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GROUND STATES OF A TWO PHASE MODEL WITH CROSS
AND SELF ATTRACTIVE INTERACTIONS⇤

M. CICALESE† , L. DE LUCA† , M. NOVAGA‡ , AND M. PONSIGLIONE§

Abstract. We consider a variational model for two interacting species (or phases), subject to
cross and self attractive forces. We show existence and several qualitative properties of minimizers.
Depending on the strengths of the forces, di↵erent behaviors are possible: phase mixing or phase
separation with nested or disjoint phases. In the case of Coulomb interaction forces, we characterize
the ground state configurations.
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Introduction. Models of two or more interacting species find applications in
several fields of science, such as physics, chemistry, and biology. To cite a few exam-
ples one may think about the formation of bacterial colonies in biology [24], the self
assembly of nano-particles in physical chemistry [25], and the problem of two species
group consensus [14] as well as that of pedestrian dynamics [11]. The basic feature
of all these models is the presence of competing forces aiming to drive two phases
toward di↵erent shapes.

An interesting example of this phenomenon has been recently reported in [25].
There, it has been observed that, during the assembly process of two nano-scaled
polyprotic macroions in a dilute aqueous solution, the system may be driven toward
phase segregation as opposed to phase mixtures via a complex self recognition mech-
anism involving multiple scales optimization.

Far from thinking to propose realistic models for these complex mechanisms, we
aim at reproducing such limit behaviors while keeping the number of parameters as
small as possible. We propose and study a toy model for two interacting phases
subject to self and cross attractive forces depending only on the distance between
particles. Such a model may be introduced as follows. Two phases, represented
by two subsets of RN , say, E

1

and E
2

with E
1

\ E
2

= ;, with masses m
1

and
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TWO PHASES WITH CROSS AND SELF ATTRACTIVE FORCES 3413

m
2

, respectively, interact both with themselves and with the other phase trying to
minimize an energy of the form

(0.1) F(E
1

, E
2

) =
2X

i,j=1

JK
ij

(Ei, Ej).

Here

(0.2) JK
ij

(Ei, Ej) :=

Z

RN

Z

RN

�E
i

(x)�E
j

(y)Kij(x� y) dx dy

is a nonlocal interaction energy with interaction potential Kij : RN ! R. Energy
functionals of this type have been considered by many authors in the context of
nonlinear aggregation-di↵usion problems, modeling biological swarming, and crowd
congestion (see [33, 7, 9, 13, 27, 29] and the references therein).

In the present paper we initiate an analysis of the ground states of the energy
functional F assuming that for i, j 2 {1, 2} the interaction forces, still having di↵erent
intensities, obey the same nonlocal law. More precisely, we consider K 2 L1

loc

(RN ;R)
a nonincreasing radially symmetric interaction potential and restrict our analysis to
those Kij = cijK. Our scope is studying the solutions of

(0.3) min
E1\E2=;
|E

i

|=m
i

c
11

JK(E
1

, E
1

) + c
22

JK(E
2

, E
2

) + (c
12

+ c
21

) JK(E
1

, E
2

).

Moreover, we assume that the interactions are attractive; more precisely, we deal
with coe�cients ci,j  0. Without this assumption, di↵erent phenomena may appear,
related to loss of mass at infinity. As a consequence, the minimization problem is in
general ill-posed and requires specific care. One possibility would consist in adding
some confinement conditions. In [3], the authors propose a di↵erent kind of problem:
they focus on the case c

11

= c
22

= 1, c
12

+c
21

= �2, fix E
1

, and study the minimization
of (0.1) as a function of E

2

. They prove that such a problem admits a solution if
and only if m

2

 m
1

. Similar threshold phenomena appear in energetic models for
di-block copolymers, where a confining perimeter term and a repulsive force compete
[2, 12, 15, 17, 19, 20, 26] as well as in attractive/repulsive Lennard-Jones-type models
(see, e.g., [4, 5, 8, 10, 21, 22, 32] and the references therein).

Let us go back to the case of attractive interactions cij  0 considered in this
paper. We will see that, also in this case, the minimization problem in (0.3) is
actually ill-posed. Indeed, in Proposition 2.8 and Theorem 3.9, we will show that
if |c

11

|, |c
22

| are small enough, any minimizing sequence mixes the two phases. We
are then led to consider a relaxed version of the problem above where the notion of
phase is weakened to allow local mixing. Now the phases are described in terms of
their densities f

1

, f
2

2 L1(RN ; [0, 1]), so that
R
RN

fi(x) dx = mi and the functional
becomes

(0.4) EK(f
1

, f
2

) = c
11

JK(f
1

, f
1

) + c
22

JK(f
2

, f
2

) + (c
12

+ c
21

) JK(f
1

, f
2

),

where JK(fi, fj) has the same form of (0.2) with K and fi in place of Kij and �E
i

,
respectively.

For all masses mi > 0 and all cij  0, we prove existence of minimizers of EK
under the constraint f

1

+ f
2

 1 (Theorem 1.9). Such a constraint is inherited by
the original problem, naturally arising from the relaxation procedure, but it also has
a clear physical meaning. Indeed, if we interpret the densities fi as proportional to
the number of particles per unit volume on a certain mesoscopic ball of a lattice gas
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3414 CICALESE, DE LUCA, NOVAGA, AND PONSIGLIONE

model, the condition reflects the fact that two particles are not allowed to occupy the
same elementary cell. Note that for a slightly di↵erent problem in the one-dimensional
case, a similar existence result has appeared in [18].

In the case c
12

= c
21

= 0, our problem reduces to two independent one-phase
problems given by

min
f
i

2L1
(RN

;[0,1])R
RN f

i

(x) dx=m
i

cii JK(fi, fi) for i = 1, 2.

If cii < 0, it is well known that the minimizer above is (the characteristic function of)
a ball having mass equal to mi (see [31, 16] or Lemma 1.6). Therefore, we focus on the
case c

12

+ c
21

< 0. Clearly, by the scaling and symmetry properties of the energy, it
is not restrictive to assume c

12

= c
21

= �1. With this interaction term in the energy,
the geometry of the phases becomes a more delicate issue and it drastically depends
on the strength of the interaction constants c

11

and c
22

. On one hand, if the cross
interaction forces prevail, phase mixing occurs, that is, a new phase appears which
is a combination of the two pure phases. On the other hand, if one of the two self
interaction forces is su�ciently strong, phase segregation occurs, with the presence
of two pure phases which can be nested or adjacent, depending on the strength of
the other force. The latter behavior is in a certain sense reminiscent of clusters of
two phases in an infinite ambient phase, minimizing an inhomogeneous perimeter
functional with surface tension depending on the two touching phases [1]. In this
case the mixing of phases is impossible but, depending on the strength of the surface
tensions, minimizers may exhibit disjoint or nested phases [28].

Our analysis focuses also on qualitative properties of solutions. In some cases,
we have determined the explicit geometry of the phases of the minimizers. Such an
analysis is almost complete for the Coulomb interaction kernel.

We first describe the case of general kernels (see Figure 1). First, consider the case
c
11

+c
22

> �2, which we will call the weakly attractive case. In this case, we explicitly
characterize the shape of minimizers only if K is positive definite, �1 < c

11

 0, �1 <
c
22

 0 and (c
11

+1)m
1

= (c
22

+1)m
2

. If this occurs, the unique minimizer is given by
(f

1

, f
2

) = ( m1

m1+m2
�B ,

m2

m1+m2
�B), where B is a ball with |B| = m

1

+m
2

(Proposition
2.8). In all the remaining weakly attractive cases we cannot provide the explicit shape
of the minimizers. In particular, if (c

11

+ 1)(c
22

+ 1)  0 and (c
11

, c
22

) 6= (�1,�1)
(notice that in these cases the condition (c

11

+1)m
1

= (c
22

+1)m
2

cannot be satisfied),
we do not know the shape of the minimizers.

The strongly attractive case c
11

+ c
22

 �2 (Theorem 2.3) needs to be classified
into the four subcases listed below. If c

11

= c
22

= �1, the problem is extremely
degenerate, i.e., the minimizers are given by all the pairs (f

1

, f
2

), with f
1

+ f
2

= �B .
If c

11

= �1 and c
22

< �1, then the minimizers of the problem are the pairs (f
1

, f
2

),
where f

1

+f
2

= �B and f
2

is (the characteristic function of) a ball contained in B (not
necessarily concentric). If c

22

< �1 < c
11

(with c
11

+ c
22

 �2), then the minimizer
is unique and it is given by a ball and a concentric annulus around it. Finally, for
c
11

, c
22

< �1, the minimizer is fully characterized only in the one-dimensional case
(Proposition 2.4) and it is given by the two tangent balls (namely, segments).

As for the Coulomb interactions (see Figure 2), we have fully characterized the
minimizers also in the weakly attractive case.

We have proven (Theorem 3.9, Corollaries 3.5 and 3.12) that if �1 < c
11

, c
22

< 0
the minimizer is given by an interior ball in which f

1

and f
2

mix each other with spe-
cific volume fractions, according to their self attraction coe�cients, and a concentric
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TWO PHASES WITH CROSS AND SELF ATTRACTIVE FORCES 3415

�1 < c11  0

c11 = �1

c11 < �1

�1 < c22  0 c22 = �1 c22 < �1

?

?

if (c11 + 1)m1 = (c22 + 1)m2 if c11 + c22  �2

if c11 + c22  �2

general K

if N = 1

m1

m2

and K positive definite

Fig. 1. The phase f
1

is the black one, whereas the phase f
2

is white. The gray region represents
the mixing of the two phases. The gradational shaded ball in the central box represents the extremely
degenerate character of minimizers for c

11

= c
22

= �1.

�1 < c11  0

c11 = �1

c11 < �1

�1 < c22  0 c22 = �1 c22 < �1

if N = 1

m1

m2

K Coulomb

Fig. 2. The phase f
1

is the black one, and the phase f
2

is white. The gray region represents
the mixing of the two phases.

annulus where only the remaining homogeneous phase is present. If c
22

 �1 < c
11

,
then the minimizer is unique and it is given by a ball and a concentric annulus around
it. In this respect, for c

22

 �1 < c
11

the solution is the same in the weakly and
strongly attractive cases.

Clearly, in the strongly attractive case the analysis done for general kernels ap-
plies in particular to the case of Coulomb interactions. For c

11

, c
22

< �1, we partially
extend the one-dimensional result proven in the case of general kernels by showing
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3416 CICALESE, DE LUCA, NOVAGA, AND PONSIGLIONE

that for Coulombic kernels in any dimension, the two phases do not mix each other
(Proposition 3.2). The determination of their shapes seems to be a challenging prob-
lem that could be explored through numerical methods. Switching the roles of c

11

,
c
22

, f
1

, f
2

in the discussion above, the description of minimizers extends to all the
other cases not explicitly mentioned.

We remark that the analysis for the Coulomb interaction kernel is much richer,
since we can exploit methods and tools of potential theory such as maximum princi-
ples. The characterization of minimizers in the weakly attractive case reduces to the
case c

11

= c
22

= 0, considered in Theorem 3.9. Even if the two phases interact only
through a cross attractive force, this case turns out to be nontrivial. The strategy to
tackle this problem is based on a rearrangement argument that resembles the Talenti
inequality. This is the content of Lemma 3.8, which establishes that given a charge
configuration f which generates a potential V , one can rearrange the masses on every
superlevel of V , so that the new potential turns out to be greater than the radially
symmetric rearrangement V ⇤ of V .

The plan of the paper is the following. In section 1 we introduce the nonlocal
model, we prove existence of minimizers, and we show that they have compact support.
In section 2 we show some qualitative properties of minimizers and we characterize
them explicitly in some strongly attractive cases. Eventually, in section 3 we study
in detail the case of Coulomb interactions.

1. The variational problem. In this section we state our variational problem,
proving existence and some qualitative properties of the minimizers.

1.1. Description of the model. We first introduce a functional modeling the
interaction between two non-self-repulsive and mutually attractive species.

Let N 2 N and let K : RN ! R be a nonincreasing radially symmetric interaction
potential, with K 2 L1

loc

(RN ). For any pair of measurable sets (A,B) with finite
measure, we set

(1.1) JK(A,B) :=

Z

A

Z

B

K(x� y) dx dy

and we notice that, by the assumptions on K, the functional JK is well defined and
takes values in R [ {�1}.

Given cij  0 for i, j = 1, 2, for any pair of measurable sets (E
1

, E
2

), we set

FK(E
1

, E
2

) := c
11

JK(E
1

, E
1

) + c
22

JK(E
2

, E
2

) + (c
12

+ c
21

) JK(E
1

, E
2

).

Here E
1

and E
2

represent two species, c
11

, c
22

the self interaction and c
12

+ c
21

the
cross interaction coe�cients. For any fixed m

1

,m
2

> 0, we are interested in studying
the problem

(1.2) min
E1\E2=;
|E

i

|=m
i

FK(E
1

, E
2

).

As mentioned in the introduction, for c
12

+ c
21

= 0 the problem decouples into
two independent minimization problems, one for each phase. These are of the form

min {�JK(E,E) : |E| = m} .
By the Riesz inequality [31] (see Lemma 1.6), such a one-phase problem is well known
to be solved by a ball [16]. As a consequence we focus on the case c

12

+ c
21

< 0
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TWO PHASES WITH CROSS AND SELF ATTRACTIVE FORCES 3417

and furthermore, without loss of generality, we set c
12

+ c
21

= �2. From Proposition
2.8 and Theorem 3.9, it will follow that if |c

11

|, |c
22

| are small enough, the minimum
problem in (1.2) does not admit in general a minimizer. Roughly speaking, the reason
is that, in some cases, any minimizing sequence wants to mix the two phases. As a
result, we are led to consider a relaxed problem. More precisely, according to (1.1),
for any f

1

, f
2

2 L1(RN ;R+) we set

JK(f
1

, f
2

) :=

Z

RN

Z

RN

f
1

(x) f
2

(y)K(x� y) dx dy.

Then, we consider the functional Ec11,c22
K : L1(RN ;R+) ⇥ L1(RN ;R+) ! R [ {+1}

defined by

(1.3) Ec11,c22
K (f

1

, f
2

) = c
11

JK(f
1

, f
1

) + c
22

JK(f
2

, f
2

)� 2 JK(f
1

, f
2

).

We introduce the class of admissible densities Am1,m2 defined by

(1.4) Am1,m2 :=

⇢
(f

1

, f
2

) 2 L1(RN ;R+)⇥ L1(RN ;R+) :

Z

RN

fi(x) dx = mi for i = 1, 2, f
1

(x) + f
2

(x)  1 for a.e. x 2 RN

�
.

It is easy to see that for any (f
1

, f
2

) 2 Am1,m2

Ec11,c22
K (f

1

, f
2

) = inf lim inf
n!1

FK(En
1

, En
2

),

where the infimum is taken among all sequences {En
i } (i = 1, 2) with |En

i | = mi and
such that �En

i

converge tightly to fi. We also observe that if the kernel K is bounded

at infinity, then the energy is continuous with respect to tight convergence: if fn
i

⇤
* fi

and kfn
i k1 ! kfik1 for i = 1, 2, then Ec11,c22

K (fn
1

, fn
2

) ! Ec11,c22
K (f

1

, f
2

).
For i = 1, 2, set Vi := fi ⇤K, so that we can write

Ec11,c22
K (f

1

, f
2

) = c
11

Z

RN

f
1

(x)V
1

(x) dx+ c
22

Z

RN

f
2

(x)V
2

(x) dx(1.5)

� 2

Z

RN

f
1

(x)V
2

(x) dx

= c
11

Z

RN

f
1

(x)V
1

(x) dx+ c
22

Z

RN

f
2

(x)V
2

(x) dx

� 2

Z

RN

f
2

(x)V
1

(x) dx.

We now recall the definitions of the main classes of kernels we will focus on. We say
that the kernel K is positive definite if

JK(',') � 0 8' 2 L1(RN ) and(1.6)

JK(',') = 0 if and only if ' = 0 a.e. in RN .

We notice that if K is positive definite, locally integrable, radially symmetric, and
nonincreasing, then it can be easily seen that K � 0 a.e.
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We denote by KC
N

the Coulomb kernel in RN , defined by

(1.7) KC
N

(x) :=

8
>>>>>>>><

>>>>>>>>:

�1

2
|x| for N = 1,

� 1

2⇡
log |x| for N = 2,

1

(N � 2)!N

1

|x|N�2

for N � 3,

where !N is the N -dimensional measure of the unitary ball in RN . By definition,
��KC

N

= �
0

for any N so that ��Vi(x) = fi(x). In the following remark we list
some properties of the Coulomb kernels that will be useful in the rest of the paper.

Remark 1.1. By [23, Theorem 1.15] KC
N

is positive definite for N � 3 but not
for N = 1, 2. Nevertheless, by [23, Theorem 1.16], for any ' 2 L1(R2) with compact
support and

R
R2 '(x) dx = 0, we have

JK
C2
(',') � 0,

where equality holds true if and only if '(x) = 0 for a.e. x 2 R2. Finally, it is easy to
see that the same result holds true also for KC1

.

1.2. First and second variations. For any given (f
1

, f
2

) 2 Am1,m2 set

(1.8) Gi := {x 2 RN : 0 < fi(x) < 1}, Fi := {x 2 RN : fi(x) = 1}, i = 1, 2.

Moreover, we set

(1.9) S := {x 2 RN : f
1

(x) + f
2

(x) = 1}.

Lemma 1.2 (first variation). Let (f
1

, f
2

) be a minimizer of Ec11,c22
K in Am1,m2 .

Let i, j 2 {1, 2} with i 6= j. For any 'i, 2 L1(RN ;R+) with 'i = 0 a.e. in RN \
(Gi [ Fi),  = 0 a.e. in S, and

R
RN

'i(x) dx =
R
RN

 (x) dx, we have

(1.10)

Z

RN

( (x)� 'i(x))(ciiVi(x)� Vj(x)) dx � 0.

As a consequence,

(1.11) ciiVi � Vj = �i a.e. in Gi \ S

for some constant �i 2 R.
Proof. To simplify notation we prove the claim for i = 1 and j = 2. The proof

of the other case can be obtained by switching f
1

with f
2

and c
11

with c
22

. Without
loss of generality, we assume '

1

, 2 L1(RN ;R+). For any " > 0, we set

A" := {x 2 G
1

[ F
1

: " < f
1

(x)  1}, B" := {x 2 RN : f
1

(x) + f
2

(x) < 1� "}.

It is easy to see that A" % (G
1

[ F
1

), B" % (RN \ S) as "& 0. Set

'"
1

:=

R
RN

'
1

(x) dxR
A"

'
1

(x) dx
· '

1

A",  " :=

R
RN

 (x) dxR
B"

 (x) dx
·  B";
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then k'"
1

� '
1

kL1 ! 0 and k " �  kL1 ! 0. For t > 0 small enough, (f
1

+ t( " �
'"
1

), f
2

) 2 Am1,m2
and, since (f

1

, f
2

) is a minimizer for Ec11,c22
K , we have

0  lim
t!0

Ec11,c22
K (f

1

+ t( " � '"
1

), f
2

)� Ec11,c22
K (f

1

, f
2

)

t

=

Z

RN

2( "(x)� '"
1

(x)) (c
11

V
1

(x)� V
2

(x)) dx.

As "! 0, we get the claim.
Finally, taking '

1

=  ⌘ 0 in RN \ (G
1

\ S) = S \ G
1

we are allowed to switch
the roles of  and '

1

in (1.10), obtaining (1.11).

From now on, given any subset E of RN , we will always assume that E coincides
with the set of the Lebesgue points of its characteristic function. In this way, @E will
be well defined and will always refer to this precise representative of E.

Corollary 1.3. Let (f
1

, f
2

) be a minimizer of Ec11,c22
K in Am1,m2

. Then, for

any '
1

,'
2

2 L1(RN ;R+) with 'i = 0 a.e. in RN \ (Gi [ Fi) for i = 1, 2, and
R
RN

'
1

(x) dx =
R
RN

'
2

(x) dx, we have

(1.12)

Z

RN

('
2

(x)� '
1

(x))((c
11

+ 1)V
1

(x)� (c
22

+ 1)V
2

(x)) dx � 0.

In particular, for any x
1

2 G
1

[ F
1

and x
2

2 G
2

[ F
2

, we have

(1.13) (c
11

+ 1)V
1

(x
1

)� (c
22

+ 1)V
2

(x
1

)  (c
11

+ 1)V
1

(x
2

)� (c
22

+ 1)V
2

(x
2

).

Moreover,

(1.14) (c
11

+ 1)V
1

� (c
22

+ 1)V
2

= � a.e. in G
1

\G
2

for some constant � 2 R.
Proof. The proof of (1.12) follows along the lines of that of Lemma 1.2. For

the sake of completeness we include here the details. Without loss of generality, we
assume '

1

, '
2

2 L1(RN ;R+). For any " > 0, we set

A"
1

:= {x 2 G
1

[ F
1

: " < f
1

(x)  1}, A"
2

:= {x 2 G
2

[ F
2

: " < f
2

(x)  1}.
It is easy to see that A"

i % (Gi [ Fi) as "& 0 (for any i = 1, 2). Set

'"
i :=

R
RN

'i(x) dxR
A"

i

'i(x) dx
· 'i A"

i (i = 1, 2);

then k'"
i � 'ikL1 ! 0 for i = 1, 2. For t > 0 small enough, (f

1

+ t('"
2

� '"
1

), f
2

�
t('"

2

� '"
1

)) 2 Am1,m2 and, since (f
1

, f
2

) is a minimizer for Ec11,c22
K , we have

0  lim
t!0

Ec11,c22
K (f

1

+ t('"
2

� '"
1

), f
2

� t('"
2

� '"
1

))� Ec11,c22
K (f

1

, f
2

)

t

=

Z

RN

2('"
2

(x)� '"
1

(x)) ((c
11

+ 1)V
1

(x)� (c
22

+ 1)V
2

(x)) dx.

As "! 0, we get (1.12). Finally, taking '
1

,'
2

2 L1
c (RN ;R+), with '

1

= '
2

= 0 a.e.
in RN \ (G

1

\G
2

) and
R
RN

'
1

(x) dx =
R
RN

'
2

(x) dx, we have that (1.12) holds true
also switching '

1

with '
2

, whence we get (1.14).
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Using Lemma 1.2 and Corollary 1.3, we prove the following stationarity equations
for the boundaries of the two phases (see also [30, equations (1.2)–(1.4)] for similar
conditions in a related model for triblock copolymers).

Corollary 1.4. Let (f
1

, f
2

) be a minimizer of Ec11,c22
K in Am1,m2 and assume

that fi = �E
i

for some sets Ei ⇢ RN
. Then, the following equalities hold:

c
11

V
1

� V
2

= c
1

on @E
1

\ @E
2

,(1.15)

c
22

V
2

� V
1

= c
2

on @E
2

\ @E
1

,(1.16)

(c
11

+ 1)V
1

� (c
22

+ 1)V
2

= c
1

� c
2

on @E
1

\ @E
2

(1.17)

for some c
1

, c
2

2 R.
Proof. As mentioned above, we assume that the sets Ei coincide with the sets of

the Lebesgue points of their characteristic functions. We start by proving (1.15). Let
⇠, ⌘ 2 @E

1

\ @E
2

and let r⇠, r⌘ > 0 be such that

|Br
⇠

(⇠) \ E
2

| = |Br
⌘

(⌘) \ E
2

| = 0 and |E
1

\Br
⇠

(⇠)| = |Br
⌘

(⌘) \ E
1

|.
Set '

1

:= �E1\B
r

⇠

(⇠) and  := �B
r

⌘

(⌘)\E1
. It is easy to see that '

1

and  satisfy all

the assumptions of Lemma 1.2, and by (1.10) we have immediately
Z

B
r

⌘

(⌘)\E1

(c
11

V
1

(x)� V
2

(x)) dx �
Z

B
r

⇠

(⇠)\E1

(c
11

V
1

(x)� V
2

(x)) dx.

Since V
1

and V
2

are continuous, taking the limit as r⇠, r⌘ ! 0 we get

(1.18) c
11

V
1

(⌘)� V
2

(⌘) � c
11

V
1

(⇠)� V
2

(⇠);

switching the roles of ⇠ and ⌘, we get the equality in (1.18) and hence (1.15) holds
true. The proof of (1.16) is fully analogous and is left to the reader, so it remains to
prove only (1.17). Let ⇠, ⌘ 2 @E

1

\ @E
2

and let r⇠, r⌘ > 0 be such that

|Br
⇠

(⇠) \ E
1

| = |Br
⌘

(⌘) \ E
2

|.
Set '

1

:= �B
r

⇠

(⇠)\E1
and '

2

:= �B
r

⌘

(⌘)\E2
. It is easy to see that '

1

and '
2

satisfy

the assumptions of Corollary 1.3, so by (1.12) we have immediately that
Z

B
r

⌘

(⌘)\E2

((c
11

+ 1)V
1

(x)� (c
22

+ 1)V
2

(x)) dx

�
Z

B
r

⇠

(⇠)\E1

((c
11

+ 1)V
1

(x)� (c
22

+ 1)V
2

(x)) dx.

Taking the limit as r⇠, r⌘ ! 0, we have

(1.19) (c
11

+ 1)V
1

(⌘)� (c
22

+ 1)V
2

(⌘) � (c
11

+ 1)V
1

(⇠)� (c
22

+ 1)V
2

(⇠).

By switching the roles of ⇠ and ⌘, we get the equality in (1.19) and hence

(c
11

+ 1)V
1

� (c
22

+ 1)V
2

= c on @E
1

\ @E
2

for some c 2 R. Finally, since V
1

and V
2

are continuous we obtain that c = c
1

� c
2

and hence (1.17).
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Lemma 1.5 (second variation). Let (f
1

, f
2

) be a minimizer of Ec11,c22
K in Am1,m2

.

Then for any ' 2 L1(RN ;R) with ' = 0 in RN \ (G
1

\G
2

) and
R
RN

' = 0, we have

(1.20) (c
11

+ c
22

+ 2)

Z

RN

Z

RN

K(x� y)'(x)'(y) dx dy � 0.

Proof. Without loss of generality assume that ' 2 L1(RN ;R). It is easy to see
that

Ec11,c22
K (f

1

+ t', f
2

� t') = Ec11,c22
K (f

1

, f
2

)

+ 2 t

Z

RN

'(x) ((c
11

+ 1)V
1

(x)� (c
22

+ 1)V
2

(x)) dx

+ t2(c
11

+ c
22

+ 2)

Z

RN

Z

RN

K(x� y)'(x)'(y) dx dy.

Since (f
1

+ t', f
2

� t') 2 Am1,m2
for t small enough and (f

1

, f
2

) is a minimizer, the
last term in the sum above is nonnegative and hence (1.20) holds true.

1.3. Existence of minimizers. Here we prove that for every c
11

, c
22

 0, the
functional Ec11,c22

K defined in (1.3) admits a minimizer in Am1,m2
.

First, we recall the classical Riesz inequality [31]. To this purpose, for any m > 0
and x

0

2 RN , we denote by Bm(x
0

) the ball centered in x
0

with |Bm(x
0

)| = m
(Bm if x

0

= 0). With a little abuse of notation, for any x
0

2 RN and for any
f 2 L1(RN ), we set Bf (x

0

) := Bkfk
L

1 (x
0

) (Bf := Bkfk
L

1 if x
0

= 0). Moreover, for
every function u 2 L1(RN ;R+) we denote by u⇤ the spherical symmetric nonincreasing
rearrangement of u, satisfying

{u⇤ > t} = Bm
t , where mt := |{u > t}| for all t > 0.(1.21)

Lemma 1.6 (Riesz inequality). Let f, g 2 L1(RN ; [0, 1]) with kfkL1 , kgkL1 > 0.
Then,

Z

RN

Z

RN

f(x) g(y)K(x� y) dx dy 
Z

RN

Z

RN

f⇤(x) g⇤(y)K(x� y) dx dy


Z

RN

Z

RN

�Bf (x)�Bg (y)K(x� y) dx dy,

where the first inequality is in fact an equality if and only if f(·) = f⇤(· � x
0

) and

g(·) = g⇤(· � x
0

) for some x
0

2 RN
, whereas the second inequality holds with the

equality if and only if f⇤ = �Bf and g⇤ = �Bg

.

Moreover, for any m
1

,m
2

> 0, we set

Ic11,c22m1,m2
:= inf

(f1,f2)2A
m1,m2

Ec11,c22
K (f

1

, f
2

)

and we extend this definition to the case of possibly null masses by setting

Ic11,c22m1,m2
:=

8
<

:

min f
i

2L1
(RN

;[0,1])R
RN f

i

(x) dx=m
i

cii JK(fi, fi) if mi > 0 and mj = 0,

0 if m
1

= m
2

= 0.
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3422 CICALESE, DE LUCA, NOVAGA, AND PONSIGLIONE

The following two lemmas state monotonicity and subadditivity properties of the
energy with respect to the masses m

1

, m
2

for nonnegative kernels. Their proofs can
be easily obtained exploiting the fact that the two phases attract each other: adding
masses or moving back masses going to infinity decreases the energy. The details of
the proofs are left to the reader.

Lemma 1.7. Assume that K(x) � 0 for all x 2 RN
. For any m

1

� m̃
1

� 0 and

m
2

� m̃
2

� 0 we have

Ic11,c22m1,m2
 Ic11,c22m̃1,m̃2

.

Moreover, if m
1

, m
2

> 0, equality holds true if and only if mi = m̃i for i = 1, 2.

Lemma 1.8. Assume that K(x) � 0 for all x 2 RN
. Let {ml

1

}, {ml
2

} be two

nonnegative sequences such that 0  m̃i :=
P

l2N ml
i < +1 for i = 1, 2. Then

(1.22)
X

l2N
Ic11,c22
ml

1,m
l

2
� Ic11,c22m̃1,m̃2

.

Moreover, if m̃
1

, m̃
2

> 0, then equality holds true if and only if m̃l
i ⌘ 0 for any l 6= l̄,

for some l̄ 2 N, and for i = 1, 2.

We are now in a position to prove the existence of minimizers of the energy Ec11,c22
K

in Am1,m2 .

Theorem 1.9. Let c
11

, c
22

 0. Then, the functional Ec11,c22
K defined in (1.3)

admits a minimizer in Am1,m2
. More precisely, let {(f

1,n, f2,n)} be a minimizing

sequence. Then, there exists a sequence of translations {⌧n} ⇢ RN
such that (up to

a subsequence) fi,n(· � ⌧n) ! fi tightly for some (f
1

, f
2

) 2 Am1,m2
which minimizes

Ec11,c22
K .

Proof. We distinguish between two cases.
First case: lim|x|!+1 K(x) = �1. For every " > 0 and for every pair of sets

A
1,n, A2,n ⇢ RN such that

Z

A
i,n

fi,n(x) dx � ",

we have dist(A
1,n, A2,n)  C for some C independent of n; otherwise, we would

clearly have �JK(f
1,n, f2,n) ! +1. As a consequence, by the triangular inequality

we deduce that for every pair of sets Ai,n, Bi,n ⇢ RN such that

Z

A
i,n

fi,n(x) dx � ",

Z

B
i,n

fi,n(x) dx � ",

we have dist(Ai,n, Bi,n)  C for some C independent of n. As a result there exists
{⌧n} ⇢ RN such that, up to a subsequence, fi,n(·� ⌧n) tightly converge to some fi in
L1. By the lower semicontinuity of Ec11,c22

K with respect to the tight convergence, we
conclude that (f

1

, f
2

) is a minimizer of Ec11,c22
K in Am1,m2

.
Second case: lim|x|!+1 K(x)+C = 0 for some C 2 R. For simplicity, we assume

that C = 0, since additive constants in the kernel bring only an additive constant
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TWO PHASES WITH CROSS AND SELF ATTRACTIVE FORCES 3423

in the total energy. Set Q
0

:= [0, 1]N , and for every z 2 ZN , let Qz := z + Q
0

and
mz

i,n :=
R
Qz

fi,n(x) dx. For any given " > 0, we set

I",n := {z 2 ZN : mz
i,n  ", i = 1, 2},J",n := {z 2 ZN : max

i
mz

i,n > "},

A"
n :=

[

z2I
",n

Qz,g"i,n := fi,n �A"

n

,

E"
n :=

[

z2J
",n

Qz,f"
i,n := fi,n �E"

n

.

We first prove that

(1.23) JK(g"
1,n, f1,n) + JK(g"

2,n, f2,n) + JK(g"
1,n, f2,n) + JK(f

1,n, g
"
2,n)  r("),

where r(") ! 0 as " ! 0. We show only that JK(g"
1,n, f2,n) < r(") (the other cases

being analogous). For every fixed R 2 N we have

JK(g"
1,n, f2,n) =

X

z2I
",n

X

w2ZN

JK(f
1,n�Qz , f

2,n�Qw)(1.24)

=
X

z2I
",n

,w2ZN

:|z�w|R

JK(f
1,n�Qz , f

2,n�Qw)

+
X

z2I
",n

,w2ZN

:|z�w|>R

JK(f
1,n�Qz , f

2,n�Qw).

Set h(t) :=
R
Bt

K(⇠) d⇠; using the Riesz inequality (see Lemma 1.6), it is easy to see
that

JK(f
1,n�Qz , f

2,n�Qw) 
Z

B
m

w

2,n

dx

Z

B
m

z

1,n
(x)

K(⇠) d⇠  h(mz
1,n)m

w
2,n,

where the last inequality is a consequence of the fact that K is nonincreasing radially
symmetric. We deduce that the first addendum in (1.24) tends to zero as " ! 0 (for
R fixed). Moreover, the second addendum is bounded (uniformly with respect to ")
from above by a function !(R) such that !(R) ! 0 as R ! 1. This completes the
proof of (1.23).

By the mass constraints on fi we have that ]J",n  m1+m2

" . Therefore, up to a

subsequence, we can always write E"
n = [H

"

l=1

J l
",n for some H"  m1+m2

" , where the

sets J l
",n are pairwise disjoint and satisfy

(1) for every l, diam(J l
",n)  M" for some M" 2 R independent of n;

(2) for every l
1

6= l
2

, dist(J l1
",n, J

l2
",n) ! 1 as n ! 1.

Notice that by (1.23) we deduce that, for " small enough, E"
n 6= ; and H" � 1

(otherwise Ic11,c22m1,m2
would be zero). Set f",l

i,n := f"
i,n

S
z2Jl

",n

Qz for i = 1, 2 and for

every l = 1, . . . , H". There exists a translation ⌧l,n such that, up to a subsequence,

f",l
i,n(·�⌧l,n) converge tightly to some f",l

i . By (1.23), recalling that lim|x|!+1 K(x) =
0 and using the continuity of the energy with respect to the tight convergence, we
have

(1.25) lim
n

Ec11,c22
K (f

1,n, f2,n) � lim sup
n

Ec11,c22
K (f"

1,n, f
"
2,n)� r(")

= lim sup
n

H
"X

l=1

Ec11,c22
K (f",l

1,n, f
",l
2,n)� r(") �

H
"X

l=1

Ec11,c22
K (f",l

1

, f",l
2

)� r(").
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Let now {"k} be a decreasing sequence converging to zero as k ! 1. We notice that
H"

k

is nondecreasing with respect to k and then H"
k

! H 2 N [1. We can always
choose the labels in such a way that the sequences {f"

k

,l
i,n }, and so their limits f"

k

,l
i , are

monotone with respect to k. As a consequence, it is not restrictive to assume that the
translation vectors ⌧l,n are independent of ". By monotonicity, f"

k

,l
i converge strongly

in L1 to some f l
i for any 1  l  H and i = 1, 2. By (1.25) and the continuity of

Ec11,c22
K with respect to the tight convergence, it follows that

(1.26) Ic11,c22m1,m2
= lim

n
Ec11,c22
K (f

1,n, f2,n) �
HX

l=1

Ec11,c22
K (f l

1

, f l
2

).

Let ml
i :=

R
RN

f l
i (x) dx; then m̃i :=

PH
l=1

ml
i  mi for i = 1, 2.

By (1.26) and Lemmas 1.8 and 1.7, we get

Ic11,c22m1,m2
�

HX

l=1

Ec11,c22
K (f l

1

, f l
2

) �
HX

l=1

Ic11,c22
ml

1,m
l

2
� Ic11,c22m̃1,m̃2

� Ic11,c22m1,m2
;

it follows that all the inequalities above are in fact equalities, H = 1 and m̃i = mi,
which concludes the proof.

Remark 1.10. As already explained in the introduction, the constraint f
1

+f
2

 1
represents a noninterpenetration condition. One might wonder how relaxing this
constraint a↵ects the (existence result and) shape of the minimizer. Replacing the
constraint f

1

+ f
2

 1 with the weaker one f
1

, f
2

 1, the Riesz inequality would
immediately yield that fi are characteristic functions of concentric balls. Finally,
since all the forces are attractive, prescribing only a mass constraint on fi yields to
concentration in a single point, i.e., the solution becomes a measure given by fi = mi�x
for some x 2 RN .

Remark 1.11. The problem considered in this paper could be generalized to the
case of more than two phases, with mutual and self attractive interactions. We notice
that, with minor changes, the existence of a solution for this generalized problem
would follow along the lines of the proof of Theorem 1.9.

Remark 1.12. Notice that in the case of c
11

, c
22

> 0 the functional Ec11,c22
K does

not admit in general a minimizer in Am1,m2
. For instance, if c

11

> 0, then it is easy
to see that, for m

1

large enough, any minimizing sequence f
1,n for the first phase

tends to lose mass at infinity. As a consequence, Ec11,c22
K does not admit a minimizer

in Am1,m2 for m
1

large enough.
Moreover, assume that K is a positive definite kernel as in (1.6), and let c

11

, c
22

�
1. Then, for any (f

1

, f
2

) 2 Am1,m2
, we have

Ec11,c22
K (f

1

, f
2

) = (c
11

� 1) JK(f
1

, f
1

)+ (c
22

� 1) JK(f
2

, f
2

)+ JK(f
1

� f
2

, f
1

� f
2

) � 0.

Up to adding a constant to the kernel (and hence a constant to the energy functional),
we can always assume that K vanishes at infinity. In this case, it is easy to see that
the infimum of Ec11,c22

K is zero. It follows that (f
1

, f
2

) is a minimizer of Ec11,c22
K in

Am1,m2
if and only if m

1

= m
2

, c
11

= c
22

= 1, and fi = f 2 L1(RN ; [0, 1

2

]) withR
RN

f(x) dx = m
1

= m
2

.

1.4. Compactness of minimizers. Here we prove the compactness property
of minimizers.
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Proposition 1.13. Every minimizer (f
1

, f
2

) of Ec11,c22
K in Am1,m2

has compact

support.

Proof. Assume by contradiction that f
1

does not have compact support. Recalling
the definition of S in (1.9), we set r := (2m1+m2

!
N

)1/N so that |Br \ S| > 0. For

R > 0 we now set 'R
1

:= f
1

�
(RN\B

R

)

and observe that for R large enough we can
find  R 2 L1(RN ;R+) such that  R ⌘ 0 in S [ (RN \ Br) and at the same timeR
RN

'R
1

(x) dx =
R
RN

 R(x) dx > 0. Hence by (1.10) we have

Z

B
r

 R(x)(c
11

V
1

(x)� V
2

(x)) dx �
Z

RN\B
R

'R
1

(x)(c
11

V
1

(x)� V
2

(x)) dx,

or, equivalently,

Z

B
r

 R(x)(|c
11

|V
1

(x) + V
2

(x)) dx 
Z

RN\B
R

'R
1

(x)(|c
11

|V
1

(x) + V
2

(x)) dx.

Since
R
RN\B

R

'R
1

(x) dx =
R
B

r

 R(x) dx, the previous inequality implies that

inf
B

r

(|c
11

|V
1

+ V
2

)  sup
RN\B

R

(|c
11

|V
1

+ V
2

),

which gives a contradiction for R large enough.

2. Qualitative properties of minimizers and some explicit solutions. In
this section we discuss some qualitative properties of the minimizers of Ec11,c22

K , and
we determine the explicit solutions for some specific choices of the coe�cients c

11

, c
22

.

2.1. Some preliminary results. The following lemma states that, for c
11

= 0,
there exists a minimizer (f̃

1

, f
2

) such that f̃
1

+ f
2

= 1 on the support of f̃
1

.

Lemma 2.1 (superlevels). Let (f
1

, f
2

) be a minimizer of E0,c22
K in Am1,m2

. Set

t := inf

(
s 2 R :

Z

{V2>s}
(1� f

2

(x)) dx  m
1

)
.

Then, t 2 R and the pair (f̃
1

, f
2

) is still a minimizer of E0,c22
K in Am1,m2

if and only

if f̃
1

2 L1(RN ; [0, 1]) satisfies (i), (ii), and (iii) below:
(i)
R
RN

f̃
1

(x) dx = m
1

;

(ii) f̃
1

(x) = 1� f
2

(x) if V
2

(x) > t;
(iii) f̃

1

(x) = 0 if V
2

(x) < t.
Moreover, if |{V

2

= t}| = 0, then f̃
1

is uniquely determined, and clearly f
1

= f̃
1

.

A similar statement holds true for the case c
22

= 0.

Proof. Since V
2

is bounded from above, RN = [s2R{V2

> s} and |{V
2

> t}| 
m

1

+m
2

, we have �1 < t < +1.
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Let f̃
1

satisfy properties (i), (ii), and (iii) above. We show that (f̃
1

, f
2

) is a
minimizer of E0,c22

K in Am1,m2
. Indeed, using that f̃

1

� f
1

on {V
2

> t}, we have

E0,c22
K (f

1

, f
2

)� E0,c22
K (f̃

1

, f
2

) = 2

Z

RN

V
2

(x)(f̃
1

(x)� f
1

(x)) dx(2.1)

= �2

Z

{V2<t}
V
2

(x)f
1

(x) dx+ 2 t

Z

{V2=t}
(f̃

1

(x)� f
1

(x)) dx

+2

Z

{V2>t}
V
2

(x)(f̃
1

(x)� f
1

(x)) dx

� 2 t

 
�
Z

{V2<t}
f
1

(x) dx+

Z

{V2=t}
(f̃

1

(x)� f
1

(x)) dx+

Z

{V2>t}
(f̃

1

(x)� f
1

(x)) dx

!

= 2 t

Z

RN

(f̃
1

(x)� f
1

(x)) dx = 0,

where the last equality is a direct consequence of (i).
Assume now that (f̂

1

, f
2

) is a minimizer of E0,c22
K in Am1,m2

. We trivially have

that f̂
1

satisfies (i). Notice that the inequality in (2.1) is an equality if and only if
f
1

= 0 a.e. in {V
2

< t} and f̃
1

= f
1

a.e. in {V
2

> t}. By replacing f
1

with f̂
1

in (2.1),
we have immediately that f̂

1

should satisfy (ii) and (iii).

We recall that the sets Gi are defined in (1.8).

Corollary 2.2. Let (f
1

, f
2

) be a minimizer for E0,c22
K in Am1,m2

. Then, for any

measurable set E
1

⇢ G
1

\G
2

with |E
1

| = R
G1\G2

f
1

(x) dx, the function

f̃
1

(x) :=

⇢
�E1

if x 2 G
1

\G
2

,
f
1

(x) otherwise in RN

satisfies

E0,c22
K (f̃

1

, f
2

) = E0,c22
K (f

1

, f
2

).

A similar statement holds true in the case c
22

= 0.

Proof. By Lemma 2.1, there exists t 2 R so that f
1

= 1 � f
2

on {V
2

> t} and
f
1

= 0 on {V
2

< t}. It follows that G
1

\G
2

⇢ {V
2

= t}, and hence

E0,c22
K (f

1

, f
2

)� E0,c22
K (f̃

1

, f
2

) = 2

Z

G1\G2

V
2

(x)(f̃
1

(x)� f
1

(x)) dx

= 2 t

Z

G1\G2

(f̃
1

(x)� f
1

(x)) dx = 0.

2.2. The strongly attractive case c11 + c22  �2. In the following theo-
rem we characterize the minimizers for every c

11

, c
22

such that c
11

+ c
22

 �2 and
max{c

11

, c
22

} � �1 (see Figure 3).

Theorem 2.3. Let c
11

+ c
22

 �2. The following statements hold true:

(i) if c
11

= c
22

= �1, then (f
1

, f
2

) is a minimizer of Ec11,c22
K in Am1,m2

if and

only if f
1

+ f
2

= �Bm1+m2
(x0)

for some x
0

2 RN
;

(ii) if c
11

= �1 and c
22

< �1, then (f
1

, f
2

) 2 Am1,m2
is a minimizer of Ec11,c22

K

in Am1,m2
if and only if f

1

+ f
2

= �Bm1+m2
(x0)

for some x
0

2 RN
, and

f
2

= �Bm2
(y0)

for some y
0

2 RN
with Bm2(y

0

) ⇢ Bm1+m2(x
0

);
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(i) (ii) (iii)

Fig. 3. The phase f
1

is the black one, whereas the phase f
2

is white. The first image represents
the minimizers in (i). In this case, all the configurations (f

1

, f
2

) such that f
1

+ f
2

= �Bm1+m2

are minimizers of the energy. The second and third images are two examples of minimizers in case
(ii). The last image is the unique minimizer in case (iii). Minimizers in cases (ii0) and (iii0) can be
obtained by the balls above switching the balck parts with the white ones.

(ii0) if c
22

= �1 and c
11

< �1, then (f
1

, f
2

) 2 Am1,m2
is a minimizer of Ec11,c22

K

in Am1,m2
if and only if f

1

+ f
2

= �Bm1+m2
(x0)

for some x
0

2 RN
and

f
1

= �Bm1
(y0)

for some y
0

2 RN
with Bm1(y

0

) ⇢ Bm1+m2(x
0

);
(iii) if c

22

< �1 and �1 < c
11

 0, then (f
1

, f
2

) 2 Am1,m2
is a minimizer of

Ec11,c22
K in Am1,m2 if and only if f

1

+ f
2

= �Bm1+m2
(x0)

and f
2

= �Bm2
(x0)

for some x
0

2 RN
;

(iii0) if c
11

< �1 and �1 < c
22

 0, then (f
1

, f
2

) 2 Am1,m2 is a minimizer of

Ec11,c22
K in Am1,m2

if and only if f
1

+ f
2

= �Bm1+m2
(x0)

and f
1

= �Bm1
(x0)

for some x
0

2 RN
.

Proof. We prove only (i), (ii), and (iii), the proofs of (ii0) and (iii0) being the same
as those of (ii) and (iii), respectively.

It is easy to see that

Ec11,c22
K (f

1

, f
2

) = c
11

JK(f
1

+ f
2

, f
1

+ f
2

)� 2(c
11

+ 1) JK(f
2

, f
1

+ f
2

)

+ (c
11

+ c
22

+ 2) JK(f
2

, f
2

).

Claim (iii) follows immediately by applying Lemma 1.6 to each of the three addenda
above. Moreover,

E�1,�1

K (f
1

, f
2

) = �JK(f
1

+ f
2

, f
1

+ f
2

),

E�1,c22
K (f

1

, f
2

) = �JK(f
1

+ f
2

, f
1

+ f
2

) + (c
22

+ 1) JK(f
2

, f
2

)

and hence (i) and (ii) easily follow by applying once again Lemma 1.6.

The next proposition gives a characterization for N = 1 of the minimizer of
Ec11,c22
K in the case c

11

, c
22

< �1 which is left open in Theorem 2.3.

Proposition 2.4. Let N = 1 and c
11

, c
22

< �1. Then

(f
1

, f
2

) = (�
[�m1,0],�[0,m2]

) and (f
1

, f
2

) = (�
[0,m1]

,�
[�m2,0])

are (up to a translation) the unique minimizers of Ec11,c22
K in Am1,m2

.

Proof. It is easy to see that for any (f
1

, f
2

)

Ec11,c22
K (f

1

, f
2

) = Ec11,�1

K (f
1

, f
2

) + (c
22

+ 1)JK(f
2

, f
2

);

since the second addendum is minimized when f
2

is the characteristic function of an
interval, the claim follows by Theorem 2.3(ii0).
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Remark 2.5. In the general multidimensional case, we do not know the explicit
form of the minimizers if c

11

, c
22

< �1. One could guess that fi are characteristic
functions as in the Coulomb case considered in Proposition 3.2. By means of first
variation techniques, we can exclude that the solution is given by two tangent balls
as well as by a ball and a concentric annulus around it. A natural issue to consider is
then the asymptotic behavior of minimizers for c

11

, c
22

which tend to the boundary
(and at infinity) of the region {c

11

, c
22

< �1}. In fact, there are many interesting
limits that one could study:

(1) c
11

< �1, c
22n % �1 . Let (fn

1

, fn
2

) 2 Am1,m2
be a minimizer of Ec11,c22

n

in Am1,m2 . Notice that the limit problem does not admit a unique solution.
Nevertheless, we expect that, up to a unique translation, fn

1

and fn
1

+ fn
2

converge strongly in L1 to characteristic functions of two innerly tangent
balls. Indeed, this is the minimizer for c

11

, c
22

< 1, among the family of pairs
of nested balls.

(2) c
11

, c
22

< �1, c
11

, c
22

% �1. In this case the limit problem is the most
degenerate one for which it seems di�cult to have a clear guess.

(3) c
11

< �1, c
22n ! �1. In this case we expect that the second phase tends to

a ball, while the first phase tends to the characteristic function of a set which
is not a ball.

(4) c
11

, c
22

! �1. In this case we have that the two phases converge to two
tangent balls. This is precisely the content of Proposition 2.6 below.

Proposition 2.6. Let {c
11n}, {c22n} ⇢ R be such that c

11n, c22n ! �1. For

any n 2 N, let (fn
1

, fn
2

) 2 Am1,m2
be a minimizer of Ec11

n

,c22
n

K in Am1,m2
. Then, up

to a unique translation, fn
1

, fn
2

converge strongly in L1

to characteristic functions of

two tangent balls, i.e., there exists a family of translations {⌧n} and a unitary vector

⌫ 2 RN
, such that

fn
1

(·� ⌧n) ! �Bm1 , fn
2

(·� ⌧n) ! �Bm2
(r ⌫) with r := (m1

!
N

)
1
N

.

Proof. First, notice that there exists a constant C such that

�2JK(fn
1

, fn
2

) � C, c
11n JK(fn

1

, fn
1

) � c
11n I

�1,0
m1,0

, c
22n JK(fn

2

, fn
2

) � c
22n I

0,�1

0,m2
,

so that

(2.2) Ic11n

,c22
n

m1,m2
= Ec11

n

,c22
n

K (fn
1

, fn
2

) � c
11n I

�1,0
m1,0

+ c
22n I

0,�1

0,m2
+ C.

On the other hand,

(2.3) Ic11n

,c22
n

m1,m2
 Ec11

n

,c22
n

K (�Bm1 ,�Bm2
(r ⌫)) = c

11n I
�1,0
m1,0

+ c
22n I

0,�1

0,m2
+ C,

which, together with (2.2), yields

JK(fn
1

, fn
1

) ! I�1,0
m1,0

, JK(fn
2

, fn
2

) ! I0,�1

0,m2
.

Therefore, by Theorem 1.9 applied to I�1,0
m1,0

and I0,�1

0,m2
, there exist two sequences of

translations {⌧ni } (for i = 1, 2) such that

fn
1

(·� ⌧n
1

) ! �Bm1 , fn
2

(·� ⌧n
2

) ! �Bm2 strongly in L1.

It remains to prove that |⌧n
1

� ⌧n
2

| ! r as n ! 1. Set

�n :=
|⌧n

1

� ⌧n
2

|
r

.
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Notice that lim infn!1 �n � 1 (otherwise, for n large, fn
1

and fn
2

would be close
in L1 to characteristic functions of two intersecting balls, so that (fn

1

, fn
2

) would
not be admissible). Up to a subsequence, we can assume that lim supn!1 �n =
limn!1 �n =: � with � � 1. Then, set

f̃n
1

:= �Bm1
(⌧n

1 )

, f̃n
2

:= �Bm2
(⌧n

2 )

;

notice that kf̃n
i �fn

i kL1 ! 0 as n ! 1 for i = 1, 2. Then, by the lower semicontinuity
property of JK with respect to the strong L1 convergence, we get

lim inf
n

JK(fn
1

, fn
2

)� JK(f̃n
1

, f̃n
2

) � 0.

We conclude

Ic11n

,c22
n

m1,m2
� Ec11

n

,c22
n

K (f̃n
1

, f̃n
2

)+⇢(n) � Ec11
n

,c22
n

K (�Bm1 ,�Bm2
(r⌫))+⇢(n)+!(�n),

where ⇢(n) ! 0 as n ! 1 and ! : [1,+1) ! [0,+1) is an increasing function
vanishing at 1. By minimality it easily follows that � = 1 and hence the claim.

2.3. The weakly attractive case c11 + c22 > �2. Here we will consider the
case c

11

+ c
22

> �2, and we will characterize the solution only for the purely weakly
attractive case 0 � c

11

, c
22

> �1 with (c
11

+ 1)m
1

= (c
22

+ 1)m
2

. Moreover, we
will assume that K is positive definite, according to definition (1.1). Notice that this
implies that the functional JK(',') is strictly convex.

Lemma 2.7. Let K be positive definite. For any �1 < c < 1 and for any m >
0, the (unique up to a translation) minimizer of Ec,c

K in Am,m is given by the pair

(f0

1

, f0

2

) =
�
1

2

�B2m , 1

2

�B2m

�
.

Proof. Let (f
1

, f
2

) 2 Am,m. We first notice that the convexity of the functional
JK(f, f) immediately implies that

(2.4) JK(f
1

, f
2

) = 2JK( f1+f2
2

, f1+f2
2

)� J
K

(f1,f1)
2

� J
K

(f2,f2)
2

 JK( f1+f2
2

, f1+f2
2

).

Moreover

Ec,c
K (f

1

, f
2

) = c JK(f
1

+ f
2

, f
1

+ f
2

)� 2 (1 + c) JK(f
1

, f
2

),

which, together with (2.4), yields

Ec,c
K (f

1

, f
2

) � c JK

✓
f
1

+ f
2

2
+

f
1

+ f
2

2
,
f
1

+ f
2

2
+

f
1

+ f
2

2

◆

�2(1 + c) JK

✓
f
1

+ f
2

2
,
f
1

+ f
2

2

◆
= Ec,c

K

✓
f
1

+ f
2

2
,
f
1

+ f
2

2

◆
,

where in the inequality we have also used that c + 1 > 0. By the strict convexity
of JK(f, f), the inequality is strict whenever f

1

6= f
2

. It follows that, if (f
1

, f
2

) is a
minimizer, then f

1

= f
2

= f1+f2
2

=: f . Finally, since Ec,c
K (f, f) = 2(c � 1) JK(f, f),

by Lemma 1.6, we conclude that Ec,c
K (f

1

, f
2

) attains its unique minimum when f
1

=
f
2

= 1

2

�B2m .

Let us introduce the coe�cients ai (depending on c
11

and c
22

) which represent
the volume fractions of the two phases where they mix:

(2.5) a
1

:=
c
22

+ 1

c
11

+ c
22

+ 2
, a

2

:=
c
11

+ 1

c
11

+ c
22

+ 2
.
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Fig. 4. Under the assumptions of Proposition 2.8, the minimizer is given by a ball (represented
in gray color) where the two phases mix each other.

Notice that if (c
11

+ 1)m
1

= (c
22

+ 1)m
2

, then

a
1

=
m

1

m
1

+m
2

, a
2

=
m

2

m
1

+m
2

.

Proposition 2.8. Let �1 < c
11

, c
22

 0. If (c
11

+ 1)m
1

= (c
22

+ 1)m
2

, then the

(unique up to a translation) minimizer of Ec11,c22
K in Am1,m2

is given by the pair

(f
1

, f
2

) = (a
1

�Bm1+m2 , a
2

�Bm1+m2 ).

Proof. By Lemma 2.7 we get directly the claim in the case c
11

= c
22

, since by
assumption this implies m

1

= m
2

.
We now prove the result in the general case. For any (f

1

, f
2

) 2 Am1,m2
, we set

h
1

:= (1 + c11
2

)f
1

� c22
2

f
2

, h
2

:= � c11
2

f
1

+ (1 + c22
2

)f
2

.(2.6)

It is easy to see that h
1

, h
2

� 0, h
1

+ h
2

= f
1

+ f
2

 1, and, by assumption,
Z

RN

h
1

(x) dx =

Z

RN

h
2

(x) dx =
m

1

+m
2

2
=: m.

By straightforward computations it follows that, setting c := c11c22
2�c11c22

,

Ec11,c22
K (f

1

, f
2

) =
2� c

11

c
22

2 + c
11

+ c
22

Ec,c
K (h

1

, h
2

).

Notice that since �1 < c
11

, c
22

< 0, we have that 0 < c < 1 and 2�c11c22
2+c11+c22

> 0;
therefore, (f

1

, f
2

) minimizes Ec11,c22
K (in Am1,m2

) if and only if (h
1

, h
2

) minimizes
Ec,c
K in Am,m. By Lemma 2.7, the unique minimizer of Ec,c

K in Am,m is given by
(h

1

, h
2

) = ( 1
2

�B2m , 1

2

�B2m). Hence the claim for c
11

6= c
22

follows by (2.6).

Remark 2.9. Proposition 2.8 establishes that, for very special coe�cients c
11

and
c
22

depending on the masses m
1

, m
2

, the minimizer is given by a homogeneous density
that mixes the two phases with specific volume fractions (see Figure 4). The proof
is based on the convexity of JK . One may wonder whether, under this assumption,
the result still holds for generic c

11

and c
22

. We will see that this is not the case, not
even for the Coulomb kernel (see Corollary 3.5 and Theorem 3.9).

3. The Coulomb kernel. In this section we will assume that K = KC
N

is the
Coulomb kernel defined in (1.7). We will provide the explicit form of the solutions
for all the choices of the (nonpositive) parameters c

11

, c
22

, except when they are both
strictly less than �1, in which case we will only be able to say that fi are characteristic
functions of sets.
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3.1. Consequences of the first variation. We specialize the results of section
1.2 to the case of Coulomb kernels. We recall that the sets Gi, Fi, and S are defined
in (1.8), (1.9).

Proposition 3.1. Let (f
1

, f
2

) be a minimizer of Ec11,c22
K

C

N

in Am1,m2 . The follow-

ing facts hold true:

(i) (c
11

+ 1)f
1

� (c
22

+ 1)f
2

= 0 a.e. in G
1

\G
2

. In particular, if either (c
11

+
1)(c

22

+ 1) < 0 or c
11

= �1 6= c
22

or c
22

= �1 6= c
11

, then |G
1

\G
2

| = 0.
(ii) If c

11

6= 0, then |G
1

\G
2

| = 0, while if c
22

6= 0, then |G
2

\G
1

| = 0.
(iii) |(G

1

\G
2

) \ S| = 0.
(iv) If c

11

6= �1 or c
22

6= �1, then

(3.1) f
1

= a
1

, f
2

= a
2

a.e. in G
1

\G
2

,

where ai are defined in (2.5).

Proof. Fact (i) is a consequence of (1.14) di↵erentiated twice. To prove (ii) notice
that G

1

\G
2

⇢ G
1

\S, which implies by (1.11) that c
11

f
1

= f
2

in G
1

\G
2

. Furthermore,
in this region f

2

= 0, so that (since c
11

6= 0) also f
1

= 0. The case c
22

6= 0 is proved
in the same way.

The proof of (iii) follows recalling that by (1.11) we have 0 > c
11

f
1

� f
2

= 0 in
(G

1

\ G
2

) \ S and hence |(G
1

\ G
2

) \ S| = 0. The claim in (iv) follows by (1.14)
recalling that, in view of (iii), f

1

+ f
2

= 1.

3.2. The strongly attractive case c11 + c22  �2. In Theorem 2.3 we have
characterized the minimizers for every c

11

, c
22

such that c
11

+ c
22

 �2 and max{c
11

,
c
22

} � �1. Clearly such result applies also to Coulomb kernels. The (general N
dimensional) case c

11

, c
22

< �1 was left open. In the following proposition, we show
that for Coulomb kernels the minimizers fi are characteristic functions of sets Ei whose
shape is unknown (see Remark 2.5 for some further comments in this direction).

Proposition 3.2. Let c
11

+ c
22

 �2 with (c
11

, c
22

) 6= (�1,�1). If (f
1

, f
2

) is a

minimizer of Ec11,c22
K

C

N

in Am1,m2
, then f

1

= �F1
and f

2

= �F2
for some F

1

, F
2

⇢ RN
.

Proof. By Theorem 2.3 and Proposition 2.4 the claim holds true in the one-
dimensional case and in the general N dimensional case for max{c

11

, c
22

} � �1, so
that it is enough to prove the claim in the case N � 2 and c

11

, c
22

< �1. Since
c
11

+ c
22

+ 2 < 0, by applying Lemma 1.5 with ' 2 L1(RN ;R), ' = 0 a.e. in RN \
(G

1

\G
2

) and
R
RN

' dx = 0, we get

(3.2)

Z

G1\G2

Z

G1\G2

KC
N

(x� y)'(x)'(y) dx dy  0.

By Remark 1.1 we deduce that the above inequality is actually an equality and that
' = 0 in G

1

\ G
2

. By the arbitrariness of ', it follows that |G
1

\ G
2

| = 0. Finally,
by Proposition 3.1(ii), we have that |G

1

\ G
2

| = |G
2

\ G
1

| = 0, so we conclude that
|G

1

| = |G
2

| = 0.

3.3. The weakly attractive case c11 + c22 > �2 (preliminary results).
For any measurable set E ⇢ RN , we set VE := �E ⇤K.

Lemma 3.3. Let �1  c
11

, c
22

 0 with c
11

6= �1 or c
22

6= �1. Then, there exists

a minimizer (f
1

, f
2

) of Ec11,c22
K

C

N

in Am1,m2
such that |G

1

\ G
2

| = |G
2

\ G
1

| = 0 and

either |F
1

| = 0 or |F
2

| = 0.
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Moreover, any minimizer (f
1

, f
2

) of Ec11,c22
K

C

N

in Am1,m2
is such that either |G

1

\
G

2

|+ |F
1

| = 0 or |G
2

\G
1

|+ |F
2

| = 0.

Proof. Let (f
1

, f
2

) be a minimizer of Ec11,c22
K

C

N

in Am1,m2
. By Proposition 3.1(ii)

and Corollary 2.2 we can always assume

(3.3) {f
1

6= 0} = (G
1

\G
2

) [ F
1

, {f
2

6= 0} = (G
1

\G
2

) [ F
2

a.e.

so that |G
1

\G
2

| = |G
2

\G
1

| = 0.
Now, let us prove that either |F

1

| = 0 or |F
2

| = 0. We first focus on the case
N � 3. By (3.3) and (3.1) we have

(3.4) f
1

= a
1

�G1\G2
+ �F1

, f
2

= a
2

�G1\G2
+ �F2

.

It follows that

V
1

= a
1

VG1\G2 + VF1 , V
2

= a
2

VG1\G2 + VF2 ,

which together with (1.13) easily yields

(3.5) (c
11

+ 1)VF1(x2

)� (c
22

+ 1)VF2(x2

) � (c
11

+ 1)VF1(x1

)� (c
22

+ 1)VF2(x1

)

for any x
1

2 F̄
1

and any x
2

2 F̄
2

. Set U(x) := (c
11

+1)VF1
(x)� (c

22

+1)VF2
(x). Then

U solves

(3.6)

⇢ ��U = (c
11

+ 1)�F1
� (c

22

+ 1)�F2
in RN ,

U(x) ! 0 if |x| ! 1.

So, U is subharmonic in RN \ F
1

and hence either U  0 or U reaches its maximum
on F

1

. Analogously, since U is superharmonic in RN \F
2

, either U � 0 or U reaches
its minimum on F

2

. Now, if U ⌘ 0, then |F
1

| = |F
2

| = 0; otherwise, assume, for
instance, that U reaches its maximum on F

1

. By (3.5) and by (3.6), it follows that
U is constant in F

2

, and hence |F
2

| = 0. Analogously, if U reaches its minimum on
F

2

, we get that |F
1

| = 0.
The proofs for the cases N = 1, 2 are analogous, the only care being that, for

N = 2, the boundary condition in (3.6) should be replaced by either U(x) ! 0 or
U(x) ! ±1, according to the sign of (c

11

+1)|F
1

|� (c
22

+1)|F
2

|. For N = 1 a direct
proof shows that U reaches its maximum on F

1

and its minimum on F
2

.
We pass to the proof of the last claim of the lemma. Assume by contradiction

that |G
1

\G
2

|+ |F
1

| > 0 and |G
1

\G
2

|+ |F
2

| > 0. By Proposition 3.1(ii) and Corollary
2.2 we deduce that there exists a minimizer satisfying (3.3) with both F

1

and F
2

with
positive measure. Following the lines of the proof of the first claim of the lemma, this
provides a contradiction.

The remaining part of this section is devoted to the uniqueness and characteri-
zation of the minimizer. In particular, we will see that the unique minimizer in the
purely weakly attractive case, corresponding to �1 < c

11

, c
22

 0, is given by a ball
where the two phases are mixed proportionally to their self attraction coe�cents and
by an annulus around this ball (see Corollary 3.5 for the case N = 1 and Theorem 3.9
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and Corollary 3.12 for the case N � 2). Moreover, we will see that also in the remain-
ing cases, i.e., c

11

 �1  c
22

 0 and c
22

 �1  c
11

 0, with c
11

+ c
22

> �2, the
unique minimizer is given once again by a ball and an annulus around it, where the
internal ball corresponds to the phase having the stronger self attraction coe�cient
(see Proposition 3.4 for the case N =1 and Corollary 3.10 for the case N � 2).

3.4. The weakly attractive case c11+c22 > �2 (in dimension N = 1). In
the following proposition we study the minimizer of Ec11,c22

K
C1

when c
11

 �1  c
22

 0

and c
11

+ c
22

> �2. In the subsequent corollary we take advantage of this result via
a reparameterization of the energies to study the case �1 < c

11

, c
22

 0.

Proposition 3.4. Let c
11

 �1 and �1  c
22

 0 (resp., c
22

 �1 and �1 
c
11

 0) with c
11

+ c
22

> �2. Then the (unique up to a translation) minimizer of

Ec11,c22
K

C1
in Am1,m2

is given by the pair

(f
1

, f
2

) = (�Bm1 ,�Bm1+m2\Bm1 ) (resp., (f
1

, f
2

) = (�Bm1+m2\Bm2 ,�Bm2 )).

Proof. We prove the claim only for c
11

 �1 and �1  c
22

 0 with c
11

+ c
22

>
�2, the proof of the other case being analogous. Let (f

1

, f
2

) be a minimizer of
Ec11,c22
K

C1
in Am1,m2

. By (i) and (ii) of Proposition 3.1, we have that f
1

= �F1
and

f
2

= �F2
+ f

2

G
2

. We can assume without loss of generality that F
1

[F
2

[G
2

is an
interval, since reducing the distances decreases the energy. For the same reason, it is
easy to see that |G

2

| = 0. Notice that

Ec11,c22
K

C1
(f

1

, f
2

) = E�1,c22
K

C1
(f

1

, f
2

) + (c
11

+ 1)JK
C1
(f

1

, f
1

),

so it is enough to prove the claim for c
11

= �1. We now prove that V 0
2

= 0 in F
1

. By
(1.13), we have

V
2

(x
1

) � V
2

(x
2

) for any x
1

2 F
1

and x
2

2 F
2

,

and, by the maximum principle, V
2

attains its maximum in F
2

(notice that V
2

! �1
as |x| ! +1). It follows that for any x 2 F

1

, V
2

(x) = maxV
2

. We have

0 = V 0
2

(x) =
1

2
(|F

2

\ (�1, x]|� |F
2

\ [x,1)|) for any x 2 F
1

,

and hence F
1

is connected and centered in F
1

[ F
2

.

Corollary 3.5. Let �1 < c
11

, c
22

 0. Then, the following results hold true

(recall that ai are defined in (2.5)):
(i) If (c

22

+ 1)m
2

� (c
11

+ 1)m
1

, then (up to a translation)

(3.7) (f
1

, f
2

) =
⇣
a
1

�
B

m1
a1

,�Bm2+m1 � a
1

�
B

m1
a1

⌘

is the (unique) minimizer of Ec11,c22
K

a2
in Am1,m2

.

(ii) If (c
11

+ 1)m
1

> (c
22

+ 1)m
2

, then (up to a translation)

(f
1

, f
2

) =
⇣
�Bm2+m1 � a

2

�
B

m2
a2

, a
2

�
B

m2
a2

⌘

is the (unique) minimizer of Ec11,c22
K

a2
in Am1,m2 .
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Proof. We only prove (i) since the proof of (ii) is analogous.
Let (f

1

, f
2

) be a minimizer of Ec11,c22
K

C1
in Am1,m2

. Arguing as in the proof of

Proposition 3.4, one can show that |G
2

\G
1

|+ |G
1

\G
2

| = 0, and hence

(3.8) f
1

= a
1

�G1\G2 and f
2

= a
2

�G1\G2 + �F2 .

Set A := G
1

= G
2

, B := F
2

, m̃
1

:= m1

a1
, and m̃

2

:= m
2

� c11+1

c22+1

m
1

> m̃
1

; then, by
easy computations, it follows that

Ec11,c22
K

C1
(f

1

, f
2

) =
1� c

11

c
22

c
11

+ c
22

+ 2
[�JK

C1
(A,A) + c

22

c
11

+ c
22

+ 2

1� c
11

c
22

JK
C1
(B,B)

� 2JK
C1
(A,B)]

=
1� c

11

c
22

c
11

+ c
22

+ 2
E�1,c̃22
K

C1
(�A,�B)

with c̃
22

:= c
22

c11+c22+2

1�c11c22
2 (�1, 0). Since 1�c11c22

c11+c22+2

> 0, it follows that (f
1

, f
2

) is a

minimizer of Ec11,c22
K

C1
in Am1,m2 if and only if (�A,�B) minimizes E�1,c̃22

K
C1

in Am̃1,m̃2 .

By Proposition 3.4, the unique minimizer of E�1,c̃22
K

C1
(�A,�B) among the pairs (A,B)

with |A| = m̃
1

and |B| = m̃
2

is given by (Bm̃1 , Bm̃1+m̃2 \ Bm̃1). The claim follows
thanks to formula (3.8).

One might wonder whether the assumption that K = KC1
is crucial in order

to prove Proposition 3.4 and Corollary 3.5. In the following remark, we exhibit an
example of a kernel for which the pair (f

1

, f
2

) in (3.7) is not the minimizer of E0,0
K in

Am1,m2 for suitably chosen m
1

,m
2

> 0.

Remark 3.6. Let ⇢ > 0 and let m
1

,m
2

> 0 be such that m
1

> 2⇢, m
2

> m
1

+4⇢.
Consider the kernel K := �

[�⇢,⇢] and set A := (�m
1

,m
1

), B := (�m1+m2

2

, m1+m2

2

),
(f

1

, f
2

) = ( 1
2

�A,�B � 1

2

�A). Then,

E0,0(f
1

, f
2

) = �[� 1

2

JK(A,A) + JK(A,B)].

One can easily check that JK(A,A) = 4⇢m
1

� ⇢2 and JK(A,B) = 4⇢m
1

; it follows
that

E0,0
K (f

1

, f
2

) = �⇢(2m
1

+ ⇢
2

).

Now split A into two intervals A
1

:= (�c⇢�m
1

,�c⇢) and A
2

:= (c⇢, c⇢+m
1

), with
1

2

< c < 1, and consider the energy of the admissible pair

(g
1

, g
2

) := ( 1
2

�A1
+ 1

2

�A2
,�B � 1

2

�A1
� 1

2

�A2
).

By symmetry JK(A
2

, A
2

) = JK(A
1

, A
1

) and JK(A
2

, B) = JK(A
1

, B). Hence

E0,0
K (g

1

, g
2

) = �[�JK(A
1

, A
1

)� JK(A
1

, A
2

) + 2JK(A
1

, B)],

where JK(A
1

, A
1

) = 2⇢m
1

�⇢2, JK(A
1

, A
2

) = 0 (since c > 1

2

) and JK(A
1

, B) = 2⇢m
1

.

It follows that E0,0
K (g

1

, g
2

) = �⇢(2m
1

+ ⇢) < E0,0
K (f

1

, f
2

) and therefore (f
1

, f
2

) is not
the minimizer of E0,0

K in Am1,m2
. One can easily check that the above result holds

true also taking K(x) := �
[�⇢,⇢](x) (⇢� |x|) and m

1

,m
2

as above.
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Fig. 5. The phase f
1

is black and the phase f
2

is white. The minimizer in the case c
11


�1  c

22

 0 is represented on the left, whereas on the right there is the minimizer in the case
c
22

 �1  c
11

 0.

(i) (ii)

Fig. 6. The phase f
1

is black and the phase f
2

is white. The mixing of the two phases is
represented by gray. The image on the left represents the unique minimizer in (i). In this case, the
two phases mix each other in the inner ball, and the remainig mass of f

2

is arranged in an annulus
around such ball. In case (ii), the minimizer has the same form, but replacing f

2

(white) with f
1

(black).

3.5. The weakly attractive case c11 + c22 > �2 (the case N � 2). Now
we focus on the case N � 2, considering first the case c

11

= c
22

= 0 (Theorem 3.9)
and then the remaining cases (see Corollaries 3.10 and 3.12, and Figures 5 and 6).

We first introduce some preliminary notation and recall some well known results
we will use in this section. For any g 2 L2(RN ;R+), we set V := KC

N

⇤ g. More-
over, we recall that for every function u 2 L1(RN ;R+), u⇤ is the spherical symmetric
nonincreasing rearrangement of u defined in (1.21). Clearly, the notion of spheri-
cal symmetric nonincreasing rearrangement can be extended in the obvious way to
functions u 2 L1

loc(RN ;R) tending to �1 for x ! +1.

Lemma 3.7. Let g 2 L2(RN ;R+), let m :=
R
RN

g(x) dx, and let V := KC
N

⇤ g.
Moreover, for N = 2 assume that g has compact support. Then,

V (x) ! 0 as |x| ! +1 for N � 3;(3.9)

V (x) = �m

2⇡
log |x|+ r(x) for N = 2;(3.10)

where r(x) ! 0 as |x| ! +1. As a consequence, V � V ⇤ ! 0 as |x| ! +1.

Let now f 2 L1(RN ;R+). For any r > 0 we denote by t(r) the unique t 2 R such
that |{V > t}|  !NrN  |{V � t}|. Let f̃ : RN ! R be defined by

(3.11) f̃(x) := 1

N!
N

|x|N�1
dt
dr
��
t=t(|x|)

d

dt

⇣R
{V >t} f(y) dy

⌘
��
t=t(|x|)

.
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We notice that Br = {V ⇤ > t(r)} and that

(3.12)

Z

{V ⇤>t}
f̃(x) dx =

Z

{V >t}
f(x) dx for every t 2 R.

Moreover, one can easily check that also f̃ takes values in R+, and

(3.13) kf̃k
1

= kfk
1

, kf̃kp  kfkp for all 1 < p  +1.

Lemma 3.8. Let f 2 L2(RN ;R+), with N � 2, and let V := KC
N

⇤ f . Moreover,

let f̃ 2 L2(RN ;R+) be defined as in (3.11), and let Ṽ := KC
N

⇤ f̃ . Then, Ṽ � V ⇤
,

and

Ṽ (x) > V ⇤(x) for a.e. x 2 Br(t
max

)

,

where tmax is the maximal level such that {V > t} is a ball for every t  tmax.

Proof. By the coarea formula and the isoperimetric inequality, for almost every
t 2 R we have

Z

@{V >t}
|rV (x)| dHN�1 �

Z

@{V ⇤>t}
|rV ⇤(x)| dHN�1,

with strict inequality whenever {V > t} is not a ball. Therefore, by (3.12)

(3.14)

Z

@{V ⇤>t}
|rṼ (x)| dHN�1 � �

Z

{V ⇤>t}
�Ṽ (x) dx = �

Z

{V >t}
�V (x) dx

=

Z

@{V >t}
|rV (x)| dHN�1 �

Z

@{V ⇤>t}
|rV ⇤(x)| dHN�1

with strict inequalities whenever {V > t} is not a ball. Since Ṽ � V ⇤ is radial and in
view of Lemma 3.7 it vanishes at infinity, we have

Ṽ (r)� V ⇤(r) =

Z
+1

r

d

ds

⇣
V ⇤(s)� Ṽ (s)

⌘
ds(3.15)

=

Z
+1

r

1

N!NsN�1

ds

Z

@B
s

�|rV ⇤(x)|+ |rṼ (x)| dx.

The claim follows since the integrand is nonnegative, and it is strictly positive in a
subset of positive measure of (r,+1) for all r < rt

max

.

Lemma 3.8 establishes that we can rearrange the mass of f
1

in order to obtain a
new radial charge configuration f̃

1

, increasing the corresponding potential. Exploiting
such a result, we deduce that the minimizer of E0,0

K has radial symmetry. This is done
in the next theorem.

Theorem 3.9. For m
2

� m
1

, the (unique up to a translation) minimizer of E0,0
K

C

N

in Am1,m2
is given by the pair (f

1

, f
2

), where

f
1

:= 1

2

�B2m1 , f
2

:= �Bm1+m2 � 1

2

�B2m1 .

Proof. Let (f
1

, f
2

) be a minimizer of E0,0
K

C

N

in Am1,m2
. Let V

1

be the potential

generated by f
1

and let f̃
1

and Ṽ
1

be defined according to Lemma 3.8. Notice that
0  f̃

1

 1 and that kf̃
1

kL1
(RN

)

= m
1

. Let us observe that by standard regularity
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theory, Ṽ
1

attains a maximum. We denote it by M̃
1

. We first show that there exists
t̃ < M̃

1

such that

(3.16)

Z

{ ˜V1>˜t}
(1� f̃

1

(x)) dx = m
2

.

Suppose by contradiction that there does not exist t̃ such that (3.16) holds true.
Notice that ��Ṽ = f̃ and that f̃ and Ṽ are radially symmetric. Therefore, Ṽ
may have a flat region only in a ball centered at the origin, whereas it is strictly
decreasing with respect to |x| elsewhere. We deduce that

R
{ ˜V1>t}(1� f̃

1

(x)) dx > m
2

for any t < M̃
1

and in particular that
R
{ ˜V1=

˜M1}(1 � f̃
1

(x)) dx � m
2

. It follows

that |{Ṽ
1

= M̃
1

}| � m
2

and, since Ṽ
1

is radially symmetric, {Ṽ
1

= M̃
1

} is a ball
centered at the origin containing Bm2 . Set f̂

2

:= �Bm2 , then (f̃
1

, f̂
2

) 2 Am1,m2
. Set

M
1

:= maxV
1

, by Lemma 3.8, M̃
1

� maxV ⇤
1

= M
1

; it follows that

E0,0
K

C

N

(f̃
1

, f̂
2

) = �2

Z

RN

f̂
2

(x) Ṽ
1

(x) dx = �2

Z

Bm2

Ṽ
1

(x) dx  �2 M̃
1

m
2

 �2M
1

Z

RN

f
2

(x) dx  �2

Z

RN

f
2

(x)V
1

(x) dx = E0,0
K

C

N

(f
1

, f
2

),

and hence (f̃
1

, f̂
2

) is a minimizer. Since the supports of f̃
1

and f̂
2

are disjoint, we come
to a contradiction using Proposition 3.3. We conclude that there exists t̃ satisfying
(3.16). Set

f̃
2

(x) :=

(
1� f̃

1

(x) for x 2 {Ṽ
1

> t̃},
0 otherwise

by construction (f̃
1

, f̃
2

) 2 Am1,m2 (
R
RN

f̃
2

(x) dx = m
2

by (3.16)).

Let now t̂  t̃ be such that

{V ⇤
1

> t̂} ✓ {Ṽ
1

> t̃} ✓ {V ⇤
1

� t̂} .

This is possible since the superlevel set {Ṽ
1

> t̃} is a ball centered at the origin. Let
A := {Ṽ

1

> t̃} \ {V ⇤
1

> t̂}. Since A ✓ {V ⇤
1

= t̂}, we have f̃
1

= 0 a.e. on A, and hence
f̃
2

= 1 a.e. on A. Moreover, by Corollary 2.2 we can always assume that

(3.17) supp f
2

= {V
1

> t̂} [A0, f
2

= 1� f
1

on {V
1

> t̂}, f
2

⌘ 1 on A0,

for some set A0 ✓ {V
1

= t̂} with |A0| = |A|. By the coarea formula and Lemma 3.8
we have

E0,0
K

C

N

(f̃
1

, f̃
2

) = �2

Z

RN

f̃
2

(x)Ṽ
1

(x) dx

 �2

Z

RN

f̃
2

(x)V ⇤
1

(x) dx(3.18)

= �2 t̂ |A|� 2

Z
+1

ˆt

t

Z

{V ⇤
1 >t}

(1� f̃
1

(x)) dx dt
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= �2 t̂ |A|� 2

Z
+1

ˆt

t

Z

{V1>t}
(1� f

1

(x)) dx dt

= �2 t̂ |A|� 2

Z

{V1>ˆt}
(1� f

1

(x))V
1

(x) dx

= �2

Z

A0
f
2

(x) t̂ dx� 2

Z

{V1>ˆt}
(1� f

1

(x))V
1

(x) dx(3.19)

= �2

Z

RN

f
2

(x)V
1

(x) dx = E0,0
K

C

N

(f
1

, f
2

),(3.20)

where the equality in (??) follows from (3.17). By minimality, the inequality in (3.18)
is actually an equality, and hence V ⇤

1

⌘ Ṽ
1

. It follows that all the superlevels of V
1

are
balls. By Proposition 3.1, f

1

= 1

2

in G
1

\G
2

, whereas by Lemma 3.3 G
1

[F
1

= G
1

\G
2

,
so that f

1

:= 1

2

�E for some set E. Since all the superlevel sets of V
1

are balls, we
conclude that, up to a translation, f

1

:= 1

2

�B2m1 . By Lemma 2.1 we also deduce that
f
2

:= �Bm1+m2 � 1

2

�B2m1 and this concludes the proof.

Corollary 3.10. Let c
11

 �1 and �1  c
22

 0 (resp., c
22

 �1 and �1 
c
11

 0) with c
11

+ c
22

> �2. Then, the (unique up to a translation) minimizer of

Ec11,c22
K

C

N

in Am1,m2
is given by the pair

(f
1

, f
2

) = (�Bm1 ,�Bm1+m2\Bm1 ) (resp., (f
1

, f
2

) = (�Bm1+m2\Bm2 ,�Bm2 ).

Proof. We prove the claim only for c
11

 �1 and �1  c
22

 0 with c
11

+ c
22

>
�2, the proof of the other case being fully analogous. Let (f

1

, f
2

) be a minimizer of
Ec11,c22
K

C

N

in Am1,m2
.

Set m̃
1

:= m1

2

, m̃
2

:= m1

2

+m
2

> m̃
1

,

(3.21) g
1

:=
f
1

2
, g

2

:=
f
1

2
+ f

2

.

It is easy to see that gi � 0,
R
RN

gi(x) dx = m̃i (for i = 1, 2) and g
1

+g
2

= f
1

+f
2

 1,
so that (g

1

, g
2

) 2 Am̃1,m̃2
. A straightforward computation yields

Ec11,c22
K

C

N

(f
1

, f
2

) = (c
11

+ 1)JK
C

N

(f
1

, f
1

) + E�1,c22
K

C

N

(f
1

, f
2

)

= (c
11

+ 1)JK
C

N

(f
1

, f
1

) + c
22

JK
C

N

(f
1

+ f
2

, f
1

+ f
2

)(3.22)

+ (1 + c
22

)(�JK
C

N

(f
1

, f
1

)� 2JK
C

N

(f
1

, f
2

))

= 4 (c
11

+ 1)JK
C

N

(g
1

, g
1

) + c
22

JK
C

N

(g
1

+ g
2

, g
1

+ g
2

)(3.23)

+ 2(1 + c
22

) E0,0
K

C

N

(g
1

, g
2

),

and hence (f
1

, f
2

) is a minimizer of Ec11,c22
K

C

N

in Am1,m2
if and only if (g

1

, g
2

) minimizes

the energy

(3.24) 4 (c
11

+ 1)JK
C

N

(g
1

, g
1

) + c
22

JK
C

N

(g
1

+ g
2

, g
1

+ g
2

) + 2(1 + c
22

) E0,0
K

C

N

(g
1

, g
2

)

in Am̃1,m̃2 . By Theorem 3.9, the third addendum in (3.24) is minimized (in Am̃1,m̃2)
if and only if

(g
1

, g
2

) = ( 1
2

�B2m̃1 ,
1

2

�B2m̃1 + �Bm̃1+m̃2\B2m̃1 ).

We notice that such configuration minimizes also the first and the second addendum.
The claim follows directly by (3.21).
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Quantitative Riesz inequalities have been recently studied in [6, Theorem 1.5].
For any measurable set E ⇢ RN with finite measure, let E⇤ := B|E| be the ball
centered at the origin such that |E⇤| = |E|. From Corollary 3.10 with c

11

= �1 and
c
22

= 0 we immediately get the following improved Riesz inequality.

Corollary 3.11. For any measurable sets E
1

✓ E
2

⇢ RN
with finite measure,

there holds

(3.25) JK
C

N

(E⇤
1

, E⇤
2

)� JK
C

N

(E
1

, E
2

) � 1

2

⇣
JK

C

N

(E⇤
1

, E⇤
1

)� JK
C

N

(E
1

, E
1

)
⌘
.

Moreover, for any measurable sets A
1

✓ A
2

⇢ RN
with finite measure, there holds

(3.26) JK
C

N

(A
2

, A
2

)� JK
C

N

(A
1

, A
1

)  JK
C

N

(B|A2|, B|A2|)

� JK
C

N

(B|A2| \B|A2|�|A1|, B|A2| \B|A2|�|A1|).

Proof. We prove only (3.25), since (3.26) is indeed equivalent to (3.25) replacing
E

1

with A
2

\A
1

and E
2

with A
2

.
Let f

1

:= �E1 , f2 := �E2\E1
. By Corollary 3.10 we have

JK
C

N

(E
1

, E
1

)� 2JK
C

N

(E
1

, E
2

) = JK
C

N

(f
1

, f
1

)� 2JK
C

N

(f
1

, f
1

+ f
2

)

= E�1,0
K

C

N

(f
1

, f
2

) � E�1,0
K

C

N

(�E⇤
1
,�E⇤

2\E⇤
1
) = JK

C

N

(E⇤
1

, E⇤
1

)� 2JK
C

N

(E⇤
1

, E⇤
2

).

In the next corollary we will consider the case �1 < c
11

 0, �1 < c
22

 0,
completing the analysis of the weakly attractive case for the Coulomb interaction
kernel. Recall the coe�cients ai defined in (2.5).

Corollary 3.12. Let �1 < c
11

 0, �1 < c
22

 0. The following results hold

true:

(i) If (c
22

+1)m
2

> (c
11

+1)m
1

, then the (unique up to a translation) minimizer

of Ec11,c22
K

C

N

in Am1,m2 is given by the pair

(f
1

, f
2

) =
⇣
a
1

�
B

m1
a1

,�Bm2+m1 � a
1

�
B

m1
a1

⌘
.

(ii) If (c
11

+1)m
1

> (c
22

+1)m
2

, then the (unique up to a translation) minimizer

of Ec11,c22
K

C

N

in Am1,m2
is given by the pair

(f
1

, f
2

) =
⇣
�Bm2+m1 � a

2

�
B

m2
a2

, a
2

�
B

m2
a2

⌘
.

Proof. We prove only (i) since the proof of (ii) is analogous. Let (f
1

, f
2

) be a
minimizer of Ec11,c22

K
C

N

in Am1,m2
. We first notice that, in the case c

22

< 0, by (i) and

(ii) of Proposition 3.1 we have f
1

= a
1

�A, f2 = a
2

�A + �B for some measurable sets
A, B ⇢ RN . Then, one can argue as in the proof of Corollary 3.5 (applying Corollary
3.10 instead of Proposition 3.4). The details are left to the reader.

It remains to prove the claim for c
22

= 0. In this case set m̃
1

:= c11+2

2

m
1

and
m̃

2

:= � c11
2

m
1

+m
2

. By assumption m̃
2

> m̃
1

. Set moreover

(3.27) g
1

:=
c
11

+ 2

2
f
1

, g
2

:= �c
11

2
f
1

+ f
2

.
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?

?

no existence

?

1

1
?

c
11

c
22

Fig. 7. Existence/nonexistence regions of parameters c
11

, c
22

.

It is easy to see that gi � 0,
R
RN

gi(x) dx = m̃i (for i = 1, 2) and g
1

+g
2

= f
1

+f
2

 1,
so that (g

1

, g
2

) 2 Am̃1,m̃2
. Moreover, a straightforward computation yields

Ec11,0
K

C

N

(f
1

, f
2

) =
2

c
11

+ 2
E0,0
K

C

N

(g
1

, g
2

),

and hence (f
1

, f
2

) is a minimizer of Ec11,0
K

C

N

inAm1,m2 if and only if (g
1

, g
2

) is a minimizer

of E0,0
K

C

N

in Am̃1,m̃2 . By Theorem 3.9, the unique (up to a translation) minimizer of

E0,0
K

C

N

in Am̃1,m̃2 is given by (g
1

, g
2

) = ( 1
2

�B2m̃1 ,
1

2

�B2m̃1 + �Bm̃1+m̃2\Bm̃1 ). This,

together with (3.27), concludes the proof.

Conclusions and perspectives. We have studied existence and qualitative
properties of minimizers of the energy

Ec11,c22
K (f

1

, f
2

) = c
11

JK(f
1

, f
1

) + c
22

JK(f
2

, f
2

)� 2JK(f
1

, f
2

)

in the class of densities (f
1

, f
2

) 2 L1(RN ; [0, 1]) ⇥ L1(RN ; [0, 1]) with fixed masses
m

1

,m
2

and satisfying the constraint f
1

+ f
2

 1. We have focused on the attractive
case c

11

, c
22

 0 (the checkerboard region in Figure 7) and proved the existence
of a minimizer in this case for all the values of masses m

1

,m
2

(see Theorem 1.9).
Moreover, for 0 < c

11

= c
22

 1, m
1

= m
2

, and K positive definite (the dashed
segment in Figure 7), we have proved that there exists a minimizer (see Lemma 2.7
and Remark 1.12). Eventually, for c

11

, c
22

� 1 with max{c
11

, c
22

} > 1 (gray region in
Figure 7), the energy Ec11,c22

K does not admit a minimizer for any pair of values m
1

and m
2

(see Remark 1.12).
A natural question arising from these (partial) results is whether existence of

minimizers can be proven in the remaining cases. A general existence result, i.e.,
independent of the masses, seems to be false if at least one of the coe�cients is
strictly positive. Indeed, the corresponding phase would lose some of its (if too large)
mass. In this case, existence results depending on the masses seem to be an interesting
issue.

A relevant aspect of our analysis is that for the Coulomb interaction kernel, we
have found the explicit shape of minimizers for all choices of negative coe�cients,
except when they are both strictly less than �1 (see Figure 8). In this case, we can
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c
11

c
22-1

-1

c
11

, c
22

! �1

Fig. 8. Minimizers for Coulomb interactions.

still say that fi are characteristic functions of two pairwise disjoint sets. But their
specific shape is unknown and could be analyzed using numerical methods.

For general kernels our analysis is far from being complete. Nevertheless, there
are many possible generalizations we would like to comment on.

First of all, one may study the minimum problem above for some specific kernels
that are used frequently in the context of population dynamics (see, for instance,
[9, 13] and the references therein) such as Gaussian, Morse, or power law kernels,
or suitable combinations of these. Moreover, one might remove the assumption that
the cross and self interaction kernels Kij are all multiples of a given K. Actually,
it would be interesting also to understand whether the improved Riesz inequality
established in corollary 3.11 holds true for more general kernels. We notice that this
corollary is equivalent to Theorem 3.9 once one knows that there is no coexistence of
two homogeneous phases, i.e., when fi are as in Lemma 3.3.

Another interesting direction is the extension of the model to the case of n species,
i.e., considering minimizers of functionals of the type

EK(f
1

, . . . , fn) :=
nX

i,j=1

JK
ij

(fi, fj)

under the constraint
Pn

i=1

fi  1 and
R
RN

fi(x) dx = mi for i = 1, 2, . . . , n. We
believe that some of the techniques developed here could be slightly modified in order
to prove existence and some qualitative properties of the minimizers. As already

D
ow

nl
oa

de
d 

06
/2

1/
17

 to
 1

51
.1

00
.5

0.
11

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3442 CICALESE, DE LUCA, NOVAGA, AND PONSIGLIONE

mentioned, the explicit shape of minimizers might require a specific analysis and
could be the subject of numerical investigation.

Finally, we point out that our analysis focuses only on the global minimizers of
the functional Ec11,c22

K . Notice that ground states play a crucial role in the long time
asymptotics of nonlinear aggregation-di↵usion models. Nevertheless, the analysis of
stationary states (rather than minimizers) would provide a better understanding of
such problems. In this respect, an interesting analysis would concern the dynamics
of two phases governed by the energy proposed in this paper. A suitable notion of
Wasserstein gradient flow could be considered, in the spirit of [9, 29].
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[20] H. Knüpfer and C. Muratov, On an isoperimetric problem with a competing non-local term.

II. The general case, Commun. Pure Appl. Math., 67 (2014), pp. 1974–1994.

D
ow

nl
oa

de
d 

06
/2

1/
17

 to
 1

51
.1

00
.5

0.
11

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TWO PHASES WITH CROSS AND SELF ATTRACTIVE FORCES 3443

[21] T. Kolokolnikov, Y. Huang, and M. Pavlovski, Singular patterns for an aggregation model
with a confining potential, Phys. D, 260 (2013), pp. 65–76.

[22] T. Kolokolnikov, H. Sun, D. Uminsky, and A. L. Bertozzi, A theory of complex patterns
arising from 2D particle interactions, Phys. Rev. E, 84 (2011), 015203

[23] N. S. Landkof, Foundations of Modern Potential Theory, Grundlehren Math. Wisse. 180,
Springer-Verlag, Heidelberg, 1972.

[24] H. Levine, E. Ben-Jacob, I. Cohen, and W.-J. Rappel, Swarming patterns in Microorgan-
isms: Some new modeling results, Proceedings of IEEE CDC, 2006, pp. 5073–5077.

[25] T. Liu, M. L. K. Langston, D. Li, J. M. Pigga, C. Pichon, A M. Todea, and A. Müller,
Self-recognition among di↵erent polyprotic macroions during assembly processes in dilute
solution, Science, 331 (2011), pp. 1590–1592.

[26] J. Lu and F. Otto, Nonexistence of minimizers for Thomas-Fermi-Dirac-von Weizsäcker
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