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Abstract: Sample selection models attempt to correct for non-randomly selected data in a two-model
hierarchy where, on the first level, a binary selection equation determines whether a particular
observation will be available for the second level (outcome equation). If the non-random selection
mechanism induced by the selection equation is ignored, the coefficient estimates in the outcome
equation may be severely biased. When the selection mechanism leads to many censored observations,
few data are available for the estimation of the outcome equation parameters, giving rise to
computational difficulties. In this context, the main reference is Greene (2008) who extends the results
obtained by Manski and Lerman (1977), and develops an estimator which requires the knowledge of
the true proportion of occurrences in the outcome equation. We develop a method that exploits the
advantages of response-based sampling schemes in the context of binary response models with a
sample selection, relaxing this assumption. Estimation is based on a weighted version of Heckman’s
likelihood, where the weights take into account the sampling design. In a simulation study, we found
that, for the outcome equation, the results obtained with our estimator are comparable to Greene’s
in terms of mean square error. Moreover, in a real data application, it is preferable in terms of the
percentage of correct predictions.
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1. Introduction

Most empirical work in the social sciences is based on observational data that are incomplete.
There are many types of selection mechanisms that result in a non random sample. Some of them are
due to sample design, while others depend on the behavior of the units being sampled, other than
non-response or attrition.

In the first case, data are usually missing for all the variables of interest; for example, in estimating
a saving function for all the families of a given country, a bias would arise if only families whose
household head shows certain characteristics were sampled. However, when causes of missingness
are appropriately exogenous, using a sub-sample has no serious consequences. In the second case,
instead, there is a self-selection of the sample units and data availability on a key variable depends on
the behavior of the units for another variable. The classical example is the estimation of the wage offer
equation for people of working age, where we want to estimate the expected wage of an individual
using a set of exogenous characteristics (gender, age, education, etc). This equation, by definition,
should be valid for people of working age, independently of their working conditions at the time of
the survey. On the contrary, we can only observe the wage offer for employed individuals; in regressing
wages on their characteristics, we are not making inferences for the population as a whole. In other
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words, people in employment are a selected sample of the population and their wages are higher than
the unemployed would have had. Hence, the results will tend to be biased (sample selection bias).To
avoid this bias, we should take into account the selection mechanism due to the individual’s decision
to take a job and then receive a wage.

As is well known, Heckman (1979) proposed a useful framework for handling estimation when
the sample is subject to a selection mechanism. In the original framework, the dependent variable in
the outcome equation (the wage equation in the above example) is continuous and can be explained
by a linear regression model with a normal random component. In addition to the output equation, a
selection equation describes the selection rule by means of a binary choice model (probit).

The original Heckman model was extended in many directions and a survey would be beyond the
scope of this paper, but the interested reader can refer to Vella (1998) and Lee (2003). For our purposes,
the relevant framework is the one where both the output and the selection equations are defined as a
binary choice model (Dubin and Rivers 1989). The applications are countless and span every field of
applied research: from political science (Dubin and Rivers 1989; Grier et al. 1994; Jacobs and O’Brien 1998)
to health economics (Van de Ven and Van Praag 1981), transport (Ingram 1999; Kayser 2000), and credit
scoring (Boyes et al. 1989; Greene 2008), just to make a very brief and non-exhaustive list.

In our work, we focus on the problem that arises when the selection mechanism is particularly
severe and gives rise to a large amount of censored observations. This situation might occur for
example when the event of interest is infrequent or fragmented or no frames are available for standard
sampling procedures. Relevant examples are the surveys on elusive populations (such as working
children, homeless persons, illegal immigrants, tax evaders, and drug users); in these populations,
by virtue of their characteristics or difficulties in obtaining the required information, adequate samples
cannot be defined, drawn or implemented using the standard procedures of random sampling. In this
case, no or very partial frames are available for sampling, or many units are not available or willing to
participate in the survey. Consequently, random sampling is either not feasible or inefficient, because
it is very costly (due to the high number of total units to be sampled to obtain a sufficient number of
uncensored observations).

One solution is given by the response-based sampling scheme, also known as case-control setting.
In this design (see Hosmer and Lemeshow 2013), samples of a fixed size are randomly chosen from the
two strata identified by the dependent variable.

In the more specific context of binary choice models with response-based sampling and sample
selection bias, a solution is given by Greene (2008), who extended the work of Manski and Lerman (1977).
In both proposals, however, the estimator requires the knowledge of the true proportion of occurrences
in the outcome equation. In some applications, this requirement can be a serious limitation.

Our work fits into this last framework and aims to overcome these shortfalls.
The remainder of the paper is organized as follows. In Section 2, we start by describing the

methodological background and then we illustrate the proposed estimation procedure. In Section 3,
a simulation study compares our approach with Greene’s. In Section 4, the proposed method is applied
to real data on credit scoring. In Section 5, a discussion and some concluding remarks are provided.

2. Methods

2.1. General Background

2.1.1. Sample Selection

Let us first introduce some notations and briefly illustrate the sample selection framework with a
binary choice model for both the selection and the output equations (Dubin and Rivers 1989).
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Let Y∗ and A∗ be two latent (unobservable) variables characterizing the output and the selection
equations, respectively. The model, in its general form, is:

Y∗i = X1iβ + ε1i (1a)

A∗i = X2iθ + ε2i (1b)

where Xi = (X1i, X2i) is a vector of exogenous variables (namely, X1i for Yi and X2i for Ai), containing
all the relevant covariates, and β and θ are the vectors of regression coefficients. Let us define Yi and
Ai as two observable variables such that:

Yi =

{
1 if Y∗i > 0

0 otherwise
(2) Ai =

{
1 if A∗i > 0

0 otherwise
(3)

The p.d.f. of Yi and Ai is Bernoulli, with probability of success depending on the parameters β

and θ respectively.
Model (3) defines the mechanism which governs the censoring process: we can observe Yi if and

only if Ai = 1. On the contrary, if Ai = 0, Yi will be missing.
In the general case, if we were to estimate the parameters of Equation (1a) without considering

the selection process in (1b), a bias would arise. This is because the processes represented by the two
equations are related, i.e., corr(ε1, ε2) = ρ is not null (see for example Cameron and Trivedi (2005) for
further details).

The likelihood function for model (1a-1b) is:

L(η) =
n

∏
i=1

[
Pr(A∗i < 0)

]1−Ai
·
[

P(Yi = yi|A∗i > 0) · Pr(A∗i > 0)
]Ai

=

=
n

∏
i=1

[
1− Aπ(Xi)

]1−Ai
·
[

P(Yi = yi|Ai = 1) · Aπ(Xi)
]Ai

(4)

where η = (β, θ, ρ) is the vector of parameters to be estimated, yi = 0, 1 and the function Aπ(·) gives
the probability that an observation is uncensored.

2.1.2. Response-Based Sampling

Let us now briefly review the main characteristics of the response-based sampling scheme relevant
to our method. In this context, samples of fixed size are randomly chosen from the two strata identified
by the dependent variable A (note that, for our purposes, in the context of sample selection, it
corresponds to the dependent variable of the selection equation). In particular, nA units are drawn at
random from the NA cases and nĀ units from the NĀ controls.

The likelihood function is the product of the stratum-specific likelihoods, and depends on
the probability that the individual is in the sample and on the joint density of the covariates
(Hosmer and Lemeshow 2013):

n

∏
i=1

f (Xi|Ai, Si = 1) =
nA

∏
i=1

Pr(Xi|Ai = 1, Si = 1)·

·
nĀ

∏
i=1

Pr(Xi|Ai = 0, Si = 1), (5)

where Si is a binary variable which takes value 1 if the i-th individual is in the sample and 0 otherwise.
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2.2. A Binary Choice Model with Sample Selection under a Response-Based Sampling

2.2.1. The Weighted Endogenous Sampling Likelihood

The estimator, first proposed by Manski and Lerman (1977), is designed for a binary response
model under a response based sampling framework and it is called the Weighted Endogenous Sampling
Maximum Likelihood (WESML) estimator, because it assigns weights to the likelihood function.
The weights are given by the ratio between the proportion of individuals in the population for which
A = 1 and the corresponding proportion in the sample.

2.2.2. The WESML Estimator Corrected for Selection Bias

Greene (2008) extended the work of Manski and Lerman to the context of a binary response model
with selection bias and response-based sampling; in that work, the goal was to estimate the probability
of loan defaults P(Y = 1|X) from a sample of individuals whose credit card application was accepted
(A = 1). The corresponding likelihood is:

log L(η) =
n

∑
i=1

NĀ/N
nĀ/n

· log
[
1− Aπ(Xi)

]1−Ai

+
(NyA/N)

nyA/n
· log

[
P(Yi = yi|Ai = 1) · Aπ(Xi)

]Ai

where again yi = 0, 1 and, according to Manski and Lerman, the weights are given by the ratio of two
proportions: we have population-level quantities at the numerator and the corresponding sampling
quantities at the denominator. More precisely, in Greene’s application NĀ/N represents the fraction
of non-cardholders in the population and nĀ/n is the homologous in the sample; coherently, NyA/N
is the prevalence of defaults (y = 1) and non defaults (y = 0) in the population, while nyA/n is the
sample counterpart.

It is important to note that Greene’s estimator (GE) requires knowledge of the proportion in the
population not only for the controls (i.e., NĀ/N), but also for the response variable (namely N1A/N
and N0A/N). This requirement can be an insurmountable obstacle in some applications.

2.2.3. The Sample-Selection Response-Based-Sampling Likelihood

In the following, we provide our main result which is the likelihood function in the framework
of interest, i.e., a sample selection mechanism with a severe censoring process assuming that the
population prevalences N0A

NA
and N1A

NA
are unknown. The full proof is given in the Appendix.

We make the following very general and non restrictive assumptions:

1. We have a set of fully informative and exogenous covariates Xi = (X1i, X2i).
2. Conditional on the covariates, the probability that an observation is uncensored does not depend

on its value, i.e., P(Ai = 1|Si = 1, Xi, Yi) = P(Ai = 1|Si = 1, Xi).
3. The set of covariates X1i, specific for Yi, and the set X2i, specific for Ai, may have common

elements but they cannot fully overlap. In particular, we assume that there is at least one covariate
in the selection equation which is not in the outcome.

Assumption 1 means that a correlation between the covariates and the residual terms in
Equations (1a) and (1b) does not exist . Assumption 2 is justified because, as the covariates are
informative, all the information brought by Yi is contained in Xi. Assumption 3 is necessary for
parameter identification (exclusion condition).
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Under the conditions stated, the likelihood function for a binary-choice model with
sample-selection response-based sampling is:

L(η) =
n

∏
i=1

f (Xi|Si = 1)
{
(1− Aπ(X2i)) ·

N
NĀ

}1−Ai

·
{

N
NA
· nA

nyi A
Aπ(X2i) · P (Yi = yi|Ai = 1, Xi)

}Ai

(6)

=
n

∏
i=1

f (Xi|Si = 1)
{
(1− Aπ(X2i)) ·

N
NĀ

}1−Ai

·
{[

Yπ(X1i) ·
N

NA

nA
n1A

]yi

·
[
(1− Yπ(X1i)) ·

N
NA

nA
n0A

]1−yi

· Aπ(X2i)

}Ai

where Yπ(X1i) is the probability of observing Y = 1 given that the observation is uncensored and
nyA is the amount of uncensored units in the sample having Y = y, with y = 0, 1. Moreover,
as previously said, Aπ(X2i) is the probability that an observation is uncensored, nA is the number of
units sampled from the NA uncensored observations and nĀ is the number of units sampled from the
NĀ censored observations.

It is easy to see that the likelihood (6) is a weighted version of (4), and the weights simply take
into account the sampling scheme. In addition, note that, in the maximization process, the term
f (Xi|Si = 1) is non influential, as it does not contain any information on the vector of parameters η,
and that the only known quantities at the population level are NA and N.

The estimator for η obtained by maximizing this likelihood will be referred to as Sample Selection
Response-based Sampling (SSRS hereafter).

3. Simulation Results

In this section, we will compare the results obtained using the SSRS and GE estimators through a
Monte Carlo experiment.

The generating model is:

Y∗i = 0.5 + 1.5X11i − 1.8X12i + ε1i (7a)

A∗i = θ0 + 0.8X21i − 0.5X22i + ε2i (7b)

where all Xs are independently generated from a univariate standard normal. Note that, in
Equation (7b), θ0 governs the proportion of uncensored observations in the population (i.e., NA/N).
In particular, in the following, we consider three (approximate) proportions: 4% (ensured by θ0 = −2),
15% (θ0 = −1.43) and 30% (θ0 = −0.72).

Even though in the derivation of Equation (6) we have not assumed any probability model for

Yπ(X1i) and for Aπ(X2i), we had to do it for the Monte Carlo experiment. More precisely, we set:(
ε1i
ε2i

)
∼ NID

[(
0
0

)
,

(
1 ρ

ρ 1

)]
(8)
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From Equation (8) and referring to the probabilities Aπ(X2) and Yπ(X1) in (6), it follows:

P(A = 0) = 1− Aπ(X2) = Φ
(
−θ′X2

)
(9)

P(Y = 1, A = 1) = P(Y = 1|A = 1) · P(A = 1) = Yπ(X1) · Aπ(X2)

= Φ2
(

β′X1, θ′X2, ρ
)

(10)

P(Y = 0, A = 1) = P(Y = 0|A = 1) · P(A = 1) = (1− Yπ(X1)) · Aπ(X2)

= Φ2
(

β′X1,−θ′X2,−ρ
)

(11)

where Φ and Φ2 are c.d.f. of the univariate and the bivariate normal respectively.
For each censoring scheme (NA/N), we performed 500 replications for any ρ ∈ [−0.8, 0.8]

with a step of 0.1 and for three different sampling proportions of cases and controls
(i.e., pc = na

n ∈ (0.25, 0.5, 0.75)). From a population of size N = 1, 000, 000, we drew samples of
different size to evaluate the performances of the two estimators. More precisely, we drew sample with
dimension spanning from n = 2000 to n = 10, 000 by 500.

In commenting on the results, we begin by comparing the empirical densities of SSRS and GE
estimators for n = 2000 and n = 10, 000, for each censoring scheme1. Rather than overwhelm the
reader with statistics, we prefer to present information in a summary graphical form.

As regards β1, for NA/N = 0.04 (see Figure 1), we note that the patterns are similar for pc = 0.25,
whereas the behavior differs more as pc increases. Furthermore, the SSRS estimator is almost always
more concentrated except for few combinations of ρ and pc.

As expected, when NA/N increases, the discrepancies between SSRS and GE estimators fade
away (see Figure 2).

Analogous considerations apply for β2 (see Figures 3 and 4). In summary, Figures 1–4 show that
the SSRS and GE estimators have comparable behavior, even though the former uses less information at
population level. It should be underlined that a direct comparison between the two sets of coefficient
estimates may not always be appropriate. In fact, as noted by Mroz and Zayats (2008), a better
comparison would be based on the relative effect, that is on the coefficients ratio. For these reasons we
computed the average ratios θ̂2/θ̂1 and β̂2/β̂1 in the simulations, for each k, pc, NA/N. The results,
available upon request, are very close to the true ratios, θ2/θ1 = −0.63 and β2/β1 = −1.2, for both
GE and SSRS estimators and they show once again that GE slightly outperforms SSRS in the selection
equation, while the reverse seems to happen for the outcome equation.

Coming to the comparison of the estimated MSEs, as shown in Figures 5 and 6, the overall results
obtained by the SSRS estimator are quite similar to Greene’s. Specifically, it seems that SSRS gives
better results in estimating the parameters of the outcome equation (which are, generally speaking,
those of greater interest), especially in the case of a severe censoring mechanism (NA/N = 0.04). The
situation is reversed for the selection equation.

When NA/N = 0.30, the two estimators are substantially equivalent for the selection equation,
while SSRS continues to slightly outperform GE for the outcome (except for pc = 0.25).

As expected, when NA/N increases, the differences between the MSEs of the two estimators
decrease in absolute value. Everything we said holds for both sample sizes.

1 For the sake of brevity, we do not report the results for NA/N = 0.15 and for all values of ρ, but they are available
upon request.
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Figure 1. Densities of β̂1 for some values of ρ, NA/N = 0.04 and three sampling proportions of cases
pc (SSRS: dashed lines; GE: continuous line; n = 2000 for the two flatter distributions; n = 10, 000 for
the two more sharpened distributions)
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Figure 2. Densities of β̂1 for some values of ρ, NA/N = 0.30 and three sampling proportions of cases
pc (SSRS: dashed lines; GE: continuous line; n = 2000 for the two flatter distributions; n = 10, 000 for
the two more sharpened distributions)
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Figure 3. Densities of β̂2 for some values of ρ, NA/N = 0.04 and three sampling proportions of cases
pc (SSRS: dashed lines; GE: continuous line; n = 2000 for the two flatter distributions; n = 10, 000 for
the two more sharpened distributions)
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(f) n = 2000; pc = 0.75; NA/N = 0.3

Figure 5. Performance comparison: MSEGE −MSESSRS for n = 2000, for three sampling proportions
of cases (pc) and for two proportions (NA/N) of uncensored observations.
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(b) n = 10, 000; pc = 0.25; NA/N = 0.3
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(f) n = 10, 000; pc = 0.75; NA/N = 0.3

Figure 6. Performance comparison: MSEGE−MSESSRS for n = 10, 000, for three sampling proportions
of cases (pc) and for two proportions (NA/N) of uncensored observations.
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Finally, in Figure 7, we present the trend of the MSEs as the sample size increases, to have a first
idea of the possible consistency of our estimator. Clearly, the property of consistency can only be
proven analytically. The evaluation has been made only for the SSRS estimator, as it is proven that
GE is consistent (Greene 2008; Manski and Lerman 1977). As usual, we consider the three sampling
percentages and we compute the MSE for β̂1, β̂2, θ̂1 and θ̂2. Once again, to save space, we present only
the former, but all are available upon request.
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Figure 7. MSE behavior for SSRS estimator of β1 and β2, as the sample size increases.
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As suggested by a referee, we made further simulations to study the behavior of the two estimators
when the true generating model of the disturbances is not normal, while the likelihood function is based
on the probabilities specified in Equations (9)–(11) (normal distribution). In particular, the generating
model considered here is a bivariate skew-T; we then simulated 500 samples of size n = 2000 and
n = 10, 000, ρ ∈ 0,±0.4,±0.8, pc ∈ 0.25, 0.50, 0.75 and NA/N ∈ 0.04, 0.15, 0.30. The behavior of the
two estimators remains comparable in terms of bias and mean square error. In particular, comparing
the mean square errors, GE outperforms SSRS in the estimation of the selection equation; the situation
is often reversed for the outcome equation. Furthermore, to compare the robustness to distribution
mispecification of the two estimators, we computed the ratio between the bias obtained when the true
generating model is a skew-T and the bias obtained when the model is correctly specified: the closer to
one the ratio (in absolute value), the more robust the estimator. It emerges that the SSRS estimator is
more robust than GE, especially for the selection equation parameters. All results are available upon
request.

4. Application on Real Data: Estimation of Credit Scoring

In the following, we consider the problem of estimating the risk of a loan default for credit-card
holders. The population of interest is that of loan applicants, for whom some requests are approved
and some are rejected according to their loan default risk.

The idea is to use the model to assign a default probability to a random individual who applies
for a loan, but the only information that exists about default probabilities comes from previous loan
recipients. The problem is that the probability of default for the overall population of applicants is not
necessarily the same as for those who have already received a credit card (in fact, we expect that the
probability for the whole population is greater than that of cardholders). To avoid this kind of selection
bias, we need to consider the selection mechanism explicitly, that is a selection equation which explains
the cardholder status.

The dataset considered here2 contains a subset of the covariates used in Greene (2008).
On n = 13, 444 cardholders, the following characteristics are measured: cardholder status (CH), taking
1 if the application for a credit card was accepted and 0 if not; default status (D), taking 1 if defaulted
and 0 if not (observed only when CH = 1, that is for 10,499 observations); age in years plus twelfths of
a year (Age); number of dependents (Adepcnt); months living at current address (Acadmos); number
of major derogatory reports (Mjrg); number of minor derogatory reports (Mndrg); owner or tenant
(Ownrent), taking 1 if the applicant owns his/her home, 0 if renting; monthly income in US dollars
divided by 100 (Income); self employment status (Selfempl), taking 1 if self employed, 0 if not; and
ratio of monthly credit card expenditure to yearly income (ExpInc).

We used the following specification:

Di = β0 + β1 Adepcnti + β2 Incomei + β3ExpInci + ε1i

CHi = θ0 + θ1 Incomei + θ2Ownrenti + θ3 Acadmosi + θ4Sel f empli + θ5Mjdrgi + θ6Mndrgi + ε2i

and we estimated the parameters by SSRS and GE estimators. The results, shown in Table 1, are
quite similar for the outcome equation (the one of greater interest because it gives the credit scoring),
where the signs are coherent with expectations.

To evaluate the predictive performance of the two models, we computed the confusion matrices
(see Table 2), which allowed us to compute the percentages of correct predictions.

2 The data are available in Table 7.3 at http://people.stern.nyu.edu/wgreene/Text/econometricanalysis.htm
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Table 1. Parameter estimates.

SSRS GE

beta se pval beta se pval
Age 0.047 0.002 0.000 Age −0.006 0.001 0.000
Income −0.002 0.001 0.067 Income 0.018 0.001 0.000
Ownrent 0.039 0.031 0.208 Ownrent −0.372 0.026 0.000
Acadmos −0.002 0.000 0.000 Acadmos 0.002 0.000 0.000
Selfempl 0.005 0.060 0.928 Selfempl 0.216 0.045 0.000
Mjdrg −0.440 0.013 0.000 Mjdrg −0.385 0.013 0.000
Mndrg 0.393 0.019 0.000 Mndrg −0.164 0.016 0.000
Cons −0.144 0.052 0.005 Cons −0.166 0.042 0.000
Adepcnt 0.430 0.014 0.000 Adepcnt 0.059 0.017 0.001
Income −0.070 0.002 0.000 Income −0.012 0.002 0.000
ExpInc −0.153 0.157 0.329 ExpInc 0.170 0.181 0.349
Cons −0.048 0.050 0.342 Cons −0.562 0.050 0.000

Table 2. Confusion matrices: observed vs predicted for non cardholders (CH), non defaulted (CH ∩ D)
and defaulted (CH ∩ D).

SSRS Predicted

CH CH ∩ D CH ∩ D

Observed

CH 484 2302 159
CH ∩ D 58 9210 235
CH ∩ D 6 947 43

GE Predicted

CH CH ∩ D CH ∩ D

Observed
CH 2747 198 0
CH ∩ D 7984 1519 0
CH ∩ D 897 99 0

From these matrices, it is easy to obtain the percentages of correct predictions for both estimation
procedures. In particular, the overall percentages are 0.724 and 0.317 for SSRS and GE, respectively,
showing a strong dominance of the former estimation method over the latter. This dominance is even
more evident in the percentages conditioned on the default status: for non defaulters, the percentage is
0.969 for SSRS and 0.160 for GE, while, for defaulters, it is 0.043 for SSRS and 0 for GE. On the other
hand, GE outperforms SSRS in the prediction of non cardholder status: the values are 0.164 for SSRS
and 0.933 for GE.

5. Conclusions

In this paper, we propose a method for estimating the regression coefficients in binary response
models with sample selection, when a censoring mechanism intervenes to make a vast majority of units
unobservable. We derive the likelihood function analytically, taking advantage of the response-based
sampling framework and find that it is a weighted version of Heckman’s likelihood.

A simulation study highlights that the finite sample performance of the point estimators are
very satisfactory even when compared to a similar estimator (Greene 2008), which in turn assumes
knowledge of the population proportion of occurrences in the outcome equation. Specifically, our
estimator slightly outperforms Greene’s in estimating the parameters of the outcome equation (which
are, generally speaking, those of greater interest), especially in the case of a severe censoring mechanism
(NA/N = 0.04). Under this censoring scenario, the situation is reversed for the selection equation.
When the censoring is less severe, the two estimators are substantially equivalent for the selection
equation, while in general ours still outperforms Greene’s for the outcome.
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An analogous result is obtained in an empirical analysis aimed to estimate the risk of loan default:
our estimator performs better in the prediction of the dependent variable of the outcome equation
(i.e., the default status), while Greene’s does better in the selection equation (i.e., the prediction of the
cardholder status).

The fact that the best results refer to the outcome equation is an advantage, since it is generally
the one of greater interest. The main result is that we do not require knowledge of the true prevalence
of occurrences, that is, our estimator can be successfully used when N1A and N0A are unknown.

Future research will be devoted to the problems arising from measurement errors, either in the
dependent variable or in the covariates of the outcome equation. In the first case, the problem is
obviously simpler and a modified version of the likelihood can take into account the bias arising from
this kind of error. In the second case, an endogeneity issue arises and it is necessary to consider further
information, for example, instrumental variables.
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Appendix A. Derivation of the Likelihood Function

Making use of the Bayes rule, we can rewrite the likelihood function (5) for our sample as:

n

∏
i=1

f (Xi|Ai, Yi, Si = 1) =
n

∏
i=1

f (Xi|Si = 1) · P(Yi, Ai|Si = 1, Xi)

P(Yi, Ai|Si = 1)
(A1)

The ratio on the right hand side represents the contribution to the likelihood jointly given by Yi
and Ai. However, since Yi is observable only when Ai = 1, the contribution to the likelihood when
Ai = 0 is only given by:

P(Ai = 0|Si = 1, Xi)

P(Ai = 0|Si = 1)
=

P(Ai = 0|Xi)P(Si = 1|Ai = 0, Xi)/P(Si = 1|Xi)

P(Ai = 0|Si = 1)

=
P(Si = 1|Ai = 0)P(Ai = 0|Xi)

P(Ai = 0|Si = 1)P(Si = 1)
=

nĀ
NĀ
· (1− Aπ(Xi))

nĀ
n ·

n
N

=
N

NĀ
· (1− Aπ(Xi)) (A2)

where, in the second ratio of Equation (A2) ,we used the Bayes rule; furthermore, the
probability of being in the sample does not depend on the covariates. More precisely,
P(Si = 1|Xi, Yi, Ai = ai) = P(Si = 1|Ai = ai), with ai = 0, 1.

For the probabilities in the third ratio, we put:

• P(Si = 1|Ai = 0) = nĀ/NĀ;
• P(Ai = 0|Xi) = 1− P(Ai = 1|Xi) = 1− Aπ(X2i);
• P(Ai = 0|Si = 1) = nĀ/n;
• P(Si = 1) = n/N.
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On the other hand, when Ai = 1, we have:

P(Yi = yi, Ai = 1|Si = 1, Xi)

P(Yi = yi, Ai = 1|Si = 1)
=

P (Si = 1|Ai = 1) · P (Yi = yi, Ai = 1|Xi)

P (Si = 1) · P (Yi = yi, Ai = 1|Si = 1)
=

nA
NA
· P (Yi = yi, Ai = 1|Xi)

n
N ·

nyi A
n

=
N

NA
· nA

nyi A
· P (Ai = 1|Xi) P (Yi = yi|Ai = 1, Xi) =

N
NA
· nA

nyi A
· Aπ(X2i) · [Yπ(X1i)]

yi · [1− Yπ(X1i)]
1−yi (A3)

where yi = 0, 1; hence, nyi A becomes n1A or n0A, according to the Yi value, and indicates the number
of individuals in the sample for which it is observed, respectively, Yi = 1 or Yi = 0.

For the probabilities in Equation (A3), we put:

• P(Ai = 1|Xi) = Aπ(X2i), as before;
• P(Yi = yi|Ai = 1, Xi) can be specified as a binary response model for Yi in the covariates X1i,

so that P(Yi = 1|Ai = 1, Xi) = Yπ(X1i), while P(Yi = 0|Ai = 1, Xi) = 1− Yπ(X1i); and
• P(Si = 1|Ai = 1) = nA/NA.
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