
Cluster Computing

Energy-aware Auto-scaling Algorithms for Cassandra Virtual Data Centers
--Manuscript Draft--

Manuscript Number:

Full Title: Energy-aware Auto-scaling Algorithms for Cassandra Virtual Data Centers

Article Type: S.I. : ICCAC 2016

Keywords: autonomic computing; cloud computing; green computing; optimisation; self-
adaptation; apache Cassandra; big data

Corresponding Author: Emiliano Casalicchio
Blekinge Tekniska Hogskola
Karlskrona, SWEDEN

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Blekinge Tekniska Hogskola

Corresponding Author's Secondary
Institution:

First Author: Emiliano Casalicchio

First Author Secondary Information:

Order of Authors: Emiliano Casalicchio

Lars Lundberg, Professor

Sogand Shirinbab

Order of Authors Secondary Information:

Funding Information: Stiftelsen för Kunskaps- och
Kompetensutveckling
(20140032)

Not applicable

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Noname manuscript No.
(will be inserted by the editor)

Energy-aware Auto-scaling Algorithms for Cassandra Virtual
Data Centers

Emiliano Casalicchio · Lars Lundberg · Sogand Shirinbab

Received: date / Accepted: date

Abstract Apache Cassandra is an highly scalable and

available NoSql datastore, largely used by enterprises

of each size and for application areas that range from

entertainment to big data analytics. Managed Cassan-

dra service providers are emerging to hide the com-

plexity of the installation, fine tuning and operation

of Cassandra Virtual Data Centers (VDCs). This pa-

per address the problem of energy efficient auto-scaling

of Cassandra VDC in managed Cassandra data cen-

ters. We propose three energy-aware autoscaling algo-

rithms: Opt, LocalOpt and LocalOpt-H. The first pro-

vides the optimal scaling decision orchestrating hori-

zontal and vertical scaling and optimal placement. The

other two are heuristics and provide sub-optimal solu-

tions. Both orchestrate horizontal scaling and optimal

placement. LocalOpt consider also vertical scaling. In
this paper: we provide an analysis of the computational

complexity of the optimal and of the heuristic auto-

scaling algorithms; we discuss the issues in auto-scaling

Cassandra VDC and we provide best practice for using

auto-scaling algorithms; we evaluate the performance of

the proposed algorithms under programmed SLA vari-

ation, surge of throughput (unexpected) and failures

of physical nodes. We also compare the performance

of energy-aware auto-scaling algorithms with the per-

formance of two energy-blind auto-scaling algorithms,

namely BestFit and BestFit-H.

This work is funded by the research project ”Scalable
resource-efficient systems for big data analytics” - Knowledge
Foundation grant n. 20140032, Sweden.

E. Casalicchio, L. Lundberg and S. Shirinbab
Department of Computer Science and Engineering
Blekinge Institute of Technology
E-mail: emiliano.casalicchio@bth.se
E-mail: lars.lundberg@bth.se
E-mail: sogand.shirinbab@bth.se

The main findings are: VDC allocation aiming at

reducing the energy consumption or resource usage in

general can heavily reduce the reliability of Cassandra

in term of the consistency level offered. Horizontal scal-

ing of Cassandra is very slow and make hard to manage

surge of throughput. Vertical scaling is a valid alterna-

tive, but it is not supported by all the cloud infrastruc-

tures.

Keywords autonomic computing · cloud computing ·
green computing · optimisation · self-adaptation ·
apache Cassandra · big data

1 Introduction

Today, data storage or serving systems such as Apache

Cassandra and Hbase, Amazon SimpleDB and Dynamo,

Google BigTable are playing an important role in the

cloud and big data industry because the unprecedented

high scalability and availability they achieve by means

of data replication. Resource management for those data

storage platforms is a challenging task and the com-

plexity increase when multi-tenancy is considered. Hu-

man assisted control for such platforms is unrealistic

and there is a growing demand for autonomic solu-

tions. In this paper we consider the auto-scaling prob-

lem for providers of a managed Cassandra service (cf.

Figure 1. The goal of the service providers is always

to minimise operational costs under the constraints im-

posed by Service Level Agreements (SLAs) contracted

with the customers. Minimisation of energy consump-

tion is one of the strategies adopted to reduce costs,

particularly when the service providers run their own

data centers. To address this problem we propose three

energy-aware auto-scaling algorithms (Opt, LocalOpt

and LocalOpt-H) specifically designed for Cassandra

Manuscript Click here to download Manuscript Casalicchio -
ClusterComputing - Final.pdf

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/clus/download.aspx?id=65399&guid=624f8c79-4e49-4055-8f28-385753fc92c1&scheme=1
http://www.editorialmanager.com/clus/download.aspx?id=65399&guid=624f8c79-4e49-4055-8f28-385753fc92c1&scheme=1
http://www.editorialmanager.com/clus/viewRCResults.aspx?pdf=1&docID=3497&rev=0&fileID=65399&msid={4A07E297-FFE9-4154-BB11-E57326E5BF3D}

2 Emiliano Casalicchio et al.

Virtual Data Centers (VDC) running on a cloud in-

frastructure and we compare their performance with

two energy-blind auto-scaling algorithms (BestFit and

BestFit-H).

Auto-scaling does not only mean to automatically

increase/decrease the amount of resources. Auto-scaling

implies to adapt, over time, the configuration of the

Cassandra VDC and of the cloud infrastructure. To re-

alize an optimal auto-scaling, the service provider could

adopt three strategies: Vertical scaling, which means to

change the Cassandra virtual nodes (vnodes) capacity

at runtime, e.g. adding computing power (e.g. virtual

cpu) and/or memory; Horizontal scaling, which means

to add/remove, at runtime, Cassandra vnodes to/from

the Cassandra VDC; Optimal placement, which means

to instantiate the vnodes on the physical nodes in a

way such that the usage of resources is optimised with

respect to some objective function. In our specific case

the objective function is the energy consumed by the

datacenter and should be minimized.

The Opt and LocalOpt auto-scaling algorithms or-

chestrate those three adaptation strategies, while the

LocalOpt-H does only horizontal scaling and optimal

placement. The BestFit is based on the classical Best

Fit decreasing algorithm to approximate the solution of

the bin packing problem. The algorithm is capable to

do both horizontal and vertical scaling. The BestFit-H

is a variant that does only horizontal scaling. All the al-

gorithms are designed to be integrated in the planning

phase of a MAPE-K controller (cf. Figure 1. The scal-

ing decisions are based on three parameters that can

be easily collected: the vnodes throughput, the CPU

usage, and the memory usage.

The optimal energy-aware autoscaling is an algo-

rithm that does an overall system reconfiguration at

each scaling action needed to accommodate the resources

for a specific tenant. That allow to have always a sys-

tem configuration that minimize the energy consumed

by the datacenter. The rational to introduce energy-

aware heuristics is twofold: first, the heuristics are ap-

plied locally, for the specific tenant the need to scale,

and that reduces the perturbation of the performance

for the tenants that do not need to scale. Second, the

Opt has a complexity of the order O((N × H)3/2) for

N tenants and H physical nodes, while the heuristics

have a complexity of the order O(H3/2) and O(H2) for

(localOpt) and (BestFit) respectively (more details

are provided in Section 6). The not optimised Matlab

code implementing the heuristics finds the suboptimal

solution in a range 10−1, 10 seconds (when running on

an Intel Core i5). The average time to find the optimum

using the Matlab MILP solver is about 50 secs with a

maximum of about 2× 103 secs.

1.1 Research contribution

With respect to the literature on QoS and energy-aware

adaptation (e.g. [2, 3, 10, 17, 19, 24, 26]) and data cen-

ter consolidation (e.g. [1,5,13,14,16]) and with respect

to our previous results [4] we introduce the following

novelties:

– we compare the optimal energy aware allocation

proposed in [4] with two new auto-scaling heuris-

tics BestFit-H and LocalOpt-H

– we provide a discussion on the issues related to auto-

scaling in Cassandra virtual data centers and we

give guidelines on how to best use the proposed al-

gorithms, i.e. for medium/long term capacity plan-

ning and at run-time

– we provide a detailed evaluation of the computa-

tional cost of the optimal autoscaling algorithms

and of all the heuristic algorithms.

– we provide a simple model to asses how the con-

sistency level of a Cassandra VDC is impacted by

the auto-scaling and specifically by the placement

of vnodes on physical machines.

– we analyse the performance of the proposed algo-

rithms in case of surge of requests and failure of

physical nodes

Our main findings are here summarized: First, the

penalty in using an heuristic adaptation that does not

hurt the system stability is between +25% and +50%

for highly loaded systems. Second, energy efficient VDC

allocations can heavily reduce the reliability of Cas-

sandra in term of the consistency level offered. Third,

horizontal scaling of Cassandra is very slow and make

hard to manage surge of throughput. Vertical scaling is

a valid alternative, but it is not supported by all the

cloud infrastructures.

1.2 Paper organization

The paper is organised in the following way. The next

section discusses related work. The reference scenario

we consider is presented in Section 3. Section 4 in-

troduces the system model and the optimal adaptation

problem formulation. The auto-scaling algorithms are

presented and discussed in Section 5. In Section 6 we

provide the computational cost analysis. Issues on Cas-

sandra auto-scaling and recommendations on the use of

the algorithms are discussed in Section 7. The exper-

imental methodology (analysis cases, metrics and ex-

perimental setup) is described in Section 8, while the

experimental results are described in Section 9. Finally,

Section 10 provides concluding remarks.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Energy-aware Auto-scaling Algorithms for Cassandra Virtual Data Centers 3

Hypervisor

PM

Hypervisor

PM

Hypervisor

PM

Turned	
 off

Hypervisor

PM

App.	
 1 App.	
 2 App.	
 3
VM	

type	
 1

VM	

type	
 2

VM	

type	
 3

Cassandra	

VDC	
 for	
 App.1

App.	
 1 App.	
 3 App.	
 2
Application	

Layer	
 (also	

distributed)

Switch/Dispatcher/firewall

Monitor
Workload,	

Cassandra,

IaaS

Analyzer

Planner
Opt,

LocalOpt,
BestFit,

LocalOpt-H,
BestFit-H

Executor
Cassandra,
Hyoervisor

Auto-­‐scaler Cassandra-­‐as-­‐a-­‐Service	
 infrastructure

Fig. 1 The multi-tenant Cassandra-based scenario and the auto-scaler

2 Related Works

The problem we are addressing has been partially cov-

ered in literature by research paper in different fields:

QoS and energy-aware datacenter management; VM

placement; autonomic adaptation of cloud infrastruc-

tures; performance evaluation, management and adap-

tation of cassandra-based systems.

Examples of research works on measuring and man-

aging the performance of NoSql distributed data stores

such as Cassandra are [9, 23]. [6, 11, 18, 25, 28, 30] are

studies focusing on the horizontal scalability feature of-

fered by such databases. Few studies consider vertical

scaling, e.g. [6, 18], and configuration tuning [6, 12, 22,

28]. While Horizontal scaling, vertical scaling and con-

figutation tuning approaches are somentime mixed, op-

timal placement (e.g. [1,5,13,14,16]) is never considered

in combination with the other adaptation strategies.

In [9] and [23] the authors presented YCSB and

YCSB++, the reference benchmarking frameworks for

facilitating the comparison of cloud based data-serving

systems. YCSB allows to simulate five different work-

loads and is compliant with BigTable, HBase, Cassan-

dra, MongoDB, DynamoDB and more. In our work we

decided to not to use YCSB because we are mainly

interested in working with Ericssonn datasets and ap-

plications. However, our solution is based on a heuristic

throughput model that is independent from the specific

type of query and application.

In [30] has been evaluated the horizontal scalabil-

ity of Cassandra and Hbase for a mix of sequential and

random read and write operations, scan operations and

structured queries. No report and consideration are pro-

vided on how and if the Cassandra and Hbase configu-

ration impact the performance.

In [25] the authors evaluate the performance of six

SQL and no-SQL databases under the pressure of 5 dif-

ferent workloads. These benchmarking experiments has

been extended in [18] with a performance evaluation

of Cassandra on different Amazon EC2 infrastructure

configurations. In comparison with those researches we

consider only read, write and read and write requests

because of interest for our industrial case. However, our

model is independent from the specific type of query.

In [18] the authors explore both horizontal and vertical

scalability. Their results confirms the experience we had

with Cassandra performance on a virtualized environ-

ment. That is, a reduction of the Cassandra through-

put up to 50% compared with Cassandra performance

in non virtualized clusters.

Concerning self adaptation, few work has been pre-

sented. In [6] the authors propose a QoS controller for a

Cassandra cluster that aims to guarantee system perfor-

mance by means of coordinating horizontal scalability

(bootstrap of new nodes) and cache size (i.e. configu-

ration tuning). The proposed solution has been eval-

uated by means of YCSB benchmark. In [28] the au-

thors consider the problem of optimizing geographi-

cally distributed cloud data stores with respect to la-

tency under failure scenarios. The authors adapt the

system tuning three main factors: R and W quorum,

location of replicas and number of replicas. On the ba-

sis of experimental results the authors concludes that

quorum-based data store could benefit from an adapt-

able and fine grain replica configuration. Indeed not

only different applications could need different replica-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Emiliano Casalicchio et al.

tion strategies, but also for the same application dif-

ferent group of object could need different replication

strategies. This work motivates our assumption on the

need for application specific Cassandra configurations.

However, while [28] is mainly interested in the opti-

mal configuration of the quorum mechanism and of

the replication strategies, we are focused on the ap-

plication specific scaling actions (Vertical and Horizon-

tal) and on energy-aware optimal placement. Like [28],

CADRE [31] shows that carefully distinguishing R +

W queries in geographically distributed setting affects

response time and carbon footprint. They propose an

online algorithm to reduce carbon footprint while keep-

ing response time low. The online algorithm is similar to

our BestFit approach. Katsak et al. modify Cassandra

for time varying resources by sending writes to vNodes

and carefully maintaining a ”working” set of available

nodes. The choice of working set site and placement

policies affects performance.

In [22] the authors propose AutoPlacer a mecha-

nisms to self-tune the placement of replicas in distributed

key-value stores. Their goal is to minimize the cost

of replicas in term of overall latency. In [12] the au-

thors propose a multidimensional indexing techniques

for supporting complex queries using multiple object at-

tributes. Such technique requires a complex system con-

figuration and the authors propose a model and tech-

niques to automatically and dynamically re-configure

the system in dynamic workload environments.

A model for provisioning multi-tier applications in

a cloud environment has been proposed by [29]. The

authors proposed a simple and effective approach for

resource provisioning to achieve a percentile bound on

the end to end response time of a multi-tier application.

The authors find that fewer high-capacity servers are

preferable for high percentile provisioning. We leverage

and verified this finding, but the solution can not be

applied as it is for a Cassandra-based systems.

In [8] that authors consider the placement prob-

lem of virtual machines (VMs) of applications with in-

tense bandwidth requirements. The proposed model fit

in centralized storage scenarios like storage area net-

works and not in distributed storage scenarios like Cas-

sandra.

The agility issue in scaling distributed storage sys-

tems as been addressed in [7]. The authors propose

an elastic storage system, called JackRabbit, that can

quickly change its number of active servers. JackRabbit

is based on HDFS. Out paper confirm the agility issue.

3 Reference scenario

We consider a provider of a managed Apache Cassandra

service offered to support enterprise applications. There

are many examples of Cassandra-as-a-Service providers:

Rackspace (rackspace.com), Instaclustr (instaclustr.

com/) and Seastar (seastar.io/), just to mention a

few.

The tenants of the service are independent applica-

tions each using its own Cassandra VDC (in what follow

we will interchangeably use the terms application and

tenant). A Cassandra VDC is a set of Cassandra virtual

nodes (vnodes), i.e. an instance of Cassandra software

running on a virtual machine (VM). All the Cassandra

VDCs are tenants in a cloud infrastructure (no matter

if on a public or private cloud), or data center in what

follows.

Applications submit NoSql queries (called opera-

tions in what follows) at a specific rate. Each appli-

cation requires a minimum throughput, a certain level

of data replication to cope with node failures, and has

a dataset of a specific size. To satisfy these customer’s

requirements the service provider has to properly plan

the capacity and the configuration of each Cassandra

VDC. On the other side, the service provider wants to

minimise its power consumption. The Cassandra-as-a-

service provider has a typical scalability issue when: a

new tenant subscribes to a service; and/or when exist-

ing tenants variate their requirements by modifying the

target throughput, the data replication factor, and/or

the dataset size; and/or there is a surge in the through-

put.

The scenario is schematised in Figure 1. The figure

shows three applications, each with a data replication

factor of three, that means each application has three

copies of each data item. Applications could be served

by Cassandra vnodes with diverse capacity in term of

supported throughput. This can be achieved, for exam-

ple, by running the Cassandra vnodes on VMs with dif-

ferent CPU power and memory size and allocating the

proper number of Cassandra vnodes. To maximise the

utilization, the provider decided to compact the Cas-

sandra vnodes only on three out of four servers. The

auto-scaler module is as a MAPE-K controller. The

auto-scaling actions are based on data collected from

the cluster infrastructure (the physical nodes and the

hypervisor), from the Cassandra VDCs and from the

applications. The executor controls the VMs and the

Cassandra configuration parameters, as well as start

and stop VMs and add/remove to/from Cassandra VDC

the Cassandra vnodes.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Energy-aware Auto-scaling Algorithms for Cassandra Virtual Data Centers 5

4 Adaptation model

In this section we present the adaptation model that is

behind the auto-scaling algorithms. In this respect, we

first define models for: the workload and SLA; the sys-

tem architecture; the throughput and the utility func-

tion. Those models are used to define the constraints

and the objective function of an optimization problem.

The solution of the optimisation problem provides the

optimal (or suboptimal) auto-scaling decisions that, for

each tenant, specify:

– the number of vnodes of the Cassandra VDC (hor-

izontal scaling)

– the configuration of vnodes, e.g. in terms of CPU

capacity and memory (vertical scaling)

– the placement of vnodes (of the VDCs) on the phys-

ical infrastructure (optimal placement)

The periodic or event based evaluation of the op-

timisation problem provides an auto-scaling policy for

the Cassandra service provider.

4.1 Workload and SLA Model

The workload of a Cassandra VDC can be characterised

by the following features: the type of requests, e.g. read

only, write only, read & write, scan, or a combination of

those; the rate of the operation requests; the size of the

dataset; and the data replication factor. Depending

on the size of the dataset managed, a Cassandra VDC

is classified as disk-bound if the dataset does not fit the

memory offered by all the vnodes in the VDC. Other-

wise, CPU-bound (see Eq. 1). Disk-bound installations

have a performance degradation of two order of magni-

tude compared to CPU bound configurations [25].

Our workload model is based on the following as-

sumptions.

Assumption 1. The system workload consist of a

set L of read (R), write (W) and read & write (RW)

operation requests: L = {R,W,RW}. Such operation

requests are generated by the N independent applica-

tions and we assume that application i generates only

requests of type li ∈ L. If li = R or li = W we have

100% R or W requests. In case li = RW we have α%

read requests and (100−α) write requests (for example

in our experiments α = 75%).

Assumption 2. Requests of type li are generated at

a given rate measured in operations per second.

Assumption 3. The dataset size for application i is

ri GByte and the data are replicated with a factor Di

Assumption 4. The workload is only CPU bound,

hence the memory requirements are met.

Assumption 5. The internal/external network latency

does not impact the auto-scaling decisions. Hence it is

not considered in the SLA.

According with Assumptions 1 - 5, the SLA for the

tenant i is modelled by the tuple:〈
li, T

min
i , Di, ri

〉
that includes information on the agreed workload (li
and ri) and on the service level objectives (Tmini and

Di). T
min
i is the minimum throughput the service provider

must guarantee to process the requests from application

i. The SLA parameters Di and ri are used to determine

the number of vnodes to be instantiated, as discussed

in the next section.

Concerning Assumption 1, we limit the study to the

set L = {R,W,RW}. However, the model we propose

can deal with any type of operation requests, as clari-

fied later in Section 4.3. Assumption 4 implies that the

service provider has to set up, during the application

on-boarding phase, and to maintain, at runtime, the

right number of vnodes for tenant i. Dealing only with

CPU bound workloads exempt us from considering the

workload consolidation problem (e.g. [32]). Besides, it

is of interest for the customer to have CPU bound VDC

in order to achieve the desired performance.

4.2 Architecture model

We consider a data center consisting of H homoge-

neous physical machines (PMs), installed at the same

geographical location, and a set of V VM configura-

tions. For example, Table 1 describes the characteris-

tics of three different VM types (V = 3). Each Cas-

sandra vnode runs on a VM of type j and a Cassandra

VDC is composed of ni homogeneous Cassandra virtual

nodes where ni ≥ Di and at least Di out of ni vnodes

must run on different physical machines (as suggested

by Cassandra management best practices).

The configuration of the data center running N in-

dependent applications is defined by the vector x =

[xi,j,h], where xi,j,h is the number of Cassandra vn-

odes serving application i and running on VMs with

configuration j allocated on PM h, ∀i ∈ I = [1, N],

j ∈ J = [1, V], k ∈ H = [1, H] and I,J ,H ⊂ N.

We assume that each PM h has a nominal CPU

capacity Ch, measured in number of available cores, and

a RAM of Mh GByte. A VM of type j is configured with

cj virtual cores, mj GB of memory and a maximum

JVM heap size heapSizej (GB). The heap size is an

important parameter in our case because it determines

the size of the data a Cassandra vnode can store in

the main memory for fast retrieval and processing. The

relationship between the size of the RAM of the heap

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Emiliano Casalicchio et al.

Table 1 t0li,j as function of cj (virtual CPU),mj (GByte), heapSizej and li. The throughput is measured in operations/second

(ops/sec).

VM type and configuration Throughput for different workloads (ops/sec)
j cj mj heapSizej R W RW
1 8 32 8 16.6 ×103 8.3 ×103 13.3 ×103

2 4 16 4 8.3 ×103 8.3 ×103 8.3 ×103

3 2 16 4 3.3 ×103 3.3 ×103 3.3 ×103

Table 2 Memory available for the dataset in a Cassandra
vnode (JVM Heap) as function of the VM memory size.

mj (RAM size in
GB)

1 2 4 8 16 ≥ 32

heapSizej (max
Heap size in GB)

0.5 1 1 2 4 8

size is described in [15] and summarised in Table 2.

Hence, to make the VDC instantiated for application i

CPU bound we need a number ni,j of nodes defined by

the following empirical rule:

ni,j ≥ Di ·
ri

heapSizej
. (1)

In case ri > heapSizej Eq. 1 holds, otherwise, the con-

straint ni,j ≥ Di holds. Considering that the number

ni,j of vnodes can be defined as

ni,j =
∑

j∈J ,h∈H

xi,j,h ∀i ∈ I. (2)

and considering that in our industrial case is always

ri ≥ heapSizej for all configurations j, the above intro-

duced constraints are modelled by the following equa-

tions:∑
j∈J ,h∈H

xi,j,h ≥ Di ·
ri

heapSizej
∀i ∈ I (3)

∑
j∈J

yi,j = 1 ∀i ∈ I (4)

∑
h∈H

si,h ≥ Di ∀i ∈ I (5)

where: yi,j is equal to 1 if application i uses a VM con-

figuration j to run Cassandra vnodes, otherwise yi,j =

0; si,h is equal to 1 if a Cassandra vnode serving appli-

cation i run of PM h. Otherwise si,h = 0.

To model vertical scaling actions, that is a change

from configuration j1 to j2, we replace a VM of type

j1 with a VM of type j2. However, in a real setting,

hypervisors (e.g. VMWare) make it possible to resize,

at runtime, the number of cores associated to a VM and

the size of memory used without the need to shut down

the VM. We do not consider the case of over-allocation,

that is the maximum number of virtual cores allocated

on PM h is equal to Ch.

Finally we assume that the local network latency do

not impact the performance of the VDC and the system

reconfiguration (Assumption 5).

4.3 Throughput model

We model the actual throughput Ti offered by the

provider to application i as a function of xi,j,h
From the analysis of the experimental data and of

the literature we conclude that, for CPU bound work-

loads, the throughput for a Cassandra VDC serving re-

quests of type li and running on a VM of type j (on top

of a PM h) can be approximated with a set of linear

segment with slope δkli,j . δ
k
li,j

is the slope of the kth seg-

ment and it is valid for a number of Cassandra vnodes

ni between nk−1 and nk. Therefore, for nk−1 ≤ ni ≤ nk,

we can write the following expression:

t(ni) = t(nk−1) + t(nk−1) · δkli,j · (ni − nk−1) (6)

where k ≥ 1, n0 = 1 and t(1) = t0li,j is the value of the

throughput supported by a specific Cassandra vnode

configuration. An example of values for t0li,j is reported

in Table 1.

Finally, for a configuration x of a VDC, and consid-

ering Equation 2 we define the overall throughput Ti
as:

Ti(x) = t (ni) , ∀i ∈ I (7)

4.4 Power consumption model

As service provider utility we chose the power consump-

tion which is directly related with the provider revenue

(and with IT sustainability).

Many ways of reducing the power consumption in

cloud systems have been proposed the literature; two in-

teresting survey are [24] and [19]. Different approaches

can be used for the sustainable operation of data cen-

ters. If we focus on cloud management systems the tech-

niques typically used are: scheduling, placement, mi-

gration, and reconfiguration of virtual machines. The

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Energy-aware Auto-scaling Algorithms for Cassandra Virtual Data Centers 7

ultimate goal is to optimise the use of resources to re-

duce power consumption. Optimisation depends on the

context, it could mean minimising PM utilisation or to

balance the utilisation level of physical machine with

the use of network devices for data transfer and stor-

age. Independently from the configuration or adapta-

tion policy adopted all these techniques are based on

power and/or energy consumption models (in [24] a de-

tailed surveys). Power consumption models usually de-

fine a linear relationship between the amount of power

used by a system as function of the CPU utilisation

(e.g. [2,3,10]), or processor frequency (e.g. [17]) or num-

ber of core used (e.g. [26]).

In this work we chose a linear model [3] where the

power Ph consumed by a physical machine h is a func-

tion of the CPU utilization and hence of the system

configuration x:

Ph(x) = kh · Pmaxh + (1− kh) · Pmaxh · Uh(x) (8)

where Pmaxh is the maximum power consumed when the

PM h is fully utilised (e.g. 500W), kh is the fraction of

power consumed by the idle PM h (e.g. 70%), and the

CPU utilisation for PM h is defined by

Uh(x) =
1

Ch
·
∑
I,J

xi,j,h · cj (9)

The overall energy consumption P (x) is defined by

P (x) =
∑
h∈H

Ph(x)

=
∑
h∈H

Pmaxh

kh · rh +
(1− kh)

Ch

∑
I,J

xi,j,h · cj


(10)

where rh = 1 if xi,j,h > 0 for some i ∈ I and j ∈ J .

Otherwise rh = 0

5 Auto-scaling algorithms

5.1 The optimal auto-scaling

The optimal auto-scaling algorithm is based on the so-

lution of the optimization problem defined in Figure 2

and based on the models presented in Section 4.

The pseudo code is listed in Algorithm 1. Opt sim-

ply invokes the solver for the optimization problem and

returns: the optimal configuration of the system xopt,

that inform about the scaling actions; the remaining

CPU and memory capacity (Ca and Ma) available af-

ter the adaptation; the type j∗ of VM selected by the

algorithm. The parameter e is an exit code flag that is

min f(x) = P (x)

subject to:∑
J ,H

t(xi,j,h) ≥ Tmin
i , ∀i ∈ I (11)

∑
H
xi,j,h − Γ · yi,j ≥

Di · ri
heapSizej

− Γ, ∀i ∈ I, j ∈ J (12)

xi,j,h ≤ Γ · yi,j , ∀i ∈ I, j ∈ J , h ∈ H (13)∑
J
yi,j = 1, ∀i ∈ I (14)

∑
I,J

xi,j,h · cj ≤ Ch, ∀ h ∈ H (15)

∑
I,J

xi,j,h ·mj ≤Mh, ∀ h ∈ H (16)

∑
H
si,h ≥ Di, ∀i ∈ I (17)

∑
J
xi,j,h − si,h · Γ ≤ 0, ∀h ∈ H (18)

−
∑
J
xi,j,h + si,h ≤ 0, ∀h ∈ H (19)

∑
I
si,h − rh · Γ ≤ 0, ∀h ∈ H (20)

−
∑
I
si,h + rh ≤ 0, ∀h ∈ H (21)

yi,j , si,h and rh ∈ [0, 1], ∀i ∈ I, j ∈ J , h ∈ H (22)

xi,j,k ∈ N, ∀i ∈ I, j ∈ J , h ∈ H (23)

Fig. 2 The optimization problem

Algorithm 1 Opt auto-scaling algorithm

Require: I; J ; H; C; M ; sla =
〈
li, Tmin

i , Di, ri
〉
;

1: [xopt, Ca, Ma, j∗, e] ← optSol(I, J , H, C, M , sla)
2: if e = false then
3: xopt ← ∅ // No feasible solution. The request is re-

jected
4: end if
5: return [xopt, Ca, Ma, j∗,e]

true if a solution exist and false otherwise. The opti-

mal configuration xopt indicates the necessary actions

to perform (c.f. beginning of Sec. 4): horizontal scaling,

vertical scaling and optimal placement. xopt is the solu-

tion x to the optimization problem defined in Figure 2,

where: the set of constraints defined by Eq. 11 guar-

antee that the SLA is satisfied in terms of minimum

throughput for all the tenants. For the sake of clarity

we keep these constraints non linear, but they can be

linearised using standard techniques from operational

research if the throughput is modelled using Eq. 6. Eq.

12 introduces a set of constraints to guarantee that the

number of vnodes allocated is enough to guarantee that

the portion of the dataset handled by each node fits in

the main memory and that the replication factor Di

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Emiliano Casalicchio et al.

specified in the SLAs is implemented. Equations 13

and 14 model the assumption that homogeneous VMs

must be allocated for each tenant. Γ is an extremely

large positive number. Eq. 15 controls that the maxi-

mum capacity of the physical machine is not exceeded.

A relaxation of this constraint would make it possible to

model over-allocation. In the same way, Eq. 16 controls

that the memory allocated for the vnodes do not exceed

the main memory capacity of the physical nodes. Eq. 17

guarantee that the Cassandra vnodes are instantiated

on at least Di different physical machines. Equations

18 and 19 force si,h to be equal to 1 if the physical

machine h is used by application i and to be zero oth-

erwise. In the same way, the set of constraints 20 and

21 force rh to be equal to 1 if the physical machine is

used and zero otherwise. Finally, expressions 22 and

23 are structural constraints of the problem.

5.2 Heuristics

In a real scenario it is reasonable that new tenants sub-

scribe to a service and/or that existing tenants change

their SLAs (for example requesting the support for an

higher throughput, for a different replication factor or

for a different dataset size). In such dynamic scenarios,

in order to satisfy the SLAs, the auto-scaler should per-

form adaptation actions without perturbing the perfor-

mance of the other tenants, that is for example avoiding

vnodes migration.

A limitation of the Opt algorithm is that the scaling

of a virtual data center or the instantiation of a new one

can lead to an uncontrolled number of adaptation ac-

tions that involve all the tenants’ VDC and that could

hurt the performance of the whole data center [4]. To

solve that issue we propose four heuristic autoscaling

algorithms that work locally allocating/deallocating re-

sources only for the specified Cassandra VDC without

re-configuring VDCs of other tenants. The first heuris-

tic is called LocalOpt and is energy-aware. It applies

locally the optimisation problem listed in Figure 2, that

is solve the optimization problem for only the one ten-

ant. This implies that the configurations of the other

Cassandra VDCs are not changed.

The second heuristic, BestFit, is a bin packing best-

fit descending algorithm, widely used in practice, and

it is applied locally. BestFit is energy-blind. The third

and forth heuristics are modified versions of the first

two and take only horizontal scaling and optimal place-

ment decisions. They are called LocalOpt-H (energy-

aware) and BestFit-H (energy-blind) respectivelly.

LocalOpt (the code is listed in Algorithm 2) re-

ceives as input the subset Ha ⊂ H of available phys-

ical resources, the available CPU and memory capac-

Algorithm 2 LocalOpt auto-scaling algorithm

Require: I = {i}; J ; Ha; Ca = {Ca
h∀h ∈ Ha}; Ma =

{Ma
h∀h ∈ Ha}; sla =

〈
li, Tmin

i , Di, ri
〉
;

1:
2: [xsub, Ca, Ma, e] ← optSol(Ha, Ca, Ma, sla)
3: if e = false then
4: xsub ← ∅ // No feasible solution. The request must

be rejected
5: end if
6: return [xsub, Ca, Ma, j∗,e]

ity for each PM in Ha, {Cah ,Ma
h |h ∈ Ha}, the SLA

sla =
〈
li, T

min
i , Di, ri

〉
for a current or new tenant i

(I = {i}) and J . The set Ha is determined by observ-

ing the health state of the physical servers in the data

center, and it accounts for hardware and software fail-

ure at infrastructure level. The output produced is the

sub-optimal allocation xsub, the new values for Ca and

Ma, and the error status e. At line 2 the algorithm eval-

uates the sub-optimal solution solving the optimisation

problem optSol for the subset of available resources.

If no optimal or sub-optimal solution exist (e =false)

the request is rejected (line 3).

The pseudocode for the BestFit heuristic is reported

in Algorithm 3. As for LocalOpt it requires as input

Ha, Ca Ma, the SLA sla for a current or new tenant

i (I = {i}) and J . The code on lines 2-8 evaluates

the number of vnodes required to satisfy throughput,

dataset size, and data replication constraints, for each

VM type. Line 9 selects the VM type that maximises

the ratio between the requested throughput and the

throughput achievable with the number of vnodes in-

stantiated. That is, we try to minimise the over provi-

sioning effect due to dataset constraints and, as result,
the energy consumption is minimised. Lines 10-15 check

if the selected VM type satisfies available CPU and

memory constraints. Otherwise, the second VM type

that minimises the over provisioning of resources is se-

lected and so on, until all the VM types are analysed.

Line 16 returns xsub = ∅ because no feasible solutions

were found. Lines 19 - 30 place the vnodes on the PMs

minimising the number of PMs used, packing as many

vnodes as possible in a PM, of course considering the

Di constraint. That also minimise the energy consump-

tion. The function any(cj∗ ≤ Ca) compares cj∗ with all

the element of Ca and it returns true if at least one el-

ement of Ca is greater than or equal to cj∗ . Otherwise,

if no PMs satisfy the constraint it returns false. The

same behaviour is valid for any(mj∗ ≤Ma). The func-

tion sortDescendent(Ha) sorts the Ha in descending

order. The function popRR(Ha,Di) extracts, in round-

robin order, a PM from the first Di in Ha. At Line 28,

if there is no more room in the selected PMs h the set

Ha is updated removing the PMs h. At line 32, if not

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Energy-aware Auto-scaling Algorithms for Cassandra Virtual Data Centers 9

Algorithm 3 BestFit auto-scaling algorithm

Require: I = {i}; J ; Ha; Ca = {Ca
h∀h ∈ Ha}; Ma =

{Ma
h∀h ∈ Ha}; sla =

〈
li, Tmin

i , Di, ri
〉
;

1:
2: n∗i = ∅
3: for all j ∈ J do
4: nm

i,j = dDi · ri/heapSizeje;
5: nt

i,j = {nt
i,j s.t. T (nt

i,j) ≥ Tmin
i };

6: n∗i,j = max{nm
i,j , n

t
i,j};

7: n∗i = n∗i ∪ {n∗i,j}
8: end for
9: (j∗, n∗i,j∗)← arg maxj∈J {Tmin

i /T (n∗i,j)};
10:
11: J ′ ← J ;
12: while ((cj · n∗i,j∗ >

∑
H C

a
h)or(mj · n∗i,j∗ >∑

HM
a
h))and(J ′ 6= ∅) do

13: J ′ ← J ′ − {j∗};
14: (j∗, n∗i,j∗)← arg maxj∈J ′{Tmin

i /T (n∗i,j)};
15: end while
16: if J ′ = ∅ then return xsub ← ∅;
17: end if
18:
19: Ha ←sortDescendent(Ha);
20: while n∗i,j∗ > 0 and any(cj∗ ≤ Ca) and any(mj∗ ≤

Ma) do
21: h←popRR(Ha, Di);
22: if (cj∗ ≤ Ca

h) ∩ (mj∗ ≤Ma
h) then

23: Ca
h ← Ca

h − cj∗ ;
24: Ma

h ←Ma
h −mj∗ ;

25: n∗i,j∗ ← n∗i,j∗ − 1;
26: xi,j∗,h ← xi,j∗,h + 1;
27: else
28: Ha ←Ha − {h};
29: end if
30: end while
31:
32: if n∗i,j∗ > 0 then xsub ← ∅;
33: end if
34: return [xsub, Ca, Maj∗, e]

all the n∗i,j∗ vnodes could be allocated the empty set

is returned because no feasible solutions for the alloca-

tion could be found. Otherwise, the suboptimal solution

xsub is returned.

LocalOpt-H and BestFit-H are modified versions of

the LocalOpt and BestFit algorithms that restrict the

adaptation actions to horizontal scaling and optimal

placement. The pseudo code is listed in Algorithm 4

and Algorithm 5 respectively. We omit the description

of these algorithms, which is straightforward. We point

out that LocalOpt-H and BestFit-H receive as input

a specific VM type j∗ rather then receiving the whole

set J . In the Section 7 we give directions on how and

when it is appropriate to use these algorithms.

6 Computational Cost

There are several algorithms to solve LP problems, in-

cluding the well-known simplex and interior points algo-

Algorithm 4 LocalOpt-H autoscaling algorithm. It re-

turns the new sub optimal system configuration xsub.

Require: Ha; Ca = {Ca
h∀h ∈ Ha}; Ma = {Ma

h∀h ∈ Ha};
sla =

〈
li, Tmin

i , Di, ri
〉
; J = {j∗}; I = {i}

1:
2: [xsub, Ca, Ma, j∗, e]← optSolver(Ha, Ca, Ma, sla, I,
J)

3: if e = false then
4: xsub ← ∅ // No feasible solution. The request must

be rejected
5: end if
6: return [xsub, Ha, Ca, Ma, e]

Algorithm 5 BestFit-H autoscaling algorithm. It re-

turns the new sub optimal system configuration xsub.

Require: Ha; Ca = {Ca
h∀h ∈ Ha}; Ma = {Ma

h∀h ∈ Ha};
sla =

〈
li, Tmin

i , Di, ri
〉
; J = {j∗}; I = {i}

1:
2: n∗i = ∅
3: nm

i,j = dDi · ri/heapSizeje;
4: nt

i,j = {nt
i,j s.t. T (nt

i,j) ≥ Tmin
i };

5: n∗i,j = max{nm
i,j , n

t
i,j};

6: n∗i = n∗i ∪ {n∗i,j};
7: J ′ ← J ;
8:
9: if ((cj ·n∗i,j∗ >

∑
H C

a
h)or(mj ·n∗i,j∗ >

∑
HM

a
h)) then

xsub ← ∅; e = false; [xsub, Ca, Ma, e];
10: end if
11:
12: Ha ←sortDescendent(Ha);
13: while n∗i,j > 0 and any(cj∗ ≤ Ca) and any(mj∗ ≤

Ma) do
14: h←popRR(Ha, Di);
15: if (cj∗ ≤ Ca

h)and(mj∗ ≤Ma
h) then

16: Ca
h ← Ca

h − cj∗ ;
17: Ma

h ←Ma
h −mj∗ ;

18: n∗i,j∗ ← n∗i,j∗ − 1;
19: xi,j∗,h ← xi,j∗,h + 1;
20: else
21: Ha ←Ha − {h};
22: end if
23: end while
24:
25: if n∗i,j∗ > 0 then xsub ← ∅;
26: end if
27: return [xsub, Ca, Ma, j∗]

rithms [20]. Widely used software packages (CPLEX R©,

MATLAB R©) adopt variants of the well-known interior

point Mehrothra’s predictor-corrector primal-dual algo-

rithm [21], which has O(n
3
2 log (x0)T s0

ε) worst case iter-

ations, where ε is the accuracy and (x0)T s0 the start-

ing point for the Mehrothra algorithm, and such that

ε ≥ xT s, where xT s is the final point in the algorithm.

Hence, for a fixed ε the Mehrothra algorithm has a com-

plexity of O(n
3
2), where n is the number of variables of

the LP problem [27]. The complexity in our problem

arises from the potentially large value of n, correspond-

ing to the number of variables that is given by the fol-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Emiliano Casalicchio et al.

0 500 1000
Number of tenants

102

104

106

108

N
um

. o
f I

te
ra

tio
ns

V=3

Opt (H=100)
BestFit (H=100)
LocalOpt (H=100)
Opt (H=1000)
BestFit (H=1000)
LocalOpt (H=1000)

0 500 1000
Number of tenants

102

104

106

108

V=10

Fig. 3 Number of Iterations for different values of N , V and
H

lowing expression: n = N×V ×H+N×V +3×N+H.

This means that the worst-case complexity of our LP

problem using Mehrothra’s predictor-corrector primal-

dual algorithm is O((N × V ×H)
3
2).

The LocalOpt call of the optSol, which is solved

with the Mehrothra algorithm. Because optSol is exe-

cuted only for one tenant, the complexity of LocalOpt

is O((V ×H)
3
2).

The complexity of the BestFit adaptation algo-

rithm (Algorithm 3) can be determined in the following

way. The first loop (lines 3-8) and the second loop (lines

12-15) run at most V iterations each. This means that

the computational complexity of lines 1-18 is O(V). We

then need to sort the list of available PMs, which has

complexity O(H logH). The third loop (lines 19-30)

may run for at most H iterations. In each iteration the

two functions any(cj∗ ≤ Ca) and any(mj∗ ≤ Ma) are

called; these functions both have complexity O(H). As

a consequence, the worst-case complexity of the third

loop is O(H2). The complexity of Algorithm 2 is thus

O(V) + O(H2). In real scenarios V is much less then

H, therefore the complexity is O(H2).

The variants BestFit-H and LocalOpt-H have the

same complexity of the BestFit-H and LocalOpt-H re-

spectively.

Figure 3 compares the number of iterations for the

five autoscaling algorithms and for different values of

N , V and H.

7 Recommendations on the use of the

auto-scaling algorithms

Although all the proposed auto-scaling algorithms can

be used at run-time, it is crucial to discuss their limi-

tations and to give guidelines on how and when is ap-

propriate to use them. Table 3 shows four typical use

cases and what policy is best for each of them.

As mentioned before the Opt algorithm produces too

many reconfigurations of the whole data center. More-

over, for large-scale systems, the polynomial complex-

ity of the Opt is a limitation, especially if the workload

changes at high frequency. Hence, the optimal auto-

scaling algorithm is more suitable to support capacity

planning decisions and for periodical mid term consol-

idation actions.

All the heuristic auto-scaling algorithms proposed

are suitable for run-time adaptation decisions. Although,

there are two cases that should be carefully consid-

ered: the algorithm recommend horizontal scaling ac-

tions and the algorithms recommend vertical scaling

actions.

Horizontal scaling is seamlessly supported by the

whole cloud stack, from application level, Cassandra in

our case, to the hypervisor. The only limitation is the

responsiveness of the scaling actions, that is bounded by

the time needed to start a VM (about 2min) and by the

time needed to add a Cassandra vnode to an existing

VDC, scaling delay hereafter. Best practices for Cas-

sandra cluster management suggest that, to preserve

data consistency, vnodes should be added sequentially

(one at time) and that the scaling delay is at least two

minutes. While the VMs activation delay can be elim-

inated using a pool of warm VMs, the second could

not be eliminated. In Figure 4 we show an example of

horizontal scaling for Cassandra.

The serialization of the horizontal scaling actions is

a hot spot in case of throughput surges: the throughput

increase (∆Tmini /∆t) that can be supported is bounded

by the capacity of the vnodes (ti,j,h), by the scaling

delay and by the configuration of the Cassandra VDC

before the surge. Vertical scaling can help in managing

surges of throughput (cf. Section 9.2).

Vertical scaling is partially supported by the cloud

stack. For example, Open Stack supports live instance

resizing, but not all the hypervisors do: VMWare sup-

port seamless vertical scaling, but with Xen and KVM

the vertical scaling implies to shutdown and to restart

the VMs. As before mentioned and as practically shown

in Section 9.2 vertical scaling can help in managing

surges of throughput. Let us consider the example in

Figure 4: if at time t1, rather than starting the hori-

zontal scaling sequence, we operate a vertical scaling of

the running nodes, we can manage a throughput surge

by the deadline of t = 5.

Hence, we give the following recommendations for

the use of the algorithms:

1. the workload must be carefully characterized to prop-

erly size the vnodes capacity, that is ti,j,h

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Energy-aware Auto-scaling Algorithms for Cassandra Virtual Data Centers 11

Table 3 Use of the auto-scaling algorithms

Use case Opt LocalOpt BestFit LocalOpt-H BestFit-H

Capacity planning X
Data center consolidation X

VDC consolidation X X
run-time adaptation X X X X

1 2 3 4 5 6 7 8 9
Time (min)

0

2

4

6

8

10

12

14

16

18

20

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

Tmin
i

Ti (actual throughput)

4.45

t0 the 2nd Cassandra node
is added to the VDC

t2 the 3rd Cassandra node
is added to the VDC

t1: the 1st Cassandra vnodes is added
to the VDC and and 3 new VMs are started

Fig. 4 Temporal sequence of horizontal scaling actions. At
time t0 = 4 the throughput demanded from application i
increase to Tmin

i = 16. The increase takes place in 1 minute.
The autoscaling algorithm decision is to add three nodes. Let
us suppose the SLA variation is forecasted at t1 ≤ t0−2min,
e.g. t1 = 2. If immediately a new Cassandra vnode is added
to the VDC (relying on an VM in the warm pool) and 3
new VM are started, the 1st Cassandra vnode is in the VDC
approximately at t0. At the same time the new VMs are ready
to be used, and the 2nd Cassandra vnode can be started.
At time t = 6 two new Cassandra nodes are in the VDC
and the 3rd can be started. At time t = 8 all the required
Cassandra vnodes are in the VDC. Between t = 4.45 and t =
8 the supposed amount of requests to be served is 2.886×103

and the amount of requests served is 2.705× 103. Hence, the
number of request that are delayed is about 182 that is the
6.31%

2. workload prediction and proactive auto-scaling should

be combined. The forecasting windows should be at

least scaling delay time units ahead

3. for horizontal scaling, the activation of the Cas-

sandra vnodes should be pipelined (cf. Fig. 4) and

maintaining a pool of warm VMs helps in reducing

the scaling delay

4. vertical scaling can help in managing throughput

surges, reducing the time to scale the capacity of

the cluster (versus the horizontal scaling).

In case the vertical scaling is not seamlessly supported,

what we recommend is:

1. to use Opt, LocalOpt or BestFit algorithms for the

first VDC configuration

2. to run, at run time, LocalOpt-H or BestFit-H

3. to run, periodically, LocalOpt or BestFit for VDC

consolidation.

8 Performance evaluation methodology

In this section we describe the performance evaluation

scenarios, the performance evaluation metrics and the

setup of the experiments.

8.1 Scenarios

We selected three cases that are representative of real

scenarios:

– Increase of the throughput (SLA variation). Cus-

tomer needs and service level objectives can change

over time. This scenario considers a planned increase

of the throughput demand.

– Surge in the throughput. This scenario considers an

unpredicted increase in the throughput demand of

a specific tenant i.

– Physical node failures. This scenario contemplate

the failure of physical machines, that implies the

loss of a given number of Cassandra vnodes. In this

context, we analyze how the placement of the vn-

odes (operated by the auto-scaling algorithms) im-

pact the consistency level reliability.

8.2 Performance metrics

Performance will be quantified using the following met-

rics:

– P (x) the overall power consumption defined by equa-

tion 10;

– The Scaling Index for application i SI(t1, t2)i,j is

defined as the variation in the number and type of

Cassandra vnodes when the system change its con-

figuration at time t1 (x(t1)) into a new configuration

at time t2 (x(t2)).

SI(t1, t2)i,j =
∑
H

(x(t2)ijh − x(t1)ijh) .

SI represents a gap and not an absolute value of the

number of VMs used. Positive values for SI means

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Emiliano Casalicchio et al.

that new VMs are allocated. Negative value rep-

resent the number of VMs deallocated. SI allows

to quantify both vertical and horizontal scaling ac-

tions.

– The Migration Index for application i. MI(t1, t2)i is

defined as the number of Cassandra vnodes migra-

tions that application i experienced when the sys-

tem change its configuration at time t1 into a new

configuration at time t2.

MI(t1, t2)i =
∑
H
∆i,h

where ∆i,h = 1 if (s(t2)i,h−s(t1)i,h) > 0 and ∆i,h =

0 otherwise. s(t)i,h is the value of si,h at time t.

– Number of delayed requests Qi(τ) for tenant i in

a time interval τ = tend − tstart. Assuming that

Ti(t) is the actual throughput observed and that

Tmini (t) ≥ Ti(t) ∀t ∈ τ we define

Qi(τ) =

∫ tend

tstart

(
Tmini (t)− Ti(t)

)
dt.

– Consistency level reliability R defined as the prob-

ability that the number of healthy replicas in the

Cassandra VDC is enough to guarantee a specific

level of consistency over a fixed time interval (c.f.

Sec. 9.3 for details). We recall that, assuming inde-

pendence of failures in the components, the relia-

bility of K nodes working in parallel is defined as

R = 1 − (1 − ρ)K , where ρ is the reliability of a

single node and (1 − ρ)K is the probability that K

nodes fail.

8.3 Setup of the experiments

To measure the maximum Cassandra throughput achiev-

able (t0li,j) for each type of workload and VM type and

to compute also the values for δkli,j we use a real clus-

ter and a workload generator provided by Ericsson to

reproduce their application behaviour. The cluster is

composed of nodes with 16 cores and 128 GB of mem-

ory (RAM). The nodes are connected with a high speed

LAN. We run VMware ESXi 5.5.0 on top of Red Hat

Enterprise Linux 6 (64-bit) and we use Cassandra 2.1.5.

We use VMs with three different configurations, as re-

ported in Table 1. The values obtained for t0li,j are re-

ported in Table 1, while the values for δkli,j are reported

in Table 4.

The performance of the proposed adaptation algo-

rithms are assessed using Monte Carlo simulation for

the Physical node failure scenario, while numerical eval-

uation is used for the SLA variation and Throughput

Table 4 Model parameters used in the experiments

Parameter Value Description

N 1 – 10 Number of tenants
V 3 Number of VM types
H 8 Number of PMs
Di 1 – 4 Replication factor for

App. i
ri 5 - 50 Dataset size for App. i
L {R,W,RW} Set of request types
Tmin
i 10000 − 70000

ops/sec
Minimum throughput
agreed in the SLA

Ch 16 Number of cores for PM
h

cj 2 – 8 Number of vcores used by
VM type j

Mh 128 GB Memory size of PM h
mj 16 – 32 GB Total memory used by

VM type j
heapSizej 4 – 8 GB Max heap size used by

VM type j
∀li: δ1li 1 1 ≤ xi,j,h ≤ 2

δ2li 0.8 3 ≤ xi,j,h ≤ 7

δ3li 0.66 xi,j,h ≥ 8

Pmax
h 500 Watt Maximum power con-

sumed by PM h if fully
loaded

kh 0.7 Fraction of Pmax
h con-

sumed by PM h if idle

surge scenarios. Experiments have been carried out us-

ing Matlab R2015b 64-bit for OSX running on a single

Intel Core i5 processor with 16GB of main memory. The

model parameters we used for simulation are reported

in Table 4.

9 Experimental results

9.1 Increase of the throughput (SLA variation)

In this scenario we investigate how the adaptation poli-

cies react to an increase of the throughput specified in

the SLA. We consider three tenants running a R, W

and RW workload respectively and we increase, once at

a time, the throughput for each tenant: the increment

range from Tmini = 10.000 ops/sec to 70.000 ops/sec.

The replication factor and the dataset size is the same

for all the applications: Di = 3 and ri = 8 GB. We

assume that such SLA variations are planned, which

means that the provider has time to allocate the right

amount of resources and therefore there are no SLA

violations.

Figure 5 shows the Scaling Index for the tenant gen-

erating a RW workload. The bars represent the scaling

actions. There is one bar color for each VM type. An

observation reporting both positive and negative bars

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Energy-aware Auto-scaling Algorithms for Cassandra Virtual Data Centers 13

20 30 40 50 60 70

-10

-5

0

5

10
Sc

al
in

g
In

de
x

(S
I)

Opt

20 30 40 50 60 70

-10

-5

0

5

10

LocalOpt

20 30 40 50 60 70
Throughput Ti

min (× 103 tps)

-10

-5

0

5

10

LocalOpt-H

20 30 40 50 60 70

-10

-5

0

5

10

BestFit

20 30 40 50 60 70

-10

-5

0

5

10

BestFit-H

VM type 1 VM type 2 VM type 3

Fig. 5 Throughput increase: The box represent the scaling Index actions for the RW workload and for the five policies

means that the adaptation policy switches between two

VM configurations (vertical scaling). The negative bar

is for the VM type dismissed and the positive for the

new VM type allocated. Observations with only pos-

itive bars correspond to horizontal scaling adaptation

actions. For example, for the Optimal policy there is

a change from VM type 3 (yellow bar) to VM type 2

(green bar) for the observation Tmini = 30.000 ops/sec.

The number of new allocated VMs is smaller because

each new VM offers a higher throughput. The optimal

adaptation policy always starts allocating VMs of Type

3 (cf. Tab. 1) and, if needed progressively moves to more

powerful VM types. The Opt policy performs only one

vertical scaling and when the VM type if changed from

type 3 to type 2; after that it always does horizon-

tal scaling actions (this is a particularly lucky case).

The two heuristics LocalOpt and BestFit show a very

unstable behaviour performing both vertical and hor-

izontal scaling. Both first scale to VM type 1 from

VM type 3 and then they scale back to VM type 2.

When the variant of the above algorithm is used, that is

LocalOpt-H and BestFit-H respectively, the VM type

is fixed to type 1 and the only action taken is horizontal

scaling.

The power consumption is plotted in Figure 6. For

throughput higher than 40×103 ops/sec, with the opti-

mal scaling is possible to save about 50% of the energy

consumed by the heuristic allocation. For low values of

the throughput (10−20×103 ops/sec) the BestFit and

BestFit-H show a very high energy consumption com-

pared to the LocalOpt and LocalOpt-H. When the thr-

oughput increase, the LocalOpt-H behave as the BestFit.

For high throughput (60−70×103 ops/sec), the energy

consumed by the LocalOpt is less than all the other

heuristics.

Figure 7 shows the Migration Index. Each box plot

is computed over the data collected for the three ten-

ants. We can observe that each application experiences

between 0 and 3 vnode migrations depending on the

infrastructure load state.

Considering the low values for the migration index

for the Opt allocation and the high saving in the en-

ergy consumed compared with the other algorithms, it

makes sense to perform periodic VDC consolidation us-

ing the Opt policy, as recommended in Section 7.

10 20 30 40 50 60 70
Throughput Ti

min (× 103 tps)

1000

1500

2000

2500

3000

3500

4000

Po
we

r c
on

su
m

ed
 P

(x
) (

W
at

t)

Opt
LocalOpt
LocalOpt-H
BestFit
BestFit-H

Fig. 6 Throughput increase: the power consumed P (x) by
the five adaptation policies when increasing the throughput
for Application 3 (RW workload).

9.2 Throughput surge

In this set of experiments we analyse how fast the scal-

ing is, with respect to the throughput variation rate,

and what is the number of delayed requests. We assume

the throughput requested by an application generating

a RW workload increase a shown in Figure 8. Differ-

ently from the previous set of experiments we assume

what follow: the throughput increase is not agreed in

advance, it is a surge; the throughput is forecasted 2

minutes ahead; the requested throughput, after the in-

crease, remains stable for a relatively long period; the

horizontal scaling of the Cassandra vnodes is serialized

and the activation delay is 2 minutes; vertical scaling

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Emiliano Casalicchio et al.

20 30 40 50 60 70
Tmin

i × 103 ops/sec

0

1

2

3

M
ig

ra
tio

n
In

de
x

(M
I)

Fig. 7 Throughput increase: Migration Index for the opti-
mal policy. The heuristic policies have a MI equal to zero by
definition. For each box the central mark indicates the me-
dian (50th percentile), and the bottom and top edges of the
box indicate the 25th and 75th percentiles, respectively. The
whiskers extend to the maximum and the minimum value
observed. Outlier are represented by red points.

is supported by the cloud stack and can be done in

parallel for all the interested vnodes.

The first case (Case A) uses VMs with the capacity

specified in Table 1). The Opt auto-scaling starts allo-

cating four vnodes of Type 3 (3.3 × 103 ops/sec) and

then five. At time t = 8 the algorithm did a vertical scal-

ing action allocating five vnodes of Type 2 (8.3 × 103

ops/sec). Than, at time t = 10, twelve vnodes are al-

located. Considering the serialization of the horizontal

scaling actions (cf. Section 7) the seven Cassandra vn-

odes are added in 14 minutes. The LocalOpt behaves

like the Opt in terms of scaling decisions. The BestFit

auto-scaling start allocationg 4vnodes of Type 3, than

it scale-up to seven vnodes (at time t = 8) and finally

it did two vertical scaling actions: the first from vnodes

Type 3 to Type 2, and the second from Type 2to Type

1 vnodes.

The number of delayed requests Qi and the percent-

age with respect the total number of received requests

(tot.req.) are reported in table 5. Qi and tot.req. are

computed over the time interval the requested through-

put TminRW exceed the actual throughput.

Intuitively, with Cassandra vnodes capable to han-

dle a higher workload it should be possible to better

manage the surge in the throughput. Hence, we have an-

alyzed a Case B where we configure three new types of

Cassandra vnodes capable to handle the following RW

throughput: type 4, 20× 103 ops/sec.; type 5, 15× 103

ops/sec.; and type 6, 7 × 103ops/sec. Figure 8 shows

the behaviour of the Opt and BestFit auto-scaling al-

gorithms. The LocalOpt behaves as the Opt. From the

plots, it is evident that with more powerful vnodes the

auto-scaling algorithms are capable to satisfy the re-

quested throughput with a delay of only 2 minutes. The

Opt starts allocating 3 vnodes of type 6, at time t = 4

a new node of type 6 is added and at time t = 6 the

algorithm did a vertical scaling allocating 4 vnodes of

0 2 4 6 8 10 12 14 16 18 20 22
Time (minutes)

0

10

20

30

40

50

60

70

80

Th
ro

ug
hp

ut
 (×

 1
03 o

ps
/s

ec
)

ThrRW
min

Opt (Case A, actual thr)
BestFit (Case A, actual thr)
Opt (Case B, actual thr)
BestFit (Case B, actual thr)

Fig. 8 Auto-scaling actions in case of a throughput surge:
Case A and Case B

type 5. At t = 8 the algorithm decided to add 2 more

nodes of type 5, that are allocated in the next two time

slots. The BestFit starts allocating vnodes of type 6

and scales from 4 to 6 nodes. After that, at t = 10 it

performs a vertical scaling from type 6 to type 5. The

values for delayed requests are reported in Table 5.

The take home message is that having a pool of

vnodes type capable to handle from low throughput

to very high throughput allow to manage throughput

surges.

Table 5 The number of delayed requests Qi and the per-
centage with respect the total number of received requests
(tot.req.). Qi and tot.req. are computed over the time in-
terval the requested throughput (Tmin

RW) exceed the actual
throughput.

Case A Qi (×103) Qi

tot.req.
(%)

Opt 191.84 22.78
LocalOpt 191.84 22.78
BestFit 70.89 46.33
Case B
Opt 7.66 4

LocalOpt 7.66 4
BestFit 70.58 30.29

9.3 Physical node failures

Cassandra offers three main levels of consistency (both

for Read and Write): ONE, QUORUM and ALL. Con-

sistency level of ONE means that only one replica node

is required to reply correctly, that is it contains the

replica of the portion of the dataset needed to answer

the query. Consistency level QUORUM means thatQ =⌊
D
2

⌋
+ 1 replicas nodes are available to reply correctly

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Energy-aware Auto-scaling Algorithms for Cassandra Virtual Data Centers 15

Table 6 Consistency reliability R for the consistency level of ONE and QUORUM. The probability that a data replica is on
a vnode is 0.5 for both D = 3 and D = 5. We assume the reliability of a physical node is ρ = 0.9

n-to-one
ρ = 0.9 one-to-one Opt LocalOpt LocalOpt-H BestFit BestFit-H

RO|D=3 0.9999995 0.9995 0.9995
RQ|D=3 0.999995 0.995 – 0.9995 0.9995
RO|D=5 0.99999999995 0.999995 0.999995
RQ|D=5 0.999999995 0.9995 – 0.999995 0.99995
ρ = 0.8
RO|D=3 0.99996 0.996 0.996
RQ|D=3 0.99984 0.98 – 0.996 0.996
RO|D=5 0.999999948 0.99984 0.99984
RQ|D=5 0.9999987 0.996 – 0.99984 0.9992

(where D is the replication factor). Consistency level

ALL means that all the replicas are available.

In the following, we assess the Consistency level re-

liability R for a consistency level of ONE and of QUO-

RUM when the replication factor is D = 3 and D = 5

for all i ∈ I and when the different autoscaling algo-

rithms are applied.

In case the Cassandra VDC has a number of physi-

cal nodes H equal to the number of vnodes n, and there

is a one-to-one mapping between vnodes and physical

nodes, the consistency level of ONE is guaranteed if one

replica is up. Hence, the Consistence reliability is the

probability that at least one vnode is up and a replica

is on that node:

RO = 1− D

n
× (1− ρ)n (24)

where: ρ is the resiliency of a physical node, and D
n is the

probability that a replica is on a Cassandra vnode when

the data replication strategy used is the SimpleStrategy
(cf. the Datastax documentation for Cassandra). In the

same way, we can define the reliability of the Cassandra

VDC to guarantee a consistency level of QUORUM as

the probability that at least Q vnodes are up and that

Q replicas are on them:

RQ = 1− D

n
× (1− ρ)n−Q+1. (25)

Table 6 shows the values of RO and RQ for D = 3 and

5 and for ρ = 0.9 and ρ = 0.8.

In a managed Cassandra data center, a Cassandra

VDC is rarely allocated using a one-to-one mapping of

vnodes on physical nodes. The resource management

policies adopted by the provider usually end-up with

a many-to-one mapping, that is h physical nodes run

n Cassandra vnodes: D ≤ h < n. In that case we can

generalise equations 24 and 25 to the following:

RO = 1− D

n
× (1− r)KO (26)

RQ = 1− D

n
× (1− r)KQ . (27)

where: KO is the number of failed physical nodes that

causes a failure of n vnodes; and KQ is the number of

failed physical nodes that causes a failure of n−Q+ 1

vnodes. Because the distribution of the vnodes on the

physical nodes is unknown, we have heuristically com-

puted the values of KO and KQ for D = 3 and 5. While

the value for KO is equal to the number of physical

nodes used, the values for KQ depend on the specific

allocation and on the nodes that fail. Observing a VDC

allocation, we could have a set of values {K1
Q,K

2
Q, ...}

where the max{K1
Q,K

2
Q, ...} represents the best case

and the min{K1
Q,K

2
Q, ...} represents the worst case. For

example, if 8 vnodes are distributed on 5 PMs in the

following way {1, 1, 2, 1, 3} and D = 3, we have: Q = 2,

n−Q+ 1 = 7, KO = 5, Kbest
Q = 5, Kworst

Q = 4.

Table 6 reports the values of RO and RQ for D = 3

and D = 5, ρ = 0.9. The evaluation is done in the

following way. We consider 5 customers that request

for a randomly generated SLA: li is distributed as 10%

RW, 15%W and 75% R; Tmin is uniformly distributed

in the interval [10.000, 18.000] ops/sec.; Di = 3 (5) and

ri is constant (8GB). The number of vnodes used by

each tenant is n = 6 for the case D = 3 and n = 10 for

the case D = 5. We run 10 experiments and we assess

the best and worst case over all the allocated VDC.

In the first set of experiments we consider ρ = 0.9.

The one-to-one mapping offers a consistency level of

ONE and QUORUM with a very high reliability of six

9s and five 9s respectively if D = 3 and if the replica-

tion factor increase to 5 the reliability increases to ten

9s and eight 9s for consistency ONE and QUORUM

respectively.

Unfortunately, when a n-to-one mapping is adopted

the reliability of the consistency level drops down 3–4

orders of magnitude. In the case D = 3, we observed

that all the auto-scaling policies offer a consistency level

ONE with a reliability of three 9s. If the replication fac-

tor increases to 5 the reliability increase to five 9s. For

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 Emiliano Casalicchio et al.

the consistency level QUORUM, we have a dependency

on both the replication factor and the auto-scaling pol-

icy. When the replication factor is three, Opt, LocalOpt

and LocalOpt-H offer a consistency level of QUORUM

with a reliability that ranges between two 9s and three

9s, while the BestFit and BestFit-H offer a reliability

level of three 9s. When the replication factor increase to

five, the reliability level offered by Opt, LocalOpt and

LocalOpt-H increase to three 9s in the worst case and

five 9s in the best case. The BestFit and BestFit-H

provide a reliability of four 9s.

When we decrease the reliability of the physical ma-

chines to ρ = 0.8 the reliability decreases of two or three

order of magnitude for the one-to-one mapping and of

one or two order of magnitude for the heuristics.

10 Concluding remarks

In this paper we explored the problem of energy-aware

autoscaling of Cassandra VDC in a multi-tenants envi-

ronment. We presented an optimisation model that find

the optimal auto-scaling actions. The system model we

propose relies only on the measure or estimate of the

relationship between the throughput achievable and the

number of Cassandra vnodes. This information is easy

to be collected and maintained up to date at execution

time. The performance of the optimal auto-scaling is

compared against two energy-aware heuristics and two

energy-blind heuristics. The advantage of using heuris-

tics is twofold: first, the heuristics are applied locally,

and that reduces the perturbation of the performance

of the tenants that do not need to scale. Second, the

Opt has a complexity of the order O((V ×N ×H)3/2)

for N tenants, H physical nodes and V Cassandra vn-

ode Types, while the heuristics have a complexity of

the order O((V × H)3/2) and O(H2) for (localOpt)

and (BestFit) respectively (a details analysis has been

provided in Section 6).

The lesson learned from that study is the following.

Planned variations of the throughput (increase and/or

decrease) can be managed in an energy efficient way by

the LocalOpt. For intense workload and for high uti-

lized data centers the energy consumed by a LocalOpt

allocation is comparable with the allocation determined

by the BestFit. But for low throughput and/or low

utilized data centers, the BestFit produces allocations

that consume between the 48% and the 100% more en-

ergy than the LocalOpt.

The agility of Cassandra in scaling up is limited by

the need to serialize the allocation of vnodes and by

the scaling delay. Our experiments show that vertical

scaling of vnodes is the only adaptation action capable

to manage surges in the throughput.

Finally, a Cassandra cluster that use a one-to-one

mapping of vnodes on physical nodes offer the consis-

tency level of ONE and of QUORUM with a very high

level of reliability (between five and ten 9s) in case of

physical node failures and a node reliability of 0.9. On

the contraty, when a n-to-one mapping is implemented,

the reliability for consistency level of ONE and QUO-

RUM drop down of three - four order of magnitudes.

Hence, we have identified two open challenges. First,

there is the need for energy-efficient auto-scaling algo-

rithms that hide the structural limitation of Cassandra

to scale fast. Such algorithms should prioritize vertical

scaling actions and should take into consideration the

state of the system (the algorithm we have proposed

are memoryless). Second, there is the need for energy-

efficient and consistency-aware algorithms that do not

impact the reliability of the consistency level offered

by Cassandra when configured using a one-to-one map-

ping.

References

1. Almeida Morais, F., Vilar Brasileiro, F., Vigolvino Lopes,
R., Araujo Santos, R., Satterfield, W., Rosa, L.: Autoflex:
Service agnostic auto-scaling framework for iaas deploy-
ment models. In: Cluster, Cloud and Grid Computing
(CCGrid), 2013 13th IEEE/ACM International Sympo-
sium on, pp. 42–49 (2013). DOI 10.1109/CCGrid.2013.74

2. Borgetto, D., Maurer, M., Da-Costa, G., Pierson, J.,
Brandic, I.: Energy-efficient and sla-aware management
of iaas clouds. In: Future Energy Systems: Where En-
ergy, Computing and Communication Meet (e-Energy),
2012 Third International Conference on, pp. 1–10 (2012)

3. Buyya, R., Beloglazov, A., Abawajy, J.H.: Energy-
efficient management of data center resources for cloud
computing: A vision, architectural elements, and open
challenges. CoRR abs/1006.0308 (2010). URL http:

//arxiv.org/abs/1006.0308
4. Casalicchio, E., Lundberg, L., Shirinbab, S.: Energy-

aware adaptation in managed cassandra datacenters.
In: 2016 International Conference on Cloud and Auto-
nomic Computing (ICCAC), pp. 60–71 (2016). DOI
10.1109/ICCAC.2016.12

5. Casalicchio, E., Silvestri, L.: Mechanisms for sla
provisioning in cloud-based service providers. Com-
puter Networks 57(3), 795 – 810 (2013). DOI
http://dx.doi.org/10.1016/j.comnet.2012.10.020. URL
http://www.sciencedirect.com/science/article/pii/

S1389128612003763
6. Chalkiadaki, M., Magoutis, K.: Managing service perfor-

mance in nosql distributed storage systems. In: Pro-
ceedings of the 7th Workshop on Middleware for Next
Generation Internet Computing, MW4NG ’12, pp. 5:1–
5:6. ACM, New York, NY, USA (2012). DOI 10.1145/
2405178.2405183. URL http://doi.acm.org/10.1145/

2405178.2405183
7. Cipar, J., Xu, L., Krevat, E., Tumanov, A., Gupta,

N., Kozuch, M.A., Ganger, G.R.: Jackrabbit: Improved
agility in elastic distributed storage (2012)

8. Cohen, R., Lewin-Eytan, L., Naor, J.S., Raz, D.: Almost
optimal virtual machine placement for traffic intense data

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Energy-aware Auto-scaling Algorithms for Cassandra Virtual Data Centers 17

centers. In: 2013 Proceedings IEEE INFOCOM, pp. 355–
359 (2013). DOI 10.1109/INFCOM.2013.6566794

9. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan,
R., Sears, R.: Benchmarking cloud serving systems with
ycsb. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC ’10, pp. 143–154. ACM, New
York, NY, USA (2010). DOI 10.1145/1807128.1807152.
URL http://doi.acm.org/10.1145/1807128.1807152

10. Dalvandi, A., Gurusamy, M., Chua, K.C.: Time-aware
vmflow placement, routing, and migration for power ef-
ficiency in data centers. Network and Service Manage-
ment, IEEE Transactions on 12(3), 349–362 (2015). DOI
10.1109/TNSM.2015.2443838

11. Dede, E., Govindaraju, M., Gunter, D., Canon, R.S., Ra-
makrishnan, L.: Performance evaluation of a mongodb
and hadoop platform for scientific data analysis. In: Pro-
ceedings of the 4th ACM Workshop on Scientific Cloud
Computing, Science Cloud ’13, pp. 13–20. ACM, New
York, NY, USA (2013). DOI 10.1145/2465848.2465849.
URL http://doi.acm.org/10.1145/2465848.2465849

12. Diegues, N., Orazov, M., Paiva, J.a., Rodrigues, L., Ro-
mano, P.: Optimizing hyperspace hashing via analytical
modelling and adaptation. SIGAPP Appl. Comput. Rev.
14(2), 23–35 (2014). DOI 10.1145/2656864.2656866.
URL http://doi.acm.org/10.1145/2656864.2656866

13. Ghanbari, H., Simmons, B., Litoiu, M., Barna, C., Iszlai,
G.: Optimal autoscaling in a iaas cloud. In: Proceed-
ings of the 9th international conference on Autonomic
computing, ICAC ’12, pp. 173–178. ACM, New York,
NY, USA (2012). DOI 10.1145/2371536.2371567. URL
http://doi.acm.org/10.1145/2371536.2371567

14. Grozev, N., Buyya, R.: Multi-cloud provisioning and load
distribution for three-tier applications. ACM Transac-
tions on Autonomous and Adaptive Systems (TAAS)
9(3), 13 (2014)

15. Intel: Configuration and deployment guide for the cas-
sandra nosql data store on intel architecture. Tech. rep.,
Intel Corporation (2013)

16. Jiang, Y., Perng, C.S., Li, T., Chang, R.N.: Cloud an-
alytics for capacity planning and instant vm provision-
ing. Network and Service Management, IEEE Transac-
tions on 10(3), 312–325 (2013). DOI 10.1109/TNSM.
2013.051913.120278

17. Kliazovich, D., Bouvry, P., Audzevich, Y., Khan, S.:
Greencloud: A packet-level simulator of energy-aware
cloud computing data centers. In: Global Telecommu-
nications Conference (GLOBECOM 2010), 2010 IEEE,
pp. 1–5 (2010). DOI 10.1109/GLOCOM.2010.5683561

18. Kuhlenkamp, J., Klems, M., Röss, O.: Benchmarking
scalability and elasticity of distributed database systems.
Proc. VLDB Endow. 7(12), 1219–1230 (2014). DOI
10.14778/2732977.2732995. URL http://dx.doi.org/

10.14778/2732977.2732995
19. Mastelic, T., Oleksiak, A., Claussen, H., Brandic, I.,

Pierson, J.M., Vasilakos, A.V.: Cloud computing: Sur-
vey on energy efficiency. ACM Comput. Surv. 47(2),
33:1–33:36 (2014). DOI 10.1145/2656204. URL http:

//doi.acm.org/10.1145/2656204
20. Megiddo, N.: On the complexity of linear programming.

In: Advances in Economic Theory: 5th World Congress,
pp. 225–268. T. Bewley, ed., Cambridge University Press,
Cambridge (1987)

21. Mehrotra, S.: On the implementation of a (primal-dual)
interior point method. SIAM J. on Optimization 2, 575–
601 (1992)

22. Paiva, J.a., Ruivo, P., Romano, P., Rodrigues, L.: Auto-
placer: Scalable self-tuning data placement in distributed

key-value stores. ACM Trans. Auton. Adapt. Syst. 9(4),
19:1–19:30 (2014). DOI 10.1145/2641573. URL http:

//doi.acm.org/10.1145/2641573

23. Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L.,
López, J., Gibson, G., Fuchs, A., Rinaldi, B.: Ycsb++:
Benchmarking and performance debugging advanced fea-
tures in scalable table stores. In: Proceedings of the
2Nd ACM Symposium on Cloud Computing, SOCC ’11,
pp. 9:1–9:14. ACM, New York, NY, USA (2011). DOI
10.1145/2038916.2038925. URL http://doi.acm.org/

10.1145/2038916.2038925

24. Priya, B., Pilli, E., Joshi, R.: A survey on energy and
power consumption models for greener cloud. In: Ad-
vance Computing Conference (IACC), 2013 IEEE 3rd
International, pp. 76–82 (2013). DOI 10.1109/IAdCC.
2013.6514198

25. Rabl, T., Gómez-Villamor, S., Sadoghi, M., Muntés-
Mulero, V., Jacobsen, H.A., Mankovskii, S.: Solving big
data challenges for enterprise application performance
management. Proc. VLDB Endow. 5(12), 1724–1735
(2012). DOI 10.14778/2367502.2367512. URL http:

//dx.doi.org/10.14778/2367502.2367512

26. Rocha, L.A., Cardozo, E.: A hybrid optimization model
for green cloud computing. In: Proceedings of the 2014
IEEE/ACM 7th International Conference on Utility and
Cloud Computing, UCC ’14, pp. 11–20. IEEE Com-
puter Society, Washington, DC, USA (2014). DOI 10.
1109/UCC.2014.9. URL http://dx.doi.org/10.1109/

UCC.2014.9

27. Salahi, M., Terlaky, T.: Mehrotra-type predictor-
corrector algorithm revisited. Optimization Methods
Software 23(2) (2008)

28. Shankaranarayanan, P., Sivakumar, A., Rao, S., Tawar-
malani, M.: Performance sensitive replication in geo-
distributed cloud datastores. In: Dependable Systems
and Networks (DSN), 2014 44th Annual IEEE/IFIP In-
ternational Conference on, pp. 240–251 (2014). DOI
10.1109/DSN.2014.34

29. Sharma, U., Shenoy, P., Towsley, D.F.: Provisioning
multi-tier cloud applications using statistical bounds
on sojourn time. In: Proceedings of the 9th Interna-
tional Conference on Autonomic Computing, ICAC ’12,
pp. 43–52. ACM, New York, NY, USA (2012). DOI
10.1145/2371536.2371545. URL http://doi.acm.org.

miman.bib.bth.se/10.1145/2371536.2371545

30. Shi, Y., Meng, X., Zhao, J., Hu, X., Liu, B., Wang,
H.: Benchmarking cloud-based data management sys-
tems. In: Proceedings of the Second International Work-
shop on Cloud Data Management, CloudDB ’10, pp. 47–
54. ACM, New York, NY, USA (2010). DOI 10.1145/
1871929.1871938. URL http://doi.acm.org/10.1145/

1871929.1871938

31. Xu, Z., Deng, N., Stewart, C., Wang, X.: Cadre: Carbon-
aware data replication for geo-diverse services. In: Auto-
nomic Computing (ICAC), 2015 IEEE International Con-
ference on, pp. 177–186 (2015). DOI 10.1109/ICAC.2015.
15

32. Ye, K., Wu, Z., Wang, C., Zhou, B.B., Si, W., Jiang,
X., Zomaya, A.Y.: Profiling-based workload consolida-
tion and migration in virtualized data centers. IEEE
Transactions on Parallel and Distributed Systems 26(3),
878–890 (2015). DOI 10.1109/TPDS.2014.2313335

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

