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Abstract
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Modelling Ovarian Follicle Dynamics within Assisted Reproductive Technology
Treatments

by Mariya MARKELOVA

Infertility affects from 12% to 15% of reproductive couples in Western Europe. Most
of infertility cases are related to female endocrinological problems and costs around
1 billion Euro per year. Assisted Reproduction Techniques have made huge im-
provements on chances of infertile couples. However, the success rate is drastically
low.

Systems biology is an complex approach to tackle an entire organism, instead of
singling out it’s fractions and trying to understand them. The intention of this thesis
is to apply systems biology to the problem of infertility.

Sufficient amount of research has been done towards design a whole-body model.
However, none of them closely deal with endocrinological problems thus, they do
not fully covers the problem of infertility. A great deal of work was done specifically
oriented on recreating the dynamics of reproductive hormones. Such models have a
high complexity and more than 100 parameters to be identified. Despite the ability
to simulate concentration of hormones, the problem of identifing values for such a
large amount of unknown parameters remains unresolved or highly complex.

Whereas models as (Röblitz et al., 2013) oriented on simulating the dynamics of
multiple hormones such as Progesterone, Follicle-Stimulating Hormone, Luteinizing
Hormone within normal cycle, this thesis oriented on establishing several models
designed specifically for Estradiol concentration and follicle dynamics within stimu-
lation treatment. Main aim is to reduce or eliminate number of measurements taken
from a patient in order to increase patient comfort and reduce cost of a treatment.

This thesis was done within European Project PAEON, as a part of collaboration
between Model Checking Group Laboratory (Sapienza University of Rome) and ex-
perts in reproductive medicine (Prof. Dr. med. Brigitte Leeners, University Hospital
of Zürich).
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Chapter 1

Introduction

1.1 Framework

According to (Wang et al., 2003), (Gnoth et al., 2003) infertility affects from 12%
to 15% of reproductive couples and will drastically increase. It has a deep impact
on our society, as (Daar and Merali, 2002) stated “the consequences of infertility in
developing countries range from severe economic deprivation, to social isolation.”
Most of infertility cases are related to female endocrinological problems and costs
around 1 billion Euro per year. Assisted Reproduction Techniques (ART) have made
huge improvements on chances of infertile couples to have their own genetic ba-
bies. Since the birth of the first ‘in vitro’ child in 1978 (Kamel, 2013), ART have been
widely used in fertility clinics. Assisted reproductive technology achieves preg-
nancy by using either in vitro fertilisation (IVF), intracytoplasmic sperm injection
(ICSI), or other methods (Szmelskyj and Aquilina, 2014).

Systems biology is a complex approach to tackle an entire organism, instead of
singling out fractions and trying to understand them. It came a long way from first
mathematical model of cardiac cells leading to the implantable pacemaker, to the
whole-cell mathematical model which is able to predict response to genetic muta-
tions (Karr et al., 2012). It combines knowledge from biology to computer science,
from engineering to physics aiming to predict how a system will react to a changing
conditions and to develop solutions to the major healthcare problems of our time.
One of which is to assist doctors in clinical practice by delivering clinical decision
support systems.

The intention of this thesis is to apply systems biology to the problem of in-
fertility. A solid amount of research has been done towards design a whole-body
model such as Physiomodel (www.physiomodel.org) and Open Systems Pharmacol-
ogy Suite (OSPS) (https://github.com/open-systems-pharmacology) that allows
us to model also interaction with drugs, however, none of them closely deal with
endocrinological problems thus, they do not fully covers the problem of infertility.
A great deal of work was done specifically oriented on recreating the dynamics of
reproductive hormones as model in (Röblitz et al., 2013) study. Such models have a
high complexity and more than 100 parameters to be identified. Despite the ability
to simulate concentration of hormones, the problem of identifing values for such a
large amount of unknown parameters remains unresolved or highly complex.

Whereas models as (Röblitz et al., 2013) oriented on simulating the dynamics of
multiple hormones such as Progesterone, Follicle-Stimulating Hormone, Luteiniz-
ing Hormone within normal cycle, this thesis oriented on establishing several mod-
els designed specifically for Estradiol concentration and follicle dynamics within
stimulation treatment, which will be later on discussed in Section 2.

www.physiomodel.org
https://github.com/open-systems-pharmacology
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1.2 Motivation

Assisted Reproduction Techniques have increased chances for infertile couples, how-
ever, current success rates reach only 35% even in modern clinics. Therefore, the
major goal of this thesis is to improve quality of fertility treatments, which consists
of downregulation (or preparation) and stimulation phases. While downregulation
aims at suppressing FSH, LH hormones, intention of stimulation phase is to obtain
large number of mature follicles. Clinician follows up a patient response via mea-
surements of hormone E2 and TV-US. We aim to develop models for both types of
measurement.

The main inspiration for the first part of our research is (Bächler et al., 2014). The
increase in the follicular surface area in species correlates linearly both with species
mass and with the predicted increase in E2 concentration. This suggests that E2
grows linearly with the total surface of follicles. We aim to develop an E2 estimation
model based on follicle sizes that, reducing E2 measurements during fertility treat-
ments, will provide to physicians the same amount of information as they would
have by measuring E2. As a matter of fact, E2 estimation from follicle measure-
ments allows doctors to estimate E2 without waiting for the results of laboratory
tests. Moreover, the ability to estimate E2 blood concentrations opens up an oppor-
tunity for healthcare at a distance, with the help of small devices which are available
on the market (Sonaura (2016), Gerris and De Sutter (2010)). These devices allow
patients to take TV-US by themselves at home and transmit results (via the Internet)
to the doctor. Moreover, since less blood samples would be taken from a patient, it
means less expenses, thus stimulation treatment would reduce it cost.

Our second aim is to develop a follicle model, which predicts future total and
average surface of follicles within a TV-US, from a preceding TV-US measurement of
follicle sizes and a drug dose during stimulation treatment. Stimulation treatment is
a complicated process, where one of the crucial roles is played by the determination
of the best day for ovulation induction. Clinician must decide this day based on a
patient measurement and his/her professional experience. Moreover, high hormone
doses administered to a patient could lead to dangerous treatment advers affects,
such as Ovarian Hyper-Stimulation Syndrome. With the help of our follicle model a
clinician could predict future dynamics of follicles, thus avoid a possibility of OHSS,
as well as have more information to decide on ovulation induction day.

Our models, once reliable, could be integrated in Decision Support System that
supports clinician during stimulation treatment.

1.3 Contribution

This thesis aims at reducing the number of measurements taken from a patient in
order to increase patient comfort and reduce treatment costs. During a stimulation
treatment mainly two types of measurements (see Figure 2.1) are performed by clin-
icians in order to monitor patient response to treatment, TV-US and E2 hormone
concentrations. Both type of measurements are invasive and have to be taken every
couple of days (depending on the protocol). In this thesis, we introduce 3 models
for reducing both types of measurements taken from a patient. First, we present
two families of models for E2 level blood estimation from the number and sizes of
growing follicles during fertility treatments. In the first model, we exploit biological
knowledge following a grey box approach. We assume that follicle contribution to
E2 blood concentration depends linearly on the follicle granulosa layer surface. In
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the second family of models, we split follicles into a certain number of classes, each
of which contains follicles whose diameter is in a given range. Each follicle con-
tributes to E2 blood concentration depending on the class it belongs to. This model
is more general and is mainly a black box model, since it does not assume any spe-
cific relationship between follicle surface (or diameter) and E2 concentration.

Our piece-wise family of models has correlation coefficient higher than 0.7 for 14
patient groups out of 15. Moreover, 11 groups out of 15 have correlation coefficient
more than 0.8. Both families of models reveal similar errors for an estimation error
validated by bootstrap method. In most of patient groups 2-PL and 3-PL models do
not outperform 1-PL significantly, nevertheless there are several exceptional groups.

Our third model is oriented to predict future surface of follicles, based on previ-
ous measurements and drug doses that were administered to a patient. This model
is a piece-wise model predicting total and average surface of follicles and it does not
assume any specific relationship between follicles. Our follicle model on average
provides an error of 17.5% for a patient group. In 7 patient groups out of 9 the error
is less than 20% (Table 4.1b). The error validated by bootstrap method on average
gives error around 30%.

We observe that in both E2 and follicle models parameters are likely to be pop-
ulation as well as treatment dependent. Therefore, to take advantage of them, each
clinic should fit parameter values by using data collected during treatments carried
out in that clinic.

1.4 Summary

This thesis is organised as follows. We first give a brief description to a stimulation
treatment (Figure 2.1), followed up by common techniques applied through the the-
sis in Section 2.1. The thesis contains two principal parts. Section 3 presents two
type of models to estimate E2 concentration. One that assumes a linear dependency
between E2 and granulosa layer in a follicle, Sect.3.2.2.1. Second that is mainly data
driven, see Section 3.2.2.2. Section 4 describes a model for predicting the outcome of
TV-US, with knowledge of previous measurement and the injected drug dose. Each
part (Section 3, 4) contains experimental results. Finally, we discuss obtained results
in Section 5 and close the topic in Conclusion Section 6.
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Chapter 2

Context

This chapter provides a gentle introduction to the thesis topics and in particular to
aspects of fertility (treatments). We first briefly describe the infertility treatment in
Section 2.1 and then discuss common techniques which we use in our study (Section
2.2). Data used in our study is described in the following Section 2.3. Finally, we
discuss follicle measurements errors, and thus intrinsic limitations to predictability
of our models in Section 2.4.

2.1 Fertility Treatment

Fertility treatments consist of downregulation (or preparation) and stimulation phases.
Downregulation aims at blocking the release of Follicle Stimulation Hormone (FSH)
and Luteinizing Hormone (LH) responsible of proliferating activity of granulosa
cells in follicles and, thus, stops the development of antral follicles. After patient
responds to downregulation, clinicians start the stimulation phase, whose goal is to
lead a large number of follicles to maturation and then collect oocytes for subsequent
in vitro fertilisation (IVF) or intracytoplasmic sperm injection (ICSI).

Follicle maturation is achieved by administering high doses of follicle stimulat-
ing hormones (FSH or a mix of FSH and LH). In order to optimise drug admin-
istrations, the number and quality of collected oocytes, and to minimise risks of
treatment adverse effects (most serious being Ovarian Hyper-Stimulation Syndrome
(OHSS) (Mason et al., 1994)), patient treatment response is monitored during follicle
development by a series of Trans-Vaginal Ultrasounds (TV-US), and measurements
of Estradiol (E2) blood concentrations. Main clinical decisions during the stimula-
tion phase, such as doses and timing of drug administrations, when to induce ovula-
tion, and possibly to stop the treatment depend on the number and sizes of growing
follicles and E2 blood concentrations.

The general structure of a stimulation phase is depicted in Figure 2.1. Some deci-
sions are taken in advance (i.e., before starting the treatment) on the basis of external
factors or measurements taken before the beginning of treatment. As shown in Fig-
ure 2.1, a treatment is a loop that ends when treatments goals are met, or when there
is evidence that such goals cannot be attained any more. In this case, the treatment
ends with a failure. During the treatment, some safety conditions, that guarantee
patient health have to be always satisfied. If such conditions are violated, the treat-
ment ends with a failure. However, if success goals are met with respect to safety
conditions, treatment considered to be a success and it terminates the loop.
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FIGURE 2.1: Stimulation phase general structure

During stimulation treatment a patient is at reask to obtain an Ovarian hyper-
stimulation syndrome (OHSS). To monitor this condition clinicians follow closely an
E2 blood concentration. If E2 level of a patient reaches a certain threshold, clinician
could adjust or terminate a treatment in order to avoid OHSS. The mitigation of risk
to obtain OHSS is presented on Figure 2.1 by Safety Conditions.

Under stimulation treatment, many follicles grow and become mature oocytes,
while the others undergo atresia. Stimulation treatment success (data collected in-
side the PAEON project at University Hospital Zurich) is defined by the presense of
at least three mature follicles with a diameter ≥ 16 (mm).

For the convenience, follicles are usually classified accordingly to their diameter.
We introduce a Follicle Profile (FP) definition with respect to the following diameter
classes. Classes = <10, 10–11, 12–13, 14–15, 16–17, 18–19, ≥ 20>.

Definition 1. The follicle profile of a medical case in a given day is a function defining the
number of follicles within each diameter class for that medical case in that day.

Definition 2. We call a medical case one course of stimulation treatment for a patient.

2.2 Techniques

This section summarizes a general schema for the model design and assessment.
This schema applies both for E2 hormone concentration part (Section 3) and Ovarian
Follicle dynamics part (Section 4). Both parts present mathematical models with
unknown parameters to be identified. Thus, we first present grey box modelling
approach, based on both biological knowledge and experimental data, in Section
2.2.1.1 and review follicle structure in Section 2.2.1.2, which is the foundation for
both parts of this thesis. Second, we present an inclusion criteria for a patient in our
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study. We then discuss parameter idendification problem (see Section 2.2.3), which
we solve by building an optimization problem and solve it with AMPL tool. Next,
we present an improvment to our models by introducing patient groups, based on
external factors, such as health condition, injected stimulation drug, see Section 2.2.4.
Finally, we discuss a method to validate our methodology by using leave-one-out
bootstrap technique and obtaining bootstrap average error and standard deviation
(see Section 2.2.5).

2.2.1 Modelling Approach and Assumptions

2.2.1.1 Grey Box Modelling

In our study, we use biological knowledge to design our parametric models and
experimental data in order to identify parameters and to validate accuracy of model
predictions. This corresponds to the so-called grey box modelling approach (Sohlberg,
1998). Assuming a linear dependency between follicle surface and E2 concentrations
helps to keep the model simple (linear models are easy to define) and parameters,
estimated on experimental data, can be easily interpreted by clinicians.

In contrast, white-box models use only one type of knowledge about a system –
physical knowledge, while black-box models use only experimental data. Grey-box
modelling has several advantages which are valuable for our mathematical model.
Most importantly, we can use our prior biological knowledge about a system. Grey-
box modelling mixes both kind of data – experimental data and biological. Given
the fact that we indeed have both of this data type, it is reasonable to use grey-box
modelling.

2.2.1.2 Follicle structure

Essentially, a follicle has an elliptical shape (Penzias et al., 1994) and a multilayered
structure, as shown in Fig. 2.2. It consists of a fluid-filled antrum, and granulosa
and theca layers. While SonoAVC software (Raine-Fenning et al., 2008) is an emerg-
ing approach to measure follicle volume (for example, to identify pathology or con-
firm normality of follicle), still, 2D manual measurement is the standard approach
to measure follicles during stimulation treatments.

Retrospective data considered in our study only record one diameter per follicle.
Therefore, in our study, we will assume follicles to have a spherical shape. The
contribution of a follicle having diameter d to the overall E2 blood concentration is
proportional to the surface of its granulosa layer (Bächler et al., 2014). In (Bächler
et al., 2014), it is also shown that the thickness of the granulosa and theca layers can
be considered constant across different patients and during follicle growth. Hence,
the surface of the granulosa layer of a follicle having diameter d can be estimated as
S = π(d− 2t)2, where t is the thickness of theca layer, that we always set to 100µm
(Bächler et al., 2014).

the follicle is avascular and can therefore only be reached by diffusion
from the vascularized theca (Fig. 1A and B). The oocyte together with
the surrounding cumulus cells forms the cumulus–oocyte complex
(COC). The COC resides eccentrically in the follicle and is attached to
the granulosa cell layer.

The geometry, the timing of the maturation process and the core regu-
latory network that controls the follicle maturation process have been
defined (Richards and Pangas, 2010). Within the ovarian follicle, FSH
and LH regulate a large number of target genes and proteins, which inter-
act in a complex regulatory network (Gloaguen et al., 2011). Within the
follicle, the most important regulatory factors are steroid hormones

(androgens and estrogens) but also insulin-like hormones, as summar-
ized in Fig. 1C. The regulatory network is further complicated by the
spatial restriction of many of the gene expression domains. Thus, many
of the signalling components are produced only in parts of the follicle,
with some diffusing and others being cell-bound within the tissue.

Computational models have the potential to integrate large amounts
of published information and can be used to evaluate the consistency of
available data. A number of computational models have previously been
developed to analyse aspects of the follicle maturation process (for a
review, see (Vetharaniam et al., 2010), but only few models explore
the processes within the follicle itself. We have recently developed a

Figure 1 A graphical summary of the model for ovarian follicle development. (A) A schematic 2D representation of an ovarian follicle. The follicle is a
multilayered structure. Inside the follicle is the fluid-filled antrum, which is surrounded by a granulosa cell layer. The outer layer, the theca, is innervated by a
mesh of capillary blood vessels. All other parts of the follicle are avascular. The oocyte together with the surrounding cumulus cells forms the COC. The
COC lies on one side of the follicle and is attached to the granulosa cell layer. (B) A schematic view of the 3D computational domain for the follicle. Compart-
ments are coloured as in (A). Note that the proportions of the compartments have been changed for better visualization. (C) The modelled signalling
network for the regulation of follicular development, including FSH, LH, estrogens [E], androgens [A] and IGF [I] signalling. Receptors and ligand–receptor
complexes of component j are indicated as Rj and Cj, respectively. Black dotted arrows indicate exchange with the blood, black solid arrows chemical reac-
tions (binding or catalysis), green arrows positive regulatory interactions, while red arrows indicate negative regulatory interactions. All components also
decay, but for greater clarity decay reactions have not been included in the scheme. For a more detailed discussion of the reaction network along with the
evidence see the main text; numbers in brackets refer to single reactions as called out in the main text.
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FIGURE 2.2: (Bächler et al., 2014) (A) A schematic 2D representation
of an ovarian follicle. (B) A schematic view of the 3D computational

domain for the follicle

2.2.2 Medical Case Log: Inclusion Criteria

The following criteria must be all satisfied by a medical case log in order for it to be
included in our study:

1. log contains all information concerning external factors of a medical case, in
order to be classified to a group

2. log refers to a medical case having exclusively one disease

A log is excluded if:

1. it refers to a medical case with the value of AFC equals to 1

2.2.3 Model Validation

Both parts of this thesis, E2 hormone concentration part (Section 3) and Ovarian
Follicle dynamics part (Section 4), represent mathematical models with unknown
parameters to be identified. Thus, it is our goal to identify them. We find values
for such parameters by solving optimisation problems, in order to minimise the
mismatch between model predictions and available measurements. In principle, all
these parameters are medical case dependent and it would be desirable to identify
such parameters for the medical case at hand. Unfortunately, finding individualised
parameters would require several measurements in advance. By contrast, our aim
here is to provide to physicians methods and tools to estimate E2 hormone concen-
tration and Ovarian Follicle dynamics while reducing number measurements.

2.2.4 Improvement on Model Predictions: Patient Groups

As inter-patient parameters lead to unsatisfactory predictions, we introduce patient
groups. Each group is identified by a set of external factors. In our research, we con-
sider 4 external factors. The first is the Antral Follicle Count (AFC) that is how many
antral follicles are present at the beginning of the cycle. AFC reflects woman fertility
potential. The second indicates whether a woman is healthy or has some infertility
causes. The third factor discriminates medical cases in which the stimulation is per-
formed by administering FSH only and those in which a blend of FSH and LH is
administered. The last factor corresponds to the clinician that performed TV-US. In
our experimental results, this factor confirm that accuracy in taking measurements
is crucial for data considered in parameter identification.

More precisely, we split medical cases according to the following criteria:

1. AFC, measured before stimulation treatment: we have considered 2 classes:
Medium response, where 5≤AFC<10 (MR) and Elevated, where 10≤AFC<20
(ER). Although we have considered other level of response (Low Response
(2≤AFC<5) and High (AFC≥20)), our retrospective data does not contain enough
medical cases in these classes.
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2. Health Condition: we considered 4 categories: healthy medical cases, (i.e.
women without hormonal infertility causes), Endometriosis, Idiopathic (un-
known reasons of infertility), and Other reasons.

3. Administered drug: we considered two categories of administered drugs - FSH
only and drugs containing a combination of FSH, LH.

4. Measurement technique: in our data set, received from UZH, measurements
were taken by three different people, thus, it introduces some variability to
measurements and that is why person identification was chosen as one of the
factors to split medical cases in groups.

For each response level r, each health condition h, each administered drug d, and
each measurement technique t, we have a group g = (r, h, d, t). By considering med-
ical cases in a group g, we compute inter-patient group parameter values v∗g finding,
for each group g those values that minimise average errors between estimations and
measurements.

2.2.5 Methodology Validation

Our final step is to validate our methodology, by using leave-one-out bootstrap tech-
nique and obtaining bootstrap average error and standard deviation (Hastie, Tib-
shirani, and Friedman, 2009). First, we give a notation to the bootstrap itself and
afterwards show how it could be used.

General wish using bootrap is to get statistical accuracy of some quantity S(Z),
based on original dataset Z. Let’s say Z∗1, Z∗2, ..., Z∗B are randomly drawn datasets
with replacement having same size as original. We do this B times, as it is shown in
Figure 2.3.

Original	
dataset	Z

𝒛∗𝟏

Bootstrap 
samples

𝒛∗𝟐 𝒛∗𝑩

S(𝒛∗𝟏) S(𝒛∗𝟐) S(𝒛∗𝑩)

S(Z)

Bootstrap 
replications

FIGURE 2.3: General view on bootstrap tool.

The quantity S(Z) is computed from each bootstrap set and the values S(Z∗1),
S(Z∗2), ..., S(Z∗B) are used to assess the statistical accuracy of S(Z). Using simple
bootsrap may lead to imprecise estimation, since training bootstrap samples and
original testing set contain common samples. In order to overlap this drawback, for
each observation we consider only bootstraps which does not contain observation
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i (leave-one-out bootstrap). Thus, leave-one-out bootstrap estimate of prediction
error is defined as in (3.4).

Err =
1
N

N

∑
i=1

1
|C−E2i | ∑

b∈C−E2i

L(yi, f b(xi)) (2.1)

Where f b(xi) is the predicted value at xi, from the model fitted to the bth boot- strap
dataset and C−i is the set of indices of the bootstrap samples b that do not contain
observation i. We either have to choose B large enough to ensure that all of the |C−i|
are greater than zero, or we can just leave out the terms corresponding to |C−i| that
are zero.

2.3 Dataset Statistics

This thesis was done in the framework of the PAEON (PAEON, 2016a) research
project on eHealth and Virtual Physiological Human funded by EU FP7. Project
documentation is available online (PAEON, 2016b).

In our study, we have considered one dataset containing data on stimulation
treatments. Data is collected inside the PAEON project at University Hospital Zurich
(UZH) and remains private due to the Project regulations. The dataset contans 624
patients, with overall number of medical cases 1037, see Table 2.1. As we stated in
Section 2, one patient commonly goes under several rounds (medical case) of stim-
ulation treatment. Figure 2.6 shows that 40% of patients have a course of stimula-
tion treatment at least twice or more. Figure 2.7 shows a number of full observa-
tions (both follicle profile and E2 measurement were performed on the same day)
that were performed on a patient, most common number of observations is 2. Our
dataset also contains information about external factors, including diseases. More
than 50% of patients have 1 disease (Figure 2.5). Time distance between medical
cases associated to the same patient is shown on Figure 2.4.

Our study mainly cosists of two parts, E2 hormone concentration and ovarian
follicle dynamics. In both parts (Section 3 and Section 4) we included patient groups
having at least 10 medical cases.

The E2 hormone concentration model was included in the PAEON (PAEON,
2016a) research project.

TABLE 2.1: High-level statistics of the dataset.

Overall number of patients 624
Overall number of medical cases 1037
Overall number of observations 2019

2.4 Underestimation by TV-US

Usually in clinical practice follicles are measured manully using 2D image from ul-
trasound by taking either the mean of two largest diameters or by taking the largest.
However, it is not always the case that follicle has a spherical shape, often follicles
has an irregular shape. Thus, the use of a traditional 2D ultradound leads to high
inaccuracy. Study in (Raine-Fenning et al., 2008) analysed 224 follicles within the
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volume range 0.4− 16.2 (cm3). They compare four ways to obtain volume of fol-
licles. First is an automatic way (using SonoAVC), second is to calculate volume
using three diameters obtained by SonoAVC and the sphere formula. Third way
is based on three diameters as well, however the numbers were obtained from 2D
ultrasound. Last one is calculated using Virtual Organ Computer-aided AnaLysis
(VOCAL). Third way had the highest error in case of a single diameter. To com-
pare, they calculated mean and standard deviation of volume. While SonoAVC pro-
vided particularly close results (3.67 ± 2.51) to true follicle volume (3.70 ± 2.60), 2D
with one diameter gained 4.40 ± 3.42. Even additional measurements of diameters
(two/three diameters) contains high error.

Aditionally, study in (Rosendahl et al., 2010) compares ovarian volume esti-
mated by the 2D TV-US with the ovarian volume measured after weigh of unilat-
eral oophorectomy. This study included 66 women who had an ovary removed for
cryopreservation of the ovarian cortex. It concluded that ovarian volume was sev-
erly underestimated by at least 27% from measurement obtained by 2D transvaginal
ultrasound. This high error takes place due to the fact that 2D TV-US is based on
mathematical model assuming that ovary has a shape of prolate ellipsode, yet in
reality it is not always true.

This underestimation by TV-US is in agreement with our study. Our models tend
to underestimate both hormone levels and follicle growth, as model parameters are
fitted by using 2D measurement data. Precision of our model predictions are clearly
intrinsically limited by precisions of measurements we use to fit model parameters.
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2.5 Quantisation Task

Our models assume that the Ê2 produced by each single follicle is proportional to
the surface of its granulosa layer. However, quite often in standard clinical practice
only information about a diameter class is available and not the exact diameter (in
our data from obtained from University Hospital Zurich, only a 2 mm wide diameter
class is known for each follicle). This makes the surface of the granulosa layer for
each follicle an uncertain quantity.

We overcome this problem by observing that, when assigning each observed fol-
licle to its diameter class, the human operator executed an instance of a quantisation
task. As a consequence, relying on the typical assumptions made when dealing with
quantisation tasks, our models assume that the actual measured diameter for follicle
is drawn uniformly at random within its diameter class [d̂− δ; d̂ + δ] (with d̂ being the
mean diameter of such a class). Thus, the expected surface for the granulosa layer of
follicle f , can be computed by instantiating to this case the standard formula for the
expected value of a random quantity:

S̃G
f =

∫ d̂+δ

d̂−δ
π(x− 2t)2 1

2δ
dx (2.2)

Before presenting our results on the accuracy of our E2 estimation model, in this
section we show the range of values for error (see Section 2.2.5) of formula 3.4 that
we can regard as satisfactory.

The surface of a granulosa layer is an uncertain quantity for two reasons:

1. Follicle diameters in our retrospective data have been obtained with a manual
inspection of TV-US clinians, who derived some sort of mean diameter for
each follicle. Such mean diameters are in no way average diameters in any
geometrical sense. Also, they might be subject to errors, see Section 2.4.

2. For each follicle only information about its 2mm-wide diameter class is avail-
able, and not its measured mean diameter.

Hence, in order to correctly interpret the values of the bootstrap error of 3.4 when
assessing performance of our estimator, it is crucial to understand what is the impact
of such uncertainties on the final validation error value.
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FIGURE 2.8: Bounds of V G ratios for follicles of each diameter class.

Figure 2.8 shows the extreme variations of the granulosa surface of a follicle of
each diameter class with respect to the expected value as defined in 2.2. In particular,

for each follicle diameter class, the figure shows the ratios SG
max
S̃G , SG

min
S̃G between the

maximum (minimum) value of the surface of the granulosa layer for a follicle of that
diameter class and the expected granulosa layer surface as defined in 2.2.

Given that E2 estimation model is linear to the overall follicular granulosa sur-
face, the bounds above also define a range of uncertainty in the estimated E2 value
which cannot be neglected.

As a result, when we assess performance of our estimation model on our data, we
will consider bootstrap values within the bounds shown in 2.8 as satisfactory, because
such error values could be fully justified in terms of the intrinsic uncertainties in the
input (about exact mean follicle diameters).
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Chapter 3

E2 Hormone Concentration

This chapter is aimed to present our E2 estimation model. We first discuss our mo-
tivation and related work for the study in Section 3.1. Then we present two family
of models for E2 estimation: piece-wise models in Section 3.2.2.1 (that assume a lin-
ear dependency between E2 and surface of granulosa layer) and step-wise models in
Section 3.2.2.2 that are mainly data driven. We then compare them in Section 3.2.2.3.
Finally, we present our experimental results in Section 3.3.

3.1 Introduction

Despite a still open debate (Kwan et al., 2014; Orvieto et al., 2008), E2 blood level is
an important factor considered in clinical decisions during fertility treatments (Mal-
hotra, 2015; Mittal et al., 2014; Var et al., 2011). Even though some authors (Vandek-
erckhove et al., 2014; D’Angelo et al., 2004) claim that ultrasounds are enough and
E2 measurements are needed only if OHSS risks are high due to other factors, the
majority of authors as well as clinicians (Kwan et al., 2014; Malhotra, 2015) strongly
support monitoring both follicle growth and E2 levels as a good clinical practice.

3.1.1 Motivation

It is well known that, during follicle maturation, E2 is synthesised mainly by granu-
losa cells surrounding oocytes in ovarian follicles (Mason et al., 1994). Our main goal
here is to design a quantitative model that faithfully estimates E2 from the number of
growing follicles and their sizes.

The main inspiration for our research is (Bächler et al., 2014), where it is shown
that while the size of mature oocytes is similar across different mammalian species,
the size of ovarian follicles differs greatly. The increase in the follicular surface area
in larger species correlates linearly both with species mass and with the predicted
increase in E2 concentration. This suggests that E2 grows linearly with the total
surface of follicles.

With respect to (Bächler et al., 2014), we aim at developing an E2 estimation
model based on follicle sizes that, reducing E2 measurements during fertility treat-
ments, will provide to physicians the same amount of information as they would
measure E2. The benefits of such a model would be remarkable in clinical practice
in terms of patient comfort, treatment costs, and logistic.

As a matter of fact, E2 estimation from follicle measurements allows doctors to
estimate E2 without waiting for the results of laboratory tests. Moreover, the ability
to estimate E2 blood concentrations opens up an opportunity for healthcare at a
distance, with the help of small devices which are available on the market (Sonaura
(2016), Gerris and De Sutter (2010)). These devices allow patients to take TV-US by
themselves at home and transmit results (via the Internet) to the doctor.
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3.1.2 Contribution

In this work, we introduce and evaluate two families of models for E2 level blood
estimation from the number and sizes of growing follicles during fertility treatments.

First, we consider piece-wise affine models (n-Piece-wise Legs (n-PL)). In this fam-
ily of models, we assume that follicle contribution to E2 blood concentration de-
pends linearly on the follicle granulosa layer surface. Moreover, we let the slope
change during follicle maturation, according to the observation that E2 secretion
rate changes at different follicle maturation stages. These models depend on the
number n of times we allow the slope changes (legs), the n breakpoints γ1, . . . , γn in
which slope changes, and on the n + 1 slopes β0, β1, . . . , βn.

Second, we consider step-wise models. In this family of models, we split follicles
into k classes, each of which contains follicles whose diameter is in a given range
[ak, bk]. Each follicle contributes to E2 blood concentration depending on the class it
belongs to. These models depend on the parameter k (number of classes) and on k
parameters λ1, . . . , λk, where λi models the contribution of a follicle in class i to E2
blood concentration. These models generalise the one considered in (Franco et al.,
1993), where only 3 classes of follicles were considered.

All these models are parametric: we fit parameter values by solving optimisation
problems, finding those values minimising the error of E2 estimations with respect
to real E2 measurements in retrospective data. Unfortunately parameters turn out
to be highly medical case dependent: inter-patient parameters lead to unsatisfactory
model predictions. To obtain more reliable results, we split medical cases into groups
and fit parameter values for each group separately. Groups are defined by medical
case external factors (health condition and number of antral follicles at the begin-
ning of the stimulation phase etc.) and by treatment properties (administered drugs
during stimulation, follicle measurement techniques etc.).

We observe that model parameters are likely to be population as well as medical
cases dependent. Therefore, to take advantage of them, each clinic should fit param-
eter values by using data collected during treatments carried out in that clinic.

In comparison to (Franco et al., 1993) model, our N-PL family of models is more precise
in E2 estimation. While (Franco et al., 1993) model has correlation coefficient 0.7, all 15
patient groups have correlation higher (or equal) than 0.7. Moreover, 11 groups out of 15
have correlation coefficient more than 0.8. All correlation coefficients were calculated on
leading N-PL model (see Table 3.2) in each group. As for the estimation error validated by
bootstrap method, both families of models reveal similar errors, see Figures 3.3 and 3.4. In
most of patient groups 2-PL and 3-PL models do not outperform 1-PL significantly.

3.1.3 Related Work

Work presented by (Bächler et al., 2014) shows first of all correlation between surface
area in a follicle, both with species mass and E2 concentration. It is worth pointing
out that (Bächler et al., 2014) research studies natural cycles, while our research fo-
cuses on stimulated cycles during fertility treatment. The main difference between
natural cycles and stimulated cycles is that, under stimulation, many follicles grow
and become mature oocytes, whereas in a natural cycle usually only one (occasion-
ally two) reaches maturity while the others undergo atresia. Accordingly, during
stimulation, E2 levels are much higher than in a natural cycle. With respect to this
work, we plan to investigate connection between E2 level and follicles under high
doses of hormones.
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To the best of our knowledge, the study closest to our investigation is (Franco
et al., 1993). They divide follicles into just 3 groups with respect to their diameter:
<14mm, in between 15 and 17mm, and >17mm on ovulation induction day and de-
vise a relationship between E2 and follicle number and sizes. With respect to (Franco
et al., 1993), we were more precise on follicle measurements and monitored the re-
lationship between E2 and follicles number and sizes during the entire stimulation
treatment. In comparison with (Franco et al., 1993) study gaining correlation co-
efficient of 0.7 between measurements of E2 levels and E2 estimations, our model
is more precise and has correlation coefficient always higher (or equal in only one
group) then 0.7. Among them we gain more then 0.80 correlation coefficient between
measurements of E2 levels and E2 estimations in more then half of patient groups.
This point is essential for our main practical objective, i.e. to reduce E2 measure-
ments during stimulation, while keeping the same information for the doctor.

Quite large amount of research has been done in terms of prediction success rate
of becoming pregnant with help of In Vitro Fertilization procedures. Main idea of
these studies is to predict whether patient will or will not get pregnant based on
oocyte quality, embryo quality, level of E2 and many other factors. These studies
are mostly oriented to establish relationship between pregnancy rate and factors on
oocyte retrieval day, while our study suggests a model to improve treatment quality
during entire stimulation phase of fertiliy treatment, by estimating E2 consentration
while oocytes are not yet developed. The general outcome of studies using statis-
tical analysis (Orvieto et al., 2007), (Var et al., 2011), (Mittal et al., 2014), is that the
ratio E2/number of oocytes is a good marker, proving the relevance of E2 levels in
fertility treatments. Besides them, a number of studies used machine learning tech-
niques to predict the same success rate, like (Kim and Jung, 2003) by carrying out
Bayesian network-based analysis detects that age and stimulants like hCG, FSH, LH,
Clomiphene, Parlodel and GnRH play the key role in pregnancy of an infertility pa-
tient. Also (Passmore et al., 2003) build decision trees with accuracy of 67.4 %, in
order to predict patient success of becoming pregnant using IVF procedures.
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TABLE 3.1: Related work summery

Study Study
investi-

gates
how E2
grows

Study
sug-

gests to
moni-

tor
E2

Study
suggests

to
monitor
E2 only
in cases

with
OHSS
threat

Study
suggests

to
monitor
TV-US

Study
investi-
gates if

IVF
success
rate is
influ-
enced
by E2

concen-
tration

Study
investi-

gates
factors
influ-

encing
IVF

success
rate

Study
include
moni-
toring
OHSS

Stimulated
cycles(•)/Natural
cycles(∗)

(Kwan et al., 2014) • • • •/
(Aboulghar, 2003) • • •/

(Al-Hussaini, 2012) • • • •/
(Malhotra, 2015) • • • •/

(Gerris and
De Sutter, 2010)

• • •/

(Bächler et al., 2014) • • • /∗
(Franco et al., 1993) • • •/
(Orvieto et al., 2008) • • •/

(Vandekerckhove
et al., 2014)

• • •/

(D’Angelo et al.,
2004)

• • •/

(Papanikolaou et al.,
2006)

• • • •/

(Orvieto et al., 2007) • • • • •/
(Var et al., 2011) • • • • • •/

(Mittal et al., 2014) • • • • •/
(Kim and Jung, 2003) • •/

(Passmore et al.,
2003)

• • •/
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3.2 Methods

In this section, we outline our mathematical models for estimating Estradiol (E2)
blood concentration from follicle measurements during the stimulation phase of a
fertility treatment together with our approach to model assessment.

We present in Sect. 3.2.2 the two (families of) models that we consider in our
work. Our parameter identification technique is presented in Sect. 3.2.3. Finally, in
Sect. 3.2.4, we present our approach to assess model prediction accuracy.

3.2.1 Modelling Approach

In our study, we use biological knowledge to design our parametric models and
experimental data in order to identify parameters, see Section 2.2.1.1. Assuming
a linear dependency between follicle surface and E2 concentrations helps to keep
the model simple (linear models are easy to define) and parameters, estimated on
experimental data, can be easily interpreted by clinicians.

3.2.2 Parametric Models

In this section, we present our 2 families of models: piece-wise models in Sect. 3.2.2.1
(that assume a linear dependency) and stepw-ise models in Sect. 3.2.2.2 that are mainly
data driven. Finally, we compare them in Sect. 3.2.2.3.

3.2.2.1 E2 Piece-wise Linear Models

It is well known that E2 is synthesised mainly by ovarian granulosa cells (Mason et
al., 1994). The main assumption in the design of piece-wise models is that E2 concen-
tration grows linearly with respect to the surface of granulosa layer as established by
(Bächler et al., 2014). This study, however, considered natural cycles (across different
mammalian species), whereas our research goal is to estimate E2 from the surface of
granulosa layer during the stimulation phase of a fertility treatment. Indeed, under
ovarian stimulation, many follicles grow and become mature oocytes, whereas in a
natural human cycle usually only one (occasionally two) reaches maturity, while the
others undergo atresia. Therefore, E2 growth in natural and stimulated cycles can
greatly differ.

We generalise this idea by considering models in which E2 depends not just lin-
early from granulosa layer in a follicle, but it also depends on the stage of follicle
maturation. This leads us to consider parametric n-leg piece-wise linear (n-PL) mod-
els, in which E2 concentration piece-wise linear function with n − 1 break points
where slope changes, as shown in Fig. 3.1.

Our parametric piece-wise model depends on parameters α, β, γ where α ∈ R≥0,
β = 〈β1 . . . βn〉 ∈ Rn and γ = 〈γ1 . . . γn−1〉 ∈ Rn−1 with 0 ≤ γ1 ≤ γ2 ≤ . . . ≤ γn−1.
To simplify formulas, we add to the vector γ values γ0 = 0 and γn = ∞. These
parameters represent an offset α, E2 growth rates βi (with respect to follicle surface),
and break points γi where the ratio between E2 and follicle surface changes (see
Figure 3.1, where Ê2 is the estimated level of E2).
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FIGURE 3.1: E2 mathematical model as an n-leg Piece-wise Linear
Function connecting surface of granulosa layer (S) in a follicle and

E2.

Given a follicle of surface S, such that S ∈ [γk, γk+1], we model its contribution
to the total E2 concentration as:

E2(S) = βk+1(S− γk) +
k

∑
j=1

β j(γj − γj−1) (3.1)

Total E2 is then simply the sum of the contribution of all follicles. If, in a given
measurement m, there are f follicles having surfaces S1, . . . , S f , we put E2(m) =

α + ∑
f
i=1 E2(Si).

Experimentally, in Sect. 3.3, we will show that in most patient groups 2-PL and
3-PL models do not outperform 1-PL model significantly. However, in some cases
2-PL model gives the lowest error in contrast to 1-PL, which confirms our hypothesis
that follicle influence on E2 concentration depends on its stage of maturation. In this
case, we call first stage primary (associated to the parameter β1 = βp), corresponding
to early stage of follicle development (follicle size less than γ) having low impact
on E2 concentration. We call maturation (associated to the parameter β2 = βm) corre-
sponding to a mature follicle stage (size greater than γ), when the follicle has a much
stronger influence on E2 concentration.

As a result, we obtain family of piece-wise linear models, depending on 2n un-
known parameters.

3.2.2.2 E2 Step-wise Models

Also in this family of models, we assume that E2 concentration is proportional to the
sum of E2 secreted by each follicle. Moreover, here we assume follicles uniformly
distributed, and that the E2 secreted by each follicle depends on an unknown smooth
function f of its diameter.

As a consequence, having f follicles of diameters d1 ≤ · · · ≤ d f revealed in a

measurement m, we have Ê2(m) = λ0 + ∑
f
i=1 f (di), where λ0 is E2 not secreted by

follicles.
If we split the range of possible values of di into k intervals [aj, bj] (j ∈ {1, . . . , k}),

and we let µj = (aj + bj)/2, we have, by Taylor’s Theorem, that f (di) = f (µj) +
f ′(ξ j)(di − µj), where di ∈ [aj, bj]. If the width bj− aj of the interval [aj, bj] tends to 0,
and di ∈ [aj, bj], then f (di) tends to f (µj). Thus, assuming f exists, then all follicles
within same diameter range [aj, bj] contribute to E2 concentration approximatively
for the same quantity f (µj) = λj.
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Therefore, we have that Ê2(m) = λ0 + ∑
f
i=1 f (di) ≈ λ0 + ∑k

j=1 nj f (µj), where
nj is the number of follicles having diameter in [aj, bj]. When the width of intervals
tends to 0, then the error tends to zero. Accordingly, if we have arbitrary precise
measurements, we can have arbitrary precise models for E2 estimation.

As a result, we obtain a family of models, depending on (k + 1) unknown pa-
rameters, λ0, λ1, . . . , λk to be identified, in which:

Ê2(mi) = λ0 +
k

∑
j=1

njλj (3.2)

3.2.2.3 Comparing Piece-wise Linear to Step-wise Models

On the one hand, step-wise models are more general and are mainly black box mod-
els, since they do not assume any specific relationship between follicle surface (or
diameter) and E2 concentration. On the other hand, step-wise models prediction
ability is limited by the measurement precision in the parameter identification phase.
As a matter of fact, once the granularity of the model has been chosen, the prediction
of the model is constrained by that choice.

For example, if follicles are measured with a precision of 2mm, at it is the case in
our retrospective data, and parameter λ1, . . . , λk are identified by using such data,
the model will treat as equals all follicles that belong to a class of dimension of 2mm,
regardless of more precise measurements.

By contrast, exploiting biological knowledge, (in our case, linear dependency
between follicle surface and its contribution to E2 total concentration), following the
grey box modelling approach of piece-wise linear models, one can benefit from more
precise measurements, by interpolating contribution of each follicle. For example,
even if model parameters are identified by using a resolution of 2mm, they can take
advantage from accurate measurements (for example with a precision of 1 or 0.1mm).

In both families of models, measurement accuracy during model parameter iden-
tification is crucial. As it will be shown in Sect. 3.3, in our experimental study, pre-
diction ability of our models is strongly influenced by the measurement technique
(that in our retrospective data is related to the person (nurse, operator) that perform
(take) measurements).

3.2.3 Parameter Identification

In Sect. 3.2.2, we have described two families of models: piece-wise linear (Sect. 3.2.2.1)
and step-wise (Sect. 3.2.2.2) models. Both of these models depend on parameters that
have to be identified. Piece-wise linear models depend on 2n parameters, where n
is the number of legs, that is the number of points in which the linear dependency
between E2 and follicle size can change slope. Step-wise models depend on k + 1
parameters, where k is the number of classes in which we classify follicles.

We find values for such parameters by solving optimisation problems, in order
to minimise the mismatch between model predictions and available measurements
(Sect. 3.2.3.1).

3.2.3.1 Parameters Identification

Let T be a set of t medical cases. For each medical case i, we have a set M =
{Mi,1, . . . , Mi,mi} of mi measurements taken at different days during the stimula-
tion phase of the fertility treatment. Each measurement Mi,j consists of a value E2i,j
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(E2 blood concentration) and a set Di,j = {d1,i,j, . . . , d fi,j,i,j} of fi,j follicle diameters
revealed by the doctor performing TV-US.

Let p stand both for the tuple α, β, γ (parameters of piece-wise linear models)
and the tuple λ (parameters of step-wise models). We denote with Ê2v

(Di,j) E2 esti-
mations given by the model in which parameters p have been instantiated with the
tuple of values v. Our aim is to find a tuple v∗ of values that minimises the aver-
age relative error between model predictions Ê2v

(Di,j) with respect to the measured
value E2i,j. Formally, we find v∗ as:

v∗ = argmin

√√√√ 1
M

t

∑
i=1

mi

∑
j=1

(
Ê2v

(Di,j)− E2i,j

E2i,j

)2

(3.3)

where M = ∑t
i=1 mi

Thus, we are facing a problem of quadratic optimisation. The objective function
described in Equation (3.3) is the average error between model estimations Ê2 and
the E2 concentrations recorded in measurements taken in t medical cases.

3.2.3.2 Relative and Absolute Errors

In our study we choose to optimize relative error for both parameter identification
(Section 3.2.3.1) as well as for evaluation (Section 3.2.4) of our model.

We find parameter values optimizing both absolute (absolute optimizer) and rel-
ative errors (relative optimizer), as we discussed in Section 3.2.3.1. This leads to
diverse results. Then we compare them by calculating relative percentage error of
measurements. In Figure 3.2 we show the distinction for one patient group. As we
can see, optimizer build for an absolute error gives very high error on relatively
small measurements of E2 (this area marked with red on the figure). Yet on a rel-
atively high values of E2 it provides similar error to the error obtained by relative
optimizer (this area as well marked with red on the figure).

Figure 3.2 compares errors only for one patient group. Appendix C contains
same graphs for the rest of patient groups and Table 3.4 contains absolute error val-
ues for all patient groups, considered in our study. We also present distribution
graphs for those experiments in Appendix A
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FIGURE 3.2: Shows relative percentage error for each measurement
of E2 in the <MR, H, F/L, Id.1> group, using two optimizers. One
optimizing relative error (errors shown by green colour), second opti-
mizing absolute error (errors shown by blue points). Both optimizers
are build for the optimal model in NPL family, see Table 3.2, where

optimal model in each family of models is coloured with purple.

3.2.4 Model Evaluation Approach

We have discussed the leave-one-out bootstrap technique in Section 2.2.5, where
estimate of prediction error is defined as in 2.1. In this Section we present an estimate
of prediction error for the E2 model as in 3.4.

Err =
1
N

N

∑
i=1

1
|C−E2i | ∑

b∈C−E2i

∣∣∣ Ê2i(b)− E2i

E2i

∣∣∣ (3.4)

Where C−E2i is the set of indices of the bootstrap samples b that do not contain
observation E2i. We either have to choose B large enough to ensure that all of the
|C−i| are greater than zero, or we can just leave out the terms corresponding to |C−i|
that are zero. We chose B to be 100 in our experiments.

3.3 Results

In this section we are facing three matters of concern. Our main objective addresses
the issue of models validation (A) and comparison of E2 model estimation perfor-
mances among them. In order to validate models, we chose to calculate the error
minimizing the difference between E2 measured and estimated, taking into account
all measurements from a patient group. We called this error deterministic error. As ex-
pected, experiments showed that the higher number of legs is involved in piece-wise
model, the lower is deterministic error. The same principle stands for the step-wise
models, the more narrow are follicle classes, the lower is deterministic error. Our
second issue is to compare performances of our models to (Franco et al., 1993) study
(B). We evaluated correlation coefficient between E2 measurements and E2 model
estimations, and in all of the patient groups, we obtain coefficients higher then 0.7,
as it was gained by (Franco et al., 1993). Finally, we validate our methodology (C),
by applying leave-one-out bootstrap technique and obtaining bootstrap average error.

3.3.1 Experimental Setting

We have considered several settings for our families of models. Both families, step-
wise as well as piece-wise, have multiple settings, which led to corresponding num-
ber of experiments. To be more precise, we have run them with the following set-
tings - step-wise model with K = 3 (as in (Franco et al., 1993)), K = 6, K = 12 and
piece-wise with 1-leg, 2-legs, 3-legs.

First, we have run experiments, for the same step-wise model as (Franco et al.,
1993) with K = 3 is to compare performance of our models to it. Second we run the
step-wise model with K = 6 (6-SW model), implying that K + 1 parameters have
to be identified, see Section 3.2.2.2. Assuming uniform intervals and considering
24 mm as the maximum diameter of a follicle, this restriction means, that follicles
within intervals of 4 mm will be treated as equal and will have only one parameter.
Second, model with K = 12 (12-SW model) is the finer model that it makes sense to
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consider, since our retrospective data used 2 mm precision while performing TV-US.
Experiments have shown that 6-SW model may be used as an E2 estimation model
and 12-SW model do not significantly outperform it.

Since step-wise models confirm linear connection between E2 concentration and
follicle diameter, our next step is to run experiments for the N-PL models. Primarily,
in our interest is to check whether 1-PL, or simply linear model, is the estimation
model to proceed with, meaning 2-PL and 3-PL do not significantly outperform it.
As experiments have shown, in most of the patient groups this turns out to be true,
however two exceptions took place. Both of them are patient groups having medium
response level, as one of external factors. The fact that 2-PL model outperforms 1-
PL in a few groups, suggests that E2 concentration depends on the stage of follicle
maturation.

As we discussed in Section 3.2.3.2, optimizer build for an absolute error gives
very high error on relatively small measurements of E2. Besides, under such levels
there is no evidence that the contribution of a follicle to E2 production is dominant.
Thus, we chose to consider E2 measurements higher than 1000 (pmol/l) in our ex-
periments.

To summarize, we consider 6 different models for each patient group (see Table
3.2). As a consequence, we compute for each patient group inter-patient error (see
Sections 2.2.4 and 3.2.3.1), as well as correlation coefficient.

3.3.2 Model Validation (A), (B)

Both families of models described in Sections 3.2.2.1 and 3.2.2.2 are parameter de-
pendent. Parameter values are identified by minimizing the error between E2 mea-
surement and E2 estimation, using AMPL tool to solve the optimization problem in
Equation (3.3). Before validating the error with the help of leave-one-out bootstrap
(Hastie, Tibshirani, and Friedman, 2009) method, we first find the parameter values
calculated on all measurements in a current patient group (A). We also calculate cor-
relation coefficients in all groups, using deterministic parameter values, which allow
us to compare our results to (Franco et al., 1993) study (B).

On average among patient groups deterministic error using 1-PL model is around
26.6%. Two groups suffer from high error values. Group <MR; Healthy FSH/LH;
Id.2> with 35.9% for the deterministic error, <ER; Healthy; FSH/LH; Id.3> with
39.1% and group <MR; Other; FSH/LH; Id.3> with 33.8%. Two out of three groups
have medium level of response, additionally, measurements for <ER; Healthy; FSH/LH;
Id.3> and <MR; Other; FSH/LH; Id.3> were performed by same person, Id.3. As ex-
periments showed in group <MR; Other; FSH/LH; Id.3> 2-PL model outperform
1-PL, while in two other groups it does not sustain. Two groups <MR; Healthy
FSH/LH; Id.2> and <ER; Healthy; FSH/LH; Id.3> have an unpredictable behaviour
and bootstrap error showed to be more then 34%. This supports importance of
accurate measuremenrs and unpredictability of several groups. On another side,
there are several groups where 2-PL model outperform 1-PL. For example, in pa-
tient groups <MR; Other; FSH/LH; Id.2> and <MR; Idiopathic; FSH/LH; Id.1> 2-PL
outperform by around 5%.

As well as piece-wise family of models, step-wise family also provides low de-
terministic error values. Step-wise model with K = 3, on average through patient
groups, has value around 26.3%. The same three patient groups <MR; Healthy
FSH/LH; Id.2>, <MR; Other; FSH/LH; Id.3>, <ER; Healthy; FSH/LH; Id.3> have
an unpredicted behaviour with deterministic error values 39.7%, 32.7%, 41.0% re-
spectively. Also, step-wise models have patient groups with significantly lower
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optimization error with increased number of steps.In patient group <MR; Other;
FSH/LH; Id.2» 6-SW outperform almost by 5%. On top of this, several more groups
has 6-SW model outperform 3-SW by around 6% for example group <MR; Other;
FSH/LH; Id.3>.

In comparison to (Franco et al., 1993) where autors have found a correlation co-
efficient of 0.7, both of our families of models provide higher (or equal) correlation
values between E2 estimations and E2 measurements in all groups. We obtain av-
erage correlation coefficient of 0.86 using 1-PL model and it does not significantly
change in 2-PL and 3-PL. Only two patient groups have value in between 0.7 and
0.8. The rest of fourteen groups have correlation coefficient higher then 0.8. At
maximum, correlation coeffient is 0.95 in patient groups <MR; Idiopathic; FSH/LH;
Id.1> and <MR; Healthy; FSH/LH; Id.1>. At minimum 0.7 in patient group <ER;
Healthy; FSH/LH; Id.3> with unpredictable behaviour. Correlation values com-
puted with step-wise model estimation are close to those obtained with piece-wise
model estimation. Using 3− SW model same patient group <ER; Healthy; FSH/LH;
Id.3> with unpredictable behaviour has coefficient lower then 0.7, only two group
within 0.7 and 0.8, and rest groups have coefficient higher then 0.8. At maximum,
correlation coeffient is 0.95 in <MR; Idiopathic; FSH/LH; Id.1> and <ER; Healthy;
FSH/LH; Id.1>. At minimum 0.67 in <ER; Healthy; FSH/LH; Id.3>. Model 6− SW
provides quite similar correlation coefficients, with the exception of four groups,
where it outperforms 3− SW model. Using 12-SW model we obtained correlation
coefficient higher then 0.9 in 7 patient groups and value in between 0.7 and 0.8 in
only one group, all the rest patient groups have values higher then 0.8.

On average, we gain correlation coefficient of 0.86 using 1-PL and 0.87 using 2-PL
model, which are significantly greater than 0.7 gained by (Franco et al., 1993) study.
However, some groups have an unpredictable behaviour, most seemingly because
of the lack of precise measurements, since measurements for two groups with un-
predictable bevaviour were performed by the same person. This fact indicate the
need for a prospective study, with careful measurements to fix models parameters
and considering usage of three-dimensional ultrasound imaging (Raine-Fenning et
al., 2008).

See Patient Group description in Table 3.5.

3.3.3 Methodology Validation (C)

Each model setting resulted in boostrap average error, (see Sections 2.2.5, 3.2.4) which
is obtained by applying leave-one-out bootstrap technique, with number of random
samples equals to 100, see (Hastie, Tibshirani, and Friedman, 2009). Figures 3.3,
3.4 show all models and average errors corresponding to them, both for medium
and elevated response groups. Despite the fact that we could estimate level of E2
concentration, it is worth pointing out that there are two groups with boostrap error
higher then 35%. On another hand, there are three patient groups with boostrap
average error less than 20%. All the rest groups have error in between 20% and 30%.
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FIGURE 3.3: Estimated bootstrap error for medium level of response
groups. For piece-wise linear models: 1-PL, 2-PL, 3-PL, as well as for

step-wise models: splitting wad done by 4 mm and by 2 mm.

On average boostrap error for medium response groups is around 25% both for
1-PL model and 2-PL, see Figure 3.3. Two-legs model does not outperform 1-PL
significantly, with at maximum boostrap error for medium response groups 34.8%
and minimum 19.7%. Same goes for the 3-PL model, which has 25.0% on average
for boostrap error and minimal at 17.0% and maximum with 36.8%. Experiments
showed that medium reponse section has two groups where 2-PL model outperform
1-PL. Measurements for both of the <Idiopathic; FSH/LH; Id.1>, <Other; FSH/LH;
Id.3>. As for step-wise family of models, bootstrap error is quite close to piece-wise
models.
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FIGURE 3.4: Estimated bootstrap error for elevated level of response
groups. For piece-wise linear models: 1-PL, 2-PL, 3-PL, as well as for

step-wise models: splitting wad done by 4 mm and by 2 mm.

Within elevated response section bootstrap error on average is 23% with mini-
mum error 18.4% in group <Healthy; FSH/LH; Id.1> and maximum 37.9% in <Healthy;
FSH/LH; Id.3> for 1-PL. Models with 2 and 3 legs have similar values to 1-PL. An-
other interesting fact is that in some groups, for example <ER; Healthy; FSH/LH;
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Id.1> on Figure 3.4, piece-wise models give lower bootstrap error in comparison to
step-wise models. While, original error calculated on all measurements, before us-
ing bootstrap method, for step-wise models is lower then in piece-wise models - as
expected to be.

A clear tendency of overfitting in 12 − SW model is seen through the experi-
ments, as expected to be. Another tendency is that some patient groups has a lower
error in 6− SW model in comparison to 3− SW models.

3.3.4 Comparing E2 Estimations

As we pointed out in Section 3.3.3, there are several groups where 2-PL model out-
perform 1-PL, thus, this supports our hypothesis stating that in some patient groups,
E2 depends not just linearly from granulosa layer in a follicle, but it also depends on
the stage of follicle maturation. Figures 3.5 and 3.6 show E2 estimation points for two
patient groups <MR, Other, FSH/LH, Id.2>, <ER, Healthy, FSH/LH, Id.2>, using
different piece-wise models. Estimation points, calculated using 2-PL model, turned
out to be more close to measurements than estimation points, calculated using 1-PL.
It is supported by both Figures 3.5 and 3.6, where green points are measurements,
blue are estimation points from 1-PL and purple estimation points from 2-PL.

 0

 2500

 5000

 7500

 10000

 12500

 15000

 0  2500  5000  7500

E2
 v

al
ue

s 
(p

m
ol

/l)

Surface (mm2)

E2 Measurement
E2 Estimation, using 1PL model
E2 Estimation, using 2PL model
E2 Estimation, using 3PL model

FIGURE 3.5: Estimation of E2, for <MR, Other, FSH/LH, Id.2> group,
using 1-PL, 2-PL, and 3-PL models. Group <MR, Other, FSH/LH,
Id.2> is on the several groups, where 2-PL model outperform 1-PL.

Measurements taken from this group are coloured with green.
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FIGURE 3.6: Estimation of E2, for <ER, Healthy, FSH/LH, Id.2>
group, using 1-PL, 2-PL, and 3-PL models. Group <ER, Healthy,
FSH/LH, Id.2> is on the several groups, where 2-PL model outper-
form 1-PL. Measurements taken from this group are coloured with

green.

If we compare Figures 3.5 or 3.6 to 3.7, one could clearly identify the difference
between them. Figure 3.7 shows measurement points and estimation points, as well
as Figures 3.5 and 3.6, but there is no essential variation between estimation points
obtained from different piece-wise models, i.e. estimation points are quite close to
each other. Meaning that in group <MR, Healthy, FSH/LH, Id.3> stage of follicle

maturation plays no role and E2 depends simply linearly from granulosa layer in a

follicle.
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FIGURE 3.7: Estimation of E2, for <MR, Healthy, FSH/LH, Id.3>
group, using 1-PL, 2-PL, and 3-PL models. In this group 2-PL model

does not significantly outperform 1-PL.

3.3.5 E2 Estimation Service

Within the framework of the PAEON project, we have developed an Estradiol Es-
timation (E2E) software service. This service provides an E2 estimation based on
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external factors, selected by the user, see Figure 3.9. If such combination of exter-
nal factors is not valid, estimator works if user provides at least 2 full measurement
(E2 and FP), see Figure 3.8. Based on 2 input measurements, service optimizes the
patient-specific parameters and provides a user with an estimation of E2. In case of
valid external factors user only needs to provide a FP and obtain an E2 estimation
from the service.

FIGURE 3.8: Estradiol Estimation software service. First estimation
is possible if current combination of external factors is available or if

user provides 2 full measurements (E2 and FP).
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FIGURE 3.9: Estradiol Estimation software service.
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Gr.
Id

1-PL
model (*)

2-PL
model

3-PL
model

3-SW
model

(Franco
et al.,
1993)

6-SW
model

12-SW
model

d.e.
c.c.

d.e.
c.c.

d.e.
c.c.

d.e.
c.c.

d.e.
c.c.

d.e.
c.c.

1
30.8

0.90
27.8

0.90
27.8

0.90
27.7

0.91
29.8

0.90
26.9

0.91

2
35.9

0.80
33.3

0.80
33.1

0.80
39.7

0.72
34.6

0.79
31.1

0.85

3
17.5

0.87
17.5

0.87
17.5

0.87
17.5

0.89
16.5

0.88
15.8

0.89

4
22.9

0.78
22.8

0.79
22.8

0.79
22.3

0.79
21.8

0.79
21.6

0.80

5
26.2

0.95
23.0

0.95
22.6

0.96
22.4

0.95
21.8

0.95
21.4

0.96

6
27.2

0.84
26.5

0.84
26.5

0.84
27.9

0.83
28.1

0.82
25.6

0.84

7
26.8

0.92
22.0

0.96
21.5

0.97
27.0

0.94
22.5

0.97
20.9

0.97

8
33.8

0.87
29.6

0.89
29.6

0.89
32.7

0.88
29.4

0.87
29.2

0.88

9
20.5

0.95
19.7

0.95
19.7

0.95
22.1

0.95
20.2

0.95
18.6

0.96

10
23.7

0.92
20.7

0.91
20.7

0.91
18.7

0.94
17.0

0.93
17.0

0.93

11
39.1

0.70
39.1

0.70
39.1

0.70
41.0

0.67
38.8

0.70
38.8

0.7

12
23.7

0.86
22.2

0.88
22.1

0.88
24.8

0.84
22.2

0.89
21.8

0.89

13
22.3

0.91
20.8

0.91
20.7

0.92
24.9

0.90
23.1

0.94
20.3

0.92

14
25.9

0.80
24.1

0.82
24.1

0.82
22.5

0.83
22.7

0.82
22.3

0.84

15
23.9

0.94
23.6

0.95
23.6

0.95
24.2

0.94
24.0

0.94
22.0

0.95

TABLE 3.2: Relative Error Values (%) on the Training sets. Models
coloured with green, give the lowest error for a current patient group.
Patient groups coloured with yellow, have lower or equal error value
for 1-PL model in comparison to 3-SW model (Franco et al., 1993). See

Patient Group description in Table 3.5.
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Gr.
Id

1-PL
model

2-PL
model

3-PL
model

3-SW
model

(Franco
et al.,
1993)

6-SW
model

12-SW
model

1 27.7 25.7 25.9 24.7 27.0 26.2
2 34.8 35.2 36.8 43.1 39.0 38.0
3 16.4 16.7 17.0 16.6 19.0 18.6
4 19.7 20.7 21.2 21.3 23.0 23.8
5 28.0 26.1 26.2 26.4 26.4 28.1
6 23.1 23.9 23.8 24.4 26.6 24.3
7 22.9 22.3 22.2 27.9 22.3 22.4
8 33.5 31.9 32.6 33.0 36.1 36.8
9 18.4 18.6 18.8 20.9 19.7 18.9
10 21.8 21.1 21.2 19.0 17.3 18.6
11 37.9 40.4 41.0 40.6 43.5 45.6
12 21.7 24.9 24.9 28.3 26.0 26.9
13 18.6 19.6 19.8 22.0 22.0 20.1
14 26.6 30.2 30.1 25.2 29.0 30.2
15 22.5 23.7 24.0 24.4 26.7 26.3

TABLE 3.3: Validation Error Values. Patient groups coloured with
yellow, have lower or equal error value for 1-PL model in comparison
to 3-SW model (Franco et al., 1993). Models coloured with green,
give the lowest error for a current patient group. See Patient Group

description in Table 3.5.

Gr.
Id

1-PL
model

2-PL
model

3-PL
model

3-SW
model

(Franco
et al.,
1993)

6-SW
model

12-SW
model

1 1521.2 1443.2 1442.4 1360.1 1444.4 1357.4
2 1682.6 1666.2 1666.1 1837.7 1682.9 1480.5
3 1369.2 1356.4 1356.4 1303.7 1316.0 1256.9
4 1872.2 1803.4 1803.4 1768.4 1800.4 1752.0
5 1359.2 1240.4 1230.2 1233.4 1188.7 1156.4
6 2346.5 2344.7 2344.6 2391.6 2412.6 2266.6
7 1437.0 802.9 766.2 1024.1 833.0 724.6
8 1253.7 1102.1 1102.1 1140.0 1218.9 1067.8
9 1205.6 1152.0 1152.0 1154.5 1219.7 1103.5
10 2155.2 1877.6 1871.4 1716.6 1715.2 1715.2
11 2723.3 2679.8 2679.8 2751.1 2583.1 2579.1
12 2008.1 1777.7 1718.5 1920.2 1612.0 1612.0
13 1591.1 1472.1 1472.0 1617.3 1540.1 1457.4
14 1591.0 1481.4 1481.0 1472.0 1399.6 1321.9
15 1859.4 1777.4 1777.4 1934.5 1753.9 1601.6

TABLE 3.4: Absolute Error Values (pmol/l) on the Training sets. See
Patient Group description in Table 3.5.
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Patient
Group ID

Patient Group

1 <Medium Response; Healthy; FSH/LH; Id.1>
2 <Medium Response; Healthy; FSH/LH; Id.2>
3 <Medium Response; Healthy; FSH/LH; Id.3>
4 <Medium Response; Endometriosis; FSH/LH; Id.1>
5 <Medium Response; Idiopathic; FSH/LH; Id.1>
6 <Medium Response; Other; FSH/LH; Id.1>
7 <Medium Response; Other; FSH/LH; Id.2>
8 <Medium Response; Other; FSH/LH; Id.3>
9 <Elevated Response; Healthy; FSH/LH; Id.1>
10 <Elevated Response; Healthy; FSH/LH; Id.2>
11 <Elevated Response; Healthy; FSH/LH; Id.3>
12 <Elevated Response; Idiopathic; FSH/LH; Id.1>
13 <Elevated Response; Other; FSH/LH; Id.1>
14 <Elevated Response; Other; FSH/LH; Id.2>
15 <Elevated Response; Other; FSH/LH; Id.3>

TABLE 3.5: Contains Patient Group description and a corresponding
to it Patient Group ID.
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Chapter 4

Ovarian Follicle Dynamics

This chapter presents an ovarian follicle dynamics under influence of stimulation
treatment. It starts with a brief introduction, by discussing motivation and contri-
bution of our work (Section 4.1). We then talk more deeply about our model and
modelling approach in Section 4.2, 4.2.3. Evaluation of our model is presented in
Section 4.2.5. We close this section by presenting an experimental results obtained
from our model (Section 4.3).

4.1 Introduction

Key part in stimulation treatment is played by iterative measurements of TV-US
(Kwan et al., 2014; Malhotra, 2015). It assists a clinician on a number matters of con-
cern. Primary, measurements of TV-US help a clinician to decide next appointment
for a patient. Additionaly, a clinician could follow up a patient responde to stimula-
tion drugs through them. Based on follicle dynamics he/she could adjust drug dose,
in order to regulate response to a treatment.

4.1.1 Motivation

During stimulation treatment clinician schedules a number of appointments for a
patient. The goal of this is to optimally choose a day for ovulation induction, as
well as to monitor the risks of treatment adverse affects such as OHSS - Ovarian
hyperstimulation syndrome. The timing of future appointment clinician decides
for each patient individually, based on past measurements and his/her professional
experience. Our follicle dynamics model could support clinician on this decision.
A clinician could use our model to predict the FP dynamics and depending on it to
take a decision on how soon a patient should pay him/her a visit.

Within the framework of the PAEON (PAEON, 2016a) project, one of the tools
developed was a TDSS (Treatment Decision Support System). The TDSS was ori-
ented to first of all support clinician decisions as well as to help medical students
(during their residency) to learn abount stimulation treatments. In order to assist
on questions regarding infertility treatments, support system should be able to cap-
ture a follicle dynamics under influence of stimulation treatment. Our follicle model
could be integrated in TDSS and improve it.

While E2 estimation model opens up an opportunity for healthcare at a distance,
integration of it with follicle dynamics model opens up even a brighter prospective.
Clinician who has at hand only a FP measurement, could predict a future dynamics
of it using our follicle model and after obtain an E2 estimation. Suchwise, clini-
cial will have a prediction of a full measurement. The benefits of such combination
would be remarkable in clinical practice in terms of patient comfort, treatment costs,
and logistic.
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4.1.2 Contribution

In this work, we introduce and evaluate a model for predicting total and average
surface of Follicle Profile (FP), from a preceding measurement of FP and a drug doses
during stimulation treatment.

Since during stimulation treatment high doses of FSH or FSH/LH are adminis-
tered to a patient on a daily basis, it is reasonable to assume that depending on a
treatment day growth speed of follicles is different. We consider a follicle dynamics
model as a piece-wise model in which not only follicle growth depends on a linear
combination of total and average surface, but it also depends on the phase of a stim-
ulation treatment. Thus, we split stimulation treatment into 7 phases in between day
0 till day 20, allowing us to evaluate total and average surface of FP with respect to
phase. Commonly, available data for a patient group has no more than 2 phases.

Our follicle model is parametric: we fit parameter values by solving optimisation
problems, finding those values minimising the error of total and average surface pre-
dictions with respect to real FP measurements in retrospective data. Unfortunately
parameters turn out to be highly patient-dependent as we saw for the E2 model
parameters, see Section 3.1.2.

We observe that model parameters are likely to be population as well as treat-
ment dependent. Therefore, to take advantage of them, each clinic should fit param-
eter values by using data collected during treatments carried out in that clinic.

4.1.3 Related Work

A great deal of work was done specifically oriented on recreating the dynamics of
the human menstrual cycle (Röblitz et al., 2013), (Egli, Leeners, and Kruger, 2010).
Unfortunately those models have no flexibility, have high complexity and frequently
designed for some specific aims. As (Röblitz et al., 2013) for simulating the downreg-
ulation part of a fertility treatment (see Section 2.1) and the model in (Egli, Leeners,
and Kruger, 2010) for analysing prolactin patterns.

Some follicle models are desined with a sole purpose. Studies in (Baerwald,
Adams, and Pierson, 2003), (Panza, Wright, and Selgrade, 2016) specifically de-
signed to analyze if folliculogenesis (maturation of the ovarian follicle) occurs in
a wave-like fashion. Others, due to the fact that multiple follicle are under develop-
ment at each ovarian cycle, studies in (Clément and Monniaux, 2013) and (Conover
et al., 2001) were designed to determine the mechanisms underlying follicle selec-
tion.

Plenty of research is oriented towards developing a follicle dynamics model,
there are even models where you could trace growth of each follicle individually
(Clément et al., 2013), (Echenim et al., 2005). Additionally, studies (Echenim et al.,
2005), (Soboleva et al., 2000) allow an exogenous dose of FSH, allowing to trace in-
fluence of it.

Despite an amount of research that has been done towards follicle model devel-
opment, it is worth pointing out that most of this work is oriented towards natural
cycles, whereas our research is focused solely on stimulated cycles.

Furthermore (Panza, Wright, and Selgrade, 2016), (Echenim et al., 2005) mod-
els have a high complexity and contain at minimum 25 (up to 120) parameters to
be identified. Some studies take into account measurements obtained from patients
(Panza, Wright, and Selgrade, 2016), while others validate models solely to the pur-
pose of recreation time evolutions for the model species that are compatible with the
law of biology.
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In spite of the ability to simulate dynamics of an individual follicle, the prob-
lem of identifing values for such a large amount of unknown parameters remains
unresolved or highly complex. We took a less ambitious approach by building a
discrete-time model and gain parameters values based on measurements obtained
from patients.

Additionally, we do not concern ourselves with obtaining dynamics of an indi-
vidual follicle. As we discussed in Section 3.2.2.2 we assume that E2 concentration
is proportional to the sum of E2 secreted by each follicle in the step-wise family of
models, thus we aim to obtain total and average surface of follicles measured during
a TV-US.

4.2 Methods

In this section, we present a mathematical model for predicting total and average
surface of FP, based on a previous measurement of FP at time t and an injected stim-
ulation drugs (FSH/LH or FSH) during the stimulation phase of a fertility treatment.

We start by describing our assumptions in Section 4.2.1. We then present in Sec-
tion 4.2.3 the follicle growth model that we consider in our work. Next we present
parameter identification technique in Section 4.2.4. Followed up by the idea of split-
ting a stimulation treatment into phases with respect to a stimulation day. Finally, in
Section 4.2.5, we present our approach to assess model prediction accuracy.

4.2.1 Modelling Approach and Assumptions

In contrast to follicle models (Clément et al., 2013), (Echenim et al., 2005), (Panza,
Wright, and Selgrade, 2016), we do not aim at a model defined by differential equa-
tions that describe integrations between all biologocal components involved in fol-
licle growth. Instead we offer a follicle dynamics model as a piece-wise model in
which not only follicle growth depends on a linear combination of total and average
surface, but it also depends on the phase of a stimulation treatment.

This leads us to consider parametric k piece-wise linear (k-PL) model, with (n +
1) · n · k unknown parameters to be identified, where n is the number of species
that we aim to predict. We consider n as the model size and k number of treatment
phases. A model setting offered by us (see Section Results 4.3) has n = 2 (total
and average surface). If number of treatment phases is equal to 2 (as it often is),
then we have 18 parameters to be identified. Additionally, we consider model with
n = 3, however as it will be shown in Results section, our follicle model could
predict dynamics of follicles using size n = 2.

Knowing that FP surface grows with time and depends on FSH, we assume no
more factors have an impact on a follicle growth. Thus, our approach could pre-
dict future value of total and average surface of FP, by identifing parameters for the
model.

4.2.2 Treatment phase

During stimulation treatment medical case i obtains drugs on a daily basis. The
effect of injections accumulates during those days and influences follicle growth dif-
ferently in dependence of a treatment day. Thus, parameter values could divers
depending on a day. Thereby, we split treatment duration into phases.

Let us define a treatment phase. Phase ρ is defined by an initial treatment day Ts,
an end treatment day T f and a set of medical cases Tρ. Both on the initial and on the
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end treatment days there must be at least one medical case with measurements of
both E2 and TV-US (for model taking into account E2 measurements) and there must
be at least one medical case with only measurement of TV-US on the initial and on
the end treatment days for the model disregards E2. Phase ρ exists only if the initial
and the end treatment days are defined.

Let us define a set of medical cases Tρ. This is a set of medical cases whose
measurements of E2 and TV-US happend in between the initial treatment day Ts and
the end treatment day T f , Ts < T f .

Tρ =


i ∈ T

∣∣∣∣∣∣∣∣∣∣∣

∃Di,j.T
(u)
i,j = Ts, j ∈ [1, ni];

∃Di,j.T
(u)
i,j = T f , j ∈ [1, ni];

∃Ei,j.T
(E)
i,j = Ts, j ∈ [1, zi];

∃Ei,j.T
(E)
i,j = T f , j ∈ [1, zi];


For each medical case i in a Tρ, there is a sequence of TV-US measurements Di =

[Di,1, . . . , Di,ni ], where Di,j is basically a sequence of fi,j follicle diameters, Di,j = [di,j,1,

. . . , di,j, fi,j ], taken at days T(u)
i = [T(u)

i,1 , . . . , T(u)
i,ni

]. Also, for each medical case i, there is

a sequence of E2 measurements Ei = [ Ei,1, . . . , Ei,zi ] taken at days T(E) = [T(E)
i,1 , . . . ,

T(E)
i,zi

]. We should point that measurements of E2 and TV-US do not necessary occur
on the same treatment day, thus zi is not necessary equal to ni.

• for each sequence Di,j we define a corresponding sequence of follicle surfaces
Si,j = [Si,j,1, . . . , Si,j, fi,j ], where Si,j,k = 4π(di,j,k / 2)2, k ∈ [1, fi,j].

• for each sequence Di,j we define a value of total surface, which is a sum of

surfaces belonging to Si,j. Sur f acei,j = ∑
fi,j
k=1 Si,j,k

• for each sequence Di,j we define an average surface as Avgi,j = 1
fi,j

Sur f acei,j.

We may regard sequences as set when convenient.

4.2.3 Parametric Model

In our study we offer a model predicting growth of ovarian follicles under influence
of stimulation treatment, see equation 4.1. More precisely our model predict growth
of total surface of a follicle profile and average surface.

ẋ(t) = f (x(t), u(t)) = Ax(t) + Bu(t) (4.1)

where, A = (aij) ∈ Rn,n is an unknown parameter matrix, B = (b1(t), b2(t), . . . , bn(t))T

is a parameter vector. Using Euler method we can approximate the solution of the
ODE (4.1), as follows.

x(t + 1) = x(t) + T f (x(t), u(t)) (4.2)

where x(t) = (Sur f ace(t), Avg(t))T and u(t) is an input drug given at time t,
and n is the model size.

Since, each treatment phase ρ depends on unknown parameters, we are facing
an optimization problem with (n + 1) · n · k parameter values to be identified. We
choose to minimise a relative error that optimizes the distance between measure-
ments of TV-US.
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4.2.4 Parameter Identification

In Sect. 3.2.2, we have described a model for predicting FP at next clinical appoint-
ment. Our model depends on parameters that have to be identified. We find values
for such parameters by solving optimisation problems, in order to minimise the mis-
match between model predictions and available measurements (Section 2.2.3).

4.2.4.1 Optimizing Average Error

Let γ stand both for the A, B parameters, see (4.1). We denote y(k)(t, γ) as a predic-
tion (based on parameters γ) for a variable x(k)(t) and x̂(k)(t) is a measurement of
variable x(k)(t), k ∈ [1, n].

Parameters γ have been instantiated with the tuple of values ν. Our aim is to
find a tuple ν∗ of values that minimises the average relative error between model
predictions y(k)(t, γ) with respect to the measured value x(k)(t).

ERMS(i, k) =

√√√√√√ 1∣∣∣T(k)
i

∣∣∣
∣∣∣T(k)

i

∣∣∣
∑
t=1

(y(k)i (t, γ)− x̂(k)i (t)

x̂(k)i (t)

)2
(4.3)

EAVG =
1
n

n

∑
k=1

ERMS(k) (4.4)

4.2.4.2 Optimizing Error by Element

ERMS(k) =
1
P

P

∑
i=1

ERMS(i, k), k ∈ [1, n]; (4.5)

4.2.5 Model Evaluation Approach

Our final step is to validate our methodology, by using leave-one-out bootstrap tech-
nique and obtaining bootstrap average error, see Section 2.2.5 and Equation 2.1.
In this Section we present an estimate of prediction error for the follicle dynamics
model as in 4.7 and in 4.9.

ERMS(i, k, b) =

√√√√√√ 1∣∣∣T(k)
i

∣∣∣
∣∣∣T(k)

i

∣∣∣
∑
t=1

(y(k)i,b (t, γb)− x̂(k)i (t)

x̂(k)i (t)

)2
(4.6)

We denote y(k)i,b (t, γb) as a prediction for a variable x(k)i (t), based on parameters
γb obtained from bootstrap b at time t, for a medical case i, k ∈ [1, n]. Root Mean
Square error for a medical case i on element k, based on bootstrap b, is denoted by
ERMS(i, k, b).

Err(k) =
1
|P|

P

∑
i=1

1
|C−i| ∑

b∈C−i

ERMS(i, k, b) (4.7)

St.dev(k) =

√√√√ 1
|P|

P

∑
i=1

1
|C−i| ∑

b∈C−i

(
ERMS(i, k, b)− Err(k)

)2
(4.8)
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We optimize two types of errors - average and by element, see Sections 4.2.4.1,
4.2.4.2. Thus, bootstrap error for an element k is defined as in (4.7) and standard
deviation in (4.8). Where P is a set of medical cases, C−i is the set of indices of the
bootstrap samples b that do not contain observations for medical case i.

Average bootstrap error on all n elements is an average error defined for each
element k seperatly, see 4.7. It is defined in (4.9) and standard deviation in (4.10).

ErrAVG =
1
|P|

P

∑
i=1

1
|C−i| ∑

b∈C−i

1
n

ERMS(i, k, b) =

1
n

n

∑
k=1

1
|P|

P

∑
i=1

1
|C−i| ∑

b∈C−i

ERMS(i, k, b) =
1
n

n

∑
k=1

Err(k)

(4.9)

St.devAVG =

√√√√ 1
|P|

P

∑
i=1

1
|C−i| ∑

b∈C−i

( 1
n

n

∑
k=1

ERMS(i, k, b)− ErrAVG

)2
(4.10)

As a result, we validate our model with respect to average error and by each
element k seperatly. Thus, to each patient group used in our study will corresponde
four types of values. First validating the model by minimizing average error, see
Equations (4.7, 4.8) and by element, see Equations (4.9, 4.10).

4.3 Results

In this section, we are facing four matters of concern. First, our goal is to validate
our model with respect to a patient (A), including all patient medical cases. In other
words, one patient commonly goes several times under stimulation treatment. We
call medical case a course of stimulation treatment for a patient. In order to do so,
we choose to calculate the error minimizing the difference between measurements
of species and estimations, taking into account all medical cases from a patient. We
call this type of error - patient-specific. As expected, experiments showed that patient-
specific error has low values, which testifies the correctness of our model.

Our second major goal is to validate our model with respect to patient groups
(B.1). We point out that patient-specific specific predictions (A) have been performed
on all available 147 patients who have more than 1 medical case, regardless if a
patient belongs to a patient group (in agreement to her external factors) or not. While
validatation of the model with respect to a patient group (B.1) (let us call them inter-
patient group parameters) is performed for each group seperatly, solely on patients
with external factors same as a patient group. We later validate our methodology
with respect to a patient group (B.2), by applying leave-one-out bootstrap technique
and obtaining bootstrap average error and standard deviation.

The number of available medical cases for a given patient is n > 1. As a last
step, we investigate whether using (n− 1) previous meadical cases of a patient, we
can predict patient behaviour on the nth last available medical case (C). In order to
do so, we minimize the historical parameter values on (n − 1) medical cases for a
patient and evaluate their fitness on the nth medical case. Finally, in Section 4.3.5 we
present experimental results highlighting that use of historical parameters will lead
to a higher error than using inter-patient group parameters.
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4.3.1 Experimental setting

We have considered a model to predict total surface and average surface of FP for
the next measurement for a patient. We have run it with the following settings -
number of treatment phases is 7, however in most of cases, only 2-3 phases will
contain enough information in order to run experiments.

Second main setting is the account for E2 measurements. We have launched our
follicle model which takes into account E2 measurements (marked on figures by 4

E2) and we have launched it with eliminating E2 measurements (marked on figures
by 6 E2). This experimental setting meant to verify the possibility for our model to
predict total and average surface of FP, based only on previous measurement of FP
and drug dose.

A structural view on experimental settings:

1. Patient-Specific Model (A)

• model 4 E2

Average error on elements <total surface of FP, average surface of FP,
E2>, Figure 4.1.

Element Error on <total surface of FP>, Figure 4.2.
Element Error on <average surface of FP>, Figure 4.3.
Element Error on <E2>, Figure 4.4.

• model 6 E2

Average error on elements <total surface of FP, average surface of FP>,
Figure 4.1.

Element Error on <total surface of FP>, Figure 4.2.
Element Error on <average surface of FP>, Figure 4.3.

2. Inter-Patient Group Model (B.1)

• model 4 E2, Table 4.1a contains

Average error on elements <total surface of FP, average surface of FP, E2>
Element Error on <total surface of FP>
Element Error on <average surface of FP>
Element Error on <E2>

• model 6 E2, Table 4.1b contains

Average error on elements <total surface of FP, average surface of FP>
Element Error on <total surface of FP>
Element Error on <average surface of FP>

3. Methodology Validation (B.2)

• model 4 E2, Table 4.3a contains

Average error on elements <total surface of FP, average surface of FP, E2>
Element Error on <total surface of FP>
Element Error on <average surface of FP>
Element Error on <E2>

• model 6 E2, Table 4.3b contains

Average error on elements <total surface of FP, average surface of FP>
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Element Error on <total surface of FP>
Element Error on <average surface of FP>

4. Comparing Historical Prediction to a Group Prediction (C)

• model 4 E2

Average error on elements <total surface of FP, average surface of FP, E2>
(a) Historical Prediction, Figure 4.6.
(b) Group Prediction, Figure 4.5.

Element Error on <total surface of FP>
(a) Historical Prediction, Figure 4.8.
(b) Group Prediction, Figure 4.7.

Element Error on <average surface of FP>
(a) Historical Prediction, Figure 4.10.
(b) Group Prediction, Figure 4.9.

Element Error on <E2>
(a) Historical Prediction, Figure 4.12.
(b) Group Prediction, Figure 4.11.

• model 6 E2

Average error on elements <total surface of FP, average surface of FP>
(a) Historical Prediction, Figure 4.6.
(b) Group Prediction, Figure 4.5.

Element Error on <total surface of FP>
(a) Historical Prediction, Figure 4.8.
(b) Group Prediction, Figure 4.7.

Element Error on <average surface of FP>
(a) Historical Prediction, Figure 4.10.
(b) Group Prediction, Figure 4.9.

We discuss each of four experiments, listed above, in Sections 4.3.2, 4.3.3, 4.3.4,
4.3.5 respectively.

4.3.2 Patient-Specific Model (A)

The patient-specific model is the model predicting the follicle dynamics solely for a
patient. Thus, the patient-specific error is the error obtained for a patient taking into
account all available medical cases. Whereas patient-specific model is parameter
dependent model, we obtain parameter values by minimizing the error between
measurements and predictions, using the AMPL tool to solve quadratic optimization
problems. As we chose to minimize two types of errors - average on elements <total
surface of FP, average surface of FP> and error on elements <surface total of FP>,
<surface average of FP>, along with choice to both account for E2 measurements
and not, it led to four types of experiments.

Two types of average error are demonstrated on Fig. 4.1. One is the average on
elements <total surface of FP, average surface of FP, E2> and other one is the aver-
age on elements <total surface of FP, average surface of FP>. The only distinction
between them is the account for E2 measurements in the model. Model, taking into
account E2 measurements, has more than 60% of patients with error less then 10%
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and more then 80% of patients with error less then 20%. Model, which does not take
into account E2 measurements, has more than 40% of patients with error less then
10% and more then 75% of patients with error less then 20%. This patient-specific ex-
periment showed us that model which does not take into account E2 measurements
provides prediction almost as good as model, taking into account E2 measurements,
thus, we can obtain low-error prediction for total and average surface of FP, based
on previous measurement of FP and drug dose of FSH/LH or FSH.
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FIGURE 4.1: Shows distribution of % error, obtained for patient-
specific cases (see Eq. 4.4) by optimizing an average error on elements
<total surface of FP, average surface of FP, e2> (green bars) and by
optimizing an average error on elements <total surface of FP, average

surface of FP> (blue bars).

Second type of error, obtained seperatly for each element <total surface of FP>,
<average surface of FP>, <E2> is presented on Figures 4.2, 4.3, 4.4. As discussed
earlier, three seperatly obtained errors on elements <total surface of FP>, <average
surface of FP>, <E2> are all calculated in two manners - taking into account E2 mea-
surements or not. Figure 4.2 shows same summary as Figure 4.1, we can obtain
low-error prediction for <total suface of FP>, based on previous measurement of FP
and drug dose of FSH/LH or FSH. More than 50% of patients have error less than
10%, it applies to both versions of model. And more than 80% of patients have less
then 20% error.
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FIGURE 4.2: Shows distribution of % error, obtained for patient-
specific cases (see Eq. 4.5) by optimizing error on <total surface of
FP> with use of E2 measurements (green bars) and by optimizing er-
ror on <total surface of FP> without use of E2 measurements (blue

bars).

Close values of patient-specific error shows <average surface of FP> element
(Fig. 4.3) to error values on <total surface of FP> (Fig. 4.2).
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FIGURE 4.3: Shows distribution of % error, obtained for patient-
specific cases (see Eq. 4.5) by optimizing error on <average surface
of FP> with use of E2 measurements (green bars) and by optimizing
error on <average surface of FP> without use of E2 measurements

(blue bars).

Error, obtained seperatly for an <E2> element is presented on Figure 4.4. Almost
40% of patients have error less than 10% and 65% of patients have less than 20%
error.
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FIGURE 4.4: Shows distribution of % error, obtained for patient-
specific cases (see Eq. 4.5) by optimizing error on <E2>.

The experimental results for patient specific error have been performed in order
to validate our model with respect to a patient, including all previous patient mea-
surements. As a result, model, taking into account E2 measurements, revealed that
more then 80% of patients with error less then 20%. While model excluding E2 mea-
surements provided more then 75% of patients with error less then 20%. Both type
of models have low error values, which testifies the correctenes of our model. The
experimental results for patient specific error were obtained on data from 147 pa-
tients with at least two medical cases, where each treatment phase has at least two
measurements.

4.3.3 Inter-Patient Group Model (B.1)

The inter-patient group model is the model predicting the follicle dynamics solely on
patients with external factors same as a patient group. We obtain inter-patient group
parameters values for each group seperatly. Due to the experimental setting we get
four type of errors. First minimizes an average error (see Section 4.2.4.1 ) on elements
<surface total, surface average, E2> (I), second minimizes as well an average error on
the same model, yet eliminating E2 measurements (II). Third type minimizes error
by elements <surface total>, <surface average>, <E2> (III), see Section 4.2.4.2. Last
type minimizes as well error by elements, yet eliminating E2 measurements (IV).
In order to solve an optimization problem and obtain parameter values minimizing
one of four types error, we use AMPL tool (B.1).
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Deterministic Error + E2
Optimizing Error
by Element, + E2 Optimizing

AVG Error, +
E2

Patient
Group

S.Total
error
(%)

S.Avg
error
(%)

E2 level
error
(%)

AVG Error
(%)

1 20.0 16.8 18.0 16.1
2 13.9 11.0 16.5 13.0
3 13.6 14.0 17.4 13.4
4 12.0 12.6 11.2 10.9
5 22.5 20.9 21.4 21.2
6 19.2 18.2 22.5 21.4
7 22.2 20.0 24.3 27.9
8 19.8 15.2 24.4 18.4
9 14.9 15.2 17.2 16.9

(A) This table shows values of deterministic error (see Section 4.2.4)
(B.1) for our follicle model retaining E2 measurements. It optimizes
parameters for an average error on elements <surface total, surface av-
erage, E2> and error by elements <surface total>, <surface average>,
<E2>, see Eq. (4.4) and (4.5) respectively. See Patient Group description

in Table 4.2.

Deterministic Error - E2
Optimizing Error
by Element, - E2 Optimizing

AVG Error, -
E2

Patient
Group

ID

S.Total
error
(%)

S.Avg
error
(%)

AVG Error
(%)

1 18.9 16.9 20.8
2 8.3 7.5 12.7
3 14.7 17.6 15.2
4 25.3 21.0 22.0
5 21.9 23.0 19.3
6 19.4 22.6 19.6
7 19.3 15.7 17.9
8 17.4 16.2 16.2
9 15.2 12.1 18.0

(B) This table shows values of deterministic error (see Section 4.2.4)
(B.1) for our follicle model, optimizing parameters for average error
and error by elements without E2 level, see Eq. (4.4) and (4.5) respec-

tively. See Patient Group description in Table 4.2.
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Patient Group ID Patient Group
1 <MR, H, FSH/LH, Id.1>
2 <MR, H, FSH/LH, Id.2>
3 <MR, E, FSH/LH, Id.1>
4 <MR, E, FSH/LH, Id.3>
5 <ER, H, FSH/LH, Id.1>
6 <ER, H, FSH/LH, Id.2>
7 <ER, E, FSH/LH, Id.1>
8 <ER, I, FSH/LH, Id.1>
9 <HR, H, FSH/LH, Id.1>

TABLE 4.2: Contains Patient Group description and a corresponding
to it Patient Group ID.

Tables 4.1a, 4.1b contain experimental results validating our model with respect
to a patient group (B.1). They compare error types (I) and (III), (II) and (IV) re-
spectively. If we compare error values on element <surface total> in model using
E2 measurements (Table 4.1a) and the one eliminating them (Table 4.1b), it is cleat
that only one patient group significantly wins from use of model using E2 measure-
ments. This group has <MR, E, FSH/LH, Id.3> as external factors. All other groups
has similar error values on element <surface total> in between model using E2 mea-
surements and model eliminating them.

Group with same external factors <MR, E, FSH/LH, Id.3> also significantly wins
from use of model using E2 measurements, on element <surface average>, if we
compare error values on element <surface averafe> in model using E2 measure-
ments (Table 4.1a) and the one eliminating them (Table 4.1b).

The experimental results for model optimizing inter-patient group parameters
clearly shows that our model is capable to predict total and average surface of folli-
cle profile based exclusively on preceding measurement of FP and stimulation drug
dose.

4.3.4 Methodology Validation (B.2)

In this Section we validate our methodology with respect to a patient group (B.2), by
applying leave-one-out bootstrap technique (see Section 2.2.5, 4.2.5) and obtaining
bootstrap average error and standard deviation. As in Section 4.3.3 we obtain four
types of error, average by elements (error types I, II) and error on elements (error
types III, IV). Error types I and II obtained with respect to Eq. 4.9, 4.10, while error
types III and IV obtained with respect to Eq. 4.7, 4.8.

Table 4.3a contains error values corresponding to the error types I and III. At min-
imum error type III for <surface total> element has value of 21% in group with ex-
ternal factors <MR, H, FSH/LH, Id.2> and at maximum 37.2% in <HR, H, FSH/LH,
Id.1> group. Element <surface average> has the lowest error in the same group as
<surface total> and maximum at 30.1% in <ER, E, FSH/LH, Id.1> group. Element
<E2> has higher errors in comparison to <surface total> and <surface average> el-
ements. At minimum it has 23.4% in <MR, H, FSH/LH, Id.1> group and at maxi-
mum it has 45.4% in <ER, I, FSH/LH, Id.1> group, both of which are higher than in
<surface total> and <surface average>. Standard deviation various through patient
groups. On average it is 27% on <surface total> element and 24% for <surface av-
erage> element. The highest, averaged through groups, standard deviation is 28%
on <E2> element. Error type III is average error on elements <surface total, surface
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average, E2>, it has at minimum value of 21.3% in <MR, H, FSH/LH, Id.1> group,
while at maximum 34.3% in <ER, E, FSH/LH, Id.1> group.

Table 4.3b contains error values corresponding to the error types II and IV. If we
compare Table 4.3a to Table 4.3b, we can see that in general validation for model
eliminating E2 measurements provides lower errors. For example, error type I on
element <surface total> is 21% at minimum in patient group <MR, H, FSH/LH,
Id.2> (Table 4.3a), while error type II (Table 4.3b) at minimum is on the same group
and equals to 20.3%. On average through patient groups error type II on element
<surface total> is 25% and on <surface average> element it is around 21%.

Although, validation of model taking into account E2 measurements gives rela-
tively low error values, the methodoly validation results show higher values error
in comparison to model eliminating E2 measurements. The methodoly validation
experimental results clearly shows that our model performs best to predict total and
average surface of follicle profile based exclusively on preceding measurement of FP
and stimulation drug dose. Yet, one group with external factors <MR, E, FSH/LH,
Id.3> still has as unpredictable behaviour due to lack of precise measurements.
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Bootstrap Error + E2
Optimizing Error
by Element, + E2 Optimizing

AVG Error,
+ E2

Patient
Group

ID

S.Total error
(%) / S.Total

St.D (%)

S.Avg error
(%) / S.Avg

St.D (%)

E2 level
error (%) /

E2 level St.D
(%)

AVG Error
(%) / AVG

St.D (%)

1 23.3/14 21.6/16 23.4/15 21.3/23
2 21.0/23 20.0/25 36.1/35 24.3/33
3 24.5/21 29.4/21 33.4/24 32.2/38
4 30.8/38 29.1/34 25.5/40 32.7/39
5 30.0/28 27.2/48 26.5/22 25.8/29
6 27.3/56 28.1/17 33.3/26 30.1/33
7 30.0/19 30.1/17 35.2/23 34.3/37
8 36.2/22 26.7/18 45.4/46 32.4/35
9 37.2/32 28.9/23 34.5/27 33.1/35

(A) This table shows values of bootstrap error and standard deviation
for the follicle model (see Section 4.2.3). It optimizes parameters for
an average error on elements <surface total, surface average, E2> and
error by elements <surface total>, <surface average>, <E2>, see Eq.(4.9,
4.10) and (4.7, 4.8) respectively. See Patient Group description in Table

4.2.

Bootstrap Error - E2
Optimizing Error
by Element, - E2 Optimizing

AVG Error, -
E2

Patient
Group

ID

S.Total error
(%) / S.Total

St.D (%)

S.Avg error
(%) / S.Avg

St.D (%)

AVG Error
(%) / AVG

St.D (%)
1 23.4/13 21.2/13 23.1/24
2 20.3/19 16.9/21 22.0/30
3 28.9/21 28.5/ 19 29.8/31
4 50/47 38.1/26 44.6/46
5 28.9/26 23.4/16 24.8/27
6 27.8/17 28.5/17 28.5/30
7 34.2/19 29.1/20 30.4/33
8 33.2/20 23.9/14 30.8/34
9 36.9/27 29.9/26 33.4/38

(B) This table shows values of bootstrap error and standard deviation
for the follicle model (see Section 4.2.3). It optimizes parameters for an
average error on elements <surface total, surface average> and error by
elements <surface total>, <surface average>, see Eq.(4.9, 4.10) and (4.7,

4.8) respectively. See Patient Group description in Table 4.2.



50 Chapter 4. Ovarian Follicle Dynamics

4.3.5 Comparing Historical Prediction to a Group Prediction (C)

In this Section we investigate if with the use of a previous meadical cases of a patient,
we can predict patient behaviour on a future medical case (C). In order to do so, we
obtain all medical cases available of a patient and by minimizing the difference be-
tween measurements of elements and estimations as an error, we obtain parameter
values, let us call them historical parameters.

In order to compare historical prediction to the inter-patient group prediction (C)
we first use historical parameters to calculate four types of errors on a last available
medical case for each patient (last available medical case was not used in optimiza-
tion problem to obtain historical parameters). Second use inter-patient group param-
eters (see Section 2.2.4) to calculate four types of errors on a last available medical
case for each patient.

First type of error minimizes an average error (see Section 4.2.4.1 ) on elements
<surface total, surface average, E2> (I), second minimizes as well an average error on
the same model, yet eliminating E2 measurements (II). Third type minimizes error
by elements <surface total>, <surface average>, <E2> (III), see Section 4.2.4.2. Last
type minimizes as well error by elements, yet eliminating E2 measurements (IV).
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FIGURE 4.5: Shows distribution of % error, obtained by minimizing
an average error on elements <total surface of FP, average surface of
FP, e2> (green bars) and by optimizing an average error on elements
<total surface of FP, average surface of FP> (blue bars). Predictions
were obtained based on inter-patient group parameters for historical

cases (see Eq. 4.4) solely on the last medical case of each patient.
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FIGURE 4.6: Shows distribution of % error, for patients with multiple
medical cases (see Eq. 4.4), obtained by optimizing an average error
on elements <total surface of FP, average surface of FP, e2> (green
bars) and by optimizing an average error on elements <total surface

of FP, average surface of FP> (blue bars).

Figures 4.5 and 4.6 shows two types of error I and II. The difference between
them is that Figure 4.6 shows distribution of error calculated using historical pa-
rameters, while Figure 4.5 shows distribution of error calculated using inter-patient
group parameters. The resemblance between them is that both type of parameters
were used to calculated the prediction for the last available medical case of a patient.
If one compares Figures 4.5 and 4.6, he or she will see that distribution using inter-
patient group parameters has almoust 55% of historical patients with error value
less than 20%, while distribution using historical parameters has less than 30% of
historical patients with error value less than 20% (model using E2 measurements,
shown with green bars at the graphs). Same tendency shows model eliminating E2
measurements (shown with blue bars at the graphs).
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FIGURE 4.7: Shows distribution of % error, obtained by minimizing
error on element <total surface of FP> with use of E2 measurements
(green bars) and by optimizing a error on element <total surface of
FP> eliminating E2 measurements (blue bars). Predictions were ob-
tained based on inter-patient group parameters for historical cases

(see Eq. 4.5) solely on the last medical case of each patient.
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FIGURE 4.8: Shows distribution of % error, for patients with multiple
medical cases (see Eq. 4.5), obtained by optimizing error on <total
surface of FP> with use of E2 measurements (green bars) and by opti-
mizing error on <total surface of FP> without use of E2 measurements

(blue bars).

Figures 4.7 and 4.8 shows two types of error on element <surface total>, only now
for type errors III and IV. If we compare those figures we will see that distribution
using inter-patient group parameters has more than 60% of patients with error less
than 20%, while distribution using historical parameters less than 30% of patients
with the same 20% error. Moreover, we should highlight that error distribution us-
ing historical parameters (Figure 4.8) has a much larger bell. If we take a look at
error in between 50% - 60%, we will see less than 10% of patients in model using E2
measurements has it and model eliminating E2 has more than 10% of patients in it.
However, if we take a look at distribution using inter-patient group parameters (Fig-
ure 4.7) it has 0% and less than 10% of patients for a model using E2 measurements
and for a one eliminating those.
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FIGURE 4.9: Shows distribution of % error, obtained by minimizing
error on element <average surface of FP> with use of E2 measure-
ments (green bars) and by optimizing a error on element <average
surface of FP> eliminating E2 measurements (blue bars). Predictions
were obtained based on inter-patient group parameters for historical

cases (see Eq. 4.5) solely on the last medical case of each patient.
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FIGURE 4.10: Shows distribution of % error, for patients with multi-
ple medical cases (see Eq. 4.5), obtained by optimizing error on <av-
erage surface of FP> with use of E2 measurements (green bars) and
by optimizing error on <average surface of FP> without use of E2

measurements (blue bars).

Figures 4.9 and 4.10 shows same two types of error III and IV, only now on ele-
ment <surface average>. If we compare those figures we will see that distribution
(on model taking into consideration E2 measurements) using inter-patient group pa-
rameters has more than 70% of patients with error less than 20%, while distribution
using historical parameters less than 55% of patients with the same 20% error. Same
tendency has model eliminating E2 measurements. Distribution using inter-patient
group parameters has more than 65% of patients with error less than 20%, while
distribution using historical parameters less than 50% of patients with the same 20%
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error. Also, we should highlight that error distribution, obtained from historical pa-
rameters, on element <surface average> has a less wide bell in comparison to the
distribution on <surface total> element. If we take a look at error in between 50% -
60%, we will see that both models, as well as both distributions (inter-patient group
and historical) has 0% of patient in this range.
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FIGURE 4.11: Shows distribution of % error, obtained by minimizing
error on element <E2> (green bars). Predictions were obtained based
on inter-patient group parameters for historical cases (see Eq. 4.5)

solely on the last medical case of each patient.

 0

 10

 20

 30

 40

 0  10  20  30  40  50  60  70  80  90  100

Pa
tie

nt
s 

%

Error %

Historical Error Distribution of E2

✓ E2

FIGURE 4.12: Shows distribution of % error, for patients with multi-
ple medical cases (see Eq. 4.5), obtained by optimizing error on <E2>.

Figures 4.11 and 4.12 shows same two types of error III and IV, only now on
element <E2>. If we compare those figures we will see that distribution using inter-
patient group parameters has around 60% of patients with error less than 20%, while
distribution using historical parameters less than 45% of patients with the same 20%
error. Moreover, if we take a look at error in between 50% - 60%, we will see that
distribution basen on inter-patient group parameters has 0% of patients in this range,
while distribution basen on historical parameters has around 5% of patients in it.
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This Section allowed us to investigate if using previous meadical cases of a pa-
tient except a current one, and obtaining historical parameter values, could be used
to predict patient behaviour on a current medical cases. As experiments showed pa-
tients behaviour changes from one medical case to another. Thus, claim for historical
parameters is not viable and one should use inter-patient group parameters instead.
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Chapter 5

Discussion

E2 estimations as well as follicle dynamic model are based on inter-patient group
parameters. If a patient belonging to a given group G<r,h,d,t> behaves significantly
different from what expected for patient of group G<r,h,d,t>, then probably some-
thing is going wrong and this can suggest that further investigations are required.
Secondly, during stimulation treatment, clinicians perform multiple measurements,
of E2 and/or TV-US. With the help of our E2 model and follicle dynamic model clin-
ician may reduce number both of blood samples and TV-US taken from a patient,
which benefits both patient and clinian. Patients will benefit for two reasons, first
she will feel more comfortable and second price of treatment will be lower. As for a
clinician, it means no time delay in wayting for the results of E2 concentration from
overwhelmed labs.

It is worth pointing out that, precision during TV-US is crucial for identification
model parameters. Based on our experiments, measurements for groups where 2-
PL outperform 1-PL, were performed by either person with Id.1 or with Id.2. This
means that in those groups measurements were precise enough for our models, to
detect the influence of follicle maturation stage. At the same time, measurements
for the groups having an unpredictable behaviour, were also performed by person
with Id.2 and Id.3. In order to have more reliable estimation models in the future, we
suggest to conduct experiments based on carefully performed TV-US measurements,
preferably with the use of the three-dimensional ultrasound imaging (Raine-Fenning
et al., 2008).

It is only natural to ask how our results could be used in clinical practice. First
of all, while it is well known that TV-US measurements are the key part in fertility
treatment, while some clinicians argues whether E2 is important to measure dur-
ing all stimulatment treatment or not. Most of leading clinicians agree that E2 is a
sufficient part of treatment. Models for both E2 and follicles could be used as an
OHSS check, but also could act as a indicator whether patient reacts to treatment as
expected. Having both models combined together, provides a clinician with a full
measurement prediction. Clinician who has at hand only a FP measurement, could
predict a future dynamics of it using our follicle model and after obtain an E2 estima-
tion. Second advantage of our follicle model could be an integration into TDSS and
an improvement of it by predicting follicle dynamics under influence of stimulation
treatment.

One application of our work, is to see it as a software package, which is given
treatments and external factors, recalculates optimal parameters for multiple mod-
els. Of course, identified parameters are only as good as precision of treatment data
provided to it. It is highly important to be precise while performing TV-US, in or-
der to identify parameters. Parameter estimation could be population dependent
and treatment dependent. While our data set contains treatment data gathered ex-
clusively by Zurich Hospital, where same set of external factors is being measured
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for patients, many other hospitals and clinics may follow different protocols and
consider different external factors. All of it influence treatment data, thus influence
parameter models. In this way, it is useful to have our package rerun the parameter
identification procedure to a new given treatment set.

Another application, is to see prediction models as a calculator, which given an
external factors and follicle measurement, will provide follicle dynamics and/or an
esimation of E2. Let us say, a patient is being treated with FSH/LH drugs (d), healthy
(h), has medium response AFC (r) and follicles are being measured by person (t),
then a clinician can use our follicle model and/or one of the E2 estimation models,
and can make an estimation for a given patient on a specific measurement.



59

Chapter 6

Conclusion

As a result of our study we have developed two families of models for E2 level es-
timation and a follicle dynamics model during fertiliy treatment. Table 6.1 contains
an analysis of our models in terms of threats, open opportunities, weaknesses and
strengths. Furthermore, the software containing the models is a part of contribution
for the thesis and will be available online.

Each of our prediction models provide an estimation with an acceptable error.
Which means that during fertility treatment fewer blood samples would be needed,
as presently they are taken each one or two days (depending on protocol and patient
responde to the treatment). Another valuable change is that at the same time esti-
mation models would reduce treatment costs, which is another benefit for a patient.
Although group parameters do not lead to accurate patient specific estimations, they
are still valiable as a safety check for OHSS. In fact, a patient under treatment whose
measurement levels are too different from the expected behaviour for that patient
group, can be a symptom that something wrong is happening during the treatment.

Last but not least, Estradiol estimation opens up an opportunity for clinician and
a patient to follow the treatment online, by using small devices which are available
on the market (Fertihome). It allows patients to take Transvaginal Ultrasound by
themselves at home and transmit results to clinician via Internet. Clinician, after
getting measurements, may use our model to estimate Estradiol blood concentration
and this way he/she will has all information needed to make a decision about next
dose and/or next appointment. While E2 estimation model opens up an opportunity
for healthcare at a distance, integration of it with follicle dynamics model opens up
even a brighter prospective. Clinician who has at hand only a TV-US measurement,
could predict a future dynamics of it using our follicle model and after obtain an E2
estimation.

Our study confirms the linear relationship between E2 concentration and surface
of granulosa layer, but in a vision to have a more relaible estimation tool one should
perform a conductive study, preferably using three-dimensional ultrasound imaging
(Raine-Fenning et al., 2008). This approach will provide far more precise follicle
measurements, thereby our models will give more precise estimations.
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Model Strength Weakness Opportunities Threats

NPL based on
biological

knowledge

values of the
validation error
are appear to be
high, however

are fully
justified in

terms of the
intrinsic

uncertainties in
the input (see
Section 2.5).

opens up
an oppor-
tunity to

follow the
treatment

online
(Fertihome).

model is
constructed

under
hypothesis
that TV-US
is easier to
obtain with
respect to
E2 consen-
tration, yet

in some
cases it

could be
the

opposite.

SW does not
assume any

spesific
relationship

between E2 and
a follicle.

prediction
ability is limited

by the
measurements
precision (see

Section 3.2.2.3);
validation error
is higher with
respect to NPL

family of
models due to

overfitting.
Foll.

Model
predict follicle

dynamics based
only on

previous
measurement

and drug dose.

does not
reproduce

dynamics of one
selected follicle.

could be
integrated into

TDSS.

in two patient
groups fail to

capture patients
behaviour.

TABLE 6.1: Summary on three prediction models. Strength, Weak-
ness, Opportunities and Threats are shown for piece-wise linear fam-

ily of models, step-wise family and for follicle dynamics model.
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Appendix A

Graphics from E2 hormone
concentration
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FIGURE A.1: Distribution of Deterministic Error for the patient group
<MR, H, F/L, Id.1>.
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FIGURE A.2: Distribution of Deterministic Error for the patient group
<MR, H, F/L, Id.2>.
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FIGURE A.3: Distribution of Deterministic Error for the patient group
<MR, H, F/L, Id.3>.
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FIGURE A.4: Distribution of Deterministic Error for the patient group
<MR, E, F/L, Id.2>.
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FIGURE A.5: Distribution of Deterministic Error for the patient group
<MR, I, F/L, Id.1>.
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FIGURE A.6: Distribution of Deterministic Error for the patient group
<MR, O, F/L, Id.1>.
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FIGURE A.7: Distribution of Deterministic Error for the patient group
<MR, O, F/L, Id.2>.
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FIGURE A.8: Distribution of Deterministic Error for the patient group
<MR, O, F/L, Id.3>.
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FIGURE A.9: Distribution of Deterministic Error for the patient group
<ER, H, F/L, Id.1>.
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FIGURE A.10: Distribution of Deterministic Error for the patient
group <ER, H, F/L, Id.2>.
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FIGURE A.11: Distribution of Deterministic Error for the patient
group <ER, H, F/L, Id.3>.

 0

 10

 20

 30

 40

 0  10  20  30  40  50  60  70  80  90  100

M
ea

su
re

m
en

t %

Error %

Error Distribution. Patient Group <ER; I; F/L; Id.1>.

Optimizing Relative Error
Optimizing Absolute Error

FIGURE A.12: Distribution of Deterministic Error for the patient
group <ER, I, FL, Id.1>.
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FIGURE A.13: Distribution of Deterministic Error for the patient
group <ER, O, F/L, Id.1>.
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FIGURE A.14: Distribution of Deterministic Error for the patient
group <ER, O, F/L, Id.2>.
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FIGURE A.15: Distribution of Deterministic Error for the patient
group <ER, O, F/L, Id.3>.
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Appendix B

Graphics from E2 hormone
concentration Results Section:
Estimation of E2 obtained by
N − PL family of models
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FIGURE B.1: Estimation of E2, for <MR, Healthy, FSH/LH, Id.1>
group, using 1-PL, 2-PL, and 3-PL models.
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of E2 obtained by N − PL family of models

FIGURE B.2: Estimation of E2, for <MR, Healthy, FSH/LH, Id.2>
group, using 1-PL, 2-PL, and 3-PL models. Group <MR, Healthy,
FSH/LH, Id.2> is a group where 2-PL and 3-PL do not significantly
outperform 1-PL. Measurements taken from this group are coloured

with green.
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FIGURE B.3: Estimation of E2, for <MR, Endometriosis, FSH/LH,
Id.1> group, using 1-PL, 2-PL, and 3-PL models. Group <MR, En-
dometriosis, FSH/LH, Id.1> is on the three groups, where 2-PL model
outperform 1-PL. Measurements taken from this group are coloured

with green.
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FIGURE B.4: Estimation of E2, for <MR, Idiopathic, FSH/LH, Id.1>
group, using 1-PL, 2-PL, and 3-PL models.
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FIGURE B.5: Estimation of E2, for <MR, Other, FSH/LH, Id.1> group,
using 1-PL, 2-PL, and 3-PL models.
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FIGURE B.6: Estimation of E2, for <MR, Other, FSH/LH, Id.3> group,
using 1-PL, 2-PL, and 3-PL models.
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of E2 obtained by N − PL family of models

FIGURE B.7: Estimation of E2, for <ER, Healthy, FSH/LH, Id.1>
group, using 1-PL, 2-PL, and 3-PL models.
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FIGURE B.8: Estimation of E2, for <ER, Healthy, FSH/LH, Id.3>
group, using 1-PL, 2-PL, and 3-PL models.
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FIGURE B.9: Estimation of E2, for <ER, Idiopathic, FSH/LH, Id.1>
group, using 1-PL, 2-PL, and 3-PL models.
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FIGURE B.10: Estimation of E2, for <ER, Other, FSH/LH, Id.1> group,
using 1-PL, 2-PL, and 3-PL models.
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FIGURE B.11: Estimation of E2, for <ER, Other, FSH/LH, Id.2> group,
using 1-PL, 2-PL, and 3-PL models.
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FIGURE B.12: Estimation of E2, for <ER, Other, FSH/LH, Id.3> group,
using 1-PL, 2-PL, and 3-PL models.
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Appendix C

Graphics from E2 hormone
concentration Results Section:
Relative % Error obtained by
Optimizer build on Relative error
in comparison to Relative % Error
obtained by Optimizer build on
Absolute error.

FIGURE C.1: Shows relative percentage error for each measurement
of E2 in the <MR, H, F/L, Id.1> group, using two optimizers. One
optimizing relative error (errors shown by green colour), second opti-
mizing absolute error (errors shown by blue points). Both optimizers

are build for the NPL model.
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Error obtained by Optimizer build on Relative error in comparison to Relative %
Error obtained by Optimizer build on Absolute error.

FIGURE C.2: Shows relative percentage error for each measurement
of E2 in the <MR, H, F/L, Id.2> group, using two optimizers. One
optimizing relative error (errors shown by green colour), second opti-
mizing absolute error (errors shown by blue points). Both optimizers

are build for the NPL model.

FIGURE C.3: Shows relative percentage error for each measurement
of E2 in the <MR, H, F/L, Id.3> group, using two optimizers. One
optimizing relative error (errors shown by green colour), second opti-
mizing absolute error (errors shown by blue points). Both optimizers

are build for the NPL model.
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FIGURE C.4: Shows relative percentage error for each measurement
of E2 in the <MR, Endo, FSH/LH, Id.2> group, using two optimizers.
One optimizing relative error (errors shown by green colour), second
optimizing absolute error (errors shown by blue points). Both opti-

mizers are build for the NPL model.

FIGURE C.5: Shows relative percentage error for each measurement
of E2 in the <MR, I, F/L, Id.1> group, using two optimizers. One op-
timizing relative error (errors shown by green colour), second opti-
mizing absolute error (errors shown by blue points). Both optimizers

are build for the NPL model.
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Error obtained by Optimizer build on Relative error in comparison to Relative %
Error obtained by Optimizer build on Absolute error.

FIGURE C.6: Shows relative percentage error for each measurement
of E2 in the <MR, O, F/L, Id.1> group, using two optimizers. One
optimizing relative error (errors shown by green colour), second opti-
mizing absolute error (errors shown by blue points). Both optimizers

are build for the NPL model.

FIGURE C.7: Shows relative percentage error for each measurement
of E2 in the <MR, O, F/L, Id.2> group, using two optimizers. One
optimizing relative error (errors shown by green colour), second opti-
mizing absolute error (errors shown by blue points). Both optimizers

are build for the NPL model.
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FIGURE C.8: Shows relative percentage error for each measurement
of E2 in the <MR, O, F/L, Id.3> group, using two optimizers. One
optimizing relative error (errors shown by green colour), second opti-
mizing absolute error (errors shown by blue points). Both optimizers

are build for the NPL model.

FIGURE C.9: Shows relative percentage error for each measurement
of E2 in the <ER, H, F/L, Id1> group, using two optimizers. One op-
timizing relative error (errors shown by green colour), second opti-
mizing absolute error (errors shown by blue points). Both optimizers

are build for the NPL model.
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Error obtained by Optimizer build on Relative error in comparison to Relative %
Error obtained by Optimizer build on Absolute error.

FIGURE C.10: Shows relative percentage error for each measurement
of E2 in the <ER, H, F/L, Id2> group, using two optimizers. One op-
timizing relative error (errors shown by green colour), second opti-
mizing absolute error (errors shown by blue points). Both optimizers

are build for the NPL model.

FIGURE C.11: Shows relative percentage error for each measurement
of E2 in the <ER, H, F/L, Id3> group, using two optimizers. One op-
timizing relative error (errors shown by green colour), second opti-
mizing absolute error (errors shown by blue points). Both optimizers

are build for the NPL model.
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FIGURE C.12: Shows relative percentage error for each measurement
of E2 in the <ER, I, F/L, Id1> group, using two optimizers. One opti-
mizing relative error (errors shown by green colour), second optimiz-
ing absolute error (errors shown by blue points). Both optimizers are

build for the NPL model.

FIGURE C.13: Shows relative percentage error for each measurement
of E2 in the <ER, O, F/L, Id1> group, using two optimizers. One op-
timizing relative error (errors shown by green colour), second opti-
mizing absolute error (errors shown by blue points). Both optimizers

are build for the NPL model.
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Error obtained by Optimizer build on Relative error in comparison to Relative %
Error obtained by Optimizer build on Absolute error.

FIGURE C.14: Shows relative percentage error for each measurement
of E2 in the <ER, O, F/L, Id2> group, using two optimizers. One op-
timizing relative error (errors shown by green colour), second opti-
mizing absolute error (errors shown by blue points). Both optimizers

are build for the NPL model.

FIGURE C.15: Shows relative percentage error for each measurement
of E2 in the <ER, O, F/L, Id3> group, using two optimizers. One op-
timizing relative error (errors shown by green colour), second opti-
mizing absolute error (errors shown by blue points). Both optimizers

are build for the NPL model.
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