)

which can be either positive or negative for η < 1/2 (e.g., if σ2 = 1, the expression is positive for
η > 1/3 and negative for η < 1/3) and, therefore, is in general compatible with both positive and
negative assortative matchings, as discussed in Footnote 9.

5. Extensions and Discussion

In this section, we address two issues. We first describe the role played by asymmetric information
in explaining the choice of the principal and then we show that our results are robust to changes of the
baseline setting by analyzing a framework where the higher return of riskier projects does not imply a
reduction of the marginal cost of effort.

It is worth emphasizing that, in absence of asymmetric information between the principal and the
agent, each project has a net return for the principal π = y− c(e)− δ = e− (1/2)ke2− δ + ε because the
agent’s payment is equal to his certainty equivalent plus the cost of effort, i.e., it is equal to δ + (1/2)ke2;
the principal optimally fully insures the agent when there is no moral hazard. As more efficient
technologies have a lower marginal cost of effort k, this implies a higher expected value of the net return
of the project as this is given by E(π) = e− (1/2)ke2 − δ. At the same time, more efficient technologies
are also riskier as projects with a lower marginal cost of effort k are associated to a higher variance σ2

of the shock; this implies a higher variance of the project’s net return as this is equal to the variance
of the shock, i.e., Var(π) = Var(ε) = σ2. However, in this case, our problem has a trivial solution: the
risk neutral principal adopts the most efficient technology, i.e., the one with the lowest marginal cost of
effort k ≡ k(σ̄2) and the highest variance σ̄2. Indeed, one can easily verify that the optimal agent’s effort
is e∗ = 1/k and therefore the optimal net return is equal to π∗ = 1/(2k)− δ + ε; as the principal is risk
neutral, she finds it optimal choosing the most efficient technology with k ≡ k(σ̄2). This result comes
from the fact that, in absence of asymmetric information, the agent’s risk premium is equal to zero
(because the principal optimally bears all risk and provides full insurance to the agent) and therefore
the technology with the highest expected return is the most efficient one. When there is asymmetric
information between the principal and the agent, the net return of the project is represented by the
expected net profit π∗ of the (risk-neutral) principal reported in Equation (10). From the maximization
problem in Equation (10), we know that π∗ is increasing for σ2 < σ2

∗ and decreasing for σ2 > σ2
∗ .

In this setting, the agent’s risk premium becomes positive because the provision of incentives requires
that the principal does not fully insure the agents who has to bear some risk. Such a risk premium
is affected not only by the agent’s degree of risk aversion but also by the technology employed and
by the optimal incentive scheme, which in turn depends on the characteristics (in terms of efficiency
and riskiness) of the technology. It is the variation of this risk premium with the project implemented
that contributes to break the monotonic positive relationship between π∗ and σ2 that characterizes the
setting without asymmetric information and that leads to an interior solution for the optimal project
(even if the principal, who chooses the technology, is risk neutral).

We now compare our model results with those obtained in a similar setting where the projects
among which the principal can choose yield a return y = e + ε, with the shock ε ∼ N(µ(σ2), σ2),
and with µ′ ≡ ∂µ(σ2)/∂σ2 > 0, namely higher error means are associated with higher variances.
For simplicity, k is now given and independent on σ2 so that the agent’s cost is not linked to the
variance of the technology employed, i.e., c(e) is still given by Equation (3).12

12 We thank an anonymous reviewer for pointing this quite natural and interesting extension of the model to our attention.
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It is easy to verify that, similar to the baseline model, the optimal share of output paid to the agent
β∗ is still given by Equation (8) and that the net principal’s profit is the same as the one reported in
Equation (10) with the addition of the mean µ(σ2) of the shock and the fact that k is fixed rather than
being a function of σ2, i.e., the principal’s maximization problem now reads

max
σ2

π∗ = µ(σ2) +
1

2k (1 + rkσ2)
− δ.

Thus, the optimal project is the one with the variance σ2
∗ that satisfies the following first

order condition
∂π∗

∂σ2 = µ′ − r

2 (1 + rkσ2)
2 = 0. (23)

Since µ′ > 0, Equation (23) will normally lead to a unique maximum for the choice of the project.
The solution of the condition in Equation (23) will be interior when the second order condition of the
maximization problem is satisfied, i.e., when

∂2π∗

∂(σ2)2 = µ′′ +
r2k

(1 + rkσ2)
3 < 0, (24)

which generally holds when µ′′ ≡ ∂2µ(σ2)/∂(σ2)2 is negative and large enough.
From the first order condition in Equation (23), one can easily derive the following relationship

between the equilibrium project variance and the degree of agent’s risk aversion:

∂σ2
∗

∂r
=

1− rkσ2

2
[
µ′′ (1 + rkσ2)

3 + r2k
] . (25)

The second order condition in Equation (24) implies that the denominator of Equation (25) is
negative and, therefore, the sign of ∂σ2

∗/∂r is the same as the sign of the term rkσ2− 1. This means that
∂σ2
∗/∂r < 0 if rkσ2 < 1, i.e., a reduction of the agent’s risk aversion leads the principal to select a riskier

project when the levels of risk aversion, project variance and marginal cost of effort are relatively low.
Since now k is unrelated to the project’s variance (∂k/∂σ2 = 0), from Equation (15), we observe

that the indirect efficiency effect (represented by the third component) is absent. This implies that, in this
new framework, if rkσ2 < 1 so that ∂σ2

∗/∂r < 0, the indirect effect of r on β∗ coincides with the indirect
riskiness effect (which is the key new effect at work in the baseline framework).13 The absence of the
indirect efficiency effect in this setting only works in the direction of making our conclusions more
robust as such effect only reinforces the standard direct effect.

Again, if the indirect effect (represented by the second component in Equation (15)) more than
compensate the (standard) direct effect (given by the first term in Equation (15)), the principal optimally
chooses a riskier project and decreases the incentives provided to the agent by reducing the share β∗ of
the agent’s payment related to the output when the agent’s risk aversion r declines (as described in
Point (iii) at the end of Section 4).

In other words, the analysis just presented shows that the indirect riskiness effect highlighted in
the baseline framework (and that is at the heart of the contribution of this work) is present and could
dominate even more frequently in a setting where the project’s riskiness is related to the error mean of
the technology employed rather than to the marginal cost of effort.

13 Note that β∗ and ∂β∗/∂σ2 < 0 are still given by Equations (8) and (17), respectively.
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6. Conclusions

We have shown that, in a principal–agent model with endogenous technology choice, the usual
negative trade-off existing between the agent’s risk aversion and optimal incentives does not necessarily
hold and can, in some cases, be reversed. We have shown this result by using a modified version of
Holmstrom and Milgrom’s [1] framework where the principal can choose among different technologies
where those with higher efficiency also have higher riskiness.

Our analysis highlights how, in such a framework, the reduction of the agent’s risk aversion
induces the adoption of a riskier technology that, in some cases, can revert the usual effects and lead to
a reduction of the level of incentives provided to the agent. We have shown that such a result is more
likely to occur when the link between the efficiency of the technology and its riskiness is relatively
weak. Moreover, we have presented a special case where the increase in the riskiness of the technology
is such that its effect on incentives counterbalances all the other effects leading to a neutrality between
agent’s risk aversion and the degree of incentives provided.

While this work has highlighted a new channel affecting the incentive scheme in principal–agent
relationships, we think that additional work is needed to properly disentangle the relationship between
the choice of technology (e.g., its degree of innovation and riskiness) and the amount of incentives
provided by the firm. However, we leave this task to future research.
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