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Abstract. – Growing evidence links free rad-
icals to the aging processes, degenerative dis-
eases and cancer, underlying the important 
role played by some antioxidants, as polyphe-
nols, present in fruits and vegetables, which 
seem able to counteract the toxic effects in-
duced by oxidative stress. The gastrointestinal 
tract is continuously exposed to oxidant and an-
tioxidant substances and, in particular in this 
district, the food rich in antioxidants could ex-
ert a protective effect against the risk of can-
cer. Polyphenols have a direct protective effect 
on the gastrointestinal tract, detoxifying the Re-
active Oxygen Species (ROS) and Reactive Ni-
trogen Species (RNS), preserving antioxidant 
proteins and complexing metals. Although poly-
phenols are a class of antioxidant largely repre-
sented in vegetables and fruits, we are still un-
certain whether the beneficial effects of a diet 
rich in plant products, are mainly due to these 
compounds. Our knowledge does not allow to 
be sure about which antioxidants are capable of 
having therapeutic effects, through which mech-
anism, the exact therapeutic dose or how long 
they have to be taken to have a significant pro-
tective effect. In this review we take into account 
the most common antioxidants, usually found in 
the diet and the processes regulating their ab-
sorption, metabolism and excretion, in order to 
elucidate the mechanism that could be responsi-
ble for the protection against cancer.
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Introduction

Free radicals are mainly constituted by unsta-
ble substances able to react with a large number of 
molecules, including those present in the cells, al-
tering their structure and function1. Consequent-
ly, these interactions can lead to toxic reactions 
causing changes of the cellular biological system, 

that often result in close association with some pa-
thologies. There is many evidence that links radi-
cals to the aging processes, tumor and cardiovas-
cular, neurodegenerative, infectious diseases2-12. 
On the other hand, another interesting aspect is 
the role played by antioxidants, mainly found in 
vegetable foods, which can counteract the toxic 
radical action. A large number of studies shows 
that the consumption of foods and drinks rich in 
antioxidants is often associated with a decreased 
risk of developing these diseases13-19. Taking into 
account these observations, it would seem appro-
priate to prescribe antioxidant drugs to prevent 
degenerative diseases or slow down the natural 
aging process. Moreover, diet could be enriched 
with products capable of defending the organism 
from the radicals. With our knowledge we cannot 
determine which substances are capable of hav-
ing preventative or therapeutic effects, how long 
they have to be taken, nor the therapeutic dose. 
A class of antioxidant compounds (flavonoids and 
biophenols) are largely represented in vegetable 
and fruits, but there is still uncertainty on the 
beneficial effects of a diet rich in plant products.

Physiological and Pathological Role 
of Free Radicals

The term “free radicals” is usually associated 
to something dangerous and harmful to health or 
otherwise to avoid. This is supported by the fact 
that radicals are produced by radiation or environ-
mental pollutants becoming radical, during their 
metabolism in our body. In fact, the free radicals 
are typically substances characterized by a high 
reactivity, that is responsible of their cytotoxic 
and genotoxic effects. However, less is known 
about the concept that some radicals are physio-
logically produced by the body (bio-radicals) and 
are essential to life. These are involved in enzy-
matic catalysis and other critical processes as, for 
example, the regulation of embryogenesis and the 
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functioning of neuronal cells. The production and 
metabolism of free radicals, ROS and RNS in the 
human body are finely regulated processes, and 
an alteration of these mechanisms can lead to cel-
lular injury as in chronical inflammatory state. In 
fact, the persistence of the inflammatory status is 
one of the major causes for the development of 
some types of cancer and neurodegenerative or 
cardiovascular diseases20-22. Bio-radicals play a 
major role in signaling pathways, modulating the 
cell’s reduction-oxidation reactions (redox status) 
and, paradoxically, also playing an antioxidant 
action as “scavenger” of other radicals (radi-
cal-radical reactions). The importance of the cell 
redox status is due to its capability to modulate 
reversibly the transport, the metabolism, the fat 
accumulation, the activity of enzymes and tran-
scription factors. In fact, many of these process-
es are regulated by redox centers (cysteines and 
metal-containing centers) whose oxidation or re-
duction, is responsible for biological events such 
as cell cycle, metabolism, neurotransmission, dif-
ferentiation, cell-cell communication and apopto-
sis23. The excess of free radicals (oxidative stress), 
plays a pathogenic role: hyper-activation of some 
cellular signals (phosphorylation, transport), and 
the oxidation of specific protein sites (metal cen-
ters, SH, methionine, tyrosine, tryptophan, histi-
dine) or DNA (guanine, xanthine, adenine). All of 
this leads to chronic inflammation, uncontrolled 
cellular proliferation, apoptosis or necrosis, re-
sulting in cellular degeneration and a higher risk 
of developing cancer24. The complexity of cellular 
processes involving the oxidative stress suggests 
that the degenerative diseases and cancer are re-
lated to the excessive production of free radicals. 
A critical step is the understanding of the mecha-
nisms that modulate the effects leading to the for-
mation of chronic inflammatory process. Recent-
ly, several authors underlined the importance of 
two free radicals, anion superoxide (●O2

-) and ni-
tric oxide (●NO), carrying out essential functions 
as second messenger in the cells. These two radi-

cals can react with each other to form a dangerous 
oxidizing species, peroxynitrite (●NO + ●O2

-→ 
ONOO-)25, that if produced in excessive quanti-
ties or in a compartment where the detoxification 
systems are unable to counteract their effects, can 
lead to a significant cellular injuries. The reaction 
between ●O2

- and ●NO is a radical-radical reac-
tion and its velocity is controlled by the diffusion 
and consequently, every time the two molecules 
meet produce peroxynitrite. Moreover, this reac-
tion is faster than the superoxide reduction reac-
tion carried out by the superoxide dismutase, the 
antioxidant enzyme able to counteract the excess 
of ●O2

-. This implies that small amounts of per-
oxynitrite may form physiologically and probably 
be useful for the cell (for example in the redox 
signals)26 and be metabolized by the tissue with-
out causing cytotoxic reactions27. On the other 
hand, micromolar peroxynitrite levels produce 
sometimes irreversible protein and DNA oxida-
tion, confusing the border between physiological 
and pathological activity not entirely clear28. In 
inflammatory neurodegenerative pathologies, for 
example, peroxynitrite probably plays an import-
ant cytotoxic role, as shown by the presence of 
3-nitrothyrosine found in inflammatory or degen-
erative tissues29,30. In table I are shown the most 
common chemical modifications induced by an 
excess of free radicals that involve the macromol-
ecules present in cells.

Assessment of Oxidative Stress in Man
As previously described, oxidative stress has 

been associated with a large number of diseases 
in humans, even if the relationship between the 
free radicals and some specific pathological pro-
cesses has not definitively been established. In 
many pathologies, oxidative stress is not the pri-
mary cause of the disease, but a consequence of 
the cellular alteration caused by the disease. In 
order to protect themselves from oxidative dam-
age, aerobic organisms, including humans, use a 
variety of antioxidant defense systems, both en-

Table I. Chemical modifications induced by oxidative stress.

Protein	 Lipids	 DNA

Carbonyl group	 Hydroperoxides	 8-hydroxyldeoxyguanosine
Hydroperoxides	 Conjugated dienes	 8-oxy-2-deoxyguanosine
Val and Leu Hydroperoxides	 Isoprostane	 8-hydroxylguanosine
3-nitrotyrosine	 Malondialdehyde	 5 hydroxylmethyluracil
2-oxo-histidine	 4-hydroxylnonenal	 8-oxyguanosine
Dityrosine	 Total aldehydes	
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dogenous and exogenous, strategically located 
in the various cellular districts. Inside the cells 
is possible to find specific enzymes that interact 
with ROS: superoxide dismutase, catalase and 
glutathione peroxidase, while most of membrane 
protection is due to the α-tocopherol, β-carotene 
and coenzyme Q. The antioxidant protection of 
extra- and intra-cellular fluids, is based on the ac-
tion of metal binding proteins as ferritin, trans-
ferrin, ceruloplasmin, which retain metal ions. 
In particular, iron and copper in non-reactive 
forms, are able to prevent and to limit radical re-
actions. Moreover, the biological fluids are also 
protected by some important antioxidants such 
as vitamin E, uric acid, bilirubin, ascorbate and 
thiol groups31. It is, therefore, clear that the deter-
mination of the balance between pro-oxidant and 
antioxidant species can play an important role in 
the diagnosis and therapeutic treatment of certain 
pathologies related to oxidative stress32. A large 
number of methods has been proposed in the lit-
erature to measure oxidative stress or oxidative 
damage reaction products33-35, notwithstanding 
free radicals are short life species, thus difficult 
to determine directly36. To overtake this, a com-
plementary approach could be the measurement 

of the endogenous antioxidant defense systems, 
as a biological marker of oxidative damage. How-
ever, this approach is relatively simple to use in 
routine clinical biochemical analysis, but it pres-
ents some obstacles that prevent its current use. 
In fact, the scientific literature lacks in studies re-
porting the antioxidants plasma profile of patients 
affected by pathologies associated to oxidative 
stress, with respect to healthy people. Moreover, 
the depletion of endogenous antioxidants due to a 
particular diet, is not distinguishable from the one 
caused by the disease37. Consequently, the lack of 
universally accepted and standardized reference 
values for such measurements makes improbable, 
nowadays, the use of these biomarkers for clinical 
diagnosis. Another aspect to take into account is 
the “basal production” of oxidation products, that 
should be evaluated with care in order to differen-
tiate it from the “pathological” ones. Likewise, we 
cannot rule out circadian variations of free radi-
cals production.

Antioxidant Hypothesis
There are more than 5000 polyphenols in plant 

foods, most of which are flavonoids, including fla-
vanols, flavonols, flavones, isoflavones, hydroxy-
cinnamates and anthocyanins. These compounds 
are distributed among plants, fruits and vegeta-
bles in different amounts, all with different an-
tioxidant activity. They represent the most abun-
dant antioxidants in our diet; for example, in 200 
g of fruits there are 500 mg of total polyphenols38. 
The antioxidant activity of polyphenols is related 
to their structure. In fact, it depends on the hy-
droxylation pattern, the position and the substitu-
tion of specific hydroxyl groups that differentiate 
the individual compounds39. Figure 1 shows the 
basic structure of flavonoids. 

The following structures are important for an-
tioxidant activity and detoxification of radicals: 
(1) the presence of two or three hydroxyl groups 
adjacent to ring B (catechol function at position 3’ 
and 4’ and pyrogallol function at position 3, 4’ and 
5’, respectively); (2) the presence of other hydroxyl 
groups in the other rings (positions 5 and 7 of ring 
A, position 3 of ring C); (3) a double bond C2-C3 in 
ring C. Other hydroxyl groups may be present, for 
example, in position 5’ of ring B and three more in 
positions 3’, 4’ and 5’of an esterified gallate group 
in position 3 of ring C40. The flavonoid structures 
can be very simple, such as caffeic acid, or com-
plex, such as gallate epigallocatechin (Figure 2). 

The reduction potential is a measure of the 
reactivity of an antioxidant, as a hydrogen or an 

Table II. Reduction potential of different antioxidants (pH 
7.0, 20°C).

Antioxidant	 Reduction potential

Ascorbate (Vitamin C)	 282
Epigallocatechin	 430
Α-Tocopherol (Vitamin E)	 500
Theaflavin	 510
Caffeic acid	 540
Epicatechin	 570
Uric acid	 590
Glutathione	 920

Figure 1. The basic structure of flavonoids.
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electron donor, under standard conditions (Table 
II): a low reduction potential indicates greater ca-
pacity in hydrogen or electron donation, therefore 
reducing reactive species with unpaired electrons. 
Polyphenols generally have an average reduction 
potential in the natural antioxidant scale compa-
rable to that of vitamin E41, while ascorbic acid 
is considered the best natural antioxidant42. Poly-
phenols are able to detoxify most of the ROS and 
RNS, such as superoxide and hydroxyl radicals, 
hypochlorous acid, singlet oxygen, peroxyl radi-
cals and peroxynitrite43. In addition, a major prop-
erty tied mainly to the catechin structure is the 
ability to complex transition metals (copper and 
iron principally), preventing their catalytic activ-
ity in redox reactions44,45. Moreover, polyphenols 
also exhibit anti-inflammatory activity attributed 
to the inhibition of cyclooxygenase, lipoxygenase, 
myeloperoxidase, nitric oxide synthase and xan-
thine oxidase46-49.

Factors that Contribute to the Different 
Biological Activities of polyphenols 
in vitro and in vivo

Although there is a huge amount of data on the 
antioxidant capacity in vitro of individual poly-
phenolic compounds in scientific literature, the 
efficacy of their consumption has not always been 
confirmed in clinical trials conducted on humans. 
In some cases, evidence of a protective effect was 
obtained46,50-53, while in others it was not possible 
to correlate the efficacy of polyphenol consump-
tion, with a decrease in oxidative stress markers 
(F2-isoprostanes, oxidized LDL, oxidation prod-
ucts of plasmatic proteins, damaged DNA)54-57. 
Moreover, some researches showed an increase 
in plasma protein oxidation after the consumption 
of fruit juice, supporting the fact that the mecha-
nism of action of polyphenols is not completely 

clear56,58. It has also been observed that frequent 
consumption of drinks and foods (fruit juice and 
apples) rich in polyphenols, leads to a modest and 
transient increase in the total plasma antioxidant 
capacity. This could be explained by the increased 
levels of urate caused by fructose, contained in 
drinks and foods, rather than polyphenols59,60. 
The different biological activities shown in vitro 
and in vivo by polyphenols, are not only related 
to the heterogeneity of these molecules or to their 
structural and functional characteristics, but also 
reflect how these compounds are absorbed and 
metabolized in the gastrointestinal tract61.

Transport and Absorption
The antioxidants’ concentration in the stomach 

is comparable to that present in foods, while is 
not always predictable the amount of antioxidants 
actually available at the intestinal and hepatic 
level, because of the digestive processes happen-
ing there62-64. The absorption and the effects of 
polyphenols already begin at the level of the oral 
cavity65,66, although greater absorption occurs in 
the gastric tract and, to a lesser extent, in the in-
testinal tract. After the consumption of 10 to 500 
mg of polyphenols, the maximum plasma concen-
tration generally does not exceed 1 μM, mainly 
due to poor absorption and metabolism by tissues 
and gastrointestinal microflora67-69. Consequently, 
polyphenols are less available than ascorbate and 
tocopherols, which have a specific absorption sys-
tem. It was demonstrated that the antioxidant ac-
tivity due to micromolar concentrations of poly-
phenols is significantly lower than that detected 
in plasma (>103 μM); in fact, at least 20-50 μM 
of polyphenols would be needed to effectively 
compete with endogenous antioxidants. In vitro, 
polyphenols and their metabolites, can decrease 
or inhibit the activity of some cell’s membrane 

Figure 2. (A) Caffeic acid. (B) Gallate epigallocatechin.
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transport systems, as demonstrated for glucose 
(GLUT2) and ascorbic acid (SVCT1), whose 
transport activity is inhibited by the presence of 
flavonoids70. The flavonoid glucosides, the most 
abundant polyphenol in the diet, can be transport-
ed to the enterocytes, via the sodium-dependent 
glucose transporter 1 (SGLT1) and metabolized 
to intracellular aglycones, by a β-glucosidase71. 
However, this pathway is less important because 
of the presence of an effluent intracellular glucose 
system directed towards the digestive tract lu-
men, through the Multidrug Resistance Associat-
ed Protein 2 (MRP2) transporter. In the lumen of 
the digestive tract, with the contribution of the in-
testinal bacterial flora, the flavonoids glucosides 
are definitively transformed into aglycones and 
absorbed from the intestinal and the blood cells 
through the MRP372.

Polyphenols Biotrasformation
The polyphenols undergo some significant bio-

chemical modification in the oral cavity and gas-
trointestinal tract, before entering the circulatory 
system and reach the liver to be metabolized to 
several active metabolites. In fact, in saliva, the 
flavonoids glucosides are hydrolyzed to aglycones 
and then converted into compounds that can be 
absorbed by the epithelium of the oral cavity73. 
The reduction of polyphenols to monomeric units 
occurs mainly the stomach (Figure 3). In the small 
bowel and later in the liver, the two step trans-
formation occurr: phase I, deglycosylation and 
formation of aglycones; phase II, transformation 
through the oxidative metabolism by the enzymes 
belonging to the P450 cytochrome family74. This 
last step leads to the formation of (a) methylated, 

sulphate and glucuronidated products; (b) protein 
or thiols adduct (glutathione); (c) RNA or DNA 
adduct75. A further transformation takes place at 
large bowel level, where the intestinal microflora 
degrades flavonoids to simple phenolic acids, sub-
sequently absorbed and metabolized in the liver, 
through the enterohepatic circulation. The meth-
ylated, sulphate and glucuronidated products con-
tinue to have biological activity76, although lower 
with respect to the original molecule, because of 
the chemical modifications of the same (hydrox-
yl) groups responsible for the antioxidant activity.

Interactions and Synergies Between food 
Antioxidants and Endogenous 
Antioxidants

The interactions and synergies between food 
antioxidants and endogenous antioxidants are due 
to the redox potential of antioxidants (Table II). 
Antioxidants with lower redox potential are able 
to regenerate (reduce) other antioxidants, which 
have been previously oxidized into radicals. 
Regeneration reactions occur, for example, be-
tween polyphenols, ascorbic acid and vitamin E77. 

Gastric Cancer, Antioxidant 
Polyphenols, ROS and RNS

The highest concentration of polyphenols in-
troduced with the diet can be found in the oro-
pharyngeal tract, in the stomach, and partly in 
the intestine, before the absorption, metabolism 
or excretion process begins. In fact, after a diet 
rich in these antioxidant compounds, in the gas-
trointestinal tract can be detected μM concentra-
tions of polyphenols, that could exert the protec-
tive effect against gastric and colorectal cancer. 

Figure 3. Metabolism of flavonoids.
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Furthermore, the gastrointestinal tract is partic-
ularly exposed to the oxidative stress due to the 
ROS and RNS species from the diet and from the 
activation of the intestinal inflammatory cells78. 
In particular, RNS play an important role in the 
onset of stomach cancer, because in the presence 
of acidic pH they are able to form nitrating/ni-
trosating species that support the formation of 
carcinogenic nitrosamines79. Polyphenols have 
a direct protective effect on the gastrointestinal 
tract, detoxifying the ROS and RNS, preserving 
antioxidant proteins and complexing metals80. In 
the stomach the acid amplifies the peroxidation 
reactions catalyzed by the pro-oxidation com-
pounds present in food, for example meat (i.e. 
Fe3+-myoglobin, non-conjugated iron, fatty acids 
and hydroperoxides). These reactions are inhibit-
ed by catechin and red wine polyphenols, that in 
the gastric model were able to shift the reactions 
from pro-oxidants to antioxidant81. Similar results 
were obtained in other studies in conditions clos-
er to physiological ones, where the polyphenols 
concentrations were comparable to those found in 
the stomach after a meal. All these results show 
that the polyphenols prevented the formation of 
nitrosamines involved in the pathogenesis of gas-
tric cancer82,83.

Conclusions

The available epidemiological data has shown 
a strong reverse correlation between the intake of 
fruits and vegetables and the occurrence of degen-
erative diseases and cancer. The observed effect, 
seems to be due to the synergistic action between 
the compounds of the endogenous antioxidant 
system (superoxide dismutase, glutathione per-
oxidase, glutathione-S-transferase and catalase) 
and the antioxidants from the diet. However, it is 
still unclear whether some foods are able to exert 
an optimal protective effect against cancer and 
much less we know about the hypothetical recom-
mended levels of the antioxidants intake. Despite 
the interest in antioxidants as protective agents 
against cardiovascular, degenerative pathologies 
and cancer, the actual contribution of these com-
pounds to the maintenance of health and their in 
vivo mechanism of action are not yet known. In 
fact, there is no substantial evidence that the in 
vitro antioxidant effect is the same that actually 
occurs in vivo. Flavonoids are poorly absorbed but 
are extensively metabolized in the gastrointesti-
nal tract, mainly forming glucuronidated, sul-

phate and methylated conjugates, whose adducts 
are subsequently absorbed. Since the flavonoids 
and their metabolites are potent bioactive mole-
cules able to interact with the intracellular signal 
pathways, it is mandatory to clarify their mech-
anisms of action such as antioxidants or signal-
ing molecules, in order to assess their potential 
anti-tumoral role. More attention should be given 
to the effects of polyphenols in the gastrointes-
tinal tract, where these compounds probably ex-
hibit the highest antioxidant capacity, before they 
are metabolized and absorbed in the circulatory 
stream.
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