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Abstract

Over the last few years the increasing use of fish as animal models in scientific 
research and the increased fish breeding for human consumption have stressed the 
need for more knowledge on the effect of variations in environmental parameters on 
fish biology and on the welfare of specimens used both in research and aquaculture 
contexts. Experimental evidence shows that environmental variations can affect fish 
biology at various levels, from the molecular to that of the population, sometimes in a 
different way depending on the species considered. In order to achieve reproducible 
results in experiments involving fish it is necessary to set and maintain all 
environmental parameters constant at the optimal value to guarantee the wellness of 
the animal. The effects of the variation in environmental parameters on the behaviour, 
physiology and cell biology of teleosts are here discussed in order to provide useful 
information for research based on fish models.

Keywords: Environmental parameters; Teleost fish; Welfare; Aquaculture; Research

Abbreviations: ASR: Aquatic Surface Respiration; CNS: Central 
Nervous System

Introduction
A close relationship between the environment and living 

beings has always existed. Since the peculiar environmental 
conditions on our planet have enabled the development of life, 
the environmental parameters strongly influence the biological 
processes and simultaneously the biological activity modifies the 
environment. The variation in biotic and abiotic environmental 
factors induces responses in animals at multiple levels from the 
molecular, cellular, organismic and population levels.

When animals are kept in captivity in a non-natural 
environment, it is essential to control and regulate the 
environmental parameters to ensure conditions not only 
compatible to the animal’s life but which ensure the welfare of 
animals by preventing the state of suffering.

The scientific research takes advantage of animal models 
whose utilization can be strongly reduced by in vitro cell culture 
systems, but currently it cannot be completely eliminated.

In animal housing for the purpose of research, the control 
and standardization of environmental parameters is crucial 
to ensure not only the welfare of animals, but also the quality 
and reproducibility of the scientific outcome. The variation in 
any biotic and abiotic environmental parameter can potentially 
induce physiological responses in the animal that may affect the 
experimental results. Depending on the species considered, the 
knowledge of the effects of such variations may be more or less 

incomplete, and therefore not completely predictable. The report 
of the experimental results must therefore be accompanied 
by a precise and detailed description of all the environmental 
parameters to which the animal has been subjected during 
housing and the experimental phases in order to be able to 
replicate exactly the same environmental conditions.

Recently, the use of teleost fish in research has increased 
sharply also aided by the acquisition and application of the 
principle of relative Replacement suggesting wherever possible 
the use of animal with a simpler Central Nervous System (CNS).

The environmental parameters that need to be taken into 
account in relaying fish are the quality and supply of water, the 
dissolved oxygen, the pH level, the presence of nitrogenous 
compounds, the environmental salinity, the temperature, the light 
intensity and the dark-light alternation cycle, the noise in term of 
intensity and frequency of sound waves, the stocking density, the 
environmental complexity, the feeding, and finally the handling 
and killing procedures (Figure 1), as stated also in European 
Directive 2010/63/EU.

The researcher who uses teleost fish models, as well as 
aquaculture farmers, must know as much as possible the effects 
induced on the animal by variation in environmental parameters. 
This review provides an overview on the current understanding 
of the effects of changes in single environmental parameters on 
the behaviour, physiology and cell biology of teleost fish, in order 
to provide a useful tool for research groups that use models of fish 
or who approach for the first time the use of this model.
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Figure 1: Environmental parameters that must be considered to ensure the welfare of the fish in research and aquaculture contexts.

Environmental Parameters

Water supply and quality

Water supply and quality are important abiotic parameters 
that must be considered to ensure fish welfare. Fish raised in 
aquaria or in laboratory husbandry facilities have more or less 
reduced volumes of water available in comparison to a natural 
environment, so that it becomes essential to monitor the water 
parameters to ensure stable, controlled conditions for fish welfare. 
Water quality must be also monitored in relation to the possible 
presence of toxic substances such as pollutants, metals, chlorine 
and ammonia and the water flow should be set to levels supporting 
normal swimming. Any changes in water quality and conditions 
should be gradually applied allowing fish to acclimatize and adapt 

to them. The relevance of acclimatization period is also stated in 
the European Recommendation on farmed fish, where the species-
specific degree of adaptability to the water quality changes is 
underlined. Moreover, in the aquaculture context the complete 
life cycle of fish must be sustained. Therefore, water quality 
parameters shall be set and monitored in according to different 
life-stages (e.g. larvae, juveniles, adults) and physiological status 
(e.g. metamorphosis, spawning) of fish.

Oxygen

Fish, as all aerobic organisms, require oxygen for breathing. 
The concentration of O2 dissolved in water affects fish activity 
and metabolism [1] and alters the swimming behaviour [2,3] 
with related effects on many aspects of fish life. Hypoxia can be 
caused by a variety of factors, including excess of nutrients and 
water bodies stratification due to saline or temperature gradients. 

http://dx.doi.org/10.15406/jamb.2017.05.00137
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Oxygen levels required depend on fish species, their ecological 
adaptation to hypoxia [3] and the metabolic rate of the animal at 
rest [4-6]. The behavioural response to acute hypoxia involves a 
balance between an increase in swimming activity, in search of 
more oxygenated waters, and a decrease in the same activity to 
reduce oxygen demands [7]. A behavioural response adopted 
by some fish that frequently experience environmental hypoxia 
is to perform aquatic surface respiration (ASR), that consists in 
swimming close to the surface for ventilating the gills with the 
more oxygenated superficial water. This behaviour, however, 
exposes them to a greater risk of predators. Moreover, hypoxia 
affects the escape response of fish and their schooling behaviour 
[8]. In captivity, factors such as fish density, handling, water 
flow and temperature influence the levels of O2 available and its 
demand [9].

Nitrogenous compounds

The concentration of nitrogenous compounds, derived as waste 
products from the amino acid catabolism, is another parameter to 
be considered in fish housing. In teleost fish, the most abundant 
nitrogen products of excretion are ammonia (sum of NH3 and 
NH4

+) and urea. Ammonia is a highly toxic compound extremely 
soluble in water. Because of its toxicity, ammonia must be quickly 
and efficiently excreted by the organism or converted into a less 
toxic product [10]. The relative amount of excreted ammonia and 
urea depends on the species and the life cycle. Most adult teleosts 
are ammonotelic since they produce and excrete ammonia as a 
result of deamination whereas juveniles of several fish species 
are ureotelic as they excrete nitrogenous waste in the form of 
urea [11-15]. Fish diet is particularly rich in proteins that make 
a major contribution (41-85%) to the total energy production 
of fishes [16] and this determines the intake of high amounts of 
nitrogen containing amino acids. A direct relationship between 
protein intake and ammonia excretion was demonstrated in 
several species. For example, in salmon (Oncorhynchus nerka) an 
increased release of ammonia was measured after food intake 
[17].  In aqueous solution, an equilibrium exists between its un-
ionized (NH3) and ionized form (NH4

+). The relative concentration 
of NH3 and NH4

+ is not only dependent on the ammonia pKa 
(9.5), and thus on the hydrogen ion concentration, but also on 
temperature, pressure and other ions concentration [18]. The 
toxicity for the aquatic organisms is largely due to NH3, while the 
NH4

+ gives only a minor contribution to the toxic events reported 
for ammonia. Because of its toxicity, the ammonia generated in the 
cells by the nitrogen catabolism must be quickly and efficiently 
excreted by the organism or converted into a less toxic product 
[10]. Thus, the ammonia generated in the liver is released in the 
environment through gills, body surface and renal routes. The 
epithelium that best fulfils the role for ammonia excretion is the 
gill epithelium, whereas the epidermis and the kidney contribute 
to a lesser extent. At cellular level, the ammonia-transporting 
Rhesus (Rh) proteins, a family related to methyl ammonia and 
ammonia transporters in bacteria, yeast and plants, were shown 
to mediate the excretion of ammonia from the gills (Rhag, Rhbg 
and Rhcg) [15,19-23]. In the aquaria, the ammonia released into 
the water accumulates reaching doses that may be dangerous 
for fish health. Indeed, the exposure to ammonia may cause 
several effects such as histopathological changes in gill structure 
[24,25], increased cortisol levels and generalized stress effects 

[26,27], compromised food intake and growth [28], modified 
amino acid metabolism [29,30], altered oxygen delivery[31], 
enzymes induction and impairment of ion exchange through the 
gills [16,32]. For these reasons, in order to ensure the welfare 
of fish housed in animal facilities nitrogen compounds must be 
maintained at low concentrations.

pH

Fish can survive in a narrow range of pH as its value strongly 
affects the metabolism and homeostasis of cells and the whole 
organism. The great majority of aquatic organisms live at pH 
6.5-8.5, which corresponds to the same range found in most 
freshwater lakes, streams, and ponds. pH variations out of this 
range can affect the animal health by damaging the outer surface 
of gills, eyes, and skin, and causing an inability to dispose of 
metabolic wastes. All this may eventually lead the animal to 
death. In aquaria, water pH has to be daily monitored and kept 
stable by controlling parameters related to its value. Indeed, the 
toxicity of some compounds may vary depending on the pH of the 
solution. For example, the percentage of ammonia in solution and 
its toxicity are strongly dependent on the water pH [33].

Environmental salinity

Fishes can also tolerate different levels of environmental 
salinity. In both freshwater and marine fishes, there are species 
able to tolerate large variations in salt concentration, called 
euryhaline, and others that are not able to, called stenohaline 
species. In natural environments, euryhaline fish usually move 
among marine waters, estuaries, rivers and lagoons. On their 
way these fish experience gradual changes of salinity and their 
regulatory systems of ions and water (gills, digestive system, 
kidney) undergo structural and functional reorganizations in 
response to altered salinity. In particular, it has been shown that 
the acclimation to salinity requires adjustments of the activity and 
the abundance of ion transporters such as the sodium-potassium 
ATPase pump [34-36] and GLUT1 [37]. The acclimation process 
has energy costs and requires time for modifying protein 
expression at cellular level [28,38]. Differently from the gradual 
ones, rapid changes in water salinity can have adverse effects 
even in euryhaline fish resulting in an increased sensitivity to 
other stressors (such as temperature changes and low oxide 
concentration) and diseases [39]. Changes in salinity can also 
affect neurochemical parameters [40].

For example, the decreased activity of acetylcholinesterase 
(AChE) is associated to increased activity of NTPDase (ADP 
hydrolysis) and 5’-nucleotidase in the brain of silver catfish 
exposed to elevated salt concentrations [40].

Water temperature

As regard the importance of the water temperature 
parameter, we have to consider that fish are ectothermic or 
poikilothermic organisms whose body temperature corresponds 
to water temperature. Each fish can live within a given range of 
temperatures characterized by a lower and an upper lethal value 
[41]. This temperature range is species specific as a result of the 
evolution and the adaptation of the animal to its environment. 
Each species has an ideal temperature range within which it grows 
quickly and the standard environmental temperature is defined 

http://dx.doi.org/10.15406/jamb.2017.05.00137
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as the temperature that the fish would prefer if they could choose 
[9]. Variations in ambient temperature strongly affect fish biology 
and influence growth rate, food consumption, feed conversion, 
physiology, behaviour along with other body functions [42-47]. 
Recently, studies performed on juveniles and adults of European 
sea bass showed that acclimation temperature affects both 
behavioural responses and neurochemical parameters [48,49] 
in the CNS  The metabolic rate of fish is sensibly affected by 
body/ambient temperature: at lower values there is a drop in 
the metabolic rate, whereas at higher temperatures there is an 
increase which implies a greater need for food and oxygen [50-
52]. The main response to thermal variation in fish is behavioural: 
in a natural environment fish are free to move to different areas 
or depths to find their optimal temperature. When unable to 
find the best temperature, fish attempt to maintain physiological 
rates by expressing protein and enzyme variants with different 
thermal characteristics and modifying protein environments to 
minimize the impact of temperature changes [53]. In laboratory 
facilities, fish are bred in tanks without the possibility of choosing 
the preferred temperature. For this reason temperature must be 
maintained within the optimal range for each species and kept 
as stable as possible to avoid stress conditions and to ensure 
the welfare of animals and any changes in temperature must be 
applied gradually.

Light

The light and the day/night cycle regulate the environment and 
influence the life of all organisms. In teleost fish, light is relevant 
for the entire life cycle, from embryonic development to sexual 
maturation into adulthood [54]. Land animals and fish are not 
necessarily exposed to the same enlightenment as in the water 
the intensity and spectral composition of the light decreases 
with depth due to the absorption by water molecules and 
suspended particles. The water column acts as a chromatic filter 
rapidly absorbing wavelengths comprised between infrared and 
ultraviolet. As a result, shorter wavelengths of visible light (blue/
violet) penetrate deeper through water than longer wavelengths 
(red/orange). So, depending on the depth at which the fish live, 
they are exposed to different lighting and the aquatic organisms 
have developed visual adaptation according to their spectrum 
niche. Moreover, in teleost fish the threshold of light intensity 
and sensitivity to light vary during the development. It has been 
demonstrated that there are differences in retinal morphology 
and cell composition among larval, juvenile and adult fish [55-
57]. For example, most marine fish larvae have only pure-cone 
retina at their early developmental stages, but later rods appear 
and the single-cone retina gradually transforms into a duplex 
retina [55,56]. Fish are thought to have adapted their vision and 
retinal spectrum perception to their natural photo-environment 
[58,59] containing rods and cones in accordance to the available 
wavelength range of their particular niche [60,61]. Light 
influences human and animal life and physiological processes 
are generally synchronized with the solar day. For example, in 
humans basic functions such as sleep/wake cycle, breathing 
rate, body temperature [62], digestion [63], heartbeat and blood 
pressure are under circadian control [64]. Other organisms, 
including fish, have developed timing mechanisms of adaptation 
to regular changes in sunlight. These mechanisms, called circadian 
clock, consist in regulatory networks made of feedback loops of 

transcription and translation [65]. Data obtained in zebrafish 
have demonstrated that, as in other vertebrates, most fish tissues 
contain circadian clocks [66,67]. The available data suggest that 
light can exert effects on the whole body of fish. In fact, it has 
been demonstrated that in zebrafish the direct illumination of 
cells activates the expression of a subset of clock genes and that 
this in turn leads to circadian clock entrainment [66,68-72]. 
The presence of opsins, the photopigments usually contained 
in retinal photoreceptors, has been recently demonstrated also 
in the peripheral tissues of Danio rerio [73]. Overall, these data 
indicate that, unlike mammals, fish do not rely only on their eyes 
to perceive light as their whole body may be capable of detecting 
light.

In fish, ambient light conditions may affect behavioural 
patterns such as schooling, shoaling, foraging, feeding and 
locomotion [74-77]. Besides, light is crucial in behavioural 
interactions such as predator–prey encounters [78,79]. As to the 
importance of the photoperiod in fish physiology, fish must be 
maintained under appropriate photoperiod where natural light 
does not allow a suitable light/dark cycle and controlled lighting 
with an intensity adapted to the reared species must be provided 
to satisfy biological requirements.

Noise

The noise is another parameter that should be considered 
in fish welfare. In aquatic environments noise can be produced 
by both biotic (animal and plant sounds), abiotic (wind, rain, 
running water, waterfall), and antropogenic (engine and sonar of 
boats, ships and submarines and construction sites) sources and 
fish can be exposed to a wide range of noise intensity. Potential 
effects of sound on fish probably depend on characteristics such 
as level, duration, spectrum and also on the hearing capacity of 
the species of interest, as all fish are not equally able to perceive 
sound. Teleost fish can be separated into two non-taxonomic 
groups based on their sensitivity to sound: hearing specialists 
and hearing generalists [80]. The hearing specialists, such as 
the goldfish, have small bony connections (Weberian ossicles) 
or other structures that bridge the swim bladder with the inner 
ear, enabling these species to detect higher frequency sounds. 
Hearing generalists, which are the majority of fish species, lack 
these specialized connections and only perceive frequencies 
below 500-1000 Hz [80]. In fish, the apparent effects of sound 
can range from undetectable or subtle behavioural changes up 
to severe physiological effects causing deafness and death [81]. 
Intense noise (over 140 dB) in fish may induce temporary hearing 
loss [82-85], damage in the inner ear sensory epithelium [86,87] 
and endocrine stress responses [85,88,89].

Recent experimental works showed that noise exposure 
can alter some behavioural patterns in fish, such as swimming 
behaviour, swimming speed and group cohesion [90,91]. As 
pointed out by Slabbekoorn and co-workers [92], there are many 
aspects concerning the effects of noise on aquatic life, that are 
still to be extensively investigated in order to assess properly the 
relationships between the type and level of noise, the behavioural 
effects and the consequences for the reproductive success of fish. 
This indicates that, both for aquaculture and laboratory research, 
the experimental studies on noise effects are still at an early stage, 
in order to provide proper welfare guidelines.

http://dx.doi.org/10.15406/jamb.2017.05.00137
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Equipment used in aquaculture, such as aerators, pumps, 
filtration systems, cascading streams associated with recirculation 
systems can increase the noise to which the animals are subjected 
[80,93,94] and this may well result in a significant reduction in 
growth and reproduction rates, higher metabolic rates, increased 
mortality and lower egg viability [85,95-97]. As noises and 
vibrations are efficiently transmitted in water and they can act 
as stressors for fish, it is mandatory to consider them during 
experimental design to ensure the validity of the data obtained. 
Noise levels in husbandry facilities, including ultrasounds, must 
not adversely affect animal welfare. Also, alarm systems must 
sound outside the sensitive hearing range of the animals, while 
not impairing their audibility by human beings. If necessary, 
holding rooms must be provided with noise insulation.

Stocking density

Density is another factor that must be taken into account in 
fish husbandry. Most of the studies conducted to understand the 
effect of density on fish growth and welfare have been performed 
on juvenile or adults, given also the interest of fish farms in 
identifying the optimum density at which to rear animals. Among 
the fish analysed we can mention rainbow trout (Oncorhynchus 
mykiss) [98], salmon (Salmo salar) [99], gilthead sea bream (Sparus 
aurata) [100], pike perch (Stizostedion lucioperca) [101], Tilapia 
nilotica [102], arctic charr (Salvelinus alpinus) [103], African 
catfish (Clarias gariepinus) [104], summer flounder (Paralichthys 
dentatus) [105], dover sole (Solea solea) [106], Californian halibut 
(Paralichthys californicus) [107], ningu (Labeo victorianus) [108], 
catfish (Mystus cavasius) [109], pufferfish (Takifugu obscures) 
[110], and tub gurnard (Chelidonichthys lucerna) [111]. Together, 
these studies have shown species-specific effects of high density 
that in some species reduce the growth performance of fish 
[106,107,112,113] while in other species have no effect upon 
reproduction [105,114-116]. The species-specific effect is 
probably dependent on different physiological response to stress, 
increased social interactions and different sensitivity of fish to the 
deterioration of water quality [113,117-122]. Indeed, high density 
can strongly affect water parameters resulting in a reduction of 
oxygen availability and a higher concentration of ammonia [108].

The high density may act as a stress factor both at systemic 
and cellular level. Inappropriate density can affect different 
physiological parameters in fish altering the lipid metabolism 
[118,123], increasing the concentration of plasma cortisol 
[16,124] and glucose [118] and decreasing the peritoneal 
leukocyte cytotoxicity [125]. Moreover, at high density an 
increase of aggressive or cannibalistic behaviour in ocellate 
puffer larvae was reported [126]. Recent studies in Takifugu 
obscurus have shown that the high density determines an over-
expression of genes considered biomarkers of stress such as those 
coding for HSP 70, HSP 90B, metallothionein, cytochrome P450 
1A and phosphoenolpyruvate carboxykinase [110]. These results 
show that the high density is a stress factor causing a delay in 
the growth of the animal [110]. It has been assumed that coping 
with stress increases the overall energy demand, which is then 
unavailable for growth [127]. On the other hand, decreased feed 
consumption [123], social interaction [121] and altered water 
quality [128] may result in increased metabolic demands and 
additional expenditure of energy at the expense of growth.

The stocking density of fish shall be based on the total needs 
of the fish in respect to environmental conditions, health and 
welfare. Fish must have access to a volume of water that allows 
normal swimming and is consistent with their size, age, health and 
feeding method. Moreover, the introduction or re-introduction 
of animals to established groups shall be carefully monitored 
to avoid problems of incompatibility and disrupted social 
relationships. Furthermore, an adequate stocking density shall 
permit minimizing the risk of injures and stress and to promptly 
identify and remove moribund or dead fish. In a breeding facility, 
the density of fish shall be also appropriate to the ability to 
maintain a correct water quality and consistent with the feeding 
system.

Environmental complexity

The presence of physical elements in the tank, acting as 
barriers and covers, or sand for some flatfish, may facilitate both 
the recognition of different individual areas and the reduction 
of aggressive encounters. The use of appropriate enrichment 
techniques should allow to extend the range of activities available 
to the animals and to increase their coping activities including 
physical exercise, foraging, manipulative and cognitive activities, 
as appropriate to each species. Environmental enrichment in 
animal enclosures must be adapted to the species and individual 
needs of the animals concerned. Moreover, complex rearing 
conditions increase the size of different brain structures such as 
cerebellum, telencephalon and optic tectum [129,130] making 
animals more skilful to cope with environment. Fish must be 
provided with appropriate environmental enrichments such as 
hiding places or bottom substrate to allow the expression of a 
wide range of normal behaviours. For more information on all 
issues concerning the environment enrichment for fish in captive 
environments, see the recent review article authored by Näslund 
& Johnsson [131].

Feeding

Feeding is another issue to be considered and the amount and 
quality of food should be sufficient to ensure the intake of calories 
and nutrients necessary to meet the metabolic needs of the animal 
without producing excessive waste in the aquatic system. As to 
feeding, fish show a wide variability and are generally grouped 
as herbivorous, carnivorous, detritivorous and omnivorous on 
the basis of their food habits and they can be further subdivided 
into plankton feeders, benthic invertebrate feeders and fish 
feeders [132-135]. In fish, acquisition of food is a process based 
on different sensory systems that usually involves searching, 
detection, capture and ingestion. Different sensory cues including 
vision, chemoreception, acoustic, lateral line and electroreception 
may contribute to aspects of the feeding behaviour in fish. 
Among species, differences in role and significance of the sensory 
systems are also present [136]. Vision is crucial for the initial 
detection of the prey and the orientation to it. Furthermore, the 
lateral line contributes to determine the optimum distance and 
angular deviation for the initiation of a rapid strike toward the 
prey [137]. Besides, both olfaction and gustation, two sensory 
systems that respond to amino acids, can play a dominant role 
in food detection in many fish species [136-138]. The type and 
composition of the diet may influence food conversion and 

http://dx.doi.org/10.15406/jamb.2017.05.00137
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growth rate. In particular, differences have been reported in fish 
fed with natural or artificial diets that could be attributed to the 
lower protein and higher carbohydrate content of an artificial 
diet when compared with a natural one [139-143]. As regard the 
amount of food, fish overfeeding results in the production of large 
amounts of particulate organic wastes in the form of waste feed 
and faecal matter that can contribute to water deoxygenation and 
to the production of reduced compounds such as ammonium and 
sufides [144]. Moreover, studies demonstrate that overfeeding 
affect the feed conversion energy depending on fish species 
and environmental condition [145]. On the other hand, the 
underfeeding can cause an increase in the interfish competition 
and in the number of attack events that can cause injuries to 
the animals [146,147]. The time of day when the fish are fed is a 
parameter that must be considered as it may affect growth, food 
conversion efficiency [142,148-151] and even animal behaviour. 
This influence may be hormonally mediated [148] and the ghrelin 
hormone plays an important role in the control of food intake. In 
fish, as in other vertebrates, ghrelin is a peptide that shows an 
orexigenic, or appetite stimulating, effect as its administration 
increases food intake [152]. The release of ghrelin increases 
under fasting conditions and decrease after feeding [153,154] 
suggesting a role for this hormone in regulating food assumption 
in fish. Ghrelin acts activating other orexin systems such as the 
neuropeptide Y and orexin [155]. In fish, ghrelin is also involved in 
the modulation of locomotor activity [135,156,157]. In particular, 
it has been proposed that ghrelin is involved in the generation of 
food anticipatory activity as the increase in locomotor activity 
was observed 3-4 h before food supply in scheduled fed animals, 
including goldfish [158].

Taken together the above information emphasize the wide 
variability in feeding modalities in fish and the significant influence 
of the diet composition and the timing of food administration on 
fish growth and behaviour. For these reasons, fish must be fed 
with a suitable diet at an appropriate feeding rate and frequency, 
and that particular attention must be given to feeding larval fish 
during any transition from live to artificial diets. Furthermore, 
all fish have to get access to feed to avoid undue competition, 
especially for fry and young fish.

Handling

Fish handling is another parameter that needs to be considered 
in fish welfare. Various studies conducted on different fish species 
have shown that handling may affect different physiological 
parameters related to stress such as glucose and cortisol plasma 
concentration [159,160], may negatively influence the antioxidant 
defences [161], may affect the blood lactate concentration and 
haematocrit and, finally, fish growth [162]. On the basis of these 
scientific information, fish handling has to be kept to a minimum. 
The handling should be carried out only when necessary in a farm 
too. The stakeholder shall behave to make as much as possible 
limited the stress of fish. Equipment and procedure used shall be 
chosen to minimize stress and injury. The sedation or anaesthesia 
may be appropriate. Moreover, everything shall be made to handle 
fish in the water; if fish have to be taken out of the water, this shall 
be done in the shortest time possible and equipment in direct 
contact with body fish shall be moistened. Additionally, in order 
to correctly handling a fish, it shall be entirely supported and not 

be lifted by individual body parts only, such as the gill covers.

Fish killing

The killing of fish is a circumstance of potential pain and 
suffering for animals. Recommendations are given for farming fish 
bred in Europe in order to the killing is on spot and without delay 
by a person properly trained and experienced. The method used 
shall cause immediate death, rapidly render the fish insensitive or 
cause the death when fish is anaesthetized or effectively stunned. 
Parameters such as immediate and irreversible cessation of 
respiratory movements and the loss of eye roll reaction shall be 
monitored as indicator of death occurred. If large groups of fish 
have to be killed for emergency as disease control, the effectiveness 
of procedure shall be evaluated on a sample, and just in this case, 
carbon dioxide might be used. In the Directive 2010/63/EU the 
modalities by which fish must be sacrificed are listed in the Annex 
IV, where it is specified that fish can be euthanized only by using 
an overdose of anesthetic or by electrocution.

Conclusion
The chemical-physical parameters of the natural aquatic 

environment can vary widely depending on the geographic 
location and the type of area considered. Each species of fish 
have adapted during evolution to live in specific environmental 
conditions and they respond to environmental variations moving 
toward areas with more suitable characteristics.

In fish housing practices, that they are for research or 
aquaculture purposes, it is essential to know the effects of 
environmental parameters on the fish in order to provide the 
animal an optimal environment to live, which ensures the well-
being of animal avoiding suffering.

The knowledge of the effects of environmental parameters on 
animal’s biology and the availability of suitable equipment to keep 
these parameters constant is a prerequisite to obtain repeatable 
experimental data in scientific research and to ensure a healthy 
food product with high organoleptic quality in aquaculture 
context.
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