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Abstract
Aims: The aim of the present study is to compare osteointegration and marginal bone loss of immediately loaded Trabecular 
Metal® and Tapered Screw-Vent® Dental Implants (Zimmer Dental Inc., Carlsbad, CA, USA).
Methods: Eighty-seven (87) patients were selected and randomly divided into Group A and Group B. Twenty-six (26) patients 
were enrolled in Group A, and were rehabilitated using Zimmer Trabecular Metal Dental Implants®. Sixty-one (61) patients were 
enrolled in Group B, and were rehabilitated using Zimmer Tapered Screw-Vent Dental Implants®.
Results: The mean value of marginal bone loss after one year was 0.44 ± 0.40 mm for Group A and 0.95 ± 0.62 mm for Group B 
(p<.003). Mean marginal bone loss after 18 months was 0.46 ± 0.42 mm for group A and 0.97 ± 0.65 mm for group B (p<.003). No 
TM implant was lost (Group A), whereas one TSV implant (Group B) was lost before osseointegration and was not included in the 
statistical analysis.
Conclusion: Both Trabecular Metal and Tapered Screw-Vent dental implants showed satisfying levels of osteointegration and 
marginal bone loss; however, statistical analysis revealed a value significantly lower of marginal bone loss for TM. Thus, it may be 
deduced that when implants are immediately loaded, the average loss of marginal bone around the TM implants is lower than that of 
the Tapered Screw-Vent implants.
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Introduction
Compared to all other dental disciplines, implant dentistry has
rapidly evolved, with progressive innovations, mainly in terms
of development of new implant systems and the introduction
of new surgical techniques [1-4]. Formation of a direct bone
to implant contact is the main success criteria in implant
dentistry.

Porous surface coating should enhance integration, by
allowing bone growth inside the pores [5-6]; however, the
number and size of the pores that can be obtained on the
surface of the implant determine the quality and quantity of
the bone growth. Histological studies showed that while a
pore size of ̴ 100 μm is adequate for bone ingrowth [7], osteon
formation inside a porous material needs ̴ 150 μm pores [8],
while pores greater than ̴ 300 μm are required to support
vascularized bone ingrowth [9].

Difficulties, however, were encountered in trying to get
regular pores of predetermined dimensions. To overcome this
obstacle, orthopedic researchers developed a highly porous
tantalum trabecular material (PTTM) (Trabecular Metal
Material, Zimmer TMT, Parsippany, NJ, USA) that simulated
the trabecular structure [10–17] and more closely resembled
the elastic modulus (2.5–3.9 GPa) of both cancellous (6.8
GPa) and cortical (13–17 GPa) bone than titanium (106– 115
GPa), cobalt chromium (210 GPa), or stainless steel (230
GPa) surgical metals used for orthopedic implants.[17–20].
PTTM showed a bone-like three dimensional architecture
[17,21], interconnected porosity up to 80%
[12,13,16,17,22,23] and osteoconductive properties
[12,13,16,17,22].

Since 1997, PTTM has been used for hip, knee, and spine
reconstruction [12-14,16-18]. In recent years, PTTM was
applied to the midsection of root-form, threaded, titanium
alloy dental implants to create a three-dimensional, peri-

implant bone ingrowth scaffold [24]. The porosity of
Trabecular Metal Material not only significantly increases the
surface available for bone formation, but also allows
angiogenesis and bone formation inside the pores
[8,10,24,25]: the average pore size of Trabecular Metal
Material is ̴550 µm, adequate for blood vessel formation and
osseoincorporation [24,26]. The term osseoincorporation
indicates the combination of osseointegration/bone ongrowth
(bone to implant contact, BIC) and bone ingrowth within the
porous material.

In his initial studies on osseointegration, Branemark
identified in titanium and tantalum the most suitable materials
for implant manufacturing [27]. Tantalum demonstrated a
high biocompatibility and resistance to corrosion [28-32];
however, the difficulty in working this material limited its use
[33] and titanium was preferred.

In the 90’s a process of deposition of vapor using tantalum
overcame the manufacturing limits. Trabecular metal material
is nowadays produced by coating a vitreous carbon skeleton
(2% of TM) with tantalum (98% of TM) via a chemical vapor
deposition process [10,11,13]: the result is a nanotextured,
osteoconductive framework [20] of three dimensional,
dodecahedron-shaped interconnected pores [10,11,13,14,19].
The pores are large enough to allow bone ingrowth and blood
vessel formation.

Two preclinical studies on PTTM documented bone growth
inside the porous tantalum structures [18,22,34]. In the first
study, histologic analysis detected regions of contact between
bone and implant increasing with time and evidence of
Haversian remodelling within the pores at later stages.
Mechanical tests at four weeks indicated a minimum shear
fixation strength of 18.5 MPa, substantially higher than that
obtained with other porous materials with a lower volumetric
porosity [18,22].
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In the second study, 22 PTTM acetabular implants were
studied in a canine model for a period of 6 months. Histology,
radiography, and electron microscopy revealed stable bone-
implant interfaces in all 22 implants. All histologic sections
presented areas of bone ingrowth. The depth of bone ingrowth
ranged from 0.2 mm to 2 mm. The mean bone ingrowth for all
sections was 16.8%. In the peripheral regions, where bone-
implant contact was most consistent, bone ingrowth averaged
25.1% [18,34].

The aim of the present study is to clinically and
radiographically evaluate osteointegration and marginal bone
loss of immediately loaded Trabecular Metal Dental
Implants® (Zimmer Dental Inc., Carlsbad, CA, USA) 18
months after insertion in partially edentulous patients.

Materials and Methods
The study was conducted in the Head and Neck Department
of “Sapienza” University of Rome, and was open to all
patients who met specific inclusion and exclusion criteria
(Table 1) and provided signed informed consent, according to
the World Medical Association’s Declaration of Helsinki.

Table 1. Patient Selection Criteria.

Table 1 Patient Selection Criteria

Inclusion Male or female at least 18 years of age

Benefit from the implant prosthesis

Adequate bone volume to support an implant without additional
augmentation

Healed extraction site

Insertion torque of >35 Ncm for immediate loading

ISQ>70 at implant placement

Exclusion Subjects with bruxism or clenching parafunctional habits

Fresh extraction site

Grafted sites with <6 months of healing by the implantation date

Smokers

Sites with a previously failed dental implant

Uncontrolled systemic disease (e.g., uncontrolled diabetes)

Severely compromised immune system

Untreated oral pathologies

Pregnancy

Bleeding disorder or use of anticoagulants

Use of bisphosphonates

Other conditions the investigator may feel would inhibit the patient
from being a good candidate for the study

The Authors selected eighty-seven (87) patients, aged from
24 to 72 years (mean age 51), and randomly divided them into
Group A (study group) and Group B (control group). The
randomization procedure consisted in flipping a coin to
determine whether the participant had to go into the study or
control group.

Twenty-seven (27) patients, aged from 24 to 68 years, with
an average of 49 years old, were enrolled in Group A, and
were rehabilitated using Zimmer Trabecular Metal Dental
Implants. Each patient was treated with one implant. 15
implants were placed in the mandible and 11 in the maxilla.
The sizes of the implants were the following: 4.7 x 11.5 mm
(1 implants); 4.1 x 13 mm (1 implant); 4.1 x 11,5 mm (3
implants); 4.1 x 10 mm (9 implants); 3.7 x 11.5 mm (5
implants); 3.7 x 10 mm (7 implants) (Tables 2-3).

Table 2. Treatment Sites Trabecular Metal Dental Implants.

Maxillary locations Lateral Incisor 3

Canine 4

First premolar 2

Second premolar 0

First molar 1

Second molar 1

Mandibular locations Lateral Incisor 1

Canine 4

First premolar 2

Second premolar 4

First molar 1

Second molar 3

Bone Density Type I 2

Type II

Type III

12

8

Type IV 4

Table 3. Dimensions and Surfaces of Trabecular Metal    
Dental Implants.

Lengths (mm) Diameters (mm) ø

3.7 mm     4.1 mm         4.7 mm

Implants

10 mm 7 15 0 16

11.5 mm 5 5 1 9

13 mm 0 3 0 1

Surfaces Cervical collar 0.5mm Ti machined

Implant Body

(Ti-6Al-4V)
MTX®
Microtextured

Implant Body

(Trabecular Metal)
Nanotextured

Sixty-one (61) patients, aged from 26 to 72 (mean age 54)
were enrolled in Group B, and were rehabilitated using
Zimmer Tapered Screw-Vent Dental Implants. Each patient
was treated with one implant. 37 implants were placed in the
mandible and 24 in the maxilla. The sizes of the implants
were the following: 4.7 x 11.5 mm (2 implants); 4.1 x 13 mm
(3 implants); 4.1 x 11.5 mm (5 implants); 4.1 x 10 mm (15
implants); 3.7 x 11.5 mm (20 implants); 3.7 x 10 mm (21
implants) (Tables 4-5).
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Table 4. Treatment Sites Tapered-Screw Vent Dental 
Implants.

Maxillary locations Lateral Incisor 3

Canine 4

First premolar 3

Second premolar 6

First molar 6

Second molar 2

Mandibular locations Lateral Incisor 3

Canine 6

First premolar 4

Second premolar 5

First molar 10

Second molar 9

Bone Density Type I 10

Type II 15

Type III 8

Type IV 4

Table 5. Dimensions and Surfaces of Tapered Screw Vent 
Dental Implants.

Lengths
(mm)

Diameters (mm) ø

3.7 mm  4.1 mm    4.7 mm

Implants

10 mm 21 9 0 30

11.5 mm 20 3 2 25

13 mm 0 1 0 1

Surfaces Cervical collar 0.5mm Ti machined

Implant Body

(Ti-6Al-4V)

MTX ®

Microtextured

One hour before surgery, patients were administered oral 
prophylactic antibiotics, either amoxicillin (2 g) or 
clindamycin (600 mg). All implants were inserted under local 
anesthesia and after flap incision and elevation. Implant 
insertion torque, measured in newton-centimeters (N/cm), and 
resonance frequency analysis (RFA) values, measured in 
implant stability quotient (ISQ) value were recorded at implant 
placement.

Within 48 hours of implant placement, an abutment was
interlocked to the implant, and a temporary prosthesis was
cemented to the abutment using provisional luting cement
(Figure 1). Occlusion of the restoration was adjusted so that
crown did not come into contact with the opposing tooth in
both intercuspal and lateral excursive movements. The
provisional crown was left in place for about 7 to 14 days to
allow soft tissues healing. Subsequently, if the implant
appeared clinically stable, definitive ceramo-metal prosthesis
was cemented onto the final abutment and the restoration was
placed in occlusion (Figure 2). Follow-up examinations were

performed at 1, 3, 6, 12 and 18 months, for clinical monitoring
and annual hygiene prophylaxis.

Figure 1. TM Dental Implant; provisional restoration.

Figure 2. TM Dental Implant; final restoration.

Periapical radiographs were performed for each implant at
provisionalization (baseline) (Figure 3) and after 6, 12 and 18
months of functioning (Figure 4), perpendicular to the long
axis of the implants using a Rinn’s XCP (Extension Cone
Paralleling) film holding system. All periapical radiographs
were provided in JPEG format. Bone levels were measured by
calculating the distance from the implant shoulder to the first
bone-to-implant contact. Both mesial and distal measurements
were made on each periapical radiograph. The known height
of the implant was used as the standardized dimension for
calibration. Changes in crestal bone levels were summarized
by averaging distal and mesial measurements for each
radiograph.

OHDM- Vol. 14- No.2-April, 2015

111



Figure 3. TM Dental Implant placed in the mandible (right first
molar); periapical radiograph at baseline.

Figure 4. TM Dental Implant; periapical radiograph 18 months
after placement.

Results and Discussion
The total number of implants inserted was 87; one Tapered
Screw-Vent implant (Group B) was lost before
osseointegration and was not included in the statistical
analysis,whereas no implant was lost in the Group A (TM).
Marginal bone loss was measured on the periapical
radiographs [35] after 12 and 18 months. Data were analyzed
by descriptive statistics and Student's t-test.

The mean value of marginal bone loss after one year was
0.44 + 0.40 mm for TM implants (Group A) and 0.95 ± 0.62
mm for Tapered Screw-Vent implants (Group B) (p<0.003).
Mean marginal bone loss after 18 months was 0.46 ± 0.42 mm
for Group A and 0.97 ± 0.65 mm for Group B (p<0.003)
(Table 6).

Hence, data proved to be statistically significant. Therefore,
it may be deduced that when implants are immediately loaded,
the average loss of marginal bone around the TM implants is
lower than that of the Tapered Screw-Vent implants.

Table 6. Marginal bone loss in Group A and Group B.

TM Implants

(Group A)

Taperd Screw-Vent
Implants

(Group B)

Marginal bone loss at 12
months

0.44 ± 0.40 mm 0.95 ± 0.62 mm

Marginal bone loss at 18
months

0.46 ± 0.42 mm 0.97 ± 0.65mm

These findings are in accordance with previous studies on
Zimmer TM and Tapered Screw-Vent implants [36].

The criteria for implant success include the following: (a)
absence of persistent pain; (b) absence of peri-implant
infection with suppuration; (c) absence of mobility; (d)
absence of continuous periimplant radiolucency; (e) peri-
implant bone resorption less than 1.5 mm in the first year of
function and less than 0.2 mm in the subsequent years [37].

With the exception of the implant not osseointegrated, all
implants met these characteristics, with no differences
between study and control group.

Osseointegrated dental implants have traditionally been
placed in accordance with a 2-stage protocol: implants were
submerged and left to heal for a period of 3-4 months in the
mandible and 6-8 months in the maxillae. Attempts to early
load the implants were associated with increased failure rates
[38]. This practice is based on the assumption that the implant
micro-movements, caused by the functional forces exerted
during wound healing, can induce the formation of fibrous
tissue around the implant, rather than bone, leading to clinical
failure [39]. Early or immediate implant loading is now a
common procedure, particularly in mandibles with good bone
quality [40]. A Cochrane systematic review of randomized
controlled clinical trials, assessing timing for dental implant
loading, suggested that immediately loaded implants, in
selected cases, can be just as effective as those loaded after a
conventional healing time [41].

Several parameters, such as implant surface and design,
implant diameter and length, bone quality and surgical
procedures, influence the primary stability of dental implants
[42-45]. The decision to immediately load the implant or not
is largely based on its primary stability. Resonance frequency
analysis technique is a viable means for accurately evaluating
implant stability [46]. Furthermore, the possibility of
repeating the measurements over time makes it possible to
intercept any changes in implant stability during loading.
Implants with loss of stability due to an overload can thus be
detected before failure occurs.

The possibility of loading the implants immediately after
their insertion is a major advantage for patients, because the
treatment period may be significantly reduced, and the
aesthetic result may be achieved forthwith.

An implant is considered successful when the marginal
bone loss is less than 1.5 mm in the first year after loading and
less than 0.2 mm/year in the following years [37]. The
maintenance of bone tissue around implants is the most
important factor in determining long-term implant success,
and progressive bone loss dramatically reduces the chances of
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survival of dental implants [47]. Among the causes that may
lead to marginal bone loss surgical trauma, incongruous
occlusal forces, bacterial colonization of the implant-abutment
gap and an unsuitable implant design should be mentioned
[48]. All these factors should be considered when planning
implant rehabilitation.

Zimmer TM implants have rather parallel walls in their
central area, because a conical shape would not allow
incorporation of the tantalum body to the implant. This could
be considered a serious disadvantage, as when a tapered
implant is inserted into a straight, under-prepared osteotomy,
the bone is compressed, with a consequent improvement in
primary stability; this obviously cannot happen with a
cylindrical implant. This could be a limitation especially in
the rehabilitation of the upper jaw, where there is a lower
bone density [49]. Nevertheless, in our study, the tantalum
body was found to give the implant an optimal primary and
secondary stability.

Conclusions
Immediate loading is a safe and efficacious procedure when
measured in terms of implant survival. It reduces treatment
time and patient discomfort, while ensuring a high
predictability and good aesthetic results. Within the
limitations of this study, it is possible to assert that immediate
loading of Zimmer TM implants gives satisfying results in
terms of success and marginal bone loss.
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