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Abstract—In this paper we prove lower and matching upper
bounds for the number of servers required to implement a
regular shared register that tolerates unsynchronized Mobile
Byzantine failures. We consider the strongest model of Mobile
Byzantine failures to date: agents are moved arbitrarily by an
omniscient adversary from a server to another in order to deviate
their computation in an unforeseen manner. When a server is
infected by an Byzantine agent, it behaves arbitrarily until the
adversary decides to “move” the agent to another server. Previous
approaches considered asynchronous servers with synchronous
mobile Byzantine agents (yielding impossibility results), and
synchronous servers with synchronous mobile Byzantine agents
(yielding optimal solutions for regular register implementation,
even in the case where servers and agents periods are decoupled).

We consider the remaining open case of synchronous servers
with unsynchronized agents, that can move at their own pace, and
change their pace during the execution of the protocol. Most
of our findings relate to lower bounds, and characterizing the
model parameters that make the problem solvable. It turns out
that unsynchronized mobile Byzantine agent movements requires
completely new proof arguments, that can be of independent
interest when studying other problems in this model. Additionally,
we propose a generic server-based algorithm that emulates a
regular register in this model, that is tight with respect to the
number of mobile Byzantine agents that can be tolerated. Our
emulation spans two awareness models: servers with and without
self-diagnose mechanisms. In the first case servers are aware that
the mobile Byzantine agent has left and hence they can stop
running the protocol until they recover a correct state while in
the second case, servers are not aware of their faulty state and
continue to run the protocol using an incorrect local state.

Index Terms—mobile Byzantine failures, regular register,
round free synchronous computation

I. INTRODUCTION

Byzantine fault tolerance is a fundamental building block in
distributed system, as Byzantine failures include all possible
faults, attacks, virus infections and arbitrary behaviors that can
occur in practice (even unforeseen ones). The classical setting
considers Byzantine participants remain so during the entire
execution, yet software rejuvenation techniques increase the
possibility that a corrupted node does not remain corrupted
during the whole system execution and may be aware of its
previously compromised status [19].

Mobile Byzantine Failures (MBF) models have been re-
cently introduced to integrate those concerns. Then, faults
are represented by Byzantine agents that are managed by an
omniscient adversary that “moves” them from a host process
to another, an agent being able to corrupt its host in an
unforeseen manner. MBF investigated so far consider mostly
round-based computations, and can be classified according to

Byzantine mobility constraints: (i) constrained mobility [9]
agents may only move from one host to another when protocol
messages are sent (similarly to how viruses would propagate),
while (ii) unconstrained mobility [2], [4], [10], [15], [16],
[17] agents may move independently of protocol messages.
In the case of unconstrained mobility, several variants were
investigated [2], [4], [10], [15], [16], [17]: Reischuk [16]
considers that malicious agents are stationary for a given period
of time, Ostrovsky and Yung [15] introduce the notion of mobile
viruses and define the adversary as an entity that can inject
and distribute faults; finally, Garay [10], and more recently
Banu et al. [2], and Sasaki et al. [17] and Bonnet et al. [4]
consider that processes execute synchronous rounds composed
of three phases: send, receive, and compute. Between two
consecutive such synchronous rounds, Byzantine agents can
move from one node to another. Hence the set of faulty hosts
at any given time has a bounded size, yet its membership
may evolve from one round to the next. The main difference
between the aforementioned four works [2], [4], [10], [17] lies
in the knowledge that hosts have about their previous infection
by a Byzantine agent. In Garay’s model [10], a host is able to
detect its own infection after the Byzantine agent left it. Sasaki
et al. [17] investigate a model where hosts cannot detect when
Byzantine agents leave. Finally, Bonnet et al. [4] considers
an intermediate setting where cured hosts remain in control
on the messages they send (in particular, they send the same
message to all destinations, and they do not send obviously
fake information, e.g. fake id). Those subtle differences on
the power of Byzantine agents turns out to have an important
impact on the bounds for solving distributed problems.

A first step toward decoupling algorithm rounds from mobile
Byzantine moves is due to Bonomi et al. [8]. In their model,
mobile Byzantine movements are either: (i) synchronized, but
the period of movement is independent to that of algorithm
rounds, (ii) independent time bounded, meaning that Byzantine
agents are only requested to remain some minimum amount of
time at any occupied node, or (iii) independent time unbounded,
which can be seen as a special case of (ii) when the minimum
amount of time is one time unit. In particular, the Bonomi
et al. [8] model implies that Byzantine moves are no more
related to messages that are exchanged through the protocol.

a) Register Emulation.: Traditional solutions to build a
Byzantine tolerant storage service (a.k.a. register emulation)
can be divided into two categories: replicated state machines
[18], and Byzantine quorum systems [3], [12], [14], [13]. Both
approaches are based on the idea that the current state of the



storage is replicated among processes, and the main difference
lies in the number of replicas that are simultaneously involved
in the state maintenance protocol. Several works investigated
the emulation of self-stabilizing or pseudo-stabilizing Byzantine
tolerant SWMR or MWMR registers [1], [7], [6]. All these
works do not consider the complex case of mobile Byzantine
faults. Recently, Bonomi et al. [5] proposed optimal self-
stabilizing atomic register implementations for round-based
synchronous systems under the four Mobile Byzantine models
described in [2], [4], [10], [17]. The round-free model [8]
where Byzantine moves are decoupled from protocol rounds
also enables optimal solutions (with respect to the number of
Byzantine agents) for the implementation of regular registers.
However, this last solution requires Byzantine agents to move
in synchronous steps, whose duration for the entire execution
is fixed, so the movements of Byzantine agents is essentially
synchronous. As it is impossible to solve the register emulation
problem when processes are asynchronous and Byzantine
agents are synchronous [8], the only case remaining open is
that of synchronous processes and unsynchronized Byzantine
agents.

b) Our Contribution.: We relax the main assumption
made for obtaining positive results in the round-free model:
Byzantine moves are no more synchronized. The main con-
tribution of this paper is to thoroughly study the impact of
unsynchronized mobile Byzantine agents on the register emu-
lation problem. We present lower and matching upper bounds
for implementing a regular register in the unsynchronized
mobile Byzantine model. We first explore and characterize the
key parameters of the model that enable problem solvability.
As expected, the lower bounds results require completely new
proof techniques that are of independent interest while studying
other classical problems in the context of unsynchronized
mobile Byzantine agents. When the problem is solvable, it turns
out that minor changes to existing quorum-based protocols joint
with smart choices of quorums thresholds command optimal
resilience (with respect to the number of Byzantine agents).
Table I summarizes all the lower bounds for the various models,
the newly obtained results are presented in boldface.

II. SYSTEM MODEL

We consider a distributed system composed of an arbitrary
large set of client processes C, and a set of n server processes
S = {s1, s2 . . . sn}. Each process in the distributed system
(i.e., both servers and clients) is identified by a unique identifier.
Servers run a distributed protocol emulating a shared memory
abstraction, and clients are unaware of the protocol run by
the servers.The passage of time is measured by a fictional
global clock (e.g., that spans the set of natural integers), whose
processes are unaware of.At each time instant t, each process
(either client or server) is characterized by its internal state,
i.e., by the set of its local variables and their assigned values.
We assume that an arbitrary number of clients may crash, and
that up to f servers host, at any time t, a Byzantine agent.
Furthermore, servers processes execute the same algorithm,

and cannot rely on high level primitives such as consensus or
total order broadcast.
Communication model. Processes communicate through mes-
sage passing. In particular, we assume that: (i) each client
ci ∈ C can communicate with every server through a
broadcast() primitive, (ii) each server can communicate with
every other server through a broadcast() primitive, and (iii)
each server can communicate with a particular client through a
send() unicast primitive. We assume that communications are
authenticated (i.e., given a message m, the identity of its sender
cannot be forged) and reliable (i.e., spurious messages are not
created and sent messages are neither lost nor duplicated).
Timing Assumptions. The system is round-free synchronous
in the sense that: (i) the processing time of local computations
(except for wait statements) are negligible with respect to
communication delays, and are assumed to be equal to 0, and
(ii) messages take time to travel to their destination processes.
In particular, concerning point-to-point communications, we
assume that if a process sends a message m at time t then it is
delivered by time t+ δp (with δp > 0). Similarly, let t be the
time at which a process p invokes the broadcast(m) primitive,
then there is a constant δb (with δb ≥ δp) such that all servers
have delivered m at time t+ δb. For the sake of presentation,
in the following we consider a unique message delivery delay
δ (equal to δb ≥ δp), and assume δ is known to every process.
Computation model. Each process of the distributed system
executes a distributed protocol P that is composed by a set
of distributed algorithms. Each algorithm in P is represented
by a finite state automaton and it is composed of a sequence
of computation and communication steps. A computation step
is represented by the computation executed locally to each
process while a communication step is represented by the
sending and the delivering events of a message. Computation
steps and communication steps are generally called events.

Definition 1 (Execution History): Let P be a distributed
protocol. Let H be the set of all the events generated by
P at any process pi in the distributed system and let → be
the happened-before relation. An execution history (or simply
history) Ĥ = (H,→) is a partial order on H satisfying the
relation →.

Definition 2 (Valid State at time t): Let Ĥ = (H,→) be an
execution history of a generic computation and let P be the
corresponding protocol. Let pi be a process and let statepi be
the state of pi at some time t. statepi is said to be valid at
time t if it can be generated by executing P on Ĥ .
MBF model. We now recall the generalized Mobile Byzantine
Failure model [8]. Informally, in the MBF model, when a
Byzantine agent is hosted by a process, the agent takes entire
control of its host making it Byzantine faulty (i.e., it can corrupt
the host’s local variables, forces it to send arbitrary messages,
etc.). Then, the Byzantine agent leaves its host with a possible
corrupted state (that host is called cured) before reaching
another host.We assume that any process previously hosting a
Byzantine agent has access to a tamper-proof memory storing
the correct protocol code. However, a cured server may still
have a corrupted internal state, and thus cannot be considered



TABLE I
SUMMARY OF LOWER BOUNDS IN DIFFERENT SYSTEM MODELS. δ IS THE UPPER BOUND ON THE MESSAGE DELAY, AND ∆ IS THE PERIOD FOR

SYNCHRONIZED AGENT MOVES (IN THE SYNCHRONOUS AGENTS SETTING) OR THE LOWER BOUND FOR AN AGENT TO REMAIN ON A SERVER (IN THE
UNSYNCHRONIZED AGENTS SETTING).

Round-based model [5]
Burhman Garay Bonnet Sasaki
2f + 1 3f + 1 4f + 1 4f + 1

Round-free model
Agents moves Synchronized Unsynchronized

[8] [this paper]
Cured state awareness Aware Unaware Aware Unaware
δ ≤ ∆ < 2δ 5f + 1 8f + 1 6f + 1 12f + 1
2δ ≤ ∆ < 3δ 4f + 1 5f + 1 4f + 1 7f + 1

correct. The moves of a Byzantine agent are controlled by an
omniscient adversary.

Definition 3 (Correct process at time t): Let Ĥ = (H,→)
be a history, and let P be the protocol generating Ĥ . A process
is correct at time t if (i) it is correctly executing P , and (ii) its
state is valid at time t. We denote by Co(t) the set of correct
processes at time t. Given a time interval [t, t′], we denote by
Co([t, t′]) the set of all processes that remain correct during
[t, t′] (i.e., Co([t, t′]) =

⋂
τ ∈ [t,t′] Co(τ)).

Definition 4 (Byzantine process at time t): Let Ĥ = (H,→)
be a history, and let P be the protocol generating Ĥ . A process
is Byzantine at time t if it is controlled by a Byzantine agent and
does not execute P . We denote by B(t) the set of Byzantine
processes at time t. Given a time interval [t, t′], we denote by
B([t, t′]) the set of all processes that remain Byzantine during
[t, t′] (i.e., B([t, t′]) =

⋂
τ ∈ [t,t′]B(τ)).

Definition 5 (Cured process at time t): Let Ĥ = (H,→) be
a history, and let P be the protocol generating Ĥ . A process
is cured at time t if (i) it is correctly executing P , and (ii)
its state is not valid at time t. We denote by Cu(t) the set
of cured processes at time t. Given a time interval [t, t′], we
denote by Cu([t, t′]) the set of all processes that remain cured
during [t, t′] (i.e., Cu([t, t′]) =

⋂
τ ∈ [t,t′] Cu(τ)).

With respect to the movements of agents, we consider
the independent time-bounded (ITB) model: each mobile
Byzantine agent mai is forced to remain on a host for at least
a period ∆i. Given two mobile Byzantine Agents mai and maj ,
their movement periods ∆i and ∆j may be different. Note that
previous results considering decoupled Byzantine moves [8]
were established in the weaker ∆-synchronized model, where
the external adversary moves all controlled mobile Byzantine
agents at the same time t, and their movements happen
periodically with period ∆. None of those properties remain
valid in our model.

Concerning the knowledge that each process has about its
failure state, we distinguish the following two cases: Cured
Aware Model (CAM): at any time t, every process is aware
about its failure state; Cured Unaware Model (CUM): at any
time t, every process is not aware about its failure state.

We assume that the adversary can control at most f
Byzantine agents at any time (i.e., Byzantine agents do not
replicate while moving). In our work, only servers can be

affected by the mobile Byzantine agents1. It follows that, at
any time t |B(t)| ≤ f . However, during the system lifetime, all
servers may be hosting a Byzantine agent at some point (i.e.,
none of the servers is guaranteed to remain correct forever).
Register Specification.

A register is a shared variable accessed by a set of processes,
called clients, through two operations, namely read and write.
Informally, the write operation updates the value stored in the
shared variable, while the read obtains the value contained
in the variable (i.e., the last written value). Every operation
issued on a register is, generally, not instantaneous and it can
be characterized by two events occurring at its boundaries: an
invocation event and a reply event. These events occur at two
time instants (called the invocation time and the reply time)
according to the fictional global time.

An operation op is complete if both the invocation event
and the reply event occurred, otherwise, it failed.Given two
operations op and op′, their invocation times (tB(op) and
tB(op′)) and reply times (tE(op) and tE(op′)), op precedes
op′ (op ≺ op′) if and only if tE(op) < tB(op′). If op does
not precede op′ and op′ does not precede op, then op and op′

are concurrent (noted op||op′). Given a write(v) operation, the
value v is said to be written when the operation is complete.

In this paper, we consider a single-writer/multi-reader
(SWMR) regular register, as defined by Lamport [11], which
is specified as follows:
— Termination: if a correct client invokes an operation op, op
completes.
— Validity: A read returns the last written value before its
invocation (i.e. the value written by the latest completed write
preceding it), or a value written by a write concurrent with it.

III. LOWER BOUNDS

In this section we provide lower bounds for (ITB,CAM)
and (ITB,CUM) models. In particular we first prove lower
bounds for the (∆S,CAM) and (∆S,CUM) models and then
we extend those results to (ITB,CAM) and (ITB,CUM)
models. The detailed proofs accompanied by corresponding
explanations can be found in Appendix A. We consider a read
operation whose duration Tr is such that Tr ≥ 2δ (according

1It is trivial to prove that in our model, if clients are Byzantine, it is
impossible to implement deterministically even a safe register. A Byzantine
client may always introduce a corrupted value, and a server cannot distinguish
between a correct client and a Byzantine one.



to previous work [8], each read operation requires at least a
request-reply exchange). Our lower bound proof constructs two
indistinguishable executions. The tricky part is to characterize
the set of messages sent by correct and incorrect servers when
the read operation has variable duration. In the following, we
first characterize such sets with respect to ∆, Tr and γ and γ,
which is the required time to finalize the maintenance operation.
Then, we show how to build two indistinguishable executions.
For clarity, in the sequel we note correct message/request/reply
a message that carries a valid value when it is sent. Otherwise,
the message is incorrect.

It has been proven [8] that a protocol Preg implementing
a regular register in a mobile Byzantine setting must include
in addition to the mandatory read and write operations an
additional operation, maintenance, defined below.

Definition 6 (Maintenance operation maintenance): A
maintenance operation is an operation that, when executed
by a process pi, terminates at some time t leaving pi with a
valid state at time t (i.e., it guarantees that pi is correct at time
t).

The following definition defines γ, the duration of a
maintenance operation.

Definition 7 (Curing time, γ): We define γ as the maximum
time a server can be in a cured state. More formally, let Tc
the time at which server sc is left by a mobile agent, let opM
the first maintenance operation that correctly terminates, then
tE(opM )− Tc ≤ γ.

In order to build our indistinguishable executions, we define
below a scenario to characterize agents movements. Then with
respect to this scenario, we construct two indistinguishable
executions.

Definition 8 (Scenario S∗): Let S∗ be the following
scenario: for each time Ti, i ≥ 0 the affected servers are
s(i mod n)f+1, . . . , s(i mod n)f+f .

Let us characterize the Preg protocol in the most general
possible way. By definition a register abstraction involves read()
and write() operations issued by clients. A read operation
involves at least a request− reply communication pattern (i.e.,
two communication steps). Thus, given the system synchrony,
a read() operation opR lasts at least Tr ≥ 2δ time. Moreover
we consider that a correct server sends a reply message in two
occasions: (i) after the delivery of a request message, and (ii)
right after it changes its state, at the end of the maintenance
operation if an opR is occurring. The latter case exploits the
maintenance operation allowing servers to reply with a valid
value in case they were Byzantine at the beginning of the
read operation. Moreover we assume that in (∗, CAM) model
servers in a cured state do not participate to the read operation.
Notice that those servers are aware of their current cured state
and are aware of their impossibility to send correct replies.
Even though those may seems not very general assumptions,
let us just consider that we are allowing servers to correctly
contribute to the computation as soon as they can and stay silent
when they can not and under those assumptions we prove lower
bounds. Thus if we remove those assumptions the lower bounds
do not decreases. Scenario and protocol has been characterized.

Now we aim to characterize the set of servers, regarding their
failure states, that can appear during the execution of the
protocol, in particular during the read() operation. Those sets
allow us to characterize correct and incorrect messages that a
client delivers during a read() operation.

Definition 9 (Failure State of servers in a time interval): Let
[t, t+Tt] be a time interval and let t′, t′ > 0, be a time instant.
Let si be a server and statei be si state, statei ∈ {correct,
cured,Byzantine}. Let S(t′) be the set of servers si that
are in the state statei at t′, S(t′) ∈ {Co(t′), Cu(t′), B(t′)}.
S̃(t, t + Tr) is the set of servers that have been in the state
statei for at least one time unit during [t, t+Tr]. More formally,
S̃(t, t+ Tr) =

⋃
t≤t′≤t+Tr S(t′).

Definition 10 ( ˜CBC(t, t + Tr)): Let [t, t + Tr] be a time
interval, ˜CBC(t, t + Tr) denotes servers that during a time
interval [t, t+ Tr] belong first to B̃(t, t+ Tr) or Cu(t) (only
in (∆S,CUM) model) and then to Co(t+ δ, t+ Tr − δ) or
vice versa.
In particular let us denote:
• B̃C(t, t+Tr) servers that during a time interval [t, t+Tr]

belong to B̃(t, t + Tr) or Cu(t) (only in (∆S,CUM)
model) and to C̃o(t+ δ, t+ Tr − δ).

• C̃B(t, t+Tr) servers that during a time interval [t, t+Tr]
belong to C̃o(t+ δ, t+ Tr − δ) and to B̃(t, t+ Tr).

Definition 11 (Sil(t, t+Tr)): Let [t, t+Tr] be a time interval.
Sil(t, t+ Tr) is the set of servers in Cu(t, t+ TR − δ).

Definition 12 (MaxB̃(t, t+ Tr)): Let S be a scenario and
[t, t+ Tr] a time interval. The cardinality of B̃S(t, t+ Tr) is
maximum with respect to S if for any t′, t′ > 0, we have that
|B̃S(t, t+ Tr)| ≥ |B̃S(t′, t′ + Tr)|. Then we call the value of
such cardinality as MaxB̃S (t, t+ Tr).

Definition 13 (MaxSil(t, t+ Tr)): Let S be a scenario and
[t, t + Tr] a time interval. The cardinality of SilS(t, t + Tr)
is maximum with respect to S if for any t′, t′ ≥ 0 we have
that |Sil(t, t + Tr)| ≥ |Sil(t′, t′ + Tr)| and B̃(t, t + Tr) =
MaxB̃(t, t+ Tr). Then we call the value of such cardinality
as MaxSilS(t, t+ Tr).

Definition 14 (MaxCu(t)): Let S be a scenario and t be
a time instant. The cardinality of CuS(t) is maximum with
respect to S if for any t′, t′ ≥ 0, we have that |CuS(t′)| ≤
|CuS(t)| and B̃(t, t + Tr) = MaxB̃(t, t + Tr). We call the
value of such cardinality as MaxCuS(t).

Definition 15 (minC̃o(t, t+ Tr)): Let S be a scenario and
[t, t + Tr] be a time interval then minC̃S(t, t + Tr) denotes
the minimum number of correct servers during a time interval
[t+ δ, t+ Tr − δ].

Definition 16 (min ˜CBC(t, t + Tr)): Let [t, t + Tr] be a
time interval then min ˜CBC(t, t+ Tr) denotes the minimum
number of servers that during a time interval [t, t+Tr] belong
first to B̃(t, t+Tr) or Cu(t) (only in (∆S,CUM) model) and
then to Co(t+ δ, t+ Tr − δ) or vice versa and B̃(t, t+ Tr) =
MaxB̃(t, t+ Tr).
In particular let us denote as:
• minB̃C(t, t+ Tr) the minimum number of servers that

during a time interval [t, t+Tr] belong to B̃(t, t+Tr) or



Cu(t) (only in (∆S,CUM) model) and to C̃o(t+ δ, t+
Tr − δ).

• minC̃B(t, t+ Tr) the minimum number of servers that
during a time interval [t, t+ Tr] belong to C̃o(t+ δ, t+
Tr − δ) and to B̃(t, t+ Tr).

Since we consider only scenario S∗, then we can omit
the subscript related to S∗ and write directly MaxB̃(t, t +
T ), minSil(t, t + T ), MaxCu(t), minC̃o(t, t + T ) and
min ˜CBC(t, t+ T ).

Lemma 1: MaxB̃(t, t+ Tr) = (dTr∆ e+ 1)f .
At this point we can compute how many correct and incorrect

replies a client ck can deliver in the worst case scenario during
a time interval [t, t+ Tr]. Trivially, ck in order to distinguish
correct and incorrect replies needs to get minReplies Co(t, t+
Tr)k > MaxReplies NCo(t, t + Tr)k. It follows that the
number of correct servers has to be enough to guarantee this
condition. Table II follows directly from this observation. In
a model with b Byzantine (non mobile) a client ci requires
to get at least 2b+ 1 replies to break the symmetry and thus
n ≥ 2b+ 1. In presence of mobile Byzantine we have to sum
also servers that do not reply (silent) and do not count twice
servers that reply with both incorrect and correct values.

Definition 17 (MaxReplies NCo(t, t + Tr)k): Let
MaxReplies NCo(t, t + Tr)k be the multi-set maintained
by client ck containing mij elements, where mij is the i− th
message delivered by ck and sent at time t′, t′ ∈ [t, t+ Tr] by
sj such that sj /∈ Co(t′).

Considering the definitions of both MaxB̃(t, t + Tr) and
MaxCu(t) the next Corollary follows:

Corollary 1: In the worst case scenario, during a read
operation lasting Tr ≥ 2δ issued by client ci, ci delivers
MaxB̃(t, t+ Tr) incorrect replies in the (∆S,CAM) model
and MaxB̃(t, t + Tr) + MaxCu(t) incorrect replies in the
(∆S,CUM) model .

Definition 18 (minReplies Co(t, t + Tr)k): Let
minReplies Co(t, t + Tr)k be the multi-set maintained by
client ck containing mij elements, where mij is the i − th
message delivered by ck and sent at time t′, t′ ∈ [t, t+ Tr] by
sj such that sj ∈ Co(t′).

Theorem 1: If n < nCAMLB
(n < nCUMLB

) as defined in
Table VI, then there not exists a protocol Preg solving the
safe register specification in (∆S,CAM) model ((∆S,CUM)
model respectively).
Proof Let us suppose that n < nCAMLB

(n < nCUMLB
)

and that protocol Preg does exist. If a client ci invokes a read
operation op, lasting Tr ≥ 2δ time, if no write operations occur,
then ci returns a valid value at time tB(op). Let us consider an
execution E0 where ci invokes a read operation op and let 0
be the valid value at tB(op). Let us assume that all Byzantine
severs involved in such operation reply once with 1. From
Corollaries 4 and 5, ci collects MaxReplies NCo(t, t+Tr)i
occurrences of 1 and minReplies Co(t, t+ Tr)i occurrences
of 0. Since Preg exists and no write operations occur, then
ci returns 0. Let us now consider a another execution E1

where ci invokes a read operation op and let 1 be the
valid value at tB(op). Let us assume that all Byzantine

severs involved in such operation replies once with 0. From
Corollaries 4 and 5 and Corollary 6 and Corollary 7, ci
collects MaxReplies NCo(t, t+ Tr)i occurrences of 0 and
minReplies Co(t, t+Tr)i occurrences of 1. Since Preg exists
and no write operations occur, then ci returns 1.

From Lemma 3 and using values in Table VI we obtain
following equations for both models:
• (∆S,CAM):

– MaxReplies NCo(t, t+Tr)i= MaxB̃(t, t+Tr) =
(dTr∆ e+ 1)f

– minReplies Co(t, t+Tr)i= n−[MaxB̃(t, t+Tr)+
MaxSil(t, t+ Tr)] +min ˜CBC(t, t+ Tr) =

[2(MaxB̃(t, t+ Tr)) +MaxSil(t, t+ Tr)

−min ˜CBC(t, t+ Tr)]

−[(MaxB̃(t, t+ Tr) +MaxSil(t, t+ Tr))

+min ˜CBC(t, t+ Tr)] =

MaxB̃(t, t+ Tr) = (dTr
∆
e+ 1)f

• (∆S,CUM):
– MaxReplies NCo(t, t+Tr)i= MaxB̃(t, t+Tr) +
MaxCu(t) = (dTr∆ e+ 1)f +MaxCu(t)

– minReplies Co(t, t+Tr)i= n−[MaxB̃(t, t+Tr)+
MaxCu(t)] +min ˜CBC(t, t+ Tr) =

[2MaxB̃(t, t+Tr)+2MaxCu(t))−min ˜CBC(t, t+Tr)]+

−[MaxB̃(t, t+Tr)+MaxCu(t)]+min ˜CBC(t, t+Tr) =

MaxB̃(t, t+Tr)+MaxCu(t) = (dTr
∆
e+1)f+MaxCu(t)

It follows that in E0 and E1 ci delivers the same occurrences
of 0 and 1, both executions are indistinguishable leading to a
contradiction.

�

MaxReplies NCo(t, t+ Tr)i and minReplies Co(t, t+
Tr)i are equal independently from the value assumed by Tr,
the read() operation duration. From the equation just used in
the previous lemma the next Corollary follows.

Corollary 2: For each Tr ≥ 2δ if n > nCAMLB

(n > nCUMLB
) then MaxReplies NCo(t, t + Tr)i <

minReplies Co(t, t+ Tr)i.
At this point we compute minCu(t), MaxSil(t, t + Tr)

and min ˜CBC(t, t + Tr) to finally state exact lower bounds
depending on the system parameters, in particular depending
on ∆, γ and the servers awareness. An interested reader can
find proofs in Appendix A. In Table III are reported all the
results for (∆S, ∗) models.

Lemma 2: Let n∗LB ≤ α∗(∆, δ, γ)f be the impossibility
results holding in the (∆S, ∗) model for f = 1. If there
exists a tight protocol Preg solving the safe register for
n ≥ α∗(∆, δ, γ)f + 1 (f ≥ 1) then all the Safe Register
impossibility results that hold in the (∆S, ∗) models hold also
in the (ITB, ∗) and (ITU, ∗) models.



TABLE II
LOWER BOUNDS ON THE NUMBER OF REPLICAS IN EACH MODEL.

nCAMLB [2MaxB̃(t, t+ Tr) +MaxSil(t, t+ Tr)−min ˜CBC(t, t+ Tr)]f

nCUMLB [2(MaxB̃(t, t+ Tr) +MaxCu(t, t+ Tr))−min ˜CBC(t, t+ Tr)]f

TABLE III
VALUES FOR A GENERAL read() OPERATION THAT TERMINATES AFTER Tr TIME.

MaxB̃(t, t+ Tr) MaxCu(t) MaxSil(t, t+ Tr)

(∆S,CAM) dTr∆ e+ 1 R(dγ−∆+ε
∆ e) R(dγ−∆+ε−Tr+δ

∆ e)
(∆S,CUM) dTr∆ e+ 1 R(dTr−ε−d

Tr
∆ e∆+γ

∆ e) dγ+δ−ε−dTr∆ e∆
∆ e

min ˜CBC(t, t+ Tr)

(∆S,CAM) R(dTr∆ e − d
δ
∆e) +R(dTr−γ−δ∆ e)

(∆S,CUM) dTr−ε−δ∆ ea+R(dTr∆ e − d
γ+δ
∆ e) + (MaxCu(t)−MaxSil(t, t+ Tr))

aif maxCu(t) > 0 otherwise is the same value of min ˜CBC(t, t+ Tr) in the (∗, CAM) model

Proof Let us consider the scenario S∗ for f = 1 and a read()
operation time interval [t, t + Tr], t ≥ 0. Depending on the
value of t there can be different (but finite) read scenarios,
rs1, rs2, . . . , rss. By hypothesis there exists Preg solving the
safe register for n ≥ α∗f(∆, δ, γ) + 1 then among the read
scenarios RS = {rs1, rs2, . . . , rss} all the possible worst case
scenarios {wrs1, . . . , wrsw} ⊆ RS hold for n = α∗(∆, δ, γ)f
(meaning that Preg does not exist). We can say that those
worst scenarios are equivalent in terms of replicas, i.e., for
each wsrk is it possible to build an impossibility run if n =
α∗(∆, δ, γ) but Preg works if n = α∗(∆, δ, γ) + 1 (if we
consider f = 1). Let us now consider (∆S, ∗) for f > 1. In
this case, mobile agents move all together, thus the same wrsk
scenario is reproduced f times. For each wrsk scenario is
it possible to build an impossibility run if n = α∗(∆, δ, γ)f ,
i.e., α∗(∆, δ, γ)− 1 non Byzantine servers are not enough to
cope with 1 Byzantine server, then it is straightforward that
α∗(∆, δ, γ)− f non Byzantine servers are not enough to cope
with f Byzantine servers, the same scenario is reproduced f
times.
In the case of unsynchronized movements (ITB and ITU)
we consider ∆ = min {∆1, . . . ,∆f}. Each mobile agent
generates a different read scenarios, those scenario can be
up to f . As we just stated, if Preg exists, those worst case
scenarios are equivalent each others in terms of replicas. Since
all the worst case scenarios are equivalent in terms of replicas,
thus impossibility results holding for mobile agents moving
together hold also for mobile agent moving in an uncoordinated
way. �

In [8], for n ≥ α∗(∆, δ, γ)f + 1 (f ≥ 1), it has been
presented a tight protocol Preg that solves the Regular Register
problem whose bounds match the safe register lower bounds.
Thus the next corollary follows.

Corollary 3: Let n∗LB ≤ α∗(∆, δ, γ)f be the impossibility
results holding in the (∆S, ∗) model for f = 1. All the Safe
Register impossibility results hold also in the (ITB, ∗) and

(ITU, ∗) models.

IV. UPPER BOUNDS

In this section, we present an overview of the optimal
protocols that implement a SWMR Regular Register in a round-
free synchronous system respectively for (ITB,CAM) and
(ITB,CUM) instances of the proposed MBF model. The
detailed description of the protocols and their correctness are
presented in the Appendix B and C.

Following the same approach we used in [8] for the
(∆S,CAM) model, our solution is based on the following
two key points: (1) we implement a maintenance() operation,
in this case executed on demand; (2) we implement read()
and write() operations following the classical quorum-based
approach. The size of the quorum needed to carry on the
operations, and consequently the total number of servers
required by the computation, is dependent on the time to
terminate the maintenance() operation, δ and ∆ (see Table
IV). The difference with respect (∆S,CAM) model is that
the time at which mobile agents move is unknown. Notice that
each mobile mai agent has it own ∆i. Since we do not have
any other information we consider ∆ = min{∆1, . . . ,∆f}.
The maintenance() operation for (ITB,CAM) model. This
operation is executed by servers on demand (request-reply)
when the oracle notifies them that are in a cured state. Notice
that in the (∗, CAM) models servers know when a mobile
agent leaves them, thus depending on such knowledge they
execute different actions. In particular, if a server si is
not in a cured state then it does nothing, it just replies to
ECHO REQ() messages. Otherwise, if a server si is in a cured
state it first cleans its local variables and broadcast to other
servers a request. Then, after 2δ time units it removes values
that may come from servers that were Byzantine before the
maintenance() and updates its state by checking the number
of occurrences of each value received from the other servers.
Contrarily to the (∆S,CAM) case, a cured server notifies to
all servers that it was Byzantine in the previous δ time period.



TABLE IV
PARAMETERS FOR PReg PROTOCOL IN THE (ITB,CAM) AND

(ITB,CUM) MODELS, MINIMUM NUMBER OF REPLICAS, AND MINIMUM
EXPECTED OCCURRENCE OF CORRECT VALUES.

(CAM, ITB)

2δ ≤ ∆<3δ
nCAM 4f+1
#replyCAM 2f+1

δ ≤ ∆<2δ
nCAM 6f+1
#replyCAM 3f+1

(CUM, ITB)

2δ ≤ ∆<3δ
nCUM 7f+1
#replyCUM 4f+1

δ ≤ ∆<2δ
nCUM 12f+1
#replyCUM 7f+1

This is done invoking the awareAll function that broadcasts a
default value ⊥ after δ time a server discovered to be in a
cured state. This is done to prevent a cured server to collect
“slow” replies coming from servers that were affected before
the execution of the maintenance() operation. In this model,
the curing time γ ≤ 2δ.

The maintenance() operation for (ITB,CUM) model. In
this case servers are not aware of their failure state, thus
they have to run such operation even if they are correct or
cured. In addition, in the (ITB,CUM) model, the moment
at which mobile agents move is not known, thus as for
the (ITB,CAM) case, a request-reply pattern is used to
implement the maintenance() operation. Such operation is
executed by servers every 2δ times. In this case, to prevent a
cured server to collect “slow” replies coming from servers
that were affected before the execution of the maintenance()
operation, a server choses a random number to associate to
such particular maintenance() operation instance 2, broadcast
the ECHO REQ() message and waits 2δ before restart ing the
operation. When there is a value whose occurrence overcomes
the #echoCUM threshold, such value is stored at the server
side.
Notice that, contrarily to all the previous models, servers
are not aware of their failure state and do not synchronize
the maintenance() operation with each other. The first
consequence is that a mobile agent may leave a cured server
running such operation with garbage in server variables,
making the operation unfruitful. Such server has to wait 2δ to
run again the maintenance() operation with clean variables,
so that next time it will be effective, which implies γ ≤ 4δ.

The write operation. To write a new value v, the writer
increments its sequence number csn and propagates v and
csn to all servers via a WRITE messages. Then, it waits for
δ time units (the maximum message transfer delay) before
returning. When a server si delivers a WRITE, it updates its
local variables and sends a REPLY message to all clients that

2Is it out of the scope of this work to describe such function, we assume
that Byzantine server can not predict the random number chosen next.

are currently reading to allow them to complete their read
operation.

The read operation. When a client wants to read, it broadcasts
a READ request to all servers and then waits 2δ time (i.e., one
round trip delay) to collect replies. When it is unblocked from
the wait statement, it selects a value v occurring enough number
of times (see #replyC∗M from Table IV) from the replies set,
sends an acknowledgement message to servers to inform that
its operation is now terminated and returns v as result of the
operation. When a server si delivers a READ(j) message from
client cj , it first puts its identifier in the pending read set to
remember that cj is reading and needs to receive possible
concurrent updates and it sends a reply back to cj .

Preg Detailed Description The protocol Preg for the
(ITB,CUM) model is described in Figures 1 - 3, which
present the maintenance(), write(), and read() operations,
respectively. Table V reports the parameters for the protocol.
In particular nCUM is the bound on the number of servers,
#replyCUM is minimum number of occurrences from
different servers of a value to be accepted as a reply during a
read() operation and #echoCUM is the minimum number of
occurrences from different servers of a value to be accepted
during the maintenance() operation.

Local variables at client ci. Each client ci maintains a set
replyi that is used during the read() operation to collect the
three tuples 〈j, 〈v, sn〉〉 sent back from servers. In particular
v is the value, sn is the associated sequence number and
j is the identifier of server sj that sent the reply back.
Additionally, ci also maintains a local sequence number csn
that is incremented each time it invokes a write() operation
and is used to timestamp such operations monotonically.

Local variables at server si. Each server si maintains the
following local variables (we assume these variables are
initialized to zero, false or empty sets according their type):
• Vi: an ordered set containing 3 tuples 〈v, sn〉, where v

is a value and sn the corresponding sequence number.
Such tuples are ordered incrementally according to their
sn values.

• Vsafej : this set has the same characteristic as Vj . The
insert(Vsafei , 〈vk, snk〉) function places the new value
in Vsafei according to the incremental order and if
dimensions exceed 3 then it discards from Vsafei the
value associated to the lowest sn.

• Wi: is the set where servers store values coming directly
from the writer, associating to it a timer, 〈v, sn, timer〉.
Values from this set are deleted when the timer expires
or has a value non compliant with the protocol.

• pending readi: set variable used to collect identifiers of
the clients that are currently reading.

• echo valsi and echo readi: two sets used to collect
information propagated through ECHO messages. The first
one stores tuple 〈j, 〈v, sn〉〉 propagated by servers just



TABLE V
PARAMETERS FOR PRreg PROTOCOL FOR THE (ITB,CUM) MODEL.

k = d 2δ
∆ e ≥ 1 nCUM ≥ (5k + 2)f + 1 #replyCUM ≥ (3k + 1)f + 1 #echoCUM ≥ (3k) + 1f

k = 2 12f + 1 7f + 1 6f + 1
k = 1 7f + 1 4f + 1 4f + 1

after the mobile Byzantine agents moved, while the second
stores the set of concurrently reading clients in order to
notify cured servers and expedite termination of read().

• curingi: set used to collect servers running the
maintenance() operation. Notice, to keep the code simple
we do not explicitly manage how to empty such set since
has not impact on safety properties.

In order to simplify the code of the algorithm, let us define
the following functions:
• select three pairs max sn(echo valsi): this function

takes as input the set echo valsi and returns, if they
exist, three tuples 〈v, sn〉, such that there exist at least
#echoCUM occurrences in echo valsi of such tuple. If
more than three of such tuples exist, the function returns
the tuples with the highest sequence numbers.

• select value(replyi): this function takes as input the
replyi set of replies collected by client ci and returns
the pair 〈v, sn〉 occurring occurring at least #replyCUM
times. If there are more pairs with the same occurrence,
it returns the one with the highest sequence number.

• conCut(Vi, Vsafei ,Wi): this function takes as input three
3 dimension ordered sets and returns another 3 dimen-
sion ordered set. The returned set is composed by the
concatenation of Vsafei ◦ Vi ◦ Wi, without duplicates,
truncated after the first 3 newest values (with respect to the
timestamp). e.g., Vi = {〈va, 1〉, 〈vb, 2〉, 〈vc, 3〉, 〈vd, 4〉}
and Vsafei = {〈vb, 2〉, 〈vd, 4〉, 〈vf , 5〉} and Wi = ∅, then
the returned set is {〈vc, 3〉, 〈vd, 4〉, 〈vf , 5〉}.

The maintenance() operation. Such operation is executed
by servers every 2δ times. Each time si resets its variables,
except for Wi (that is continuously checked by the function
timerCheck()) and the content of Vsafei , which overrides the
content of Vi, before to be reset. Then si choses a random
number to associate to such particular maintenance() operation
instance 3, broadcast the ECHO REQ() message and waits
2δ before to restart the operation. In the meantime ECHO()
messages are delivered and stored in the echo valsi set. When
there is value v whose occurrence overcomes the #echoCUM
threshold, such value is stored in Vsafei and a REPLY() message
with v is sent to current reader clients (if any).
Notice that, contrarily to all the previous models, servers are
not aware about their failure state and do not synchronize the
maintenance() operation with each other. The first consequence
is a that a mobile agent may leave a cured server running

3Is it out of the scope of this work to describe such function, we assume that
Byzantine server can not predict the random number chosen next. The aim of
such number is to prevent Byzantine servers to send reply to maintenance()
operations before their invocation, or, in other words, it prevents correct servers
to accept those replies.

such operation with garbage in server variables, making the
operation unfruitful. Such server has to wait 2δ to run again
the maintenance() operation with clean variables, so that next
time it will be effective, which implies γ ≤ 4δ.
The write() operation. When the writer wants to write a value
v, it increments its sequence number csn and propagates v and
csn to all servers. Then it waits for δ time units (the maximum
message transfer delay) before returning.

When a server si delivers a WRITE message, it updates Wi,
associating to such value a timer 4δ. 4δ it is a consequence
of the double maintenance() operation that a cured server has
to run in order to be sure to be correct. Thus if a server is
correct it keeps v in Wi during 4δ, which is enough for our
purposes. On the other side a cured servers keeps a value (not
necessarily coming from a write() operation) no more than the
time it is in a cured state, 4δ, which is safe. After storing v in
Wi, such value is inserted in REPLY() message to all clients
that are currently reading (clients in pending readi) to notify
them about the concurrent write() operation and to any server
executing the maintenance() operation (servers in curingi).
The read() operation. When a client wants to read, it
broadcasts a READ() request to all servers and waits 2δ
time (i.e., one round trip delay) to collect replies. When
it is unblocked from the wait statement, it selects a value
v invoking the select value function on replyi set, sends
an acknowledgement message to servers to inform that its
operation is now terminated and returns v as result of the
operation.

When a server si delivers a READ(j) message from client cj
it first puts its identifier in the set pending readi to remember
that cj is reading and needs to receive possible concurrent up-
dates, then si sends a reply back to cj . Note that, in the REPLY()
message is carried the result of conCut(Vi, Vsafei ,Wi). In this
case, if the server is correct then Vi contains valid values, and
Vsafei contains valid values by construction, since it comes
from values sent during the current maintenance(). If the server
is cured, then Vi and Wi may contain any value. Finally, si
forwards a READ FW message to inform other servers about
cj read request. This is useful in case some server missed
the READ(j) message as it was affected by mobile Byzantine
agent when such message has been delivered.

When a READ ACK(j) message is delivered, cj identifier
is removed from both pending readi set as it does not need
anymore to receive updates for the current read() operation.

V. CONCLUDING REMARKS

We proposed lower bounds and matching upper bounds
for the emulation of a regular register in the round free
synchronous communication model under unsynchronized



operation timerCheck(Wi) executed while (TRUE) :
(01) for each (〈〈v, csn〉, timer〉j ∈ Wi) do
(02) if (Expires(timer) ∧ (timer > 4δ))
(03) Wi ← Wi \ 〈〈v, csn〉, timer〉j ;
(04) endif
(05) endFor
————————————————————————————————————-

operation maintenance() executed while (TRUE) :
(06) echo valsi ← ∅; Vi ← Vsafei ; Vsafe ← ∅;
(07) rand← new rand();
(08) broadcast ECHO REQ(i, rand);
(09) wait(2δ);
——————————————————————————————————

when select three pairs max sn(echo valsi) 6= ⊥
(10) insert(Vsafei , select three pairs max sn(echo valsi));
(11) for each (j ∈ (pending readi ∪ echo readi)) do
(12) send REPLY (i, Vsafe) to cj ;
(13) endFor
————————————————————————————————————-

when ECHO (j, S, pr, r) is received:
(14) if (rand = r)then:
(15) echo valsi ← echo valsi ∪ 〈v, sn〉j ;
(16) echo readi ← echo readi ∪ pr;
(17) endIf
——————————————————————————————————

when ECHO REQ (j, r) is received:
(18) Seti ← ∅;
(19) for each〈〈v, csn〉, epoch〉j ∈ Wi do;
(20) Seti ← Seti ∪ 〈v, csn〉j ;
(21) endFor
(22) send ECHO(i, Vi ∪ Seti, r) to sj ;

Fig. 1. AM algorithm implementing the maintenance() operation (code for server si) in the (ITB,CUM) model.

========= Client code ==========
operation write(v):
(01) csn← csn+ 1;
(02) broadcast WRITE(v, csn);
(03) wait (δ);
(04) return write confirmation;

========= Server code ==========
when WRITE(v, csn) is received:
(05) Wi ← Wi ∪ 〈〈v, csn〉, setTimer(4δ)}〉;
(06) for each j ∈ (pending readi ∪ echo readi) do
(07) send REPLY (i, {〈v, csn〉});
(08) endFor
(09) broadcast ECHO(i, 〈v, csn〉);

Fig. 2. AW algorithm implementing the write(v) operation in the (ITB,CUM) model.

moves of Byzantine agents. The computed lower bounds are
significantly higher than those computed for synchronized
Byzantine agents model. Investigating other classical problems
in the same fault model is a challenging path for future
research.
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APPENDIX A: LOWER BOUNDS

In this Appendix we prove lower bounds with respect to the
minimum fraction of correct servers to implement safe registers
in presence of mobile Byzantine failures 4. In particular we
first prove lower bounds for the (∆S,CAM) and (∆S,CUM)
models and then we extend those results to (ITB,CAM) and
(ITB,CUM) models. The first observation that raises is that
in presence of mobile agents in the round-free models there
are several parameters to take into account with respect to the
round-based model. Let us start considering that the set of
Byzantine servers changes its composition dynamically time
to time. This yields to the following question: does it impact
on the read() duration? Or, in other words, such operation has
to last as less as possible or until it eventually terminates? In
this chapter we consider the read() operation duration as a
parameter itself, allowing us to easily verify when the variation
of such parameter has any impact on lower bounds. Here below
the list of parameters we take into account.
• servers knowledge about their failures state

(CAM,CUM );
• the relationship between δ and ∆ (that states how many

Byzantine servers there may be during an operation);
• Tr, the read() operations duration;
• γ, the upper bound on the time during which a server can

be in a cured state (the design of an optimal maintenance()
operation is out of the scope of this thesis, thus we use
such upper bound as another parameter).

Those parameters allow us to describe different failure models
and help us to provide a general framework that produces
lower bounds for each specific instance of the MBF mod-
els. In the sequel it will be clear that γ varies depending
on the coordinated/uncoordinated mobile agents movements
(∆S, ITB, ITU ). In other words, in this parameter is hidden
the movements model taken into account, so we do not need
to explicitly parametrize it. Before to start let us precise that
we do not consider the following algorithm families: (i) full
information algorithm families (processes exchange information
at each time instant); (ii) algorithms characterized by a read
operation that does not require a request-reply pattern; (iii)
algorithms with non quiescent operation (the message exchange
triggered by an operation eventually terminates); and finally
(iv) algorithms where clients interact with each other. All
results presented in the sequel consider a families of algorithms
such that previous characteristics do not hold. The lower
bounds proof leverages on the classical construction of two
indistinguishable executions. The tricky part is to characterize
the set of messages delivered by a client from correct and
incorrect servers depending of the read() operation duration.
Let Tr, Tr ≥ 2δ be such duration, each read() operation
requires at least a request-reply pattern). We first characterize
the correct and incorrect sets of messages, delivered during Tr
time, with respect to ∆ and γ. For clarity, in the sequel we note
correct message/request/reply a message that carries a valid

4Results on safe register can be directly extended to the other register
specifications.
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value when it is sent (i.e., sent by a correct process). Otherwise,
the message is incorrect. It has been proven [8] that a protocol
Preg implementing a regular register in a mobile Byzantine
setting must include in addition to the mandatory read and
write operations an additional operation, maintenance, defined
below.

Definition 19 (Maintenance operation maintenance): A
maintenance operation is an operation that, when executed
by a process pi, terminates at some time t leaving pi with a
valid state at time t (i.e., it guarantees that pi is correct at time
t).

Such operation has a direct impact on the number of correct
processes in any time instant. For that reason it is important to
characterize its duration, in particular its upper bound in terms
of time. The following definition defines γ, the upper bound
of the time during which a server can be in a cured state.

Definition 20 (Curing time, γ): We define γ as the maximum
time a server can be in a cured state. More formally, let Tc
the time at which server sc is left by a mobile agent, let opM
the first maintenance operation that correctly terminates, then
tE(opM )− Tc ≤ γ.

In order to build our indistinguishable execution, we define
below a scenario of agents movement. Then, with respect this
scenario, we construct two indistinguishable executions.

Definition 21 (Scenario S∗): Let S∗ be the following
scenario: for each time Ti, i ≥ 0 the affected servers are
s(i mod n)f+1, . . . , s(i mod n)f+f .

In Figure 4 is depicted S∗. In particular, the red part is the
time where f agents are affecting f servers and the gray part
is the time servers are running the maintenance operation.

Let us characterize the Preg protocol in the most general
possible way. By definition a register abstraction involves read()
and write() operations issued by clients. A read operation
involves at least a request− reply communication pattern (i.e.,
two communication steps). Thus, given the system synchrony,
a read() operation opR lasts at least Tr ≥ 2δ time. Moreover
we consider that a correct server sends a reply message in two
occasions: (i) after the delivery of a request message, and (ii)
right after it changes its state, at the end of the maintenance
operation if an opR is occurring. The latter case exploits the
maintenance operation allowing servers to reply with a valid
value in case they were Byzantine at the beginning of the
read operation. Moreover we assume that in (∗, CAM) model
servers in a cured state do not participate to the read operation.
Notice that those servers are aware of their current cured state
and are aware of their impossibility to send correct replies.
Even though those may seems not very general assumptions,
let us just consider that we are allowing servers to correctly
contribute to the computation as soon as they can and stay silent
when they can not and under those assumptions we prove lower
bounds. Thus if we remove those assumptions the lower bounds
do not decreases. Scenario and protocol has been characterized.
Now we aim to characterize the set of servers, regarding their
failure states, that can appear during the execution of the
protocol, in particular during the read() operation. Those sets

allow us to characterize correct and incorrect messages that a
client delivers during a read() operation.

Definition 22 (Failure State of servers in a time interval): Let
[t, t+Tt] be a time interval and let t′, t′ > 0, be a time instant.
Let si be a server and statei be si state, statei ∈ {correct,
cured,Byzantine}. Let S(t′) be the set of servers si that
are in the state statei at t′, S(t′) ∈ {Co(t′), Cu(t′), B(t′)}.
S̃(t, t + Tr) is the set of servers that have been in the state
statei for at least one time unit during [t, t+Tr]. More formally,
S̃(t, t+ Tr) =

⋃
t≤t′≤t+Tr S(t′).

Definition 23 ( ˜CBC(t, t + Tr)): Let [t, t + Tr] be a time
interval, ˜CBC(t, t + Tr) denotes servers that during a time
interval [t, t+ Tr] belong first to B̃(t, t+ Tr) or Cu(t) (only
in (∆S,CUM) model) and then to Co(t+ δ, t+ Tr − δ) or
vice versa.
In particular let us denote:
• B̃C(t, t+Tr) servers that during a time interval [t, t+Tr]

belong to B̃(t, t + Tr) or Cu(t) (only in (∆S,CUM)
model) and to C̃o(t+ δ, t+ Tr − δ).

• C̃B(t, t+Tr) servers that during a time interval [t, t+Tr]
belong to C̃o(t+ δ, t+ Tr − δ) and to B̃(t, t+ Tr).

Definition 24 (Sil(t, t+Tr)): Let [t, t+Tr] be a time interval.
Sil(t, t+ Tr) is the set of servers in Cu(t, t+ TR − δ).

Servers belonging to Sil(tB(opR), tE(opR)) are servers that
do no participate to opR. In oder words, those servers in the
worst case scenario became correct after tE(opR)− δ, thus if
they send back a correct reply it is not sure that client delivers
such reply before the end of Tr time. Now we can define the
worst case scenarios for the sets we defined so far with respect
to S∗.

Definition 25 (MaxB̃(t, t+ Tr)): Let S be a scenario and
[t, t+ Tr] a time interval. The cardinality of B̃S(t, t+ Tr) is
maximum with respect to S if for any t′, t′ > 0, we have that
|B̃S(t, t+ Tr)| ≥ |B̃S(t′, t′ + Tr)|. Then we call the value of
such cardinality as MaxB̃S (t, t+Tr). If we consider only one
scenario per time then we can omit the subscript related to the
scenario and write directly MaxB̃(t, t+ Tr).

This value quantifies in the worst case scenario how many
servers can be Byzantine, for at least one time unit, during a
read() operation. Figure 5 depicts a scenario where Tr = 3δ
and during the time interval [t′, t′ + Tr] there is a maximum
number of Byzantine servers while in [t′′, t′′+Tr] this number
is not maximal.

Definition 26 (MaxSil(t, t+ Tr)): Let S be a scenario and
[t, t + Tr] a time interval. The cardinality of SilS(t, t + Tr)
is maximum with respect to S if for any t′, t′ ≥ 0 we have
that |Sil(t, t + Tr)| ≥ |Sil(t′, t′ + Tr)| and B̃(t, t + Tr) =
MaxB̃(t, t+ Tr). Then we call the value of such cardinality
as MaxSilS(t, t+ Tr). If we consider only one scenario per
time then we can omit the subscript related to the scenario and
write directly minSil(t, t+ Tr).

This value quantifies the maximum number of servers that
begin in a cured state a read() operation and are still cured
after Tr − δ time. So that any correct reply sent after such
period has no guarantees to be delivered by the client and such
servers are assumed to be silent.
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Fig. 4. Representation of S∗ where mobile agents affect groups of f different servers each Ti period. In particular here γ > ∆.
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Fig. 5. Let [t, t + Tr] be time a interval such that in the given scenario
|B̃(t, t + Tr)| = MaxB̃(t, t + Tr). In particular we have that in the time
interval [t′, t′+Tr], |B̃(t′, t′+Tr)| = MaxB̃(t, t+Tr). While in the time
interval [t′′, t′′ + Tr], |B̃(t′′, t′′ + Tr)| < MaxB̃(t, t+ Tr).
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Fig. 6. Let us consider the time instant t and the depicted scenario such that
|Cu(t)| = MaxCu(t). In particular, in this case |Cu(t′)| = MaxCu(t)
and |Cu(t′′)| < MaxCu(t).

Definition 27 (MaxCu(t)): Let S be a scenario and t be
a time instant. The cardinality of CuS(t) is maximum with
respect to S if for any t′, t′ ≥ 0, we have that |CuS(t′)| ≤
|CuS(t)| and B̃(t, t + Tr) = MaxB̃(t, t + Tr). We call the
value of such cardinality as MaxCuS(t). If we consider only
one scenario per time then we can omit the subscript related
to it and write directly MaxCu(t).

This value quantifies, in the worst case scenario, how many
cured servers there may be at the beginning of a read()
operation. Figure 6 depicts a scenario where at time t′ there are
the maximum number of cured server while at t′′ this value is
not maximum. Notice that in such figure, in case of a shorter
time interval [t′, t′ + 2δ] s0 would be silent.

Definition 28 (minC̃o(t, t+ Tr)): Let S be a scenario and
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Fig. 7. Let [t, t+ Tr] be a time interval such that in the depicted scenario
|C̃o(t, t+Tr)| = minC̃o(t, t+Tr). Then in both time intervals [t′, t′+Tr]
and [t′′, t′′ + Tr] we have that |C̃o(t′, t′ + Tr)| = |C̃o(t′′, t′′ + Tr)| =
minC̃o(t, t+ Tr).

[t, t + Tr] be a time interval then minC̃S(t, t + Tr) denotes
the minimum number of correct servers during a time interval
[t+ δ, t+ Tr − δ]. If we consider only one scenario per time
then we can omit the subscript related to it and write directly
minC̃(t, t+ Tr).

Figure 7 depicts a scenario where during the both intervals
[t′, t′ + Tr] and [t′′, t′′ + Tr] the number of correct servers is
minimum.

Definition 29 (min ˜CBC(t, t + Tr)): Let [t, t + Tr] be a
time interval then min ˜CBC(t, t+ Tr) denotes the minimum
number of servers that during a time interval [t, t+Tr] belong
first to B̃(t, t+Tr) or Cu(t) (only in (∆S,CUM) model) and
then to Co(t+ δ, t+ Tr − δ) or vice versa and B̃(t, t+ Tr) =
MaxB̃(t, t+ Tr).
In particular let us denote as:
• minB̃C(t, t+ Tr) the minimum number of servers that

during a time interval [t, t+Tr] belong to B̃(t, t+Tr) or
Cu(t) (only in (∆S,CUM) model) and to C̃o(t+ δ, t+
Tr − δ).

• minC̃B(t, t+ Tr) the minimum number of servers that
during a time interval [t, t+ Tr] belong to C̃o(t+ δ, t+
Tr − δ) and to B̃(t, t+ Tr).

As we stated before, Byzantine servers set changes during
the read() operation opR, so there can be servers that are in
a Byzantine state at tB(opR) and in a correct state before
tE(opR)− δ (cf. s0 during [t′, t′ + 3δ] time interval in Figure
8). Those servers contribute with an incorrect message at the
beginning and with a correct message after. The same may
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Fig. 8. Let [t, t + Tr] a time interval such that in the depicted scenario
˜CBC(t, t + Tr) = min ˜CBC(t, t + Tr). Then ˜CBC(t′, t′ + Tr) >

min ˜CBC(t, t+ Tr) and ˜CBC(t′′, t′′ + Tr) = min ˜CBC(t, t+ Tr).

happen with servers that are correct from tB(opR) to at least
tB(opR) + δ (so that for sure deliver the read request message
and send the reply back) and are affected by a mobile agent
after tB(opR) + δ (cf. s0 during [t′′, t′′ + 3δ] time interval in
Figure 8).

Lemma 3: MaxB̃(t, t+ Tr) = (dTr∆ e+ 1)f .
Proof For simplicity let us consider a single agent mak, then
we extend the same reasoning to all the f agents. In [t, t+Tr]
time interval, with Tr ≥ 2δ, mak can affect a different server
each ∆ time. It follows that the number of times it may change
server is Tr

∆ . Thus the affected servers are dTr∆ e plus the server
that was affected at t. Finally, extending the reasoning to f
agents, MaxB̃(t, t+Tr) = (dTr∆ e+ 1)f , which concludes the
proof. �

As we see in the sequel, the value of MaxB̃(t, t+ Tr) is
enough to compute the lower bound. Now we can define the
worst case scenario for a read() operation with respect to S∗.
Let op be a read operation issued by ci. We want to define,
among the messages that can be deliver by ci during op, the
minimum amount of messages sent by server when they are
in a correct state and the maximum amount of messages sent
by servers when they are not in a correct state.
In each scenario, we assume that each message sent to or
by Byzantine servers is instantaneously delivered, while each
message sent to or by correct servers requires δ time. Without
loss of generality, let us assume that all Byzantine servers send
the same value and send it only once, for each period where
they are Byzantine. Moreover, we make the assumption that
each cured server (in the CAM model) does not reply as long
as it is cured. Yet, in the CUM model, it behaves similarly
to Byzantine servers, with the same assumptions on message
delivery time.

Definition 30 (MaxReplies NCo(t, t + Tr)k): Let
MaxReplies NCo(t, t + Tr)k be the multi-set maintained
by client ck containing mij elements, where mij is the i− th
message delivered by ck and sent at time t′, t′ ∈ [t, t+ Tr] by
sj such that sj /∈ Co(t′).

Considering the definitions of both MaxB̃(t, t + Tr) and
MaxCu(t) the next Corollary follows:

Corollary 4: In the worst case scenario, during a read

operation lasting Tr ≥ 2δ issued by client ci, ci delivers
MaxB̃(t, t+ Tr) incorrect replies in the (∆S,CAM) model
and MaxB̃(t, t + Tr) + MaxCu(t) incorrect replies in the
(∆S,CUM) model .

Definition 31 (minReplies Co(t, t + Tr)k): Let
minReplies Co(t, t + Tr)k be the multi-set maintained by
client ck containing mij elements, where mij is the i − th
message delivered by ck and sent at time t′, t′ ∈ [t, t+ Tr] by
sj such that sj ∈ Co(t′).

Note that correct replies come from servers that (i) have
never been affected during the time interval [t, t+ Tr], or (ii)
where in a cured state at t but do not belong to the Sil(t, t+Tr)
set, or (iii) servers that reply both correctly and incorrectly.
The next Corollary follows.

Corollary 5: In the worst case scenario, during a read
operation lasting Tr ≥ 2δ issued by client ci, ci delivers n−
(MaxB̃(t, t+Tr)+MaxSil(t, t+Tr))+min ˜CBC(t, t+Tr)
correct replies in the (∆S,CAM) model and n−[MaxB̃(t, t+
Tr)+MaxCu(t)]+min ˜CBC(t, t+Tr) correct replies in the
(∆S,CUM) model.

In the following, given a time interval, we characterize cor-
rect and incorrect servers involved in such interval. Concerning
correct servers, let us first analyze when a client collects x ≤ n
different replies and then we extend such result to x > n. Then
we do the same for incorrect replies.

Lemma 4: Let op be a read operation issued by client ci in
a scenario S∗, whose duration is Tr ≥ 2δ. Let x, x ≥ 2, be the
number of messages delivered by ci during op. If x ≤ n then
minReplies Co(t, t+ Tr)k contains replies from x different
servers.
Proof Let us suppose that minReplies Co(t, t + Tr)k
contains replies from x−1 different servers (trivially it can not
be greater than x). Without lost of generality, let us suppose
that ci collects replies from s1, . . . , sx−1. It follows that there
is a server si, i ∈ [1, x− 1] that replied twice and a server sx
that did not replied. Let us also suppose w.l.g. that there is one
Byzantine mobile agent mak (i.e., f = 1). If during the time
interval [t, t+ Tr] sx never replied, then sx has been affected
at least during [t + δ, t + Tr − δ − γ + 1]. This implies that
Tr ≤ ∆+2δ+γ. Since si replies twice then two scenarios are
possible during op: (i) si was first affected by mak and then
became correct (so it replied once), then affected again and
then correct again (so it replied twice); (ii) si was correct (so
it replied once), then it was affected by mak and then correct
again (so it replied twice). Let us consider case (ii) (case (i)
follows trivially). Since si had the time to reply (δ), to be
affected and then became correct (∆ + γ) and reply again (δ)
this means that Tr > ∆ + 2δ + γ. A similar result we get in
case (i) where the considered execution requires a longer time.
This is in contradiction with Tr ≤ ∆ + 2δ + γ thus ci gets
replies for x different servers. �

If a client delivers n > x messages then we can apply the
same reasoning of the previous Lemma to the first chunk of n
messages, then to the second chunk of n messages and so on.
Roughly speaking, if n = 5 and a client delivers 11 messages



from correct processes, then there are 3 occurrences of the
message coming from the first server and 2 occurrences of the
messages coming from the remaining servers. Thus the next
Corollary directly follows.

Corollary 6: Let op be a read operation issued by client
ci in a scenario S∗, op duration is Tr ≥ 2δ. Let x, x ≥ 2,
be the number of messages delivered by ci during op, then
minReplies Co(t, t+Tr)k contains x mod n messages mij

whose occurrences is b xnc+ 1 and (n− x (mod n)) messages
whose occurrences is b xnc.

The case of MaxReplies NCo(t, t+Tr)k directly follows
from scenario S∗, since by hypotheses mobile Byzantine agents
move circularly from servers to servers, never passing on the
same server before having affected all the others. Thus, the
following corollary holds.

Corollary 7: Let op be a read operation issued by client
ci in a scenario S∗, op duration is Tr ≥ 2δ. Let x, x ≥ 2,
be the number of messages delivered by ci during op, then
MaxReplies NCo(t, t+ Tr)k contains x mod n messages
mij whose occurrences is b xnc + 1 and (n − x (mod n))
messages whose occurrences is b xnc.

At this point we can compute how many correct and incorrect
replies a client ck can deliver in the worst case scenario during
a time interval [t, t+ Tr]. Trivially, ck in order to distinguish
correct and incorrect replies needs to get minReplies Co(t, t+
Tr)k > MaxReplies NCo(t, t + Tr)k. It follows that the
number of correct servers has to be enough to guarantee this
condition. Table VI follows directly from this observation. In
a model with b Byzantine (non mobile) a client ci requires
to get at least 2b+ 1 replies to break the symmetry and thus
n ≥ 2b+ 1. In presence of mobile Byzantine we have to sum
also servers that do not reply (silent) and do not count twice
servers that reply with both incorrect and correct values.

Theorem 2: If n < nCAMLB
(n < nCUMLB

) as defined in
Table VI, then there not exists a protocol Preg solving the
safe register specification in (∆S,CAM) model ((∆S,CUM)
model respectively).
Proof Let us suppose that n < nCAMLB

(n < nCUMLB
)

and that protocol Preg does exist. If a client ci invokes a read
operation op, lasting Tr ≥ 2δ time, if no write operations occur,
then ci returns a valid value at time tB(op). Let us consider an
execution E0 where ci invokes a read operation op and let 0
be the valid value at tB(op). Let us assume that all Byzantine
severs involved in such operation reply once with 1. From
Corollaries 4 and 5, ci collects MaxReplies NCo(t, t+Tr)i
occurrences of 1 and minReplies Co(t, t+ Tr)i occurrences
of 0. Since Preg exists and no write operations occur, then
ci returns 0. Let us now consider a another execution E1

where ci invokes a read operation op and let 1 be the
valid value at tB(op). Let us assume that all Byzantine
severs involved in such operation replies once with 0. From
Corollaries 4 and 5 and Corollary 6 and Corollary 7, ci
collects MaxReplies NCo(t, t+ Tr)i occurrences of 0 and
minReplies Co(t, t+Tr)i occurrences of 1. Since Preg exists
and no write operations occur, then ci returns 1.

From Lemma 3 and using values in Table VI we obtain
following equations for both models:
• (∆S,CAM):

– MaxReplies NCo(t, t+Tr)i= MaxB̃(t, t+Tr) =
(dTr∆ e+ 1)f

– minReplies Co(t, t+Tr)i= n−[MaxB̃(t, t+Tr)+
MaxSil(t, t+ Tr)] +min ˜CBC(t, t+ Tr) =

[2(MaxB̃(t, t+ Tr)) +MaxSil(t, t+ Tr)

−min ˜CBC(t, t+ Tr)]

−[(MaxB̃(t, t+ Tr) +MaxSil(t, t+ Tr))

+min ˜CBC(t, t+ Tr)] =

MaxB̃(t, t+ Tr) = (dTr
∆
e+ 1)f

• (∆S,CUM):
– MaxReplies NCo(t, t+Tr)i= MaxB̃(t, t+Tr) +
MaxCu(t) = (dTr∆ e+ 1)f +MaxCu(t)

– minReplies Co(t, t+Tr)i= n−[MaxB̃(t, t+Tr)+
MaxCu(t)] +min ˜CBC(t, t+ Tr) =

[2MaxB̃(t, t+Tr)+2MaxCu(t))−min ˜CBC(t, t+Tr)]+

−[MaxB̃(t, t+Tr)+MaxCu(t)]+min ˜CBC(t, t+Tr) =

MaxB̃(t, t+Tr)+MaxCu(t) = (dTr
∆
e+1)f+MaxCu(t)

It follows that in E0 and E1 ci delivers the same occurrences
of 0 and 1, both executions are indistinguishable leading to a
contradiction.

�

MaxReplies NCo(t, t+ Tr)i and minReplies Co(t, t+
Tr)i are equal independently from the value assumed by Tr,
the read() operation duration. From the equation just used in
the previous lemma the next Corollary follows.

Corollary 8: For each Tr ≥ 2δ if n > nCAMLB

(n > nCUMLB
) then MaxReplies NCo(t, t + Tr)i <

minReplies Co(t, t+ Tr)i.
At this point we compute minCu(t), MaxSil(t, t + Tr)

and min ˜CBC(t, t + Tr) to finally state exact lower bounds
depending on the system parameters, in particular depending
on ∆, γ and the servers awareness, i.e., (∆S,CAM) and
(∆S,CUM).

Let us adopt the following notation. Given the time interval
[t, t + Tr] let {s1, s2, . . . , sb} ∈ B(t, t + Tr) be the servers
affected sequentially during Tr by the mobile agent mak.
Let {s−1, s−2, . . . , s−c} ∈ Cu(t) be the servers in a cured
state at time t such that s−1 is the last server that entered
in such state and sc the first server that became cured. Let
tBB(si) and tEB(si) be respectively the time instant in which
si become Byzantine and the time in which the Byzantine
agent left. tBCu(si) and tECu(si) are respectively the time
instant in which si become cured and the time instant in
which it became correct. Considering that mak moves each
∆ time then we have that tBB(si−1) − tBB(si) = ∆ and
tBCu(s−j)− tBCu(s−j+1) = ∆. The same holds for the tE



TABLE VI
LOWER BOUNDS ON THE NUMBER OF REPLICAS IN EACH MODEL.

nCAMLB [2MaxB̃(t, t+ Tr) +MaxSil(t, t+ Tr)−min ˜CBC(t, t+ Tr)]f

nCUMLB [2(MaxB̃(t, t+ Tr) +MaxCu(t, t+ Tr))−min ˜CBC(t, t+ Tr)]f
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. . .t t+ 2δ

Fig. 9. Representation of S∗ when we consider a (∆S,CAM) model, in
particular tEB(s1) = t+ ε, for ε > 0 and arbitrarily small.
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Fig. 10. Representation of S∗ when we consider a (∆S,CUM) model, in
particular tBB(sc) = t+ 2δ − ε, for ε > 0 and arbitrarily small.

of such states. Moreover tBB(s1) = tBCu(s−1). Now we
are ready to build the read scenario with respect to S∗. In
particular we build a scenario for the (∆S,CAM) model and
one for the (∆S,CUM) model. Intuitively, the presence of
cured servers do not have the same impact in the two models,
thus in the (∆S,CUM) model we maximize such number.
Let [t, t + 2δ] be the considered time interval and let ε be a
positive number arbitrarily smaller, then we consider in the
(∆S,CAM) scenarios t = tEB(s1)− ε (cf. Figure 9) and in
the (∆S,CUM) scenarios tBB(sb) = t+ 2δ − ε (cf. Figure
10).

In the sequel we use the notion of Ramp Function:

R(x) =

{
x if x ≥ 0

0 if x < 0

Lemma 5: Let us consider a time interval [t, t+Tr], Tr ≥ 2δ
and an arbitrarily small number ε > 0, then in fthe (∆S,CAM)
model MaxCu(t) = R(dγ−∆+ε

∆ e).
Proof As we defined, s−1 is the most recent server that entered
in a cured state, with respect to the considered time interval.
Intuitively each s−j is in Cu(t) if tECu(s−j) > t. Considering
that tECu(s−j) − tECu(s−j−1) = ∆ then the number of

servers in a cured state at t is MaxCu(t) = d tECu(s1)−t
∆ e. 5

As we stated, for (∗, CAM) models we consider scenarios in
which t, the beginning of the considered time interval, is just
before tEB(s1). Thus given an arbitrarily small number ε > 0,
let t = tEB(s1)−ε. By construction we know that tBB(s1) =
tEB(s1) −∆ = tBCu(s−1). Substituting tBCu(s−1) = t +
ε−∆, since we consider γ the upper bound for the curing time,
then tECu(s−1) = t+ ε−∆ + γ . So finally, MaxCu(t) =

d tECu(s1)−t
∆ e = dγ−∆+ε

∆ e and since there can no be a negative
result then MaxCu(t) = R(dγ−∆+ε

∆ e). This concludes the
proof. �

Lemma 6: Let us consider a time interval [t, t+Tr], Tr ≥ 2δ
and an arbitrarily small number ε > 0, then in the (∆S,CUM)

model MaxCu(t) = R(dTr−ε−d
Tr
∆ e∆+γ

∆ e).
Proof As we defined, s−1 is the most recent server that
entered in a cured state, with respect to the considered interval.
Intuitively, s−j is in Cu(t) if tECu(s−j) > t. Considering
that tECu(s−j) − tECu(s−j−1) = ∆ then the number of
servers in a cured state at t is MaxCu(t) = d tECu(s1)−t

∆ e.
As we state, for (∗, CUM) models we consider scenarios in
which the end of the considered time interval, is just after
tBB(sb). Thus given an arbitrarily small number ε > 0, let
tBB(sb) = t+Tr−ε. By construction we know that tBB(s1) =
tEB(s1)−∆ = tBCu(s−1) and tBB(s1) = tBB(sb)−dTr∆ e∆
(cf. Lemma 3). Substituting and considering that tECu(s−1) =
tBCu(s−1) + γ) we get the following: tECu(s−1) = t +

Tr − ε − dTr∆ e + γ. Finally MaxCu(t) = d tECu(s1)−t
∆ e =

dTr−ε−d
Tr
∆ e+γ

∆ e and since there can not be a negative result

then MaxCu(t) = R(dTr−ε−d
Tr
∆ e∆+γ

∆ e). This concludes the
proof. �

Lemma 7: Let us consider a time interval [t, t+Tr], Tr ≥ 2δ
and an arbitrarily small number ε > 0, then in the (∆S,CAM)
model MaxSil(t, t+ Tr) = R(dγ−∆+ε−Tr+δ

∆ e).
Proof As we defined, s−1 is the most recent server that
entered in a cured state, with respect to the considered interval.
Intuitively, s−j is in Sil(t, t + 2δ) if tECu(s−j) > Tr − δ.
Considering that tECu(s−j) − tECu(s−j−1) = ∆ then the
number of servers in a silent state at t is MaxSil(t, t+ 2δ) =

d tECu(s1)−Tr+δ
∆ e. As we stated for (∆S,CAM) models we

consider scenarios in which t, the beginning of the considered
time interval, is just before tEB(s1). Thus given an arbitrarily
small number ε > 0, let t = tEB(s1) − ε. By construction
we know that tBB(s1) = tEB(s1) − ∆ = tBCu(s−1).

5Consider Figure 9, s2 is the most recent server that entered in the cured
state. This is the server that spend more time in such state with respect to the
others. It follows that other servers are in a cured state if during this time
interval there is enough time for a “jump”



Substituting tBCu(s−1) = t+ ε−∆, since we consider γ the
upper bound for curing time, then tECu(s−1) = t+ ε−∆+γ

. So finally, MaxSil(t, t + Tr) = d tECu(s1)−Tr+δ
∆ e =

dγ−∆+ε−Tr+δ
∆ e, then since there can not be a negative result

MaxSil(t, t+ 2δ) = R(dγ−∆+ε−Tr+δ
∆ e). �

Lemma 8: Let us consider a time interval [t, t+Tr], Tr ≥ 2δ
and an arbitrarily small number ε > 0, then in the (∆S,CUM)

model MaxSil(t, t+ Tr) = dTr−ε−d
Tr
∆ e∆+γ−δ
∆ e.

Proof As we defined, s−1 is the most recent server that
entered in a cured state, with respect to the considered interval.
Intuitively, s−j is in Sil(t, t + Tr) if tECu(s−j) > Tr − δ.
Considering that tECu(s−j) − tECu(s−j−1) = ∆ then the
number of servers in a silent state at t is MaxSil(t, t+Tr) =

d tECu(s1)−Tr+δ
∆ e. As we stated for (∆S,CUM) models we

consider scenarios in which t+ Tr, the end of the considered
time interval, is just after tBB(sb). Thus given an arbitrarily
small number ε > 0, let tBB(sb) = t+Tr−ε. By construction
we know that tBB(s1) = tEB(s1) − ∆ = tBCu(s−1)
and tBB(s1) = tBB(sb) − dTr∆ e∆ (cf. Lemma 3). Sub-
stituting and considering that tECu(s−1 = tBCu(s−1) +
γ) we get the following: tECu(s−1 = t + Tr − ε −
dTr∆ e + γ. Finally MaxSil(t, t + Tr) = d tECu(s1)−Tr+δ

∆ e =

dTr−ε−d
Tr
∆ e+γ−Tr+δ

∆ e, then since there can not be a negative

result, MaxSil(t, t+ Tr) = dTr−ε−d
Tr
∆ e∆+γ−Tr+δ

∆ e. �

Lemma 9: Let us consider a time interval [t, t+Tr], Tr ≥ 2δ
then in the (∆S,CAM) model. min ˜CBC = R(dTr∆ e−d

δ
∆e)+

R(dTr−γ−Tr+δ
∆ e).

Proof By definition min ˜CBC(t, t + Tr) =
minC̃B(t, t+ Tr) +minB̃C(t, t+ Tr).
- minC̃B(t, t + Tr) is the minimum number of servers
that correctly reply and then, before t + Tr are affected
and incorrectly reply. Let us observe that a correct server
correctly reply if belongs to Co(t, t + δ), it follows
that servers in B̃(t, t + δ) do not correctly reply. Thus,
minC̃B(t, t+ Tr) = MaxB̃(t, t+ Tr)−MaxB̃(t, t+ δ). It
may happen that MaxB̃(t, t + Tr) < MaxB̃(t, t + Tr − δ),
but obviously there can no be negative servers, so we
consider only non negative values, minC̃B(t, t + Tr) =
R(MaxB̃(t, t+ Tr)−MaxB̃(t, t+ δ)).

- minB̃C(t, t + 2δ) is the minimum number of servers that
incorrectly reply and then become correct in time that the
correct reply is delivered. A server is able to correctly reply if
it is correct before t+Tr−δ (the reply message needs at most δ
time to be delivered). Thus we are interested in servers that are
affected by a mobile agent up to t+Tr−γ−δ. For (∆, CAM)
models we consider scenarios in which t, the beginning of
the considered time interval, is just before tEB(s1). Thus
given an arbitrarily small number ε > 0, let t = tEB(s1)− ε.
In the time interval [t, t + Tr − γ − δ] the number of the
mobile agent “jumps” is given by dTr−γ−δ∆ e Trivially, we
can not have a negative number, so it becomes R(dTr−γ−δ∆ e).
Summing up min ˜CBC = R(dTr∆ e − d

δ
∆e) +R(dTr−γ−δ∆ e),

which concludes the proof. �

Lemma 10: Let us consider a time interval [t, t+Tr], Tr ≥ 2δ,
let ε > 0 be an arbitrarily small number. If maxCu(t) > 0 or
γ > ∆ then in the (∆S,CUM) model minC̃B = dTr−ε−δ∆ e
otherwise minC̃B = R(MaxB̃(t, t+Tr)−MaxB̃(t, t+Tr−
δ)).
Proof minC̃B(t, t+ Tr) is the minimum number of servers
that correctly reply and then, before t+ Tr are affected by a
mobile agent and incorrectly reply. We are interested in the
maximum number of Byzantine servers in B(t, t+ Tr − δ), so
that the remaining ones belong to B(t+Tr− δ, t+Tr), which
means that servers in B(t+ Tr − δ, t+ Tr) are in Co(t, t+ δ)
(considering the scenario S∗). Thus, considering that in the
(∆, CUM) model we consider tBB(sb) = t+ Tr − ε (ε > 0
and arbitrarily small) then we consider the maximum number
of “jumps” there could be in the time interval [t+δ, t+Tr− ε].
Thus minC̃B(t, t + Tr) = d t+Tr−ε−t−δ∆ e = dTr−ε−δ∆ e. If
MaxCu(t) = 0 or γ > ∆ then it has no sense to consider the
(∆S,CUM) worst case scenario that aims to maximize cured
servers. Thus in this case we consider the (∆S,CAM) worst
case scenario, minC̃B = R(MaxB̃(t, t+Tr)−MaxB̃(t, t+
Tr − δ)), concluding the proof. �

Lemma 11: Let us consider a time interval [t, t+ Tr], Tr ≥
2δ then in the (∆S,CUM) model then if maxCu(t) > 0
min ˜CBC = dTr−ε−δ∆ e+R(dTr∆ e− d

γ−δ
∆ e) + (MaxCu(t)−

MaxSil(t, t + Tr)), otherwise min ˜CBC assumes the same
values as in the (∆S,CAM) case.
Proof By definition min ˜CBC(t, t + Tr) = minC̃B(t, t +
Tr)+minB̃C(t, t+Tr). From Lemma 10, if maxCu(t) > 0 or
∆ > γ then in the (∆S,CUM) model minC̃B = dTr−ε−δ∆ e
otherwise minC̃B = R(MaxB̃(t, t+Tr)−MaxB̃(t, t+Tr−
δ)).
minB̃C(t, t + Tr) is the minimum number of servers that
incorrectly reply and then, before t+ Tr − δ become correct
so that are able to correctly reply in time such that their
reply is delivered. In the (∆S,CUM) model servers may
incorrectly reply because affect by a mobile agent or because
in a cured state. In the first case, a server is able to correctly
reply if it become correct before t+Tr− δ (the reply message
needs at most δ time to be delivered). Thus we consider the
maximum number of servers that can be affected in the period
t + Tr − γ − δ, t + Tr, which is dγ+δ

∆ e. Thus, among the
Byzantine servers (i.e., MaxB̃(t, t+ T )) we consider servers
not affected in the time interval [t+Tr−γ+δ, t+Tr]. In other
words such servers have γ time to became correct and δ time
to reply before the end of the operation. Thus MaxB̃(t, t +
Tr)−Max(t+ Tr − γ + δ, t+ Tr). Again we can not have a
negative number, so it becomes R(dTr∆ −

γ−δ
∆ e). Concerning

servers that incorrectly reply when in a cured state, we are
interested in servers that correctly reply after in time such that
the reply is delivered by the client, i.e., they are not silent. This
number is easily computable, MaxCu(t)−MaxSil(t, t+Tr).
Thus minB̃C(t, t+ 2δ) = (MaxCu(t)−MaxSil(t, t+Tr)).
Summing up if maxCu(t) > 0 or ∆ > γ, then min ˜CBC =



dTr−ε−δ∆ e+R(dTr∆ e−d
γ−δ
∆ e)+(MaxCu(t)−MaxSil(t, t+

2δ)), otherwise min ˜CBC assumes the same values as in the
(∆S,CAM) model, which concludes the proof. �

In Table VII are reported all the results found so far for
(∆S, ∗) models.

Such results have been proved considering f = 1. Extending
such results to scenario for f > 1 is straightforward in the
(∆S, ∗) model. The extension to f > 1 in the (ITB, ∗) and
(ITU, ∗) models is less direct. What is left to prove is that the
results found for f = 1 can be applied to all other models in
which mobile agents move independently from each other. In
the following Lemma we employ ∗ to indicate that the result
holds for ∗ assuming consistently the value CAM or CUM .

Lemma 12: Let n∗LB ≤ α∗(∆, δ, γ)f be the impossibility
results holding in the (∆S, ∗) model for f = 1. If there
exists a tight protocol Preg solving the safe register for
n ≥ α∗(∆, δ, γ)f + 1 (f ≥ 1) then all the Safe Register
impossibility results that hold in the (∆S, ∗) models hold also
in the (ITB, ∗) and (ITU, ∗) models.
Proof Let us consider the scenario S∗ for f = 1 and a read()
operation time interval [t, t + Tr], t ≥ 0. Depending on the
value of t there can be different (but finite) read scenarios,
rs1, rs2, . . . , rss. By hypothesis there exists Preg solving the
safe register for n ≥ α∗f(∆, δ, γ) + 1 then among the read
scenarios RS = {rs1, rs2, . . . , rss} all the possible worst case
scenarios {wrs1, . . . , wrsw} ⊆ RS hold for n = α∗(∆, δ, γ)f
(meaning that Preg does not exist). We can say that those
worst scenarios are equivalent in terms of replicas, i.e., for
each wsrk is it possible to build an impossibility run if n =
α∗(∆, δ, γ) but Preg works if n = α∗(∆, δ, γ) + 1 (if we
consider f = 1). Let us now consider (∆S, ∗) for f > 1. In
this case, mobile agents move all together, thus the same wrsk
scenario is reproduced f times. For each wrsk scenario is
it possible to build an impossibility run if n = α∗(∆, δ, γ)f ,
i.e., α∗(∆, δ, γ)− 1 non Byzantine servers are not enough to
cope with 1 Byzantine server, then it is straightforward that
α∗(∆, δ, γ)− f non Byzantine servers are not enough to cope
with f Byzantine servers, the same scenario is reproduced f
times.
In the case of unsynchronized movements (ITB and ITU)
we consider ∆ = min {∆1, . . . ,∆f}. Each mobile agent
generates a different read scenarios, those scenario can be
up to f . As we just stated, if Preg exists, those worst case
scenarios are equivalent each others in terms of replicas. Since
all the worst case scenarios are equivalent in terms of replicas,
thus impossibility results holding for mobile agents moving
together hold also for mobile agent moving in an uncoordinated
way. �

In [8], for n ≥ α∗(∆, δ, γ)f + 1 (f ≥ 1), it has been
presented a tight protocol Preg that solves the Regular Register
problem whose bounds match the safe register lower bounds.
Thus the next corollary follows.

Corollary 9: Let n∗LB ≤ α∗(∆, δ, γ)f be the impossibility
results holding in the (∆S, ∗) model for f = 1. All the Safe

Register impossibility results hold also in the (ITB, ∗) and
(ITU, ∗) models.

APPENDIX B: UPPER BOUND FOR (ITB,CAM) MODEL

In this section, we present an optimal protocol Preg with
respect to the number of replicas, that implements a SWMR
Regular Register in a round-free synchronous system for
(ITB,CAM) and (ITU,CAM) instances of the proposed
MBF model. The difference with respect (∆S,CAM) model is
that the time at which mobile agents move is unknown. Notice
that each mobile mai agent has it own ∆i. Since we do not have
any other information we consider ∆ = min{∆1, . . . ,∆f}.
Following the approach used in the (∆S,CAM) model, our
solution is still based on the following two key points: (1) we
implement a maintenance() operation, in this case executed
on demand; (2) we implement read() and write() operations
following the classical quorum-based approach. The size of the
quorum needed to carry on the operations, and consequently
the total number of servers required by the computation, is de-
pendent by the time to terminate the maintenance() operation,
δ and ∆ (see Table VIII). Contrarily to the solution presented
in [8], we do not employ a a forwarding mechanism. Such
mechanism is it not necessary since being the maintenance()
operation on demand (i.e., γ ≤ 2δ) its duration increases
and, informally speaking, there is no more need to rush
to help cured servers to retrieve a lost value as soon as
possible. In this case, the only propagating mechanism is on the
maintenance() operation. In Table VIII nCAM is the minimum
number of required replicas, #replyCAM is the minimum
number of expected reply messages carrying the same value
from #replyCAM different servers and #echoCAM is the
minimum number of echo messages carrying the same value
from #echoCAM different servers. The last difference, with
respect the (∆S,CAM) model is the increased #echoCAM .

A. Preg Detailed Description.

The protocol Preg for the (ITB,CAM) model is described
in Figures 11 - 13, which present the maintenance(), write(),
and read() operations, respectively.

Local variables at client ci. Each client ci maintains a set
replyi that is used during the read() operation to collect the
three tuples 〈j, 〈v, sn〉〉 sent back from servers. In particular
v is the value, sn is the associated sequence number and
j is the identifier of server sj that sent the reply back.
Additionally, ci also maintains a local sequence number csn
that is incremented each time it invokes a write() operation
and is used to timestamp such operations monotonically.

Local variables at server si. Each server si maintains the
following local variables (we assume these variables are
initialized to zero, false or empty sets according their type):
• Vi: an ordered set containing d tuples 〈v, sn〉, where v

is a value and sn the corresponding sequence number.
Such tuples are ordered incrementally according to their
sn values. The function insert(Vi, 〈vk, snk〉) places the



TABLE VII
VALUES FOR A GENERAL read() OPERATION THAT TERMINATES AFTER Tr TIME.

MaxB̃(t, t+ Tr) MaxCu(t) MaxSil(t, t+ Tr)

(∆S,CAM) dTr∆ e+ 1 R(dγ−∆+ε
∆ e) R(dγ−∆+ε−Tr+δ

∆ e)
(∆S,CUM) dTr∆ e+ 1 R(dTr−ε−d

Tr
∆ e∆+γ

∆ e) dγ+δ−ε−dTr∆ e∆
∆ e

min ˜CBC(t, t+ Tr)

(∆S,CAM) R(dTr∆ e − d
δ
∆e) +R(dTr−γ−δ∆ e)

(∆S,CUM) dTr−ε−δ∆ ea+R(dTr∆ e − d
γ+δ
∆ e) + (MaxCu(t)−MaxSil(t, t+ Tr))

aif maxCu(t) > 0 otherwise is the same value of min ˜CBC(t, t+ Tr) in the (∗, CAM) model

TABLE VIII
PARAMETERS FOR PRreg PROTOCOL IN THE (ITB,CAM) MODEL.

k = d 2δ
∆ e nCAM ≥ 2(k + 1)f + 1 #replyCAM ≥ (k + 1)f + 1 #echoCAM ≥ (k + 1)f Tr d

k = 1 4f + 1 2f + 1 2f 2δ 3
k = 2 6f + 1 3f + 1 3f 2δ 3

new value in Vi according to the incremental order and,
if there are more than d values, it discards from Vi the
value associated to the lowest sn.

• pending readi: set variable used to collect identifiers of
the clients that are currently reading.

• curedi: boolean flag updated by the cured state oracle.
In particular, such variable is set to true when si becomes
aware of its cured state and it is reset during the algorithm
when si becomes correct.

• echo valsi and echo readi: two sets used to collect
information propagated through ECHO messages. The first
one stores tuple 〈j, 〈v, sn〉〉 propagated by servers just
after the mobile Byzantine agents moved, while the second
stores the set of concurrently reading clients in order to
notify cured servers and expedite termination of read().

• curingi: set used to collect servers running the
maintenance() operation. Notice, to keep the code simple
we do not explicitly manage how to empty such set since
has not impact on safety properties.

In order to simplify the code of the algorithm, let us define
the following functions:

• select d pairs max sn(echo valsi): this function takes
as input the set echo valsi and returns, if they exist, three
tuples 〈v, sn〉, such that there exist at least #echoCAM
occurrences in echo valsi of such tuple. If more than
three of such tuple exist, the function returns the tuples
with the highest sequence numbers.

• select value(replyi): this function takes as input the
replyi set of replies collected by client ci and returns
the pair 〈v, sn〉 occurring at least #replyCAM times
(see Table VIII). If there are more pairs satisfying such
condition, it returns the one with the highest sequence
number.

• delete cured values(echo vals): this function takes as
input echo valsi and removes from fw valsi all val-
ues coming from servers that sent an ECHO() message

containing ⊥.

The maintenance() operation. Such operation is executed by
servers on demand when the oracle notifies them that are in
a cured state. Notice that in the (∗, CAM) models servers
knows when a mobile agent leaves them, thus depending on
such knowledge they execute different actions. In particular,
if a server si is not in a cured state then it does nothing, it
just replies to ECHO REQ() messages. Otherwise, if a server
si is in a cured state it first cleans its local variables and
broadcast to other servers an echo request then, after 2δ
time units it removes value that may come from servers that
were Byzantine before the maintenance() and updates its state
by checking the number of occurrences of each pair 〈v, sn〉
received with ECHO messages. In particular, it updates Vi
invoking the select three pairs max sn(echo valsi) function
that populates Vi with d tuples 〈v, sn〉. At the end it assigns
false to curedi variable, meaning that it is now correct and the
echo valsi can now be emptied. Contrarily to the (∆S,CAM)
case, cured server notifies to all that it has been Byzantine in
the previous δ time period. This is done invoking the awareAll
function that broadcast a default value ⊥ after δ time that a
server discovered to be in a cured state.
The write() operation. When the writer wants to write a value
v, it increments its sequence number csn and propagates v and
csn to all servers. Then it waits for δ time units (the maximum
message transfer delay) before returning.

When a server si delivers a WRITE, it updates its local
variables and sends a REPLY() message to all clients that
are currently reading (clients in pending readi) to notify
them about the concurrent write() operation and to each server
executing the maintenance() operation (servers in curingi).
The read() operation. When a client wants to read, it
broadcasts a READ() request to all servers and waits 2δ
time (i.e., one round trip delay) to collect replies. When
it is unblocked from the wait statement, it selects a value
v invoking the select value function on replyi set, sends



function awareAll():
(01) broadcast ECHO(i,⊥)
(02) wait(δ);
(03) broadcast ECHO(i,⊥)
——————————————————————————————————

operation maintenance() executed while (TRUE) :
(04) curedi ← report cured state();
(05) if (curedi) then
(06) curedi ← false;
(07) curing statei ← true;
(08) Vi ← ∅; echo valsi ← ∅; pending readi ← ∅;curingi ← ∅;
(09) broadcast ECHO REQ(i);
(10) awareAll();
(11) wait(2δ);
(12) delete cured values(echo vals);
(13) insert(Vi, select three pairs max sn(echo valsi));
(14) for each (j ∈ (curingi)) do
(15) send ECHO (i, Vi) to sj ;
(16) endFor
(17) curing statei ← false;
(18) endIf
——————————————————————————————————

when ECHO (j, Vj) is received:
(19) for each (〈v, sn〉 ∈ Vj do
(20) echo valsi ← echo valsi ∪ 〈v, sn〉j ;
(21) endFor
——————————————————————————————————

when ECHO REQ (j) is received:
(22) curingi ← curingi ∪ j;
(23) if (Vi 6= ∅)
(24) send ECHO(i, Vi);
(25) endif

Fig. 11. AM algorithm implementing the maintenance() operation (code for server si) in the (ITB,CAM) model.

========= Client code ==========
operation write(v):
(01) csn← csn+ 1;
(02) broadcast WRITE(v, csn);
(03) wait (δ);
(04) return write confirmation;

========= Server code ==========
when WRITE(v, csn) is received:
(05) insert(Vi, 〈v, csn〉);
(06) for each j ∈ (pending readi) do
(07) send REPLY (i, {〈v, csn〉});
(08) endFor
(09) for each j ∈ (curingi) do
(10) send ECHO (i, Vi);
(11) endFor

Fig. 12. AW algorithm implementing the write(v) operation in the (ITB,CAM) model.

an acknowledgement message to servers to inform that its
operation is now terminated and returns v as result of the
operation.

When a server si delivers a READ(j) message from client cj
it first puts its identifier in the set pending readi to remember
that cj is reading and needs to receive possible concurrent
updates, then si checks if it is in a cured state and if not,
it sends a reply back to cj . Note that, the REPLY() message
carries the set Vi.

When a READ ACK(j) message is delivered, cj identifier
is removed from both pending readi set as it does not need
anymore to receive updates for the current read() operation.

B. Correctness (ITB,CAM)

To prove the correctness of Preg, we first show that the
termination property is satisfied i.e, that read() and write()
operations terminates.

Lemma 13: If a correct client ci invokes write(v) operation
at time t then this operation terminates at time t+ δ.
Proof The claim follows by considering that a
write confirmation event is returned to the writer client ci
after δ time, independently of the behavior of the servers (see
lines 03-04, Figure 12). �

Lemma 14: If a correct client ci invokes read() operation at
time t then this operation terminates at time t+ 2δ.
Proof The claim follows by considering that a read() returns a
value to the client after 2δ time, independently of the behavior
of the servers (see lines 03-06, Figure 13). �

Theorem 3 (Termination): If a correct client ci invokes an
operation, ci returns from that operation in finite time.
Proof The proof follows from Lemma 13 and Lemma 14. �

Validity property is proved with the following steps:



========= Client code ==========
operation read():
(01) replyi ← ∅;
(02) broadcast READ(i);
(03) wait (2δ);
(04) 〈v, sn〉 ← select value(replyi);
(05) broadcast READ ACK(i);
(06) return v;
———————————————————————–

when REPLY (j, Vj) is received:
(07) for each (〈v, sn〉 ∈ Vj) do
(08) replyi ← replyi ∪ {〈j, 〈v, sn〉〉};
(09) endFor

========= Server code ==========
when READ (j) is received:
(10) pending readi ← pending readi ∪ {j};
(11) if (Vi 6= ∅)
(12) then send REPLY (i, Vi);
(13) endif
———————————————————————–

when READ ACK (j) is received:
(14) pending readi ← pending readi \ {j};

Fig. 13. AR algorithm implementing the read() operation in the
(ITB,CAM) model.

• 1. maintenance() operation works (i.e., at the end of the
operation n− f servers store valid values). In particular,
for a given value v stored by #echo correct servers at
the beginning of the maintenance() operation, there are
n−f servers that may store v at the end of the operation;

• 2. given a write() operation that writes v at time t and
terminates at time t+ δ, there is a time t′ > t+ δ after
which #reply correct servers store v.

• 3. at the next maintenance() operation after t′ there are
#reply − f = #echo correct servers that store v, for
step (1) this value is maintained.

• 4. the validity follows considering that the read() operation
is long enough to include the t′ of the last written value
before the read() and V is big enough to do not be full
filled with new values before t′.

Before to prove the correctness of the maintenance() opera-
tion let us see how many Byzantine agent there may be during
such operation. Since the cured server run it as soon as the
mobile agent mai leaves it, then mai movement are aligned to
such operation, this agent contribution is 2δ

∆ = k. All the others
f − 1 mobile agent are not aligned, thus their contribution is
MaxB̃(t, t+2δ) = k+1. Thus there are k+(k+1)× (f −1)
Byzantine servers during the 2δ time maintenance() operation.

Lemma 15 (Step 1): Let Ti = t be the time at which mobile
agent mai leave sc. Let v be the value stored at #echoCAM
servers sj /∈ B(t, t+δ)∧sj ∈ Co(t+δ), v ∈ Vj∀sj ∈ Co(t+δ).
At time t+ 2δ, at the end of the maintenance(), v is returned
to sc by the function select d pairs max sn(echo valsc).
Proof The proof follows considering that:
• the maintenance() employs a request-reply pattern

and during such operation, by hypothesis, there are
#echoCAM servers that are never affected during the
[Ti, Ti+ δ] time period and are correct at time Ti+ δ. i.e.,
there are #echoCAM servers that deliver the ECHO REQ()
message (the can be either correct or cured) but are correct

at time Ti + δ such that the reply is delivered by sc by
time Ti + 2δ.

• during the maintenance() operation there are k + (k +
1) × (f − 1) Byzantine servers, and (k2 )f servers that
were Byzantine in [t− δ, t] time period, thus they could
have sent incorrect messages as well.

• each cured servers, invokes AWAREALL() function, sends
a ⊥ message twice: when they are aware to be cured
and δ time after. Thus by time t+ 2δ server running the
maintenance removes from echo vals the (k2 )f messages
sent by those servers. In the end there are k + (k + 1)×
(f − 1) = (k+ 1)f − 1 messages coming from Byzantine
servers in the echo valsc set.

#echoCAM = (k+1)f > (k+1)f−1 thus Byzantine servers
can not force the select d pairs max sn(echo valsc)
function to return a not valid value and
select d pairs max sn(echo valsc) returns v that occurs
#replyCAM times, concluding the proof. �

Lemma 16 (Step 2.): Let opW be a write(v) operation
invoked by a client ck at time tB(opW ) = t then at time
t+δ there are at least #replyCAM servers sj /∈ B(t+δ) such
that v ∈ Vj .
Proof The proof follows considering that during the write()
operation, [t, t+δ], there can be at most (k2 +1)f mobile agents.
Thus, during such time there are n− (k2 + 1)f = 2(k + 1)f +
1− (k2 + 1)f = (k + k

2 + 1)f + 1 servers sj that being either
cured or correct, execute code in Figure 12, line 05, inserting v
in Vj . Finally, (k+ k

2 +1)f+1 > (k+1)f+1 = #replyCAM
concluding the proof.

�

For simplicity, for now on, given a write() operation opW
we call tB(opW ) + δ = twC the completion time of opW , the
time at which there are at least #replyCAM servers storing
the value written by opW .

Lemma 17 (Step 3.): Let opW be a write() operation
occurring at tB(opW ) = t and let v be the written value
and let twC be its completion time. Then if there are no other
write() operations after opW , the value written by opW is
stored by all correct servers forever.
Proof Following the same reasoning as Lemma 16, at time
t+ δ, assuming that in [t, t+ δ] there are (k2 + 1)f , then there
are at least (k+ k

2 + 1)f + 1 servers sj that being either cured
or correct, execute code in Figure 12, line 05, inserting v in
Vj . Now let us consider the following:
• Let B1 = B̃(t, t+ δ) be the set containing the (k2 + 1)f

Byzantine servers during [t, t+ δ], so that there are (2k+
1)f + 1 − k

2 = (k + k
2 + 1)f + 1 ≥ #replyCUM non

faulty servers storing v;
– there are (k2 )f Byzantine servers in B1 that be-

gin the maintenance() operation . At that time
there are #replyCAM non faulty servers storing
v, being #replyCAM > #echoCAM , for Lemma
15 at the end of the maintenance() operation,
by time t + 3δ, those servers obtain v a re-



sult of select d pairs max sn(echo vals) invoca-
tion, whose is stored in V since there are no
other write() operation and since v has the highest
associated sequence number.

• Let B2 = B̃(t+δ, t+2δ) be the set containing Byzantine
servers in the next δ period. Those servers are k

2f (it is not
k
2f+1, otherwise we would count the Byzantine servers at
t+δ twice). Thus, at t+2δ there are (k+k

2 +1)f+1−k2f =
(k+ 1)f + 1 = #replyCAM non faulty servers storing v;

– there are (k2 )f Byzantine servers in B2 that begin
the maintenance() operation during [t + δ, t + 2δ]
time interval. There are #replyCAM non faulty
servers storing v, being #replyCAM > #echoCAM ,
for Lemma 15 at the end of the maintenance()
operation, by time t+4δ, those servers, get v invoking
select d pairs max sn(echo vals), whose is stored
in V since there are no other write() operation and
since v has the highest associated sequence number.

• Let B3 = B̃(t+2δ, t+3δ) be the set containing Byzantine
servers in the next δ period. Those servers are k

2f . At
t+ 3δ there are (k + 1)f + 1− k

2f < #replyCAM non
faulty servers storing v and the there are (k2 )f servers in
B1 that terminated the maintenance() operation storing
v. Summing up there are (k + 1)f + 1 − k

2f + k
2f =

#replyCAM servers storing v.
Thus, after t+ 3δ period there are servers becoming affected
that lose v, but there are other f servers that become correct
storing v, so that all correct servers store v. Since there are no
more write() operation, this reasoning can be extended forever,
concluding the proof. �

Lemma 18 (Step 3.): Let
opW0

, opW1
, . . . , opWk−1

, opWk
, opWk+1

, . . . be the sequence
of write() operations issued on the regular register. Let us
consider a particular opWk

, let v be the value written by opWk

and let tEwk be its completion time. Then the register stores
v (there are at least #replyCAM correct servers storing it) up
to time at least tBWk+3.
Proof The proof simply follows considering that:
• for Lemma 17 if there are no more write() operation then
v, after twC , is in the register forever.

• any new written value is store in an ordered set V (cf.
Figure 12 line 05) whose dimension is 3.

• write() operations occur sequentially.
It follows that after the beginning of 3 write() operations,
opWk+1

, opWk+2
, opWk+3

, v it may be no more stored in the
regular register. �

Theorem 4 (Step 4.): Any read() operation returns the last
value written before its invocation, or a value written by a
write() operation concurrent with it.
Proof Let us consider a read() operation opR. We are
interested in the time interval [tB(opR), tB(opR) + δ]. Since
such operation lasts 2δ, the reply messages sent by correct
servers within tB(opR) + δ are delivered by the reading client.

For δ ≤ ∆ < 3δ during [t, t + δ] time interval there are
n− k

2 − 1 ≥ #replyCAM correct servers that have the time to
deliver the read request and reply. Now we have to prove that
what those correct servers reply with is a valid value. There
are two cases, opR is concurrent with some write() operations
or not.
- opR is not concurrent with any write() operation. Let opW
be the last write() operation such that tE(opW ) ≤ tB(opR)
and let v be the last written value. For Lemma 17 after the
write completion time tCw there are #replyCAM non faulty
servers storing v. Since tB(opR) + δ ≥ tCw, then there are
#replyCAM non faulty servers replying with v (Figure 13,
lines 11-12). So the last written value is returned.
- opR is concurrent with some write() operation. Let us
consider the time interval [tB(opR), tB(opR) + δ]. In such
time there can be at most two write() operations. Thus for
Lemma 18 the last written value before tB(opR) is still present
in #replyCAM non faulty servers. Thus at least the last written
value is returned.
To conclude, for Lemma 3, during the read() operation there
are at most (k + 1)f Byzantine servers, being #replyCAM >
(k + 1)f then Byzantine servers may not force the reader to
read another or older value and even if an older values has
#replyCAM occurrences the one with the highest sequence
number is chosen. �

Theorem 5: Let n be the number of servers emulating the
register and let f be the number of Byzantine agents in the
(ITB,CAM) round-free Mobile Byzantine Failure model.
Let δ be the upper bound on the communication latencies
in the synchronous system. If n = nCAM according to Table
VIII then Preg implements a SWMR Regular Register in the
(ITB,CAM) and (ITU,CAM) round-free Mobile Byzantine
Failure model.
Proof The proof simply follows from Theorem 3 and Theorem
4 and considering ∆ = 1 in the case of (ITU,CAM) model.

�

Lemma 19: Protocol Preg for δ ≤ ∆ < 3δ is tight with
respect to γ ≤ 2δ.
Proof The proof follows from Theorem 5 and Theorem 2,
i.e., upper bound and lower bound match. In particular Lower
bounds are computed using the values in Table VII to compute
nCAMLB

as defined in Table VI for γ ≤ 2δ (cf. Lemma 15).
�

APPENDIX C: UPPER BOUND FOR (ITB,CUM) MODEL

To prove the correctness of Preg we demonstrate that the
termination property is satisfied i.e, that read() and write()
operations terminates. For the validity property we follow te
same four steps as defined in Appendix B.

Lemma 20: If a correct client ci invokes write(v) operation
at time t then this operation terminates at time t+ δ.
Proof The claim simply follows by considering that a
write confirmation event is returned to the writer client ci



after δ time, independently of the behavior of the servers (see
lines 03-04, Figure 2). �

Lemma 21: If a correct client ci invokes read() operation at
time t then this operation terminates at time t+ 2δ.
Proof The claim simply follows by considering that a read()
returns a value to the client after 2δ time, independently of the
behaviour of the servers (see lines 12-15, Figure 3). �

Theorem 6 (Termination): If a correct client ci invokes an
operation, ci returns from that operation in finite time.
Proof The proof simply follows from Lemma 20 and Lemma
21. �

To easy the next Lemmas let us use state the following
result.

Lemma 22: Let [t, t+2δ] be a generic interval, then there are
always at least #replyCUM correct servers that reply during
the [t, t+ δ] time interval.
Proof This follows considering the definition of minimum
number of correct replies during a time interval (cf. Corollary
5). Since does exist a tight protocol P solving a regular register
in the (∆S,CAM) model, then for Lemma 12, is it possible
to apply values from Table VII to compute the minimum
number of correct replies during the considered time interval,
substituting values in each case the result is always at least
#replyCUM . �

Lemma 23 (Step 1.): Let Ti be the time at which mobile agent
mai leave sc and let t ≤ Ti + 2δ the time at which sc run the
second maintenance() operation. Let v be the value stored at
#echoCUM servers sj /∈ B(t, t+ δ), v ∈ Vj∀sj /∈ B(t, t+ δ).
At time t+ 2δ, at the end of the maintenance(), v is returned
to sc by the function select three pairs max sn(echo valsc).
Proof The proof follows considering that:
• the maintenance() employs a request-reply pattern

and during such operation, by hypothesis, there are
#echoCUM servers that are never affected during the
[t, t+ δ] time period and are storing v at time t+ δ. i.e.,
there are #echoCUM servers that deliver the ECHO REQ()
message (the can be either correct or cured) but are storing
v in V at time t+ δ such that the reply is delivered by
sc by time t+ 2δ.

• during the maintenance() operation can incorrectly con-
tribute (k+1)f Byzantine servers, and (2k)f servers that
were Byzantine in [t− 4δ, t] time period, thus they could
be still in a cured state 6.

• when the ECHO REQ() message is sent, sc uses a random
number in order to be able to accept only ECHO() message
sent after t.

#echoCUM = (3k)f+1 > 3kf thus Byzantine servers can not
force the select three pairs max sn(echo valsc) function to
return a not valid value so it returns v that occurs #replyCUM
times, which is true since there exist #echo CUM non faulty

6We prove hereafter that γ ≤ 4δ, but to prove it we have first to prove that
the maintenance() lasts 2δ time.

servers that reply to the ECHO REQ() message sending back
v, concluding the proof. �

In the sequel we consider γ ≤ 4δ. In the previous Lemma
we proved that cured servers sc can get valid values in 2δ
time. Contrarily to all the previous model, the maintenance()
operation is triggered each 2δ. Thus a mobile agent, just before
to leave could leave sc with the timer just reset and garbage
in the echo setc and Vc sets, which does not allow sc to
correctly terminate the operation. Thus sc has to wait 2δ before
to effectively starts a correct maintenance() operation. In the
sequel we refer to the first maintenance as the operation that
may be ineffective and we refer to the second maintenance
as the operation that allows a cured server to retrieve and store
valid values. It is straightforward that γ ≤ 4δ and the next
Corollary just follows.

Corollary 10: Protocol P implements a maintenance()
operation that implies γ ≤ 4δ.

Lemma 24 (Step 2.): Let opW be a write(v) operation
invoked by a client ck at time tB(opW ) = t then at time
t + δ there are at least n − 2f > #replyCUM non faulty
servers si such that v ∈ Wi (so that when si invokes
conCut(Vi, Vsafei ,Wi) v is returned).
Proof When the WRITE() message is delivered by non faulty
servers si, such message is stored in Wi and a timer associated
to it is set to 4δ, after that the value expires. For Lemma 3 in
the [t, t + δ] time interval there are maximum 2f Byzantine
servers. All the remaining n− 2f non faulty servers execute
the correct protocol code, Figure 2 line 05 inserting v in Wi.
Since write() operations are sequential, during [t, t+ δ] there
is only one new value inserted in Wi, which is returned by the
function conCut() by construction. �

For simplicity, for now on, given a write() operation opW
we call tB(opW ) + δ = twC the completion time of opW , the
time at which there are at least #replyCUM servers storing
the value written by opW .

Lemma 25 (Step 3.): Let opW be a write() operation and
let v be the written value and let twC be its time completion.
Then if there are no other write() operation, the value written
by opW is stored by all correct servers forever (i.e., v ∈
conCut(Vi, Vsafei ,Wi)).
Proof From Lemma 24 at time twC there are at least n−2f >
#replyCUM non faulty servers sj such that v ∈Wi. For sake
of simplicity let us consider Figure 14. Let us consider that:

• for Lemma 24, all non faulty servers si have v in Wi at
most at twC ;

• when si runs the next maintenance(), v is returned by
select three pairs max sn(echo valsi) function at the
end of such operation, and since it is the value with
the highest sequence number (there are no other write()
operation) then v is inserted in Vsafei (cf. Figure 1 line
10), thus such value is present in the ECHO() message
replies for the next 2δ time;

• this is trivially true up to time t′ = t+ 4δ, for the timer
associated to each v in Wi. In [t, t′] there are 2k + 1



Byzantine servers, thus v ∈ Wj at n − (2k + 1) non
faulty servers, and n − (2k + 1) = (3k + 1)f + 1 =
#replyCUM ≥ #echoCUM ;

• for each non faulty server the next maintenance() opera-
tion opM can happen either in [t′, t′+δ] or in [t′+δ, t′+2δ]
(cf. Figure 14)s10 and s11 respectively:

– tB(opM ) ∈ [t′, t′ + δ] (cf. s10 Figure 14): s10 starts
opM1

before t′ + δ, let us name it server type A.
This means that tB(opM−1

) + δ < t′ − δ, thus for
Lemma 23, at the end of the operation v ∈ Vsafe10

and during opM1 v ∈ V10;
– tB(opM ) ∈ [t′ + δ, t′ + 2δ] (cf. s11 Figure 14): s11

starts opM1
after t′+ 2δ let us name it server type B.

This means that tB(opM−1
) + δ > t′, thus at the end

of the operation we can not say that v ∈ Vsafe10 but
at least during opM−1 v ∈ V11.

If all non faulty servers are type A, during opM1
all non faulty

servers have v ∈ V and insert v in the ECHO() message. The
same happens if all non faulty servers are type B, during
opM−1

, all of them inter v in the ECHO() message and the
maintenance() operation terminates with such value. If the
situation is mixed, then servers type B, when run opM−1

, deliver
ECHO() messages from both type A and type B servers. Thus if
there are enough occurrence of v they can store v ∈ Vsafeb and
during opM1 v ∈ Vb. During such operation both servers type A
and type B have vinV . Again, if there are enough occurrences
of v, the operation ends with v ∈ Vsafeb . It follows that servers
type A, when run opM1

delivers ECHO() messages containing v
from both type A and type B servers. During the time interval
[t′, t′ + 2δ] there are k correct servers that are affected by
mobile agent, cf. Figure 14, s5 and s6. At the same time there
is server s0, type A, that terminate its maintenanace() with
v ∈ Vsafe0 , and thus compensates s5, allowing s1, type B,
to terminate the maintenanace() operation with v ∈ Vsafe1 ,
which compensates s6. This cycle, between type A and type
B servers can be extended forever. By hypothesis there are no
more write() operation, thus all correct servers have v ∈ Vsafe
or V , and v is returned when servers invoke function conCut().

�

Lemma 26 (Step 3.): Let
opW0

, opW1
, . . . , opWk−1

, opWk
, opWk+1

, . . . be the sequence
of write() operation issued on the regular register. Let us
consider a generic opWk

, let v be the written value by such
operation and let twC be its completion time. Then v is in
the register (there are #replyCUM correct servers that return
it when invoke the function conCut()) up to time at least
tBWk+3.
Proof The proof simply follows considering that:

• for Lemma 25 if there are no more write() operation then
v, after twC , is in the register forever.

• any new written value eventually is stored in an ordered
set Vsafe and then V (cf. Figure 1 line 06 or line 10)
whose dimension is three.

• write() operation occur sequentially.

It follows that after three write() operations,
opWk+1

, opWk+2
, opWk+3

in V Vsafe and W there are
three values whose sequence number is higher than the one
associated to v, thus by construction conCut() does not return
v anymore, v is no more stored in the regular register. �

Theorem 7 (Step 4.): Any read() operation returns the last
value written before its invocation, or a value written by a
write() operation concurrent with it.
Proof Let us consider a read() operation opR. We are
interested in the time interval [tB(opR), tB(opR) + δ]. Since
such operation lasts 2δ, the reply messages sent by correct
servers within tB(opR) + δ are delivered by the reading client.
During [t, t+ δ], for Lemma 22 there are at least #replyCUM
correct servers that reply. Now we have to prove that what
those correct servers reply with is a valid value. There are two
cases, opR is concurrent with some write() operations or not.
- opR is not concurrent with any write() operation. Let opW
be the last write() operation such that tE(opW ) ≤ tB(opR)
and let v be the last written value. For Lemma 25 after the
write completion time twC there are at least #replyCUM
correct servers storing v (i.e., v ∈ conCut(Vj , Vsafej )). Since
tB(opR) + 2δ ≥ tCw, then there are #replyCUM correct
servers replying with v (cf. Lemma 22), by hypothesis there
are no further write() operation and v has the highest sequence
number. It follows that the last written value v is returned.
- opR is concurrent with some write() operation. Let us
consider the time interval [tB(opR), tB(opR)+δ]. In such time
there can be at most two write() operations. Thus for Lemma
26 the last written value before tB(opR) is still present in
#replyCUM correct servers and all of them reply (cf. Lemma
22) thus at least the last written value is returned. To conclude,
for Lemma 3, during the read() operation there are at most
(k + 1)f Byzantine servers and 2k cured servers 7, being
#replyCUM = (3k + 1)f + 1 > (3k + 1)f then Byzantine
servers may not force the reader to read another or older value
and even if an older values has #replyCUM occurrences the
one with the highest sequence number is returned, concluding
the proof. �

Theorem 8: Let n be the number of servers emulating the
register and let f be the number of Byzantine agents in the
(ITB,CUM) round-free Mobile Byzantine Failure model.
Let δ be the upper bound on the communication latencies in
the synchronous system. If n ≥ (5k + 2)f + 1, then Preg
implements a SWMR Regular Register in the (ITB,CUM)
round-free Mobile Byzantine Failure model.
Proof The proof simply follows from Theorem 6 and Theorem
7. �

Lemma 27: Protocol Preg is tight in the (ITB,CUM)
model with respect to γ ≤ 4δ.
Proof The proof follows from Theorem 8 and Theorem 2,
i.e., upper bound and lower bound match. In particular Lower

7Servers where affected in the previous 4δ time period, thus they are still
running the two maintenance() operations, that last at most 4δ.
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Fig. 14. maintenance() operation opM1 analysis after a write() operation, t′ = t+ 4δ. White rectangles are maintenance() operation run by correct servers.
In particular s10 runs such operation during the first δ period after t′, while s11 runs it during the second δ period.

bounds are computed using the values in Table VII to compute
nCUMLB

as defined in Table VI for γ ≤ 4δ (cf. Corollary 10).
�
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