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MEASURE-VALUED SOLUTIONS TO NONLOCAL TRANSPORT

EQUATIONS ON NETWORKS

FABIO CAMILLI, RAUL DE MAIO, AND ANDREA TOSIN

Abstract. Aiming to describe traffic flow on road networks with long-range driver interactions,
we study a nonlinear transport equation defined on an oriented network where the velocity field
depends not only on the state variable but also on the distribution of the population. We prove
existence, uniqueness and continuous dependence results of the solution intended in a suitable
measure-theoretic sense. We also provide a representation formula in terms of the push-forward
of the initial and boundary data along the network and discuss an explicit example of nonlocal
velocity field fitting our framework.

1. Introduction

In recent times there has been a considerable amount of literature devoted to the study of
evolution equations in measures spaces. Indeed the measure-valued approach presents, with re-
spect to other approaches based on classical and weak solutions, some significant advantages: the
population is represented by a probability distribution, providing a unified framework for both
discrete and continuous models; short and long range interaction mechanisms are efficiently de-
scribed by taking a velocity field depending on local terms, determined by the geometry of the
space, and nonlocal terms, regulated by the position of the other individuals, hence on the whole
measure; aggregation phenomena that in a classical setting lead to blow-up of the solution are
plainly taken into account by the measure setting. The by now classical reference for evolution
equation in measure spaces is the book [1], while we refer to [3, 7, 10, 16, 17] for various applica-
tions to the study of complex phenomena. However most of the literature about measure-valued
equations considers these problems in the full space, because their study in bounded domains
poses additional difficulties due in particular to the interpretation of the boundary conditions. For
the specific case of a bounded interval, an interpretation of the boundary condition in a measure
sense has been pursued in [8, 9], while in [15] a measure-valued transport equation on a sequence
of intervals with a transmission condition at intersection points is considered.

Motivated by pedestrian and vehicular traffic modelling in urban areas, several models have been
proposed for traffic flow on road networks, see [2, 11, 12] and references therein. Most of these
models are based on a fluid-dynamical approach and take into account only local interactions
among drivers, the main purpose being to find appropriate rules at the junctions, namely the
vertices of the network, to optimize the traffic flow.

In order to extend the measure-valued approach to networks, in [4] it was studied the linear
transport equation

(1.1) ∂tm+ ∂x(v(x)m) = 0 in Γ× [0, T ]

where Γ is an oriented network. Existence, uniqueness and continuous dependence results for the
measure-valued solution to (1.1) were provided, along with a local representation formula on each
arc. Even if this simplified model already presents some interesting peculiarities and difficulties
due to the presence of the junction conditions, nonlocal driver interactions were not included in
the model since v was assumed to depend only on the space variable.

The aim of this paper is to study measure-valued nonlinear transport equations on networks
where the velocity field depends on the measure itself. More precisely, we consider the nonlinear
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transport equation

(1.2) ∂tm+ ∂x(v[mt]m) = 0, in Γ× [0, T ]

where the velocity v still depends on the x-variable, but also on the vehicle distribution mt at
time t. To explain the main difference between (1.1) and (1.2) we observe that (1.1) is formally
equivalent to a system of equations, one for each arc, coupled via the transmission conditions
at the vertices. Instead, in (1.2) the evolution equation in each arc does not only depend on
the distribution of the vehicles flowing into the arc from the junction but also on the (global)
distribution mt at time t on Γ.

To show the well posedness of (1.2) we approximate the nonlinear transport equation by a
sequence of linear problems obtained via a semi-discrete-in-time approximation of (1.2). We
define a partition of the time interval [0, T ] in a family of subinterval [tk, tk + ∆t] and on each
of these intervals we solve the linear problem (1.1) with the nonlinear velocity v[mt] replaced
by the linear one v[mtk ]. In such a way we obtain a sequence of measure {m∆t} defined on
[0, T ]. Using the results on the linear problem, we prove that for ∆t → 0+ the sequence {m∆t}
converges (upon subsequences) to a measure m ∈ M+(Γ × [0, T ]) which is a solution of (1.2). A
continuous dependence result and a representation formula in terms of the push-forward of the
initial and boundary data along the admissible paths on the network complete the study of (1.2).
We also analyze a specific example of velocity field to show that the measure approach allows us
to consider some significant aspects in the model such as local and nonlocal interactions, source
data, statistical knowledge of the driver behaviour at junctions.

In more details, the paper is organized in the following way. In Section 2 we recall some basic
notations and preliminary definitions, while in Section 3 we review the results proved in [4]. In
Section 4 we introduce the semi-discrete approximation scheme and prove its convergence. Finally,
in Section 5 we analyze a specific velocity field suitable for vehicular traffic over a road network
and satisfying the setting of the paper.

2. Notations and preliminary definitions

This section is devoted to notations and definitions that we shall use in the sequel. Some of these
definitions are classical but not necessarily standard, thus we recall them for reader’s convenience.

In our model, the distribution of particles on the network is represented by a positive measure,
hence we introduce an appropriate topology for the space of measures. Let T be a topological
space endowed with a distance d : T × T → R. Define the norm ‖ · ‖BL as

‖φ‖BL = ‖φ‖∞ + |φ|L,

where

|φ|L = sup
x, y∈T
x 6=y

|φ(x) − φ(y)|

d(x, y)

and let BL(T ) be the Banach space of bounded and Lipschitz continuous functions equipped with
the norm ‖ · ‖BL. Let moreover M(T ) denote the space of finite Radon measures on T . We define
a norm on this space by

(2.1) ‖µ‖∗BL = sup
φ∈BL(T )
‖φ‖BL≤1

|〈µ, ϕ〉|.

It is easy to see that if µ ∈ M+(T ) then ‖µ‖∗BL = µ(T ). Moreover, even if the space (M(T ), ‖·‖∗BL)
is in general not complete, the cone M+(T ) is complete since it is a closed subset.

We observe that other norms on M(T ), such as the total variation norm, may not be well suited
for transport problems where one wants to measure the distance between flowing mass distribu-
tions. Indeed with these norms the distance between two distinct Dirac masses is independent of
the distance of their supports.
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In the following we will employ the property that a measure µ ∈ M+(T ) can be represented as
a (continuous) sum of elementary masses in the form

µ =

∫

T

δx dµ(x),

where
∫

T
is intended as a Bochner integral (see [8, 9]). Actually the previous formula suggests

that to obtain some properties of a measure-valued solution to an evolution problem it is sufficient
to study the corresponding propagation of a Dirac measure.

A network Γ = (V , E) is given by a finite collection of vertices V := {xi}i∈I and a finite
collection of continuous non-self-intersecting arcs E = {ej}j∈J whose endpoints belong to V .
Several parametrizations of the arcs in Γ can be introduced; for our purposes every bounded arc
ej ∈ E is parametrized by a smooth injective function πj : [0, Lj] ⊂ R → R

d, where Lj ∈ R
+.

Alternatively, if ej is an unbounded arc terminating in a vertex V we parametrize it by a smooth
injective function πj : (−∞, 0] → R

d such that πj(0) = V ; if instead it is an arc originating
from V we define the parametrization on [0,+∞) in such a way that πj(0) = V . We assume
that Γ is connected and oriented and that the maps {πj}j∈J comply with the orientation of Γ,
i.e. if xi, xj ∈ V are the vertices of an arc ek ∈ E oriented from xi to xj , then πk(0) = xi and
πk(Lk) = xj . To each function φ defined on defined on

∏

j∈J ej we associate the projection (φj)j∈J

defined on the parameter space as

φj(s) := φ(πj(t)) s ∈ [0, Lj], j ∈ J.

The integral of φ on Γ is naturally defined as

∫

Γ

φ(x)dx =
∑

j∈J

∫

ej

φ(x) dx =
∑

j∈J

∫ Lj

0

φj(s)ds.

We provide Γ× [0, T ] with the distance

dΓ(x, y) + |t− s| , (x, t), (y, s) ∈ Γ× [0, T ]

where dΓ is the minimum path distance on the network Γ, and we consider the spaces M+(Γ ×
[0, T ]) and M+(Γ) endowed with the corresponding norms defined in (2.1). Throughout the paper
we consider measures without Cantorian part, so that for µ ∈ M+(Γ) the pairing

〈µ, φ〉 :=

∫

Γ

φ(x)dµ(x)

is well defined for every φ ∈ BV (Γ). The Cantorian measures are excluded because, for the
application we are considering, this kind of measure does not have any significant interpretation.

Given a vertex xi ∈ V , we say that an arc ej ∈ E is outgoing (respectively, incoming) if
xi = πj(0) (respectively, if xi = πj(Lj)). We denote by Out(xi) and dxi

O the set and the number
of outgoing arcs and by Inc(xi) and dxi

I the set and the number of incoming arcs in xi. We set
dxi := dxi

I + dxi

O and we say that a vertex xi is internal if d
xi

I · dxi

O > 0, a source if dxi

O = dxi and a
sink if dxi

I = dxi . Moreover, without loss of generality, we assume that for each source there exists
a unique outgoing arc, i.e. dxi

O = 1.
In the model discussed in the paper the sources represent the vertices where the particles enter

the network while the sinks are the vertices where they leave the network. Since the velocity may
depend on the distribution of the particles on the whole network, in order to simplify the notation
we prefer to consider a network without sinks, i.e. such that the terminal arcs always have infinite
length. In any case, at the expense of a heavier notation, it is not difficult to include in the model
also the contribution of the sinks.

From now on we denote by S the subset of sources. These vertices represent the boundary of
the network and we prescribe a boundary measure

σ0 =
∑

xi∈S

σi
0
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where σi ∈ M+({xi} × [0, T ]). We also prescribe the initial mass distribution of the particles in
Γ as a positive measure

m0 =
∑

j∈J

mj
0

with suppmj
0 ⊆ ej .

Remark 2.1. Instead of the σi
0’s, another possibility is to consider as boundary data the flow

measures qi0 = vi0 · σ
i
0 ∈ M+([0, T ]× {xi}), where the vi0’s are the velocities in BV ([0, T ];R+) at

the sources.

As usual when dealing with differential equations on networks, the transition conditions at the
vertices play a crucial role since they model the different behaviour of the particles at the junctions
(e.g., traffic lights, priority rules). We consider a J×J distribution matrix {pkj(t)}Jk, j=1 such that

P (t) is a stochastic matrix for every t ∈ [0, T ], i.e.

0 ≤ pkj(t) ≤ 1,

J
∑

j=1

pkj(t) = 1

pkj(t) = 0 if either ek ∩ ej = ∅ or ej → ek.

(2.2)

where ej → ek means that ej comes before ek in the assigned orientation of the network. Here
pkj(t) represents the fraction of mass which at time t flows from the arc ek to the arc ej and
(2.2) implies that the mass cannot concentrate at the vertices. Since we consider measures m ∈
M+(Γ × [0, T ]) without Cantorian part, we assume that pkj ∈ BV ([0, T ]) so that pkj ·m has no
Cantorian part as well.

In order to describe the transport of the measures on the network, we introduce a nonlinear
velocity field v : M+(Γ)× Γ → R with the following properties:

(H1) v is nonnegative and has a maximum value Vmax > 0;
(H2) v is Lipschitz continuous with respect to the state variable, i.e. on each arc ej ∈ E

|v[m](x) − v[m](y)| ≤ L|x− y|, ∀m ∈ M+(Γ), x, y ∈ ej .

(H3) v is Lipschitz continuous with respect to the measure, i.e.

|v[m1](x)− v[m2](x)| ≤ L‖m1 −m2‖
∗
BL ∀x ∈ Γ, m1,m2 ∈ M+(Γ).

It is important to observe that we do not require the continuity of the velocity field on the whole
network but only inside the edges. Note also that the dependence of v on the measure m is global,
i.e. the velocity depends on the entire support of m on Γ.

When considered on a single arc isomorphic to R, the previous assumptions coincide with the
ones for the corresponding nonlinear transport model in [7]. Moreover, for a fixed m ∈ M+(Γ),
the velocity field v[m] satisfies the hypotheses of the linear transport problem considered in [4].

We conclude this section with a notion of p-moment for finite measures on networks. This is
a straightforward generalization of the corresponding concept in the Euclidean space and we give
some details for the reader’s convenience.

Definition 2.2. Let p ∈ N and x ∈ Γ. The p-moment centered at x of a finite measurem ∈ M+(Γ)
is defined by

(2.3) 〈m, dΓ(·, x)
p〉 :=

∫

Γ

dΓ(y, x)
pdm(y).

Lemma 2.3. A finite measure m ∈ M+(Γ) has finite p-moment if and only if it has finite p-
moment on every arc ej ∈ E such that L(ej) = +∞.

Proof. Assume without loss of generality that x = xi ∈ V and set d(·) = dΓ(·, xi). Given a measure
m ∈ M+(Γ), m =

∑

j∈J mj with supp{mj} ⊆ ej, we can write

〈m; dp〉 =
∑

j∈J
L(ej)<+∞

〈mj ; dp〉+
∑

j∈J
L(ej)=+∞

〈mj ; dp〉.
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If ej ∈ E has finite length, then d(·) has its maximum value dj on ej. Then for

d := max
j∈J

L(ej)<+∞

dj

we have
∑

j∈J
L(ej)<+∞

〈mj ; dp〉 ≤
∑

j∈J
L(e)<+∞

dj ·m
j(ej) ≤ d ·m(Γ).

On the other hand, if L(ej) = +∞ and ej = πj([0,+∞)) with xk = πj(0) ∈ V , by Jensen’s
inequality we have

〈mj ; dp〉 =

∫

[0,+∞)

(|y|+ d(xk))
pdmj(y)

≤ 2p−1

∫

[0,+∞)

|y|pdmj(y) + 2p−1d(xk)
pm(ej).

By the last inequality, the statement easily follows. �

The finite p-moment property of a measure m is clearly independent of the point x ∈ Γ fixed
in the definition (2.3).

3. The linear transport problem

The aim of this section is twofold. In the first part, we briefly review the results for the linear
problem in [4], since they are an important tool for developing the theory of the nonlinear problem
via an approximation procedure. Hence, we give a new representation formula for the measure-
valued solution of the linear problem (afterwards extended also to the nonlinear problem), which
generalizes the well-known push-forward formula to the network setting.

In this section we assume that the velocity field v is independent of m, i.e. v[m](x) = v(x), and
we consider the linear transport problem

(3.1)



















∂tm+ ∂x(v(x)m) = 0 in Γ× [0, T ]

mt=0 = m0

mx=xi
= σi

0, ∀xi ∈ S

mj
x=xi

=
∑

k∈Inc(xi)
pkj ·mk

x=xi
∀xi ∈ V \ S, ∀ ej ∈ Out(xi),

with v, m0, σ0 satisfying the assumptions set in Section 2.
To explain the meaning of an initial/boundary condition for a measure solution, we recall

that, owing to the disintegration theorem (cf. [1, Section 5.3]), we can decompose a measure
m ∈ M+([0,∞)× [0,∞)) by projections on the coordinate axes:

• Using the projection with respect to x we can write

(3.2) m(dx dt) = dmt(x) ⊗ dt,

where dt is the Lebesgue measure in time in R
+
0 and dmt ∈ M+(R+

0 × {t}) ≡ M+(R+
0 )

for a.e. t ∈ R
+
0 . Hence assigning an initial condition at t = 0 amounts to prescribing the

trace of m on the fiber R+
0 × {0} according to the decomposition (3.2).

• Similarly, projecting with respect to t, we can write

(3.3) m(dx dt) =
dmx(t)

v(x)
⊗ dx,

where dx is the Lebesgue measure in space in R
+
0 and dmx ∈ M+({x}×R

+
0 ) ≡ M+(R+

0 )
for a.e. x ∈ R

+
0 . Hence assigning a boundary condition at x = 0 amounts to prescribing

the trace of m on the fiber {0} × R
+
0 according to the decomposition (3.3).
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In order to give a suitable notion of measure-valued solution to (3.1), we preliminarily introduce
integration by parts formulas. Let C∞

0 (Γ× [0, T ]) be the space of continuous functions in Γ× [0, T ]
which are infinitely differentiable in ej × [0, T ] for each j ∈ J and vanish for x = πj(t) → +∞
(in local coordinates) if ej is an unbounded arc. Then, given m ∈ M+(Γ × [0, T ]) and f ∈
C∞

0 (Γ× [0, T ]), we define

〈∂tm, f〉 : = −〈m, ∂tf〉+ 〈mT , f〉 − 〈m0, f〉

= −

∫ T

0

∫

Γ

∂tf(x, t)dmt(x)dt+

∫

Γ

f(x, T )dmT (x)−

∫

Γ

f(x, 0)dm0(x);
(3.4)

and

〈∂x(v(x)m), f〉 : = −〈m, v(x)∂xf〉 − 〈σ0, f〉

= −

∫ T

0

∫

Γ

v(x)∂xf(x, t)dmt(x)dt −
∑

xi∈S

∫

[0,T ]

f(xi, t)dσ
i
0(t).

(3.5)

In particular, if f ∈ C∞
0 (Γ× [0, T ]) and supp{f} ⊂ ek × [0, T ], then the last formula reads as

〈∂x(v(x)m), f〉 = −〈mk, v(x)∂xf〉+ 〈mk
x=xi

, f〉 − 〈mk
x=xj

, f〉 =

−

∫ T

0

∫

Γ

v(x)∂xf(x, t)dm
k
t (x) +

∫

[0,T ]

f(xi, t)dm
k
x=xi

(t)−

∫

[0,T ]

f(xj , t)dm
k
x=xj

(t),
(3.6)

where xi = πk(0), xj = πk(Lj) ∈ V .

Definition 3.1. A measure-valued solution to (3.1) is a finite measure m ∈ M+(Γ× [0, T ]) such
that for every f ∈ C1

0 (Γ× [0, T ]),

〈mt=T −m0, f〉 − 〈σ0, f〉 = 〈m, ∂tf + v(x)∂xf〉,

and ∀ xi ∈ V \ S, ∀ ej ∈ Out(xi),

〈mj
x=xi

, f〉 =
∑

k∈Inc(xi)

〈mk
x=xi

, pkjf〉.

Remark 3.2. In Definition 3.1 a Neumann-type boundary condition on the sinks of W is implicitly
assumed. Another possibility is that of sticking boundaries considered in [8, 9].

In the next theorem we summarize the main results proved in [4].

Theorem 3.3. There exists a unique measure m ∈ M+(Γ × [0, T ]) which is a solution to (3.1)
in the sense of Definition 3.1. Moreover:

i) Given initial data m1
0,m

2
0 ∈ M+(Γ × {0}), boundary data σ1

0 , σ
2
0 ∈ M+(S × [0, T ]) and

denoted by m1,m2 ∈ M+(Γ × [0, T ]) the corresponding solutions, there exists a constant
C = C(T ) > 0 such that

sup
[0,T ]

‖m2
t −m1

t‖
∗
BL ≤ C

(

∥

∥m2
0 −m1

0

∥

∥

∗

BL
+
∥

∥σ2
0 − σ1

0

∥

∥

∗

BL

)

.

ii) There exists a constant C = C(T ) > 0 such that

‖mt −mt′‖
∗
BL + ‖νLx[0, t]− νLx[0, t

′]‖
∗
BL ≤ C |t− t′|+ σ0((t

′, t])

for all t′, t ∈ [0, T ] with t′ < t.

The next result is a representation formula which characterizes the solution m of (3.1) in terms
of the distribution matrix P (t) and of the push-forward of the initial and boundary data on the
paths of the network.

Definition 3.4. Given x ∈ Γ, a path γ starting from x is a sequence of edges (ej0 , ej1 , . . . , ejn , . . . )
where eji ∩ eji+1

= {xji} ∈ V and eji → eji+1
for i = 0, 1, 2, . . . ; ej0 is the sub-edge with endpoints

x and xj0 ∈ V ; the length L(γ) of γ is infinite. We denote by A(x) the set of paths γ starting
from x.
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Since the network Γ is oriented and E finite, a path γ is necessarily of one of the following two
types:

• γ is composed by a finite number of arcs and the last one ejn has infinite length;
• γ is composed by an infinite number of arcs and there exists n0, k0 ∈ N such that for
n ≥ n0, γ is given by a cycle (ejn0

, . . . , ejn0+k0
) with ejn0+k0

= ejn0
.

We denote by Φγ the flow map associated to the velocity field v restricted to γ, i.e. Φγ
s (x, s) =

x and there are t0 := s < t1 < · · · < tn < . . . such that for every m = 0, 1, . . . we have
Φγ([tm, tm+1]) ⊂ ejm and

(3.7)
d

dt
Φγ

t (x, s) = v(Φγ
t (x, s)), t ∈ [tm, tm+1).

We define the exit times from the arc ejk = πjk([0, Ljk ]) of γ as

θγ0 (x, s) = inf{t ≥ s : Φγ(x, s) = πj0(Lj0)},

θγk (x, s) = inf{t ≥ θγk−1(x, s) : Φ
γ(x, s) = πjk(Ljk)}, k ≥ 1

and we associate to each (x, s) ∈ Γ × [0, T ] and to each γ ∈ A(x) a coefficient pγ(x, s) ∈ [0, 1]
defined by

(3.8) pγ(x, s) :=
∏

k

pjkjk+1
(θγk (x, s)),

where pjkjk+1
are the entries of the distribution matrix P defined in (2.2). The coefficient pγ(x, s)

can be interpreted as the fraction of the total mass transported along the path γ. Due to the
properties of P , it follows that

pγ(x, s) ∈ [0, 1],
∑

γ∈A(x)

pγ(x, s) = 1.

Theorem 3.5. If m ∈ M+(Γ× [0, T ]) is a solution of (3.1), then for any t ∈ [0, T ], mt is given
by

(3.9) mt =

∫

Γ

∑

γ∈A(x)

δ(Φγ
t (x,0),t)

pγ(x, 0)dm0(x) +
∑

xi∈S

∫

[0,t]

∑

γ∈A(xi)

δ(Φγ
t (0,s),t)

pγ(0, s)dσ
i
0(s).

In order to prove the representation formula (3.9) we preliminarily recall a characterization of
the traces of the solution m of (3.1) on the fibers ej ×{t} and {xi}× [0, t], where xi = πj(Lj), in
terms of the transport of the initial and boundary data inside ej (see [4]).

Lemma 3.6. Let ej ∈ E, then

mj
t =

∫

[0,max{0, τ−1(t)}]

δΦt(x, 0) dm
j
0(x) +

∫

(max{0, ς−1(t)}, t]

δΦt(0, s) dm
j

x=πj(0)
(s)(3.10)

mj

x=πj(Lj)
=

∫

(max{0, τ−1(t)}, Lj ]

δτ(x) dm
j
0(x) +

∫

[0,max{0, ς−1(t)}]

δς(s) dm
j

x=πj(0)
(s),(3.11)

where Φ is the flow map associated to the velocity v over ej ∈ E and τ , ς are defined as

τ(x) = inf{s ≥ 0 : Φs(x, 0) = Lj},(3.12)

ς(t) = inf{s ≥ t : Φs(0, t) = Lj}.

Proof of Theorem 3.5. We can observe that, since the velocity v is uniformly bounded on Γ, we
can restrict the proof to the case of networks with a single junction. The general case can be easily
obtained adding new arcs and repeating the same argument.

Hence, we consider a simple network with V given by two vertices {S, V }, where S is a source
and V is an internal vertex, and E given by an arc e1 connecting S to V and by n− 1 unbounded
arcs ek ∈ Out(V ). Due to this choice, we observe that all the paths γ ∈ A(x) are subsets of (e1, ek)
if x ∈ e1, otherwise they are subsets of ek if x ∈ ek.

The solution can be written as m =
∫ T

0 δ(x,t)dmt(x)dt, where mt =
∑n

k=1 m
k
t .
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If k = 1, by (3.10) with S = π1(0) and V = π1(L1), the solution restricted to e1 is given by

m1
t =

∫

[0,max{0, (τ1)−1(t)}]

δΦe1
t (x, 0) dm

1
0(x) +

∫

(max{0, (ς1)−1(t)}, t]

δΦe1
t (0, s) dσ0(s);

otherwise for k ∈ {2, . . . , n}, by (3.10) with V = πk(0), on ek it is given by

mk
t =

∫

[0,max{0,(τk)−1(t)}]

δΦek
t (y, 0)dm

k
0(x) +

∫

(max{0,(ςk)−1(t)},t]

δΦek
t (0, s)dm

k
x=V (s).

Observe that the first term at the right hand-side of the previous equation is the push-forward of
the mass mk

0 which at time t = 0 is in ek; the second term is a percentage of the mass in e1 which
flows in ek.

Using the transmission condition mk
x=V = p1k ·m1

x=V and recalling that by (3.11) we have

m1
x=V =

∫

(max{0, (τ1)−1(T )}, L1]

δτ1(x) dm
1
0(x) +

∫

[0,max{0, (ς1)−1(T )}]

δς1(s) dσ0(s),

we get
∫

(max{0,(ςk)−1(t)},t]

f(Φek
t (0, s), t)dmk

x=V (s)

=

∫

(max{0,(τ1)−1(t)},L1]

f(Φek
t (0, τ1(x)), t)p1k(τ1(x))dm

1
0(x)

+

∫

[0,max{0,(ς1)−1(t)}]

f(Φek
t (0, ς1(s)), t)p1k(ς1(s))dσ0(s)

=

∫

(max{0,(τ1)−1(t)},L1]

f
(

Φek
t (Φe1

τ1(x)
(x, 0), τ1(x)), t

)

p1k(τ1(x))dm
1
0(x)

+

∫

[0,max{0,(ς1)−1(t)}]

f(Φek
t (Φς1(s)(0, s), ς1(s)), t)p1k(ς1(s))dσ0(s)

=

∫

(max{0,(τ1)−1(t)},L1]

f(Φγ
t (x, 0), t)p1k(τ1(x))dm

1
0(x)

+

∫

[0,max{0,(ς1)−1(t)}]

f(Φγ
t (0, s), t)p1k(ς1(s))dσ0(s),

(3.13)

Lastly, we observe that m1
t can be split in n − 1 parts according to the distribution terms p1k.

Indeed, if we write m1
t =

∑n
k=2(p1k ◦ θ

γ
0 ) ·m

1
t , then

mt = m1
t +

n
∑

k=2

mk
t =

n
∑

k=2

(((p1k ◦ θγ0 ) ·m
1
t ) +mk

t ).

Concerning the first term, observing that τ1(x) = θγ0 (x, 0) and ς1(s) = θ0(0, s), we compute for
any f ∈ C∞

0 (Γ× [0, T ])

〈(p1k ◦ θγ0 )m
1
t , f〉 =

∫

[0,max{0,(τ1)−1(t)}]

f(Φe1
t (x, 0), t)p1k(θ

γ
0 (x, 0))dm

1
0(x)

+

∫

(max{0,(ς1)−1(t)},t]

f(Φe1
t (0, s), t)p1k(θ

γ
0 (0, s))dσ0(s)

=

∫

[0,max{0,(τ1)−1(t)}]

f(Φe1
t (x, 0), t)p1k(τ1(x))dm

1
0(x)

+

∫

(max{0,(ς1)−1(t)},t]

f(Φe1
t (0, s), t)p1k(ς1(s))dσ0(x).

(3.14)
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By (3.13), (3.14) it follows that, from the parametrization used for each arc,

〈(p1k ◦ θγ0 ) ·m
1
t , f〉+ 〈mk

t , f〉 =

∫

e1

f(Φγ
t (x, 0), t)p1k(θ

γ
0 (x, 0))dm

1
0(x) +

∫

e2

f(Φγ
t (x, 0), t)dm

k
0(x)

+

∫

[0,t]

f(Φγ(0, s), t)p1k(θ
γ
0 (0, s))dσ0(s).

If we sum the previous formula over ek ∈ Out(V ) we have

(3.15) 〈mt, f〉 =

∫

[0,t]

∑

γ∈A(x)

f(Φγ
t (0, s), t)pγ(0, s)dσ0(s)+

∫

Γ

∑

γ∈A(x)

f(Φγ
t (x, 0), t)pγ(x, 0)dm0(x),

Hence we have proved formula (3.15) in the special case of the simple network as above. If we
consider the same network with multiple sources, we sum (3.15) over xi ∈ S and have the thesis.

Finally, the case of more complex networks can be addressed by replacing in the last part the
arc i in γ = (x, e, V, i) with another part and then repeating the argument used in this proof. �

Remark 3.7. We observe that formula (3.9) is equivalent to the superposition principle introduced
in [1]. Indeed, assuming for simplicity that S = ∅, there is a bijective correspondence among paths,
as in Definition 3.4, and trajectories in (3.7): given γ ∈ A(x), then γ = Φγ(x, [0, T ]). Therefore

A(x) = {Φ ∈ AC([0, T ],Γ) : Φ satisfies (3.7)}.

Let us define ηx ∈ M+(A(x)) by

ηx =
∑

Φ∈A(x)

pΦ(x,[0,T ])(x, 0)δΦ(x,0).

Then (3.9) can be written as

mt =

∫

Γ

∫

A(x)

δΦt(x,0)dηx(Φ)dm0(x)

=

∫

Γ

∫

A(x)

δ(Φ◦et)(x,0)dηx(Φ)dm0(x)

=

∫

Γ×A(Γ)

δΦ(x,0)d(et#η),

where et is the evaluation in t, i.e. et(Φ) = Φt, and η ∈ M+(Γ×A(Γ)) is defined by η = m0 ⊗ ηx.
This is exactly the form of the superposition principle mentioned above.

4. The nonlinear transport problem

This section is devoted to the study of the nonlinear transport problem, i.e. the transport
problem with the velocity field depending on the distribution of the particles on the network.

We consider the problem

(4.1)



















∂tm+ ∂x(v[mt]m) = 0 in Γ× [0, T ]

mt=0 = m0

mx=xi
= σi

0 ∀xi ∈ S

mj
x=xi

=
∑

k∈Inc(xi)
pkj ·mk

x=xi
∀xi ∈ V \ S, ∀ ej ∈ Out(xi)

with v[m], m0, σ0 satisfying the assumptions stated in Section 2. Concerning the interpretation
of the initial/boundary conditions and the definition of solution, we argue as in Section 3. In
particular, thanks to the integration by part formulas (3.4)-(3.5) (with v(x) replaced by v[m](x))
we can state:

Definition 4.1. A measure-valued solution to (4.1) is a finite measure m ∈ M+(Γ× [0, T ]) such
that for every f ∈ C1

0 (Γ× [0, T ]),

〈mt=T −m0, f〉 − 〈σ0, f〉 = 〈m, ∂tf + v[mt]∂xf〉,
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and ∀xi ∈ V \ S, ∀ ej ∈ Out(xi),

(4.2) 〈mj
x=xi

, f〉 =
∑

ek∈Inc(xi)

〈mk
x=xi

, pkjf〉.

To prove the core result of the paper, i.e. the existence of a measure-valued solution to (4.1), we
introduce a semi-discretization-in-time procedure which allows us to approximate the nonlinear
problem by a family of linear problems: we define a partition of the time interval [0, T ] in a family
of subintervals [tk, tk+∆t] and on each of these intervals we solve the linear problem (3.1) with the
nonlinear velocity v[mt] replaced by the linear one v[mtk ]. In such a way we obtain a sequence of
measures {m∆t} defined on [0, T ]. Using the results of Section 3, we prove that for ∆t → 0+ this
sequence converges (upon subsequences) to a measure m ∈ M+(Γ× [0, T ]), which is a solution of
(4.1) in the sense of Definition 4.1.

Let N ∈ N, set ∆tN := T/2N and define a partition of [0, T ] by the intervals INn := [tNn ; tNn+1),

where tNn := n∆tN , n = 0, . . . , 2N (in the following we will write tn in place of tNn when the
dependence on N is clear by the context). We consider the 2N problems iteratively defined by



















∂tm+ ∂x(v[mtn ]m) = 0 in Γ× INn
mt=tn = mtn

mxi∈S = σ0xI
N
n

mj
x=xi

=
∑

k∈Inc(xi)
pkj ·mk

x=xi
∀ ej ∈ Out(xi), ∀xi ∈ V \ S,

where σ0xI
N
n is the restriction of σ0 to the interval INn . We point out that the velocity v[mtn ] is

linear on Γ × INn for every n = 0, . . . , 2N − 1. Therefore, owing to Theorem 3.3, there exists a
unique measure mN,n ∈ M+(Γ× INn ) satisfying

(4.3) 〈mN,n

t=tN
n+1

−mN,n

t=tNn
, f〉 = 〈σ0xI

N
n , f〉+

∫ tNn+1

tNn

〈mN,n
t , (∂t + v[mN,n

tNn
]∂x) · f(·, t)〉dt

and

(4.4) 〈(mN,n)jx=xi
xINn , f〉 =

∑

k∈Inc(xi)

〈pkj(m
n,N )kx=xi

xINn , f〉, ∀ej ∈ Out(xi), ∀xi ∈ V \ S

for every f ∈ C∞
0 (Γ× I

N

n ).
We now denote by mN : [0, T ] → M+(Γ) the map defined by

(4.5) mN
t = mN,n

t for t ∈ INn , n = 0, . . . , 2N .

We first give some regularity properties of mN (the proofs of the next two results are postponed
to the Appendix A).

Proposition 4.2. For any t ∈ [0, T ], the measure mN
t is bounded in (M+(Γ), ‖ · ‖∗BL), uniformly

in N , i.e. there exists a constant C = C(T ) > 0 such that

(4.6) ‖mN
t ‖∗BL ≤ C(‖m0‖

∗
BL + ‖σ0‖

∗
BL), ∀t ∈ [0, T ].

Moreover, there exists a constant C > 0 such that

(4.7) ‖mN
t −mN

s ‖∗BL ≤ σ0([s, t)) + C|t− s|,

for every 0 ≤ s < t ≤ T .

Proposition 4.3. Assume that

(4.8) m0 has finite p-moment on Γ, p = 1, 2.

Then mN
t has finite p-moment, p = 1, 2, on Γ for all t ∈ [0, T ]. In particular, there exists a

positive constant C = C(T, Vmax, ‖m0‖∗BL, ‖σ0‖∗BL) such that

〈mN
t , dp〉 ≤ C,

for every t ∈ [0, T ] and every N ∈ N.
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Inequality (4.7) shows that the map t 7→ mN
t is in general not Lipschitz continuous in t if the

source measure σ0 is not absolutely continuous with respect to the Lebesgue measure. To prove
the convergence of mN , we need to assume that σ0 ∈ M+(S × [0, T )) is absolutely continuous
with respect to the Lebesgue measure L(dt) on [0, T ) for every source xi ∈ S, i.e.

(4.9) σi
0 ≪ L(dt) ∀xi ∈ S,

but see Remark 4.8 below for the case in which σ0 contains a finite number of atoms.
We have the following existence result for (4.1):

Theorem 4.4. Assume (4.8) and (4.9), then the sequence {mN}N∈N defined in (4.5) converges
(upon subsequences) to a map m : [0, T ] → M+(Γ) in C([0, T ];M+(Γ)). In particular,

(4.10) lim
N→+∞

sup
t∈[0,T ]

‖mN
t −mt‖

∗
BL = 0.

Moreover, the measure m :=
∫ T

0

∫

Γ
δ(x,t)dmt(x)dt is a solution to (4.1) in the sense of Definition

4.1.

Proof. We proceed in several steps.
Step (i): Convergence. To show that {mN}N∈N is relatively compact in C([0, T ],M+(Γ)), it is

sufficient to check that the sequence satisfies the conditions of the Ascoli-Arzelà criterion in the
space of measures (see [1]): equicontinuity, tightness and uniform integrability. Equicontinuity is
a consequence of Proposition 4.2, taking into account that by (4.7), (4.9) {mN}N∈N is uniformly
Lipschitz continuous in t. The other two properties, tightness and uniform integrability, are
equivalent to uniform estimates of the first and second moments of the measure mN

t . These
estimates are proved in Proposition 4.3. Hence we conclude that that, upon subsequences, there
exists m ∈ C([0, T ],M+(Γ)) such that

(4.11) mN
t → mt ∀t ∈ [0, T ]

for N → ∞.
Step (ii): m is a solution. We now show that the measure m ∈ M+(Γ× [0, T ]) defined by

(4.12) m(dxdt) := mt(dx) ⊗ dt =

∫ T

0

∫

Γ

δ(x,t)dmt(x)dt,

where the mt is as in (4.11), satisfies

(4.13) 〈mT −m0, f〉 − 〈σ0, f〉 =

∫ T

0

〈mt, ∂tf(·, t) + v[mt]∂xf(·, t)〉dt

for every f ∈ C∞
0 (Γ× [0, T ]). Denote vNn = v[mN

tNn
]. Summing over n the identities (4.3) and (4.4),

we get that the measure mN (dxdt) = mN
t (dx) ⊗ dt ∈ M+(Γ× [0, T ]) satisfies

(4.14) 〈mN
T −m0, f〉 − 〈f, σ0〉 =

2N−1
∑

n=0

∫

IN
n

〈mN
t , (∂t + vNn ∂x) · f(·, t)〉dt,

for every f ∈ C∞
0 (Γ× [0, T ]). Passing to the limit for N → +∞ in (4.14), we first observe that by

(4.10) we have for the left hand side

〈mN
T −m0, f〉 → 〈mT −m0, f〉 for N → ∞.

To show the convergence of the right hand side of (4.14), we claim that

2N−1
∑

n=0

∫

IN
n

(

〈mN
t , (∂t + vNn ∂x) · f(·, t)〉 − 〈mt, (∂t + v[mt]∂x) · f(·, t)〉

)

dt

=

∫

IN
n

〈mN
t −mt, (∂t + v[mt]∂x) · f(·, t)〉dt+

2N−1
∑

n=0

∫

IN
n

〈mN
t , (vNn − v[mt])∂x · f(·, t)〉dt

(4.15)
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tends to 0 for N → ∞. Indeed for f ∈ C∞
0 (Γ× [0, T ]) by (4.10) we have, when N → ∞,

2N−1
∑

n=0

∫

IN
n

〈mt −mN
t , (∂t + v[mt]∂x) · f(·, t)〉dt

≤ T sup
t∈[0,T ]

|〈mt −mN
t , (∂t + v[mt]∂x) · f(·, t)〉| ≤ CT sup

t∈[0,T ]

‖mN
t −mt‖

∗
BL → 0.

(4.16)

Moreover, for every fixed n = 0, . . . , 2N − 1, t ∈ INn and x ∈ Γ we have

(4.17) |vNn (x) − v[mt](x)| ≤ L‖mN
tNn

−mt‖
∗
BL ≤ L‖mN

tNn
−mN

t ‖∗BL + L‖mN
t −mt‖

∗
BL.

From Proposition 4.2 it results

‖mN
tNn

−mN
t ‖∗BL ≤ σ0([t

N
n , t)) + C|t− tNn |,

therefore
∫ tNn +∆tN

tNn

〈mN
t , (vNn − v[mt])∂xf(·, t)〉dt

≤

∫ tNn +∆tN

tNn

[

C1(σ0([t
N
n , t)) + |t− tNn |+ ‖mN

t −mt‖
∗
BL)〈m

N
t , ∂xf(·, t)〉

]

dt

≤ C1

(

σ0(I
N
n )∆tN +

1

2
(∆tN )2 +∆tN sup

t∈IN
n

‖mN
t −mt‖

∗
BL

)

sup
t∈IN

n

‖mN
t ‖∗BL,

where C1 = max{L,CL}. Again by Proposition 4.2, we have the estimate

sup
t∈[0,T ]

‖mN
t ‖∗BL < D

for a positive constant D independent of N . Hence
∫

IN
n

〈mN
t , (vNn − v[mt])∂xf(·, t)〉dt ≤ DC1∆tN

(

σ0(I
N
n ) +

1

2
∆tN + sup

t∈IN
n

‖mN
t −mt‖

∗
BL

)

,

and therefore by (4.11)
∣

∣

∣

∣

∣

∣

2N−1
∑

n=0

∫

IN
n

〈mN
t , (∂t + (vNn − v[mt])∂x) · f(·, t)〉dt

∣

∣

∣

∣

∣

∣

≤ DC1

(

∆tNσ0([0, T ]) +
T

2
∆tN + T sup

t∈[0,T ]

‖mN
t −mt‖

∗
BL

)

→ 0 for N → +∞.

(4.18)

By (4.16) and (4.18) we get (4.15). Hence the measurem satisfies the transport equation (4.13).
Step (iii): Vertex condition. To conclude that m defined in (4.12) solves (4.1) we further need

to show that there exist boundary measures {mj
x=xi

}
ej∈E
xi∈V , defined by

〈mj
x=xi

, f〉 =

∫ T

0

〈mj
t , (∂t + v[mt]∂x)f〉dt− 〈mj

T −mj
0, f〉,(4.19)

if ej ∈ Inc(xi), or

−〈mj
x=xi

, f〉 =

∫ T

0

〈mj
t , (∂t + v[mt]∂x)f〉dt− 〈mj

T −mj
0, f〉,(4.20)

if ej ∈ Out(xi). Then, we need to prove that the vertex condition (4.2) is satisfied.
Let f be a C∞

0 (Γ× [0, T ]) function such that there exists a unique vertex xi ∈ V which belongs
to the support of f(·, t), for every t ∈ [0, T ]. We have previously seen that

〈mN
T −mN

0 , f〉 = 〈σ0, f〉+
2N−1
∑

n=0

∫ tn+1

tn

〈mN
t , (∂t + v[mN

tn
]∂x) · f(·, t)〉dt;
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then, taking into account that the support of f does not contain source vertices, we have

〈mN
T −m0, f〉 =

2N−1
∑

n=0

∫

IN
n

〈mN
t , (∂t + vNn ∂x)f(·, t)〉dt;

By (3.6), if ej ∈ Inc(xi) then

(4.21) 〈mN,j
x=xi

, f〉 =
2N−1
∑

n=0

∫

IN
n

〈mN,j
t , (∂t + vNn ∂x)f〉dt− 〈mN,j

T −mj
0, f〉;

otherwise, if ej ∈ Out(xi) then

(4.22) − 〈mN,j
x=xi

, f〉 =
2N−1
∑

n=0

∫

IN
n

〈mN,j
t , (∂t + vNn ∂x)f〉dt− 〈mN,j

T −mj
0, f〉.

Passing to the limit for N → +∞ in either (4.21) or (4.22), by (4.11) we get that there exist meas-
uresmj

x=xi
∈ M({xi}×[0, T ]) which satisfy (4.19) or (4.20) and such that ‖mN,j

x=xi
−mj

x=xi
‖∗BL → 0

for N → +∞. Since by construction mN,j
x=xi

=
∑

k∈Inc(xi)
pke ·mN,k

x=xi
, we get that the same trans-

mission condition (4.2) is satisfied by the limit measure m. �

We now extend to the nonlinear transport problem (4.1) the representation formula for the
solution of the linear problem (3.1) proved in Theorem(3.5). Given m ∈ M+(Γ× [0, T ]), we denote
by Φγ the flow map associated to the velocity field v[mt] restricted to γ, i.e. Φγ

s (x, s) = x and there
are t0 := s < t1 < · · · < tn < . . . such that for every m = 0, 1, . . . , we have Φγ([tm, tm+1]) ⊂ ejm
and

d

dt
Φγ

t (x, s) = v[mt](Φ
γ
t (x, s)), t ∈ [tm, tm+1).

Proposition 4.5. If m ∈ M+(Γ× [0, T ]) is a solution to (4.1) then mt is given by

(4.23) mt =

∫

Γ

∑

γ∈A(x)

δ(Φγ
t (x,0),t)

pγ(x, 0)dm0(x) +
∑

xi∈S

∫

[0,t]

∑

γ∈A(xi)

δ(Φγ
t (0,s),t)

pγ(0, s)dσ
i
0(s)

for every t ∈ [0, T ], where the coefficients pγ are defined as in (3.8).

Proof. We observe that from (4.17) it follows

sup
x∈ej

|vNj (x)− v[mt](x)| → 0 for N → +∞, j ∈ J.

The previous estimate implies the uniform convergence of the respective flow maps on a given
path γ, hence the convergence of (3.9) to (4.23). �

Proposition 4.6 (Continuous dependence). Given initial data m1
0,m

2
0 ∈ M+(Γ×{0}) and bound-

ary data σ1
0 , σ

2
0 ∈ M+(S × [0, T ]) satisfying the assumptions (4.8) and (4.9), let m1 and m2 be

the corresponding solutions. Then

sup
t∈[0,T ]

‖m1
t −m2

t‖
∗
BL ≤ K(‖m1

0 −m2
0‖

∗
BL + ‖σ1

0 − σ2
0‖

∗
BL),

where K = K(T ) > 0 is a constant.

Proof. For a fixed x ∈ Γ we consider a path γ ∈ A(x) starting from x and the flow maps Φ1,γ , Φ2,γ

associated to v[m1
t ], v[m

2
t ], respectively.
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Let f ∈ BL(Γ× [0, T ]) with ‖f‖∗BL ≤ 1, then by formula (4.23) we have

〈m1
t −m2

t , f〉 =

∫

Γ





∑

γ∈A(x)

f(Φ1,γ
t (x, 0), t)pγ(x)dm

1
0(x)

−
∑

γ∈A(x)

f(Φ2,γ
t (x, 0), t)pγ(x)dm

2
0(x)





+
∑

xi∈S





∫

[0,T ]

∑

γ∈A(xi)

f(Φ1,γ
t (xi, s), t)pγ(xi)dσ

1
xi
(s)

−

∫

[0,T ]

∑

γ∈A(xi)

f(Φ2,γ
t (xi, s), t)pγ(xi)dσ

2
xi
(s)



 .

(4.24)

To estimate the right-hand side in (4.24) we rewrite the first term as

∫

Γ





∑

γ∈A(x)

f(Φ1,γ
t (x, 0), t)pγ(x)dm

1
0(x)−

∫

Γ

∑

γ∈A(x)

f(Φ2,γ
t (x, 0), t)pγ(x)dm

2
0(x)





+

∫

Γ

∑

γ∈A(x)

f(Φ2,γ
t (x, 0), t)pγ(x)d(m

1
0 −m2

0)(x)

+

∫

Γ

∑

γ∈A(x)

(

f(Φ1,γ
t (x, 0), t)− f(Φ2,γ

t (x, 0), t)
)

pγ(x)dm
1
0(x).

Since ‖f‖∗BL ≤ 1 and
∑

γ∈A(x) pγ(x) = 1 for every x ∈ Γ, we have the estimate

(4.25)

∫

Γ

∑

γ∈A(x)

f(Φ2,γ
t (x, 0), t)pγ(x)d(m

1
0 −m2

0)(x) ≤ ‖m1
0 −m2

0‖
∗
BL.

Moreover ,

|f(Φ1,γ
t (x, 0), t)− f(Φ2,γ

t (x, 0), t)| ≤ d(Φ1,γ
t (x, 0),Φ2,γ

t (x, 0)) ≤ dγ((Φ
1,γ
t (x, 0),Φ2,γ

t (x, 0))),

where dγ is the path distance d restricted to γ. It follows

dγ(Φ
1,γ
t (x, 0),Φ2,γ

t (x, 0)) ≤

∫ t

0

∣

∣v[m1
s](Φ

1,γ
s (x, 0))− v[m2

s](Φ
2,γ
s (x, 0))

∣

∣ ds

≤

∫ t

0

L
(

‖m1
s −m2

s‖
∗
BL + dγ(Φ

1,γ
s (x, 0),Φ2,γ

s (x, 0))
)

ds.

By Gronwall’s inequality,

dγ(Φ
1,γ
t (x, 0),Φ2,γ

t (x, 0)) ≤ L

(∫ t

0

‖m1
s −m2

s‖
∗
BLds

)

eLt,

and consequently

|f(Φ1,γ
t (x, 0), t)− f(Φ2,γ

t (x, 0), t)| ≤ L

(∫ t

0

‖m1
s −m2

s‖
∗
BLds

)

eLt.

The previous inequality implies
∫

Γ

∑

γ∈A(x)

(

f(Φ1,γ
t (x, 0), t)− f(Φ2,γ

t (x, 0), t)
)

pγ(x)dm
1
0(x)

≤ L

(∫ t

0

‖m1
s −m2

s‖
∗
BLds

)

eLt‖m1
0‖

∗
BL.
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Proceeding in a similar way for the second term in (4.24), we obtain the inequality

∑

xi∈S





∫

[0,T ]

∑

γ∈A(xi)

f(Φ1,γ
t (xi, s), t)pγ(xi)dσ

1
xi
(s)−

∫

[0,T ]

∑

γ∈A(xi)

f(Φ2,γ
t (xi, s), t)pγ(xi)dσ

2
xi
(s)





≤ ‖σ1
0 − σ2

0‖
∗
BL + L

(∫ t

0

‖m1
s −m2

s‖
∗
BLds

)

eLt‖σ1
0‖

∗
BL

(4.26)

Using (4.25)–(4.26) in (4.24) we get

〈m1
t −m2

t , f〉 ≤ ‖m1
0 −m2

0‖
∗
BL + ‖σ1

0 − σ2
0‖

∗
BL + C

∫ t

0

‖m1
s −m2

s‖
∗
BLds,

where C = LeLT (‖m1
0‖

∗
BL + ‖σ1

0‖
∗
BL). Taking the supremum with respect to f we get

‖m1
t −m2

t‖
∗
BL ≤ (‖m1

0 −m2
0‖

∗
BL + ‖σ1

0 − σ2
0‖

∗
BL) + C

∫ t

0

‖m1
s −m2

s‖
∗
BLds.

Finally, applying again Gronwall’s inequality we obtain

‖m1
t −m2

t‖
∗
BL ≤ (‖m1

0 −m2
0‖

∗
BL + ‖σ1

0 − σ2
0‖

∗
BL)e

Ct. �

As an immediate consequence of the continuous dependence result stated in Proposition 4.6 we
have

Corollary 4.7. The solution of the nonlinear transport problem (4.1) is unique.

Remark 4.8. For traffic models on road networks, it is reasonable to consider measures without
Cantorian part but the assumption (4.9) is quite restrictive since it also excludes the presence of
atomic terms in the source measure σ0. Recall that (4.9) gives the uniform continuity with respect
to t of the map mN

t , t ∈ [0, T ], which is necessary in order to apply the Ascoli-Arzelà criterion. We
now explain how to bypass this difficulty and to extend the results of this section, in particular
Theorem 4.4, to the case of a source measure of the type

σ0 =
∑

xi∈S

(σxi

ac,0 + σxi

d,0),

where σxi

ac,0 ≪ L(dt) and σxi

d,0 is an atomic finite measure in M+(S × [0, T ]) with a finite number
of atoms.

Consider first the case of a source measure σ0 = δ(xi,τ), for xi ∈ S and τ ∈ (0, T ). We can apply
Theorem 4.4 in [0, τ ] where σ0 ≡ 0 is absolutely continuous with respect to L(dt) to obtain the
existence of a solution m to (4.1) in [0, τ ]. Then we consider (4.1) in [τ, T ] with initial condition
mτ + δ(xi,τ) and boundary measure (σ0)x(τ, T ] ≡ 0. Again, since σ0 ≡ 0 is absolutely continuous
with respect to L(dt) in [τ, T ], we obtain a solution of the problem in [τ, T ]. Gluing together the
solutions previously obtained in [0, τ ] and [τ, T ], we obtain a piecewise continuous solution of (4.1)
on [0, T ]. Clearly this procedure can be repeated if the source measure σ0 contains a finite number
of atoms. The resulting solution of (4.1) is piecewise Lipschitz continuous on a finite number of
disjoint intervals in [0, T ].

5. A multiscale model for traffic flow on networks

In this section we describe a nonlocal velocity v[m] suitable to describe and predict the evolution
of traffic flow on a road network.

There exists a wide literature on nonlocal fluxes for vehicular and pedestrian traffic: for example
in [5] a nonlocal term is used to modify the direction of motion of pedestrians and in [6] to
describe interactions among different populations. An interesting possibility for vehicular traffic
is proposed in [13, 14], where nonlocal terms are used as parameters to select the right flux in
classical hyperbolic models.
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Taking inspiration from similar models describing collective dynamics of crowds, see [7], we
consider a positive velocity fields given by

(5.1) v[m](x) := vf (x)− vi[m](x)

where vf : Γ → R
+ is the desired velocity, or free flow speed, representing the speed of a vehicle

in a free road, and vi[m](x) is the interaction speed due to the presence of a vehicle distribution
m ∈ M+(Γ) on the network Γ. Our aim is to identify an appropriate expression of v[m](x)
consistent with the traffic flow model and satisfying the hypotheses (H1)–(H3).

Concerning the free flow speed vf (x), which depends only on the state variable x, we assume
that this function is positive, bounded and Lipschitz continuous on each arc of the network Γ.
Hence (H1)–(H3) are easily verified.

Since for every x ∈ Γ the interaction velocity is a function vi[·](x) : M+(Γ) → R
+, it is natural

to define vi as the functional

vi[m](x) :=

∫

Γ

K(x, y)dm(y),

with interaction kernel K ∈ BV (Γ× Γ). If K is nonnegative and bounded by a positive constant
C, then for every x ∈ Γ it results

|vi[m](x)| ≤ Cm(Γ),

hence (H1) is satisfied.
Given ej ∈ E and x ∈ ej , for every m, µ ∈ M+(Γ) we have, by the boundedness of K,

|v[m](x) − v[µ](x)| = |

∫

Γ

K(x, y)d(m− µ)(y)| ≤ C‖m− ν‖∗BL

therefore also (H2) holds.
The Lipschitz continuity with respect to x is more delicate. In [7, Section 5], with reference

to the whole Euclidean space R
d, the authors consider a kernel for the interaction velocity of the

form K(x, y) = k(|x − y|)χD(x)(y), where k : R+ → R is a Lipschitz continuous non-increasing
function, χD(x) is the characteristic function of the set D(x) and D(x) is the visual field of a car
driver at x defined as

D(x) := {y ∈ R
d such that |x− y| ≤ R}

for a given visual radius R > 0.
In order to generalize this approach to the case of networks we consider an interaction kernel

of the form

K(x, y) = k(dΓ(x, y))ηx(y),

where k, again Lipschitz continuous and non-increasing, represents the interactions among the
vehicles on the network as a function of the distance. The crucial point is to properly define the
function ηx(y) representing the visual field of the drivers. We assume that a driver has a knowledge
only of the distribution of the vehicles on the roads adjacent to his/her current position and, on
the basis of this information, he/she gives a certain priority to a possible route. After defining the
visual field as

D(x) = {y ≥ x such that dΓ(x, y) ≤ R},

where y ≥ x is meant with respect to the orientation of the network, we assume that

R ≤ min
ej∈E

L(ej).

Hence, given x ∈ ek, if xi = πk(Lk) ∈ V we have D(x) ⊂ ek ∪ (
⋃

ej∈Out(xi)
ej). Moreover, for any

ej ∈ Out(xi), a weight αkj is prescribed with the properties

0 ≤ αkj ≤ 1,

J
∑

j=1

αkj = 1,

αkj = 0 if either ek ∩ ej = ∅ or ej → ek.

We point out that the difference between the coefficients pkj(t) in (2.2) and αkj is that the former
represents the capacity of the junction ek ∩ ej to allocate the traffic distribution while the latter
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translates the preference assigned to a given route by the drivers depending on the observed traffic
distribution. With the previous definitions, we consider an interaction velocity at x ∈ ek given by

vi[m](x) =
∑

ej∈E

αkj

∫

Γ

k(dΓ(x, y))χD(x)∩(ek∪ej)(y)dm(y).

Note that the support of χD(x)∩(ek∪ej) is given by

{y ∈ ek ∪ ej such that x → y, dΓ(x, y) ≤ R},

which is isomorphic to a classical visual field for each ej for which αkj 6= 0.
To prove the Lipschitz continuity of vi[m] in the x-variable it is enough to check this property

for the term
∫

Γ

k(dΓ(x, y))χD(x)∩(ek∪ej)(y)dm(y).

Without loss of generality, we work directly with a parametrization of ek ∪ ej and we assume that
ek is parametrized as [0, Lk] and ej as [Lk, Lk + Lj ]. In these terms,

D(x) ∩ (ek ∪ ej) = {y ∈ [0, Lk +R] ⊂ [0, Lk + Lj ] : x → y, |x− y| ≤ R} =: A(x).

Taken x1, x2 ∈ [0, Lk] with x2 → x1 and denoted h := |x2−x1|, we observe thatA(x2) = A(x1)+h;
then

χA(x2)(y) =

{

1 if y − h ∈ A(x1)

0 otherwise,

hence

χA(x2)(y) = χA(x1)(y − h) = (χA(x1) ◦ τ−h)(y)

where τ−h is the translation by −h. It follows
∫

k(|x1 − y|)χA(x1)(y)dm(y)−

∫

k(|x2 − y|)χA(x2)(y)dm(y)

=

∫

k(|x1 − y|)χA(x1)(y)dm(y)−

∫

k(|x1 − (y − h)|)χA(x1)(y − h)dm(y)

=

∫

[

k(|x1 − y|)χA(x1)(y)− (k(|x1 − ·|)χA(x1)(·)) ◦ τ−h(y)
]

dm(y)

=

∫

k(|x1 − y|)χA(x1)(y)d(m− τ−h#m)(y)

≤ ‖m− τ−h#m‖∗BL = Kh = K|x2 − x1|,

whence the Lipschitz continuity with respect to x as desired.
Notice that (5.1) does not guarantee the positivity of v. However, if we consider the velocity

field

v[m](x) = max{vf(x) − vi[m](x), 0}

then the boundedness and the Lipschitz continuity with respect to x and m are preserved and
moreover v is nonnegative.
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Appendix A. Proofs of theorems of section 4

Proof of Proposition 4.2. Let t ∈ [0, T ] and n ∈ {0, . . . , 2N−1} such that t ∈ INn . Then, by the
representation formula (3.9), we write

〈mN
t , f〉 =

∫

Γ

∑

γ∈A(x)

f(Φγ
t (x, tn), t)pγ(x)dm

N
tn
(x) +

∑

xi∈S

∫

[0,T ]

∑

γ∈A(xi)

f(Φγ
t (xi, s), t)pγ(xi)dσ

i
0(s).

Hence, for every f ∈ BL(Γ× [0, T ]) such that ‖f‖BL ≤ 1 it follows

|〈mN
t , f〉| ≤

∫

Γ

‖f‖BL





∑

γ∈A(x)

pγ(x)



 dmN
tn
(x) +

∑

xi∈S

∫

[0,T ]

‖f‖BL





∑

γ∈A(xi)

pγ(xi)



 dσi
0(s)

≤ ‖mN
tn
‖∗BL +

∑

xi∈S

‖(σi
0)x(tn, t]‖

∗
BL = ‖mN

tn
‖∗BL + ‖(σ0)x(tn, t]‖

∗
BL,

where we have used the property
∑

γ∈A(x) pγ(x) = 1 for all x ∈ Γ. Taking the supremum over

f ∈ BL(Γ× [0, T ]) we get

‖mN
t ‖∗BL ≤ ‖mtn‖

∗
BL + ‖(σ0)x(tn, t]‖

∗
BL;

Applying the previous inequality recursively for m ∈ {0, . . . , n} we get (4.6).
We now prove (4.7). Let N ∈ N and s, t ∈ [0, T ] such that s < t with s ∈ INn , t ∈ INk for n 6= k

in {0, . . . , 2N − 1}. This means

tn ≤ s < tn+1 < . . . < tk ≤ t ≤ tk+1.

Clearly

mN
t −mN

s =
(

mN
t −mN

tk

)

+ (mN
tn+1

−mN
s ) +

k
∑

l=n+1

(mN
tl+1

−mN
tl
),

which implies

(A.1) ‖mN
t −mN

s ‖∗BL ≤ ‖mN
t −mN

tk
‖∗BL + ‖mN

tn+1
−mN

s ‖∗BL +

m
∑

l=n+1

‖mN
tl+1

−mN
tl
‖∗BL.

Therefore we need to estimate ‖mN
tl+1

−mN
tl
‖∗BL. Let f ∈ BL(Γ × [0, T ]) such that ‖f‖∗BL ≤ 1.

Then, for every t ∈ INn ,

|〈mN
t −mN

tn
, f〉| ≤

∫

Γ

∑

γ∈A(x)

|f(Φγ
t (x, tn), t)− f(x, tn)|dm

N
tn
(x)

+

∣

∣

∣

∣

∣

∑

xi∈S

∫

(tn,t]

f(Φt(xi, s), t)dσ
i
0(s)

∣

∣

∣

∣

∣

≤

∫

Γ





∑

γ∈A(x)

pγ(x)



 (d(Φγ
t (x, tn), x) + |t− tn|)dm

N
tn
(x) + ‖(σ0)x(tn, t]‖

∗
BL.

By definition of Φγ , it follows d(Φγ
t (x, tn), x) ≤

∫ t

tn
vNn (Φγ

s (x, tn))ds ≤ |t−tn|Vmax. Then, applying

(4.6) and taking the supremum over f ∈ BL(Γ× [0, T ]) such that ‖f‖BL ≤ 1, we can write

(A.2) ‖mN
t −mN

tn
‖∗BL ≤ C|t− tn|+ σ0((tn, t]),

where C = (1 + Vmax)(‖m0‖
∗
BL + ‖σ0‖

∗
BL) > 0. Using (A.2) in (A.1), we get (4.7). �

Proof of Proposition 4.3. For simplicity, in this proof we denote v[mN
tNn
] by vNn and d(·) := dΓ(·, V )

for a fixed V ∈ V . Let N ∈ N, t ∈ [0, T ] and n ∈ {0, . . . , 2N − 1} such that t ∈ INn−1. By Lemma

2.3, mN
t ∈ M+(Γ) has finite p-moment over Γ if and only if it has finite p-moment on every arc

ej ∈ E such that L(ej) = +∞.
We consider first the case p = 1. If ej ∈ Inc(V ) ∪ Out(V ) ⊂ E , such that L(ej) = +∞, there

are two possibilities:
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i) ej ∈ Inc(V );
ii) ej ∈ Out(V ).

If i) occurs, we parametrize ej ∈ E as (−∞; 0]. For every t ∈ INn−1, we denote by Φ
ej
t the flow map

in ej produced by the velocity vNn−1. By the definition in (3.12), we have

τn,N (t) = inf{t ≥ tNn−1 : Φ
ej
t (x, tNn−1) = πj(0)}.

Then the first moment in ej of mN
t can be estimated as

∫

(−∞;0]

|x|dmN,j
t (x) =

∫

(−∞;τ−1

n,N
(t)]

|Φ
ej
t (x, tn−1)|dm

N,j
tn−1

(x)

≤

∫

(−∞;τ−1

n,N
(t)]

|x|dmN,j
tn−1

(x) +mN
tn−1

((−∞; τ−1
n,N (t)])Vmax∆tN

≤

∫

(−∞;0]

|x|dmN,j
tn−1

+mN,j
tn−1

(ej)∆tNVmax.

Applying iteratively the previous argument for k ∈ {0, 1, . . . , n− 1}, we get

∫

e

|x|dmN
t (x) ≤

∫

e

|x|dmj
0(x) + Vmax∆tN

n−1
∑

k=0

mN
tk
(ej)

≤

∫

e

|x|dmj
0(x) + Vmax

T

2N

2N−1
∑

k=0

mN
tk
(ej).

By Lemma 4.2 we have

(A.3)

∫

e

|x|dmN
t (x) ≤

∫

e

|x|dmj
0(x) + VmaxTC.

For the measure mN,j
x=V ∈ M+([0, T ]), namely the projection of mN,j at xi, by (3.11) we estimate

(A.4) ‖mN,j
x=V ‖

∗
BL = mN,j

x=V ([0, T ]) ≤ mj
0((−VmaxT, 0]) ≤ mj

0(ej).

If ii) occurs, we have a similar proof. Indeed, thanks to the characterisation (3.11), we can
write

∫

[0,+∞)

|x|dmN,j
t (x) =

∫

[0,+∞)

|Φ
ej
t (x, tj−1)|dm

N,j
tn−1

(x) +

∫

[ς−1

j
(t),t]

|Φ
ej
t (0, s)|dmN,j

x=V (s).

The first integral at the right-hand side can be estimated like in (A.3), while for the second one
we have

∫

[σ−1
e (t),t]

|Φe
t (0, s)|dm

j
x=xi

(s) ≤ Vmax

∫

[σ−1
e (t),t]

|t− s|dmj
x=V (s)

≤ Vmax∆tNmj
x=V (I

N
n−1),

which, thanks to (A.4) and Theorem 3.3, is finite and bounded by a constant which depends on
‖m0‖∗BL, ‖σ0‖∗BL, Vmax and T .

To conclude the proof, we need to show an analogous statement for p = 2. However, we can
observe that

|Φ
ej
t (x, tn−1)|

2 = |x|2 +

∣

∣

∣

∣

∣

∫ t

tj−1

vNj−1(Φ
e
s(x, tj−1))

∣

∣

∣

∣

∣

2

+ 2|x| ·

∣

∣

∣

∣

∣

∫ t

tn−1

vNn−1(Φ
ej
s (x, tn−1))

∣

∣

∣

∣

∣

≤ |x|2 + (Vmax∆tN )2 + 2Vmax∆tN |x|,

and, for s ∈ [ς−1
j (t), t],

|Φ
ej
t (0, s)|2 =

∣

∣

∣

∣

∫ t

s

vNj−1(Φ
ej
u (0, s))du

∣

∣

∣

∣

2

≤ (Vmax∆tN )2.
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Then, taking advantage of the uniform bound on the first moment, we repeat the argument used
for p = 1 to obtain the uniform bound also on the second moment. �
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