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Mullets are very common fishes included in the family Mugilidae, (Mugiliformes), which
are characterized by both a remarkably uniform external morphology and internal
anatomy. Recently, within this family, different species complexes were molecularly
identified within Mugil, a genus which is characterized by lineages that sometimes
show very different karyotypes. Here we report the results of cytogenetic and molecular
analyses conducted on Mugil hospes, commonly known as the hospe mullet, from
Ecuador. The study aims to verify whether the original described species from the Pacific
Ocean corresponds to that identified in the Atlantic Ocean, and to identify species-
specific chromosome markers that can add new comparative data about Mugilidae
karyotype evolution. The karyotype of M. hospes from Ecuador is composed of 48
acrocentric chromosomes and shows two active nucleolar organizer regions (NORs).
In situ hybridization, using different types of repetitive sequences (rDNAs, U1 snDNA,
telomeric repeats) as probes, identified species-specific chromosome markers that
have been compared with those of other species of the genus Mugil. Cytochrome c
oxidase subunit I (COI) sequence analysis shows only 92–93% similarity with sequences
previously deposited under this species name in GenBank, all of which were from
the Atlantic Ocean. Phylogenetic reconstructions indicate the presence of three well-
supported hospe mullet lineages whose molecular divergence is compatible with the
presence of distinct species. Indeed, the first lineage includes samples from Ecuador,
whereas the other two lineages include the Atlantic samples and correspond to
M. brevirostris from Brazil and Mugil sp. R from Belize/Venezuela. Results here provided
reiterate the pivotal importance of an integrative molecular and cytogenetic approach in
the reconstruction of the relationships within Mugilidae.
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INTRODUCTION

Mullets is the popular name of fishes included in the Mugilidae,
a species rich family that is the only representative of the
order Mugiliformes. These fishes are distributed in several
coastal aquatic habitats in tropical, subtropical and temperate
regions of the world, where they are ecologically, recreationally
and commercially important (Thomson, 1966). According to
different authors (see González-Castro and Ghasemzadeh, 2016
and references herein), the family has approximately 26 genera,
but Eschmeyer and Fong (2017) ascribe to Mugilidae 20 genera
and 75 valid species.

In Mugilidae, most of the classical morphological characters
used in species identification and/or systematics have poor
diagnostic power and morphometric variability is limited
(Schultz, 1946; Thomson, 1997; González-Castro, 2007;
González-Castro and Ghasemzadeh, 2016). These characteristics
are associated with the wide distribution of most of the species,
which raises questions about their actual taxonomic status.
Cytogenetic and molecular studies have provided important data
for understanding the systematic relationships and evolutionary
pathways among mullet species (Harrison et al., 2007; Sola et al.,
2007; Durand et al., 2012; Durand and Borsa, 2015). These
studies have also shown that it is necessary to use integrative
approaches to study mugilids. Indeed, the use of repetitive
sequences such as ribosomal genes (18S rDNA and 5S rDNA) as
probes in FISH mapping has been shown to be a very informative
cytotaxonomic tool in revealing different lineages/species within
Mugilidae (Nirchio et al., 2007, 2017; Sola et al., 2007). On the
other hand, the utility of molecular markers in this family to
identify the species, better define the genera, and reconstruct
their phylogenetic relationships, is well-represented by the huge
amount of literature on this topic published in the last 15 years
(see Rossi et al., 2016 for a review and Durand et al., 2017).
In addition, molecular phylogenetic analyses have been used
successfully in the investigation of chromosome evolution in
some fish groups as those of the genus Characidium (Pansonato-
Alves et al., 2014) and Triportheus (Yano et al., 2014), and in
Geophagus brasiliensis (Alves-Silva and Dergam, 2015).

Mugil, which presently includes 16 valid species (Eschmeyer
and Fong, 2017), is the most cytogenetically studied genus among
the Mugilidae. Nine species have been investigated to date (see
section “Discussion” and Figure 6). Nonetheless, the number of
species is probably underestimated currently, as recent molecular
data have indicated that there are different species complexes
within this genus. For example, the cosmopolitan M. cephalus
was found to be composed of 15 well supported mitochondrial
lineages (Durand and Borsa, 2015), including the one sampled in
the type-locality (Mediterranean Sea); six of these lineages have
already been cytogenetically analyzed (Rossi et al., 1996, 2016).
However, these lineages lack formal descriptions and species
name attribution.

Very recently, Durand et al. (2017) reported the presence of
two well-supported mitochondrial lineages in the hospe mullet
“Mugil hospes,” a species that, according to Barletta and Dantas
(2016), is distributed in the western Atlantic from Belize to
Brazil and in the eastern Pacific from Mexico to Ecuador.

The first molecular lineage includes sequences from Brazil and
corresponds to the resurrected species Mugil brevirostris, which
is distributed from the northern Brazilian coast (Amapá) to the
southern Brazilian coast (Rio Grande do Sul) (Menezes et al.,
2015); the second lineage is represented by haplotypes collected
in the Gulf of Mexico (Belize/Venezuela) and was named Mugil
sp. R. Samples from the eastern Pacific were not included in these
analyses or in any other molecular study. The karyotype of the
species remains undescribed.

In this research, specimens of M. hospes from Ecuador have
been collected and their morphological characters accurately
analyzed to make sure of the correct species identification.
Cytogenetic and mitochondrial cytochrome c oxidase subunit I
(COI) sequence analyses were performed aiming to (a) verify
whether the original described M. hospes from the Pacific
Ocean corresponds to one of the two lineages identified in the
Atlantic Ocean or represents a third lineage, (b) estimate if
the divergence among lineages is sufficient to attribute them
to different species, (c) identify species-specific chromosome
markers and add new comparative data that allow cytotaxonomic
inferences on Mugilidae karyotype evolution.

MATERIALS AND METHODS

Fourteen specimens of Mugil hospes (four males, four females,
six immature), were collected with a cast net from a reservoir
that provides water to a shrimp pool located at Barbones, El
Oro Province, Ecuador (3◦09′14.0′′ S 79◦53′53.1′′ W). Fishes
were transported to the laboratory in sealed plastic bags (32′)
containing two gallons of water, and the air in the bags was
replaced with pure oxygen. All 14 individuals were used to
prepare cell suspensions. A subsample of eight individuals
was used for molecular and morphological analyses. Voucher
specimens were deposited in the fish collection of the Laboratório
de Biologia e Genética de Peixes (LBP), UNESP, Botucatu (São
Paulo State, Brazil) (collection numbers LBP 23325) and
Universidad Técnica de Machala (UTMACH-174-UTMACH-
182; UTMACH-187; UTMACH-191-UTMACH-194). All
experiments were conducted according to the Ethical Committee
of Instituto de Biociências/UNESP/Botucatu, under protocol
number 1057.

Morphological Analysis
Each fish was measured. Measurements and counts were taken
as described by Menezes et al. (2010). Mouth width and mouth
depth were measured as described by Thomson (1997). Twenty
morphometric characters (Supplementary Table 1) and nine
meristic characters (Supplementary Table 2) were recorded for
each fish.

Molecular Analysis
Genomic DNA was extracted from muscle tissue that was
preserved in 95% ethanol. DNA samples were obtained for eight
specimens (one male, two female, five immature), according to
procedures described by Aljanabi and Martínez (1997). A 655 bp
fragment of the mitochondrial COI was amplified by PCR and
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sequenced using primers and protocols reported by Nirchio
et al. (2017). DNA sequences were aligned using the software
Clustal X (Thompson et al., 1997) and deposited in GenBank
(Accession numbers: KY964500-KY964504). The basic local
alignment search tool (BLAST1) was used to search for similar
sequences to confirm species assignment.

For phylogenetic tree reconstruction, a subset of the COI
sequences of Mugil, previously analyzed by Durand et al. (2017),
was considered. Those sequences that showed greater than 90%
similarity (i.e., the six sequences of M. brevirostris and the seven
sequences of Mugil sp. R) were also included; Agonostomus
monticola (Bancroft, 1834) (JQ060401) was used as an outgroup.

Three types of phylogenetic reconstructions were conducted:
neighbour-joining (NJ), maximum-likelihood (ML) and Bayesian
inference (BI) analyses. NJ and ML analyses (1000 bootstrap
pseudoreplicates) were performed using MEGA7 (Kumar et al.,
2016) and PhyML 3.0 (Guindon et al., 2010), respectively.
Bayesian analyses were carried out as implemented in MrBayes
3.1.2 (Huelsenbeck and Ronquist, 2001). Two independent runs
of four Markov chains, each for 1,000,000 generations were
performed. ModelTest 3.7 (Posada and Crandall, 1998) and
MrModelTest 2.3 (Nylander, 2008) were used to select, according
to the Akaike information criterion, the evolutionary models that
best fit the data set for the ML (GTR+ I+G, with nst= 6, gamma
shape = 4.682, and proportion of invariant sites = 0.637) and
the BI (GTR + I + G) analyses, respectively. Genetic distances
were calculated with MEGA7 using the Kimura-2-parameters
substitution model (Kimura, 1980).

Cytogenetic Analysis
Each fish received an intra-abdominal injection of 0.0125%
colchicine (1.0 ml/100 g body weight) 50 min before being
sacrificed by administering a numbing overdose of benzocaine
(250 mg/L) as recommended by the Guidelines for the Euthanasia
of Animals of the American Veterinary Medical Association
(AVMA, 2013). Kidney cells were suspended, and chromosomes
were prepared by following the conventional air-drying method,
as described by Nirchio and Oliveira (2006). Classical staining
techniques (Giemsa, Ag-staining, C-banding) and fluorescence
in situ hybridization (FISH) were used to map ribosomal gene
clusters (5S rDNA and 18S rDNA) and U1 snRNA gene clusters
(U1 snRNA is a non-coding RNA that forms part of the
spliceosome) (Nilsen, 2003). Telomeric probes were also applied.
For the conventional karyotype, slides were stained for 20 min
with 10% Giemsa in phosphate buffer at pH 6.88. Active nucleolus
organizer regions (NORs) were revealed by silver (Ag) staining as
described by Howell and Black (1980); this was performed after
Giemsa staining (Rábová et al., 2015). C-banding was performed
following the method of Sumner (1972).

The 5S rDNA, 18S rDNA, U1 snRNA genes and telomeric
repeats were mapped onto chromosomes by FISH using the
method described by Pinkel et al. (1986). Sequences of 5S
rDNA, 18S rDNA, U1 snDNA and telomeric repeats were
obtained by polymerase chain reaction (PCR) from the genome
of Hypsolebias flagellatus and used as probes. The primers used

1https://blast.ncbi.nlm.nih.gov/Blast.cgi

for amplification were 5SA (5′-TCA ACC AAC CAC AAA
GAC ATT GGC AC-3′) and 5SB (5′-TAG ACT TCT GGG
TGG CCA AAG GAA TCA-3′) (Pendás et al., 1995), 18S6F
(5′-CTC TTT CGA GGC CCT GTA AT-3′) and 18S6R (5′-CAG
CTT TGC AAC CAT ACT CC-3′) (Utsunomia et al., 2016),
U1F (5′-GCA GTC GAG ATT CCC ACA TT-3′) and U1R
(5′-CTT ACC TGG CAG GGG AGA TA-3′) (Silva et al., 2015)
and (TTAGGG)5 and (CCCTAA)5 (Ijdo et al., 1991). The 5S
rDNA and telomeric probes were labeled with biotin-16-dUTP
(2′-deoxyuridine 5′-triphosphate), and the 18S rDNA and U1
snRNA gene probes were labeled by including digoxigenin-
11-dUTP in the PCR. Hybridization was detected with
fluorescein-conjugated avidin (FITC, Sigma–Aldrich2) and anti-
digoxigenin-rhodamine conjugate (Roche Applied Science3),
respectively. Chromosomes were counterstained with 4,6-
diamidino-2-phenylindole (DAPI), which was included in the
Vectashield mounting medium (Vector Laboratories4).

Conventionally stained metaphase cells were photographed
using a Motic B400, equipped with a Moticam 5000C digital
camera using Motic Images Plus 2.0 ML software. FISH
images were captured with an Olympus BX61 photomicroscope
equipped with a DP70 digital camera using Image-Pro plus 6.0
software (Media Cybernetics). Images were merged and edited
for optimization of brightness and contrast using Photoshop
(Adobe Systems, Inc.) Version 2015.0.0.

RESULTS

Meristic and Morphometric Characters
The fresh specimens were gray on the dorsal side and white/silver
on the ventral side. The pelvic fins had a yellowish tone, and the
base of each pectoral fin had a visible dark spot. The dorsal fins
and caudal fins were dusky. The distal tips of the anterior rays
of the second dorsal fin were slightly darker. The pelvic and anal
fins were pale. The body was elongated, with a slightly pointed
snout (see Figure 1). The origin of the first dorsal fin was midway
between the tip of the snout and the base of the caudal fin.
The second dorsal fin and anal fin were profusely covered with
scales. One row of small teeth was visible on the upper and lower
lips (viewed under the microscope). There were adipose eyelids
and widely separated spiny-rayed dorsal fins with four spines
in the first dorsal fin and one spine plus eight soft rays in the
second dorsal fin (small specimen with nine soft rays). Pelvic fins
were sub-abdominal with one spine and 5–6 branched soft rays
(commonly I+5). Pectoral fins were long, reaching the level of
the origin of the first dorsal fin or extending just beyond, with two
spines (the first spine very small) and 11–13 soft rays (commonly
12 rays). The anal fin had three spines and nine soft rays (first
spine very short, and hidden by overlying scales). There was a
large pectoral axillary scale, with 37–38 scales in longitudinal
series (commonly 38), 11–14 scales in an oblique row extending
to the origin of the pelvic fin (commonly 13) and 13 scales in a

2www.sigma-aldrich.com
3https://lifescience.roche.com/
4https://vectorlabs.com/
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FIGURE 1 | Specimen of Mugil hospes from Ecuador.

transversal series, as well as 17–22 scales in a circum-peduncular
series (commonly 19) (Supplementary Table 2).

Molecular Analysis
BLAST was used to show that COI nucleotide sequences from
GenBank have 92–93% similarity with specimens originally
identified as Mugil hospes, and with M. trichodon and Mugil
sp., which were all collected in the Atlantic Ocean (from Brazil
and Belize). Similarity values with other Mugil species were all
below 90%.

The phylogenetic tree obtained by NJ, ML
(lnL = −3276.75382), and BI (lnL = −3986.503923) analyses
(Figure 2) shows three well-supported lineages of “M. hospes.”
The first two correspond to the M. brevirostris (Brazil) and
Mugil sp. R (Belize and Venezuela) lineages identified by Durand
et al. (2017), whereas the third, referred to hereafter as Mugil
hospes (see Discussion), includes all the sequences from Ecuador
obtained in this study (Figure 2). The genetic distance is 0.077
between M. hospes/M. brevirostris and between M. hospes/Mugil
sp. R, and 0.073 between M. brevirostris/Mugil sp. R.

Cytogenetic Analysis
All individuals showed a diploid number of 2n = 48
and a karyotype composed entirely of uniformly decreasing
acrocentric chromosomes. Thus, the fundamental arm number
(NF) was 48. Only two pairs of homologous chromosomes
can be identified with certainty: pair 5, due to a clear
interstitial secondary constriction, and pair 24, which is
distinctly small (Figure 3A). Sequential Giemsa-silver (Ag)
nitrate staining enabled the identification of two actively
transcribing NORs, interstitially located on the secondary
constriction of chromosome pair 5 (Figures 3B,C). C-banding
showed that constitutive heterochromatin is restricted to
the centromeric regions of all chromosomes, and there is
a pericentromeric heterochromatin block on the secondary
constriction of chromosome pair 5 (Figure 3D).

Double FISH experiments using 5S and 18S rDNA as
probes revealed two positive sites detected for each probe
(Figure 4A), located on different chromosome pairs. The 18S
rDNA positive sites correspond to the AgNO3 sites on the
secondary constriction of chromosome pair 5. The 5S rDNA

FIGURE 2 | Neighbor-joining tree based on COI sequences. At each node
bootstrap values (NJ and ML) and posterior probabilities (BI) are shown. Black
dots at the nodes indicate bootstrap values > 70% (NJ and ML) and posterior
probabilities > 0.9 (BI). Stars indicate sequences obtained in this study; the
remaining sequences are from Durand et al. (2017).
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FIGURE 3 | (A) Conventional Giemsa-stained karyotype of Mugil hospes. Sequential Giemsa (B) and AgNO3-staining (C) of the metaphase plate (inset shows
NOR-bearing chromosomes); arrows indicate the NOR-bearing chromosome. (D) C-banded chromosomes; arrows indicate positive heterochromatic blocks on the
interstitial secondary constriction of chromosome pair 5.

probes hybridized interstitially on a pair of medium-sized
chromosomes. Double FISH using the U1 snDNA and 5S rDNA
probes revealed positive U1 snDNA signals on the telomeric
region of a pair of medium-sized chromosomes distinct from
the 5S-rDNA-bearing chromosome pair (Figure 4B). When
chromosomes treated by double FISH were sorted by decreasing
size, it was possible to assign the 5S rDNA sites to pair 15 and
the U1 snDNA signals to pair 10 (Figure 5). Telomeric repeats
were located at both ends of each chromosome, although signal
intensities varied between chromosomes (Figure 4C).

DISCUSSION

Meristic and morphometric data of samples from Ecuador agree
with the original description of M. hospes (Jordan and Culver
1895 in Jordan, 1895): this species has pectoral fins whose tips
reach and extend slightly past the vertical line passing through the
origin of the first dorsal fin (with four spines). This morphological
character is shared with M. brevirostris, which inhabits the
opposite side of the Americas (i.e., the Atlantic coast).

Sequence analysis showed that samples of the hospe mullet
from Ecuador are genetically very different from those collected
in the Atlantic Ocean, all of which were originally identified
with the same name M. hospes. Thus, in addition to the two
lineages identified by Durand et al. (2017) in the Atlantic
Ocean, M. brevirostris and Mugil sp. R, a third lineage is
present in the Pacific Ocean. The genetic distances between
the Pacific and the two Atlantic lineages are higher than the
COI 2% threshold value that discriminates different species
(Ward, 2009), and in the phylogenetic reconstruction, the three
species form a monophyletic and well-supported clade. Cryptic

species are defined as distinct evolutionary lineages not detectable
with traditional taxonomic approaches, due to the absence of
morphological differences (Avise, 2000; Mallet, 2010). In the last
decade, barcoding methods based on COI sequences have made
possible their identification in several marine and freshwater fish
species (Ward et al., 2008; Lara et al., 2010; Puckridge et al.,
2013; Mateussi et al., 2017; Okamoto et al., 2017; Ramirez et al.,
2017; Shimabukuro-Dias et al., 2017). In Mugilidae evidences of
cryptic species were inferred from mitochondrial tree topology,
independent data from nuclear markers, and on the base of the
geographic distribution of sister lineages (Durand and Borsa,
2015). Our results indicate that the genetic distances between
the different hospe mullet are comparable to those reported
among species within both the M. cephalus and M. curema species
complexes (Durand et al., 2017), and the three lineages inhabits
different geographic areas. Thus, we hypothesize that besides
the Mugil cephalus and Mugil curema species complexes, there
is an additional putative one, which should be identified as the
M. hospes species complex; the name M. hospes should be kept
by the Pacific samples, being Mazatlán (in the eastern Pacific) the
species type-locality.

Cytogenetic analysis shows that the 48 acrocentric
chromosome karyotype detected in M. hospes is consistent
with the generally available data on diploid chromosome number
and karyotype structure in Mugilidae (Sola et al., 2007; Rossi
et al., 2016). This confirms that the only exception is represented
by the mullets belonging to the Mugil curema species complex
(Nirchio et al., 2017).

Apart from the number of chromosomes, many
microstructural changes are evident looking at the variability
in the locations of ribosomal genes in Mugil. For example, 5S
rDNA cistrons are always localized to an interstitial position,
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FIGURE 4 | Somatic metaphase chromosomes of Mugil hospes assayed by FISH and counterstained with DAPI: (A) 5S rDNA (arrows) and 18S rDNA (arrowheads);
(B) U1 snRNA (asterisks), 5S rDNA (arrows), chromosome pair 5 (circle), and (C) telomeric repeats. Enlargement of selected samples of chromosome pairs after
DAPI staining (left) and FISH (right) are shown in the insets: (A) chromosome pairs 5 and 15, with probes showing 18S rDNA (above) and 5S rDNA (below) positive
sites; (B) chromosome pair 5 (above), chromosome pair 10 (center) showing U1 snDNA positive sites and chromosome pair 15 (below) showing 5S rDNA.

FIGURE 5 | FISH karyotype. Interstitial secondary constriction corresponding to NOR (chromosome pair 5); 5S rDNA (chromosome pair 15) and U1 snDNA
(chromosome pair 10) positive sites are evident.

although they are on different chromosomes in different species
(Figure 6). The 18S rDNA cistrons seems to be more variable
and can be found in the telomeric or interstitial regions of a
long chromosome arm, or even on the short arms of different
chromosomes. The variability in the localization of the major
ribosomal genes could be attributable to their association
with heterochromatinas that is observed in Mugil cephalus,
M. margaritae (formerly M. curema), M. rubrioculus, M. curema,
M. liza, M. trichodon, M. incilis, Mugil sp. O (Rossi et al., 1996,
2005; Nirchio et al., 2005a,b, 2007, 2017; Hett et al., 2011), and
M. hospes (present study). Heterochromatin is known to evolve
rapidly, and its composition, that includes highly repetitive
simple sequences like satellite DNA and transposable elements,
is often different even between closely related species. This
characteristic might promote rearrangements of the associated
genes and might play an important role in reproductive isolation
between sister species (Hughes and Hawley, 2009).

Cytogenetic mapping of U1 snDNA probes in M. hospes
showed the presence of a single U1 gene cluster, located in
the terminal position of a chromosomal pair different from the
18S rDNA and 5S bearing chromosomes (Figures 4B, 5). There

are no data available on the chromosome mapping of these
sequences in other Mugilidae; thus, it is not possible, at this
stage, to compare our results with those of other species in the
family. However, the mapping of these sequences, combined
with other repetitive sequences in other Mugil, might allow the
identification of other chromosome re-arrangement. The analysis
of chromosome localization of these sequences is restricted to a
few other fish species. In Merluccius merluccius (Merlucciidae),
multiple interstitial U1 sites are present (García-Souto et al.,
2015). In 19 species of cichlids (Cabral-de-Mello et al., 2012),
these sites could be either interstitial or terminal on a single
st/a chromosome pair, and represent good chromosomal markers
that allow the detection of many microstructural chromosomal
rearrangements. On the contrary, in five species of Astyanax
(Characidae), there is a conserved pattern in the number of U1
sites per genome, and these sequences are frequently associated
with 5S rDNA sequences (Silva et al., 2015).

Telomeric DNA repeat sequences were found at the very
ends of chromosomes, as observed in 15 different orders of
teleosts (Ocalewicz, 2013). In mugilids, telomeric repeats have
been mapped in nine species (Gornung et al., 2004; Rossi
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FIGURE 6 | Idiograms of the karyotypes observed in Mugil species. Re-drawn and updated from Rossi et al. (2016). Black circles: major ribosomal gene locations.
Yellow circles: minor ribosomal gene locations.

et al., 2005; Nirchio et al., 2017) and were found also to
be interspersed in NORs. Signal intensity variability between
chromosomes, as observed in M. hospes, has been previously
reported in other fishes (Rocco et al., 2002; Ocalewicz and
Dobosz, 2009; Pomianowski et al., 2012), including Mugil species
such as M. cephalus (Gornung et al., 2004), M. liza and
M. margaritae (Rossi et al., 2005), and Mugil sp. O (Nirchio
et al., 2017). This variability is probably due to differing copy
numbers of these sequences in the different sites (Lansdorp et al.,
1996).

CONCLUSION

The data presented here confirm that a complex dynamic
has played in the karyotype evolution of Mugil, and they

reiterate the usefulness of cytogenetic and molecular data in the
reconstruction of relationships among taxa within Mugilidae.
Species of this family are usually characterized by morphological
features that are “insufficient to describe its actual species
diversity” (Durand and Borsa, 2015). The combined use of
morphological, molecular and cytogenetic analysis is necessary in
these fishes to avoid species misidentification and to reconcile the
confused picture obtained by morphology-based taxonomy with
molecular-based taxonomy. In the case of the M. hospes species
complex, Mugil sp. R, which is distributed in the Caribbean Sea,
still deserves a formal morphological description and specific
name attribution. This species, along with the Brazilian species
M. brevirostris, also requires a karyotype description. Thus, at
this stage, it is not possible to determine whether this complex
is characterized by karyotypes that differ in the total number
and morphology of chromosomes, like the M. curema species

Frontiers in Genetics | www.frontiersin.org 7 February 2018 | Volume 9 | Article 17

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00017 February 2, 2018 Time: 14:39 # 8

Nirchio et al. Mugil hospes Species Complex

complex (Nirchio et al., 2017), or whether it is characterized by
karyotype homogeneity, like M. cephalus species complex (Rossi
et al., 1996).
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