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Abstract: Multi-armed bandit (MAB) models are a viable approach to describe the problem of best
wireless network selection by a multi-Radio Access Technology (multi-RAT) device, with the goal of
maximizing the quality perceived by the final user. The classical MAB model does not allow, however,
to properly describe the problem of wireless network selection by a multi-RAT device, in which a
device typically performs a set of measurements in order to collect information on available networks,
before a selection takes place. The MAB model foresees in fact only one possible action for the player,
which is the selection of one among different arms at each time step; existing arm selection algorithms
thus mainly differ in the rule according to which a specific arm is selected. This work proposes
a new MAB model, named measure-use-MAB (muMAB), aiming at providing a higher flexibility,
and thus a better accuracy in describing the network selection problem. The muMAB model extends
the classical MAB model in a twofold manner; first, it foresees two different actions: to measure and
to use; second, it allows actions to span over multiple time steps. Two new algorithms designed to
take advantage of the higher flexibility provided by the muMAB model are also introduced. The first
one, referred to as measure-use-UCB1 (muUCB1) is derived from the well known UCB1 algorithm,
while the second one, referred to as Measure with Logarithmic Interval (MLI), is appositely designed
for the new model so to take advantage of the new measure action, while aggressively using the
best arm. The new algorithms are compared against existing ones from the literature in the context
of the muMAB model, by means of computer simulations using both synthetic and captured data.
Results show that the performance of the algorithms heavily depends on the Probability Density
Function (PDF) of the reward received on each arm, with different algorithms leading to the best
performance depending on the PDF. Results highlight, however, that as the ratio between the time
required for using an arm and the time required to measure increases, the proposed algorithms
guarantee the best performance, with muUCB1 emerging as the best candidate when the arms are
characterized by similar mean rewards, and MLI prevailing when an arm is significantly more
rewarding than others. This calls thus for the introduction of an adaptive approach capable of
adjusting the behavior of the algorithm or of switching algorithm altogether, depending on the
acquired knowledge on the PDF of the reward on each arm.
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1. Introduction

A common experience in everyday’s life is to be connected wirelessly to the Internet:
almost everyone uses a device such as a smartphone, a tablet or a laptop, and the Internet connection
is now considered as essential, in order to be connected to the rest of the world.

With the many indisputable and undisputed advantages that this situation implies, there are also
some new challenges that must be faced. One of them, in the context of cognitive networking and in
the scenario where different wireless networks of different technologies (Wi-Fi, UMTS, LTE, . . .) are
present, is the choice of which network to use. Skipping trivial answers and facing the problem from
the final user point of view, the question should be expressed like “Which wireless network among
the available ones is the one that can offer the best performance in terms of quality perceived by the
final user?”

This question is becoming more and more pressing as a result of several concurring phenomena:
(1) the increase in computing and processing capabilities of mobile devices, allowing to move decisions
from the network to the device; (2) the increasing demands in terms of Quality of Service (QoS) and
Quality of Experience (QoE) as perceived by the user; (3) the ever increasing availability of multiple
network connections characterized by different characteristics and performance. Efficient network
selection will be definitely central in the design and deployment of 5G systems, where the availability
of multiple networks and the use of multi-Radio Access Technology (multi-RAT) are expected to be
standard operation conditions [1], and multi-tier networks operated in the same geographic area by
multiple operators will be a common occurrence [2]. 5G systems will thus require the capability to
tackle the network selection problem in both homogeneous scenarios, where all the candidate networks
adopt the same technology, and heterogeneous scenarios, where networks using different technologies
are available. In the first category fall both the selection of the best cell within a cellular network, and
the selection of the best cellular network among different ones, while the second includes, for example,
scenarios where both cellular networks and Local Area Networks (LANs) are available. The proposed
approaches include game theory [3,4], and the Multi-Armed Bandit model; optimization was also
proposed in scenarios where the decision could be taken in a centralized fashion [5], which is, however,
less relevant for the user-centric scenario considered in this work.

A proper solution to the user-centric network selection problem requires two main steps: (a) define
the QoS/QoE parameters that determine the quality of a network as perceived by the user, and the
corresponding utility function; and (b) define the network selection algorithm/strategy that operates
by maximizing the selected utility function.

An extensive literature exists on the definition and use of QoS parameters for wireless networks;
physical layer parameters such as Received Signal Strength Indicator (RSSI), Signal-to-Noise Ratio
(SNR), Signal-to-Interference Ratio (SIR) and Bit Error Rate (BER) have been widely adopted to enforce
QoS policies, often in conjunction with Medium Access Control (MAC) layer parameters such as
frame error rate, throughput, delay, jitter and collision rate, and network layer parameters such as
packet error rate, end-to-end delay and throughput; an extensive survey on QoS parameters and
corresponding utility functions can be found in [4]. More recently, research focused on translating QoS
parameters into Key Performance Indicators (KPIs) capable of reliably expressing the QoE perceived
by the user for each specific class of traffic/applications [6,7]. The choice of the parameters taken into
account in the definition of the utility metric and, in particular, the resulting rate of variation over time
of the metric, will have a strong impact on the performance of network selection strategy, and should
be considered in the decision on the network selection approach to be adopted.

Moving to algorithms and mathematical approaches proposed for network selection, game theory
was widely proposed as a solution in cases where no central processing point is available,
and cooperation between users may or may not be available. In homogeneous scenarios, game theory
was proposed in [8], among others, as a way to select the best cell in two-tier network, and in a
broader scheme, in combination with a machine learning algorithm, to solve the problem of best
provider selection and power allocation within the selected network [9]. In heterogeneous scenarios,
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game theory was adopted in [10] to jointly tackle the network selection and resource allocation
problems in a multi-operator heterogeneous network in which users take simultaneous decisions;
the paper also provided an extensive analysis of the use of game theory for network selection,
including the issue of the definition of utility metrics to be adopted in the problem. In [11], the problem
was extended by considering a game in which users take their network selection decisions sequentially,
taking into account decisions of other users.

A reasonable assumption in the network selection problem is, however, that no a priori
information about the networks is available, except for their presence, requiring thus the acquisition of
measurements of relevant networks parameters in order to enable an informed decision on the network
to be selected. The Multi-Armed Bandit (MAB) framework, in which a player chooses among different
arms with the goal of maximizing a reward, can be used to model the above problem [12–14] . In fact,
by using Peter Whittle’s words [12], MAB problems embody in essential form a conflict evident in all
human actions. This is the conflict between taking those actions that yield immediate reward and those
(such as acquiring information or skill, or preparing the ground) whose benefit will come only later.
In the considered scenario, the action with future benefit is to measure network parameters, while
connecting to a network and exploiting it for transmitting and receiving is the action with immediate
reward. The idea of adopting an online learning algorithm is indeed in line with recent proposals
for best network selection in 5G, foreseeing complex information acquisition phases involving both
devices and network infrastructure for an effective network selection [15]. Current MAB models focus,
however, mainly on actions that bring an immediate reward: existing algorithms built on the basis
of such models mainly address thus how to decide which arm, i.e., which wireless network in the
considered case, to select at each time step [16–18]. This is also the case for online learning algorithms
based on the MAB model proposed to address the network selection problem, as for example the one
in [19], where a continuous time MAB problem is solved in order to select the network providing the
best QoE to the user.

This work proposes a a new MAB model that takes into account the need for a measurement
phase before the network selection decision can take place, introducing thus a trade-off between the
time TM dedicated to measuring the performance of each network, and the time TU spent using the
selected network before updating again the information on available networks. On the one hand,
TM should be long enough to guarantee an effective decision; on the other, it should be significantly
shorter than TU , in order to ensure that the overhead related to measuring, expressed by the ratio
TM/ (TM + TU), is kept at a reasonable level.

The new MAB model, referred to as measure-use-MAB (muMAB), allows the player to select
between two distinct strategic actions: measure and use. Since existing arm selection algorithms cannot
take advantage of the new possibilities opened by the presence of two possible actions, two new
algorithms specifically designed on the basis of the muMAB model are also introduced, referred to as
measure-use-UCB1 (muUCB1) and Measure with Logarithmic Interval (MLI).

The impact of the muMAB model is analysed by evaluating the performance obtained in its
context by several algorithms widely used in literature, and by the two newly proposed algorithms.

The paper is organized as follows: Section 2 introduces the muMAB model and the muUCB1 and
MLI algorithms. Section 3 introduces the experimental settings, while the results are presented and
discussed in Section 4. Finally, Section 5 concludes the work.

2. Measure and Use Differentiation in Multi-Armed Bandit

2.1. The muMAB Model

The classical MAB model foresees different arms, each of them characterised by a reward,
modeled by a random variable with a fixed (unknown) mean value. At every step, an arm is selected
and its current reward value is obtained as feedback.
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Many algorithms, also called strategies or policies, were proposed in literature in order to identify
and choose as soon as possible the arm with the highest mean reward without any a priori knowledge,
except for the number of arms [16,17]. Their performance is usually expressed in terms of regret, which
is the difference between the cumulative reward obtained by always choosing the arm with the highest
mean and the cumulative reward actually obtained with the chosen arms. Regret was first proposed as
evaluation parameter for algorithms performance in [20]; it was later shown that, in terms of regret,
the best performance an algorithm can achieve is a regret that grows logarithmically over time [16].

In the classical MAB model, there is only one possible action: to select an arm and collect
the corresponding reward. In real world scenarios, however, such as the best wireless network
selection considered in this work, the selection phase is preceded by a measurement phase, in order to
support an informed decision. Furthermore, the selection is usually kept unchanged for a significant
time, typically much longer than the time dedicated to measuring the performance of the candidate
networks. This is due to the overhead introduced by a network switching procedure, as well as to the
discomfort caused to the user due to service interruption during network switch; indeed, a significant
effort was devoted to designing algorithms that prevent frequent network switching procedures [21].
The muMAB model is designed so to grasp the cycle between measuring and using, and thus model
real scenarios with higher accuracy than the classical MAB model. The muMAB model can be described
as follows:

• time is divided into steps with a duration of T, and the time horizon is defined as TTH = nTHT;
• there are 1 player and K arms;
• a reward is associated with the generic k-th arm, k = {1, · · · ,K}; ∀k ∈ K, the reward

{Wk(n) : n ∈ N} is a stationary ergodic random process associated with arm k, with statistics
not known a priori; given a time step n, Wk(n) is thus a random variable taking values in the
real non-negative numbers set <+, with unknown Probability Density Function (PDF); the mean
value of Wk(n) is defined as µk = E [Wk(n)];

• there are two distinct actions: to measure (“m”) and to use (“u”). At the beginning of time step n,
the player can choose to apply action a to arm k; the choice cn is represented by a pair:

cn = (an, kn) , an ∈ {m, u} , kn ∈ K, (1)

which means that, at time step n, the arm kn has been chosen with an action an; every choice cn

obtains feedback f (cn);
• feedback f (cn) is a pair, composed by:

1. a realization of Wk (n) at time step n, wk (n), that is the current reward value associated with
arm k;

2. a gain g (cn);

therefore:
f (cn) = (wk (n) , g (cn)) ; (2)

• measure and use actions have duration TM and TU , respectively, defined as TM = nMT,
TU = nUT, where nM, nU ∈ N. As a result, if at time step n the player chooses action measure
(use, respectively), i.e., an = m (an = u), the next nM (nU) steps are “occupied” and the next choice
can be taken at time step n′ = n + nM (n′ = n + nU). Gain g (cn) is a function of both the selected
action and Wk (n); it is always equal to zero when measure action is selected, while it is the sum of
the values of the realizations of Wk (n) from time steps n to n′ = n + nU when arm k is used at
time step n:

g (cn) =


0, if an = m,
n+nU

∑
i=n

wk (i) , if an = u;
(3)
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• the performance of an algorithm is measured by the regret of not always using the arm with the
highest reward mean value k∗:

k∗ = arg max
k∈K

µk; (4)

regret at time step n is defined as:

R (n) = GMAX (n)− E [G (n)] , (5)

where:

G (n) =
n

∑
i=1

g (ci) , (6)

with i used as index of time steps where an action can be taken (i.e., excluding the time steps
“occupied” by preceding decisions: measure occupies the following nM time steps while use
occupies the following nU time steps), and GMAX (n) is the maximum possible cumulative gain
at time step n, obtained by always using the arm k∗ (and never measuring):

GMAX (n) = E [G (n)] : ci = (u, k∗) ; (7)

• the goal is to find an algorithm that minimizes regret evolution in time.

In the muMAB model, both actions provide, as part of their feedback, the value of the current
reward on the arm measured or used, and allow thus the player to use this information in order to
refine the estimation of the mean value of the reward of the selected arm.

The key difference between the two actions is in the time span required to collect this information:
since, in fact, usually TM < TU in real cases, when use is selected, the player will have to wait a longer
time span before deciding to switch to another arm based on the collected reward values. On the other
hand, if the player selects the action use on a given arm, the resource is effectively exploited and there
is, therefore, an immediate gain. The choice of measuring an arm, instead, permits obtaining a more
accurate estimate of the performance achievable with that arm (if it will be used in future steps) in a
shorter time; this comes, however, at the price of a null gain for the entire measure period, i.e., for TM.

The muMAB model differs thus from the classical MAB model under the following aspects:

• it introduces two actions, measure and use, in place of the use action considered in the
classical model;

• as a result of each action, it provides feedback composed of two parts: the values of the rewards
on the selected arm, and a gain depending on the selected action;

• it introduces the concept of locking the player on an arm after it is selected for measuring or using,
with different locking periods depending on the selected action (measure vs. use).

These new features make the muMAB better suited to represent real world scenarios, in which a
measuring phase precedes the decision on which resource to use.

It is worth noting that different wireless networks might require different measurement and
use periods, depending on the characteristics of the specific network. Nevertheless, any network
selection algorithm will require the adoption for each of the two parameters of a common value to
all networks, since a decision on which network to select will have to be guaranteed within a finite
time. In the following, the determination of the values to be adopted for TM and TU will be assumed
to be the result of a compromise between the optimal values that would be required for each of the
candidate networks.

2.2. Algorithms

Two algorithms that are able to exploit the difference between measure and use are proposed in
this work: muUCB1 and MLI.
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2.2.1. muUCB1

muUCB1 derives from the well known and widely used UCB1 algorithm [16]; the choice of
proposing an algorithm derived by UCB1 is justified by the fact that UCB1 is often used as a benchmark
in the evaluation of MAB selection algorithms because it reaches the best achievable performance, i.e.,
a regret growing logarithmically over time, but at the same time presents a low complexity.

In the following, the UCB1 algorithm is briefly described, focusing on aspects that are relevant to
the proposed muUCB1 algorithm; a more detailed description of UCB1 can be found in [16].

UCB1 operates by associating an index to each arm, and selecting the arm characterized by the
highest index. The value of the index is determined by the sum of two elements:

1. the reward mean value estimate of the arm;
2. a bias, that eventually allows the index of an arm with a low reward mean value to increase

enough for the arm to be selected.

The index of arm k is therefore:

Ik = µ̂k +

√
2 ln (N)

Nk
, (8)

where Nk is the number of times arm k has been selected so far and N is the overall number of selections
done so far (equivalent to the number of steps n, if considering the classical MAB model).

The arm with the highest index at time step n is selected and the index of every arm is updated.
Normally, the arm with the highest reward mean estimate also has the highest index, and is therefore
selected. This corresponds to an exploitation in MAB terms, that is to say that the available information is
exploited for the arm choice. Eventually, however, the bias significantly affects the index value, leading
to the selection of an arm that does not present the highest reward mean estimate. This corresponds to
an exploration in MAB terms; in other terms, previously acquired information is not exploited for the
choice, but another arm is “explored”, and its estimate is updated.

muUCB1 inherits from UCB1 the rule for the arm selection: when the arm kIND with the highest
index corresponds to the one with the highest reward estimate, kEST , the selected action is use. When the
arm with the highest index is not the one with the highest reward estimate, the selected action is
measure. This choice creates an ideal correspondence between measure and exploration on one hand,
and use and exploitation on the other.

The pseudo code of the algorithm is reported in Algorithm 1.

2.2.2. MLI

MLI is an algorithm designed from scratch to fully exploit the new muMAB model. It is divided
in two phases, identified as Phase 1 and Phase 2. Phase 1 is completely dedicated to collecting
measurements, with the goal of building up a “reliable enough” estimate for each arm’s reward mean
value. Every arm k is measured dk

1 times according to a round robin scheduling. The duration of
Phase 1 is, therefore, equal to:

TPH1 =
K
∑
k=1

dk
1TM, (9)

and the estimate of the reward for each arm is set to the average of the dk
1TM realizations of Wk (n)

obtained for that arm.
Since during Phase 1 only measure actions are performed, the resulting gain is null during TPH1.

It is, therefore, desirable to limit its duration to the shortest possible period. dk
1, k = {1, · · · ,K} can be

set to the same value for all arms, leading to dk
1 = d1 ∀k, with d1 to be selected based on the rewards

obtained as feedback during the first round of measurements: the idea is that the closer to each other
the obtained values are, the higher the d1 value must be, so that the estimates are reliable enough to



Algorithms 2018, 11, 13 7 of 22

support effective arm selection during Phase 2. If the first measurements show that arms reward mean
values are significantly different among them, a low value for d1 could be selected in order to keep
TPH1 as short as possible. As an alternative, each arm k can be measured a different number of times,
e.g. spending more measuring actions on arms for which the variance of the measurements is higher,
while interrupting sooner the measurements for arms showing a low variance in rewards.

Algorithm 1: muUCB1.
Initialization : Measure each arm once and compute estimates µ̂k

1 while n < nTH do
2 for k = 1, · · · ,K do
3 compute index Ik for each arm;
4 if kIND == kEST then
5 {use};
6 cn ← (u, kIND);
7 g (cn)← ∑n+nU

i=n wkIND (i);
8 f (cn)←

(
wkIND (n) , g (cn)

)
;

9 update the estimate µ̂kIND ;
10 n← n + nU ;
11 else
12 {measure};
13 cn ← (m, kIND);
14 g (cn)← 0;
15 f (cn)←

(
wkIND (n) , g (cn)

)
;

16 update the estimate µ̂kIND ;
17 n← n + nM;
18 end
19 end
20 end

Phase 2 of the MLI algorithm is mostly dedicated to use actions, with the exception of sporadic
measure actions, as explained in the following. Based on estimates built up during Phase 1, the algorithm
starts exploiting the resource by using the arm with the highest estimated reward mean value,
obtaining as feedback a gain and a reward realization, which is used to update the arm’s reward
estimate. Periodic measure actions are, however, performed in order to update the estimates of the
mean values of the rewards for the other arms. The first measure is performed after d2 use actions;
the interval between two consecutive measures grows then logarithmically over time. In particular,
arms are measured at time steps ni such that

ni = dni−1 + ln (ni−1)e, (10)

with:
i ≥ 1, n0 = d2nU > 1. (11)

The arm chosen for being measured is the one whose reward estimate is based on the lowest
number of values. This can later be changed, by choosing to measure the arm with the “oldest”
updated estimate, the one with the second highest estimate (since it can be the most critical value) or
a combination of these three solutions. In all the other time steps, the arm with the current highest
reward estimate is always used.

The pseudo code of the algorithm is reported in Algorithm 2, assuming for simplicity to adopt
the approach dk

1 = d1 ∀k.
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Algorithm 2: MLI.
Phase 1 :

1 Measure each arm d1 times with round-robin schedule→ compute estimates µ̂k;
Phase 2 :

2 while n < nTH do
3 for k = 1, · · · ,K do
4 if use action must be performed then
5 k̄← arg maxk µ̂k;
6 cn ←

(
u, k̄
)
;

7 g (cn)← ∑n+nU
i=n wk̄ (i);

8 f (cn)← (wk̄ (n) , g (cn));
9 update the estimate µ̂k̄;

10 n← n + nU ;
11 else
12 k̄← k with old µ̂k;
13 cn ← (m, kIND);
14 g (cn)← 0;
15 f (cn)←

(
wkIND (n) , g (cn)

)
;

16 update the estimate µ̂kIND ;
17 n← n + nM;
18 end
19 end
20 end

2.3. muMAB Complexity and Discussion

The muMAB model, and the corresponding muUCB1 and MLI proposed algorithms, do not
significantly increase the overall complexity required to the system (e.g., the end-user device),
toward the best arm (e.g., the best network) identification and selection, when compared to typical
MAB model and algorithms.

On the one hand, muMAB introduces the measure action, which is used to enhance the reward
estimate on an arm not currently selected (e.g., enhance the performance estimate on a candidate
access network), without properly selecting that arm (e.g., without setting up a connection switching
toward that candidate network, and thus starting a real data exchange), which is instead the use
action (It is worth pointing out that, as described in Section 2.2.1, exploitation vs. exploration MAB
options both refer to the use action in the proposed muMAB model). In the context of network
selection, the measure action may involve several operations, such as simple probe connections, and/or
control message exchange with the candidate networks, in order to gather information on the ongoing
performance of such networks, and also to estimate parameters that can be useful for the optimization
of the next use action. This procedure, generally known as context retrieval, is envisioned in recent
standards for network selection, that in fact promote so-called context-aware network selection,
thus explicitly requiring measure actions; when considering, for example, recent and future mobile
cellular system generations, and expected and desirable interoperability with WLAN technologies,
such as WiFi, standards like 3GPP Access Network Discovery and Selection Function (ANDSF), and
IEEE 802.21 Media Independent Handover (MIH) are considered as enablers for the above selection
mechanisms, and may be thus nicely modeled by muMAB [15]. Algorithms operating within the
muMAB model are expected to show a complexity comparable to the one observed in the classical
MAB model, since the introduction of the context retrieval does not, in general, foresee operations
that are, from the device point of view, more complex or energy-consuming than real data exchange.
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Regarding performance comparison in terms of regret increase over time, it is reasonable to assume
that the particular information gathered during the context retrieval will affect the regret behavior,
depending on how such information can be used for a reliable estimate of the reward on each candidate
network; however, in the present work, the muMAB algorithms foresee a measure action that provides
direct reward measurements, and thus, in this case, an asymptotic logarithmic regret increase can be
safely assumed for muUCB1 and MLI, similarly to what happens in the original UCB1 algorithm [16]
(The analysis of the effect of gathering different information in the context retrieval, possibly having
different reliability and impact on the network reward estimate, is out of the scope of this work and
thus left for future research).

On the other hand, muMAB introduces the concept of locking a player on an arm, with a
different locking duration depending on the selected action. From a network selection perspective,
this assumption makes the model more realistic, if proper settings are adopted, such as (a) a reasonable
configuration of duration and periodicity of measure vs. use actions, aiming at minimizing the time
spent for context retrieval, since this operation nullifies short-period gains, and (b) a reasonable number
of user switching between different networks over time, in order to avoid so-called ping-pong effects,
which significantly impact device energy consumption and overall network stability. When compared
to the MAB model, the effect of locking is to decrease the rate of actions, thus possibly decreasing the
overall complexity; in a fair comparison, however, this effect has to be taken into account for both
esisting and newly proposed algorithms, having thus no effect on the comparison of complexities
between the different algorithms. When considering the regret increase over time, it is reasonable
to assume that the duration of measure vs. use locking periods, and their ratio, will affect the regret
behavior in the finite-time regime, that is, in the regret values at each time step [16,22], while the
impact can be considered negligible in the asymptotic regime, that is at the time horizon (This work
heuristically confirms the above insights, as showed in the simulation results presented and discussed
in Section 3. Closed-form expressions for finite-time regret bound analysis are left for future work).

3. Performance Evaluation: Settings

Tests on the impact of the introduction of the proposed model were carried out through
simulations. Performance in terms of regret of six different algorithms was compared.
The tested algorithms are the following:

• UCB1 [16];
• muUCB1;
• MLI;
• ε-greedy [23];
• ε-decreasing [16,22];
• POKER [17].

The last three algorithms listed above were not previously presented, and are briefly introduced
in the following; in all of them, the action performed is always use, but they differ in the rules adopted
for selecting the arm.

The ε-greedy is extremely simple: it selects a random arm with probability ε, and the arm that led
to the highest cumulative rewards otherwise.

The ε-decreasing is a variation of the ε-greedy in which the probability ε to select a random arm
decreases with the time index n; one has in particular ε (n) = min

{
1, ε0

n
}

in the version analyzed
in [16] and implemented in this work.

The Price of Knowledge and Estimated Reward (POKER) algorithm was proposed in [17];
the algorithm combines three ideas in determining the next arm to be selected: (a) assign a value to the
exploration of an arm defined in the same units used for rewards; (b) use data collected for other arms
to generate a priori knowledge on arms not yet used, assuming correlation between different arms;
(c) take into account the time remaining until the time horizon is reached in order to decide whether
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to exploit or to explore; the algorithm performed quite well when applied to real, captured data.
A detailed description of the algorithm and of its performance over captured data can be found in [17].

All the six algorithms listed above where tested against both synthetic and captured data.
The simulations were performed considering different TU/TM ratios. The case where TU = TM
was included in the analysis as a baseline setting although, as discussed in Section 1, it can be expected
that in real scenarios a measure action will require a shorter time than a use action, i.e., usually TM < TU .
Increasing TU/TM ratios can represent scenarios where the network switch process is increasingly
costly in terms of overhead or user dissatisfaction, leading to longer use periods before a switching
procedure can take place.

Simulation settings common to both synthetic and real data are the following:

• the number of steps required to reach the time horizon was set to nTH = 105;
• K = 5 arms were considered;
• the value of nM was set to 1; therefore, TM = T; the value of nU was variable, leading to different

TU/TM ratios being considered;
• for ε-greedy algorithm, ε was set to 0.1 according to the results presented in [17], indicating this

value as the one leading to best performance;
• again, according to [17], in the ε-decreasing algorithm, ε0 was set to 5;
• for the MLI algorithm, the number of times that every arm is measured in the Phase 1 was set to

d1 = 5; d2, i.e., the number of use actions after which the first measure is performed, was also
set to 5;

• all results were averaged over 500 runs;

Information specific to synthetic and real data used in the experiments are presented in
Sections 3.1 and 3.2, respectively. Results of the experiments are presented and analysed in Section 4.

3.1. Synthetic Data

Synthetic data were generated according to three different distributions for the reward PDF,
that are the most used ones in MAB literature:

• Bernoulli distribution;
• truncated (to non-negative values) Gaussian distribution;
• exponential distribution.

Two different configurations were considered for the reward mean values (or success probabilities,
when considering the Bernoulli distribution) µk, k = 1, · · · ,K:

• Hard configuration: µ1 = 0.6, µ2 = 0.8, µ3 = 0.1, µ4 = 0.3, µ5 = 0.7;
• Easy configuration: µ1 = 0.2, µ2 = 0.8, µ3 = 0.1, µ4 = 0.3, µ5 = 0.1.

The best arm is therefore arm number 2 in both configurations, but, in the Hard one, three different
arms have similar mean rewards, making it easier for algorithms to erroneously pick a sub-optimal arm.

3.2. Real Data

As for the captured data, the same datasets used for tests presented in [17] were used, since they
were made available by the authors. Data consist in the latencies measured when visiting Internet
home pages of 760 universities, with 1361 measured latencies for each home page. Latencies are
measured in milliseconds, and are provided in the form of a 1361 by 760 matrix, where each column
represents the latency measured in collecting a data sample from one of the webpages. Table 1 presents
an excerpt of the data in the form of a 5 by 5 submatrix; the full data set can be downloaded from [24].
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Table 1. Excerpt from the data used in [17], downloaded from [24]; data express latencies measured in milliseconds.

Acu-Edu Acadiau-Ca Adrian-Edu Agnesscott-Edu Aims-Edu

396 381 488 506 333
271 261 488 504 276
271 141 325 545 266
268 136 324 1946 331
273 136 321 549 290

These data, even if captured through a single cabled network, can represent the performance that
different wireless networks offer; they are therefore particularly interesting for the test of the muMAB
model, whose aim is to better fit real world scenarios. Further details about the data and the capture
process can be found in [17].

Given the generic i-th latency sample for the j-th website l (i, j) two different functions
were considered in order to obtain the corresponding non-negative reward r (i, j) required by the
muMAB model:

1. r (i, j) = lmax − l (i, j) (linear conversion);

2. r (i, j) = log(lmax)−log(l(i,j))
log(lmax)

(logarithmic conversion),

where lmax is the maximum latency in the entire data set.
In each run, five random arms among the 760 ones were picked up; then, for each selected arm

in each run, the 1361 available values were randomly sorted, and then repeated in order to reach the
required nTH time steps.

4. Performance Evaluation: Results

This section presents simulation results, and is organized in five subsections. Section 4.1
presents results obtained when considering synthetic rewards generated using the Hard configuration,
while Section 4.2 presents results obtained in the Easy configuration. Next, Section 4.3 presents
results obtained using real data and linear conversion, while Section 4.4 analyzes the effect of the
logarithmic conversion. Finally, Section 4.5 discusses and compares the results presented in the
previous subsections.

A general consideration can be done before analyzing the results: the two proposed algorithms,
muUCB1 and MLI, cannot achieve any performance gain with respect to the other algorithms when
TU = TM. In this case, in fact, the measure action lasts as long as the use one, but obtains no gain,
making it impossible for the proposed algorithms to obtain a smaller regret than the one achieved
by algorithms that always select a use action, and therefore get a gain for exploiting the resource,
while also refining the estimation of mean value of reward for the selected arm.

4.1. Synthetic Data-Hard Configuration

Figures 1a–3a present results when a Bernoulli distribution is adopted for the reward PDF
in the Hard configuration. In this case, the POKER algorithm is the algorithm that presents best
overall behavior and leads to the lowest regret at the time horizon for TU/TM = 5 and TU/TM = 10,
while UCB1 provides the best performance at the time horizon when TU = TM. Moving to the new
algorithms, their performance compared to the other ones improves as the TU/TM ratio increases;
this is true in particular for muUCB1, that moves from an extremely bad performance when TU/TM = 1
to a regret comparable to the POKER algorithm when TU/TM = 10, furthermore showing a trend as a
function of time suggesting that muUCB1 might be the best option on a longer time horizon.
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Figure 1. Performance in terms of regret of the six considered algorithms, with a Bernoulli distribution
for the reward Probability Density Function (PDF) and TU/TM = 1. (a) Hard configuration;
(b) Easy configuration.
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Figure 2. Performance in terms of regret of the six considered algorithms, with a Bernoulli distribution
for the reward PDF and TU/TM = 5. (a) Hard configuration; (b) Easy configuration.

The trend is confirmed as well when the reward PDF has a truncated Gaussian distribution
(Figures 4a–6a). With the exception of the case TU = TM, where UCB1 is clearly the best algorithm at
the time horizon, the MLI and muUCB1 perform very well. MLI is the best option when TU/TM = 5
and TU/TM = 10, but muUCB1 improves its performance as the TU/TM ratio increases, and achieves
similar performance to MLI for TU/TM = 10.

The results obtained with an exponential distribution for the reward PDF, presented in
Figures 7a–9a, highlight again the performance improvement for muUCB1 as the TU/TM ratio
increases, leading the new algorithm to be clearly the best option when TU/TM = 10. Notably,
the adoption of the exponential distribution has a strong impact on the performance of the POKER
algorithm, which presents a linear growth of regret with time; a similar behavior is observed for the
MLI algorithm.
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Figure 3. Performance in terms of regret of the six considered algorithms, with a Bernoulli distribution
for the reward PDF and TU/TM = 10. (a) Hard configuration; (b) Easy configuration.
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Figure 4. Performance in terms of regret of the six considered algorithms, with a truncated Gaussian
distribution for the reward PDF and TU/TM = 1. (a) Hard configuration; (b) Easy configuration.
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Figure 5. Performance in terms of regret of the six considered algorithms, with a truncated Gaussian
distribution for the reward PDF and TU/TM = 5. (a) Hard configuration; (b) Easy configuration.
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Figure 6. Performance in terms of regret of the six considered algorithms, with a truncated Gaussian
distribution for the reward PDF and TU/TM = 10. (a) Hard configuration; (b) Easy configuration.
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Figure 7. Performance in terms of regret of the six considered algorithms, with an exponential
distribution for the reward PDF and TU/TM = 1. (a) Hard configuration; (b) Easy configuration.

As a general comment on the ε-greedy and ε-decreasing algorithms, not discussed so far,
they present a linear growth of regret with time for all considered distributions, and lead in general to
the worst performance. The algorithms, that despite their simplicity have shown good results with a
classical MAB model [16,17], are thus not suitable for adoption in the new model with the considered
PDFs and mean value configuration, in particular as the TU/TM ratio grows.
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Figure 8. Performance in terms of regret of the six considered algorithms, with a exponential
distribution for the reward PDF and TU/TM = 5. (a) Hard configuration; (b) Easy configuration.
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Figure 9. Performance in terms of regret of the six considered algorithms, with an exponential
distribution for the reward PDF and TU/TM = 10. (a) Hard configuration; (b) Easy configuration.

4.2. Synthetic Data-Easy Configuration

Results obtained in the case of the Easy configuration, when one arm is significantly more
rewarding than the other ones, are rather different from those observed in Section 4.1 for the Hard
configuration. Figures 1b–3b, presenting results for the Bernoulli distribution, show that UCB1,
muUCB1 and MLI algorithms perform better than in the Hard configuration, while the opposite is true
for a second group of algorithms including POKER, ε-decreasing and ε-greedy, that in most cases lead
to a worse performance, in particular as the TU/TM ratio increases. These results can be explained
by observing that the latter group includes the traditional algorithms that are more aggressive in
using the estimated best arm: as a result, they are able to achieve almost the maximum gain when
they correctly select the best arm, but incur in a high penalty when they select a sub-optimal arm.
Among algorithms in the first group, results show that the gap between muUCB1 and UCB1 is small for
TU/TM = 1, and the muUCB1 algorithm performs significantly better than UCB1 when the ratio grows.
The performance of the two proposed algorithms is particularly good for TU/TM = 10, with MLI
providing the best overall performance.
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The different performance between the two groups of algorithms can be better understood by
observing Figure 10, comparing the regret measured at the time horizon for the six algorithms over
the 500 runs for the Bernoulli distribution with TU/TM = 5 in the Hard vs. Easy configurations
(Figure 10a vs. Figure 10b, respectively). Results highlight that POKER and ε-decreasing algorithms
are characterized, both in the Hard and Easy configurations, by several spikes in the regret at the time
horizon, corresponding to runs where a sub-optimal arm was selected, leading to linear regret over
time. This behavior is observed for MLI as well in the Hard configuration, but disappears in the Easy
one, where the algorithm is highly consistent in eventually selecting the best arm in each run.
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Figure 10. Regret achieved by the six considered algorithms at the time horizon as a function of
the run, with a Bernoulli distribution for the reward PDF and TU/TM = 5. (a) Hard configuration;
(b) Easy configuration.

The results for the truncated Gaussian distribution, presented in Figures 4b–6b, show a similar
behavior: the performance of UCB1 decreases significantly as TU/TM increases, while muUCB1
and MLI show the opposite trend. The POKER, ε-decreasing and ε-greedy algorithms confirm a high
variability in the experienced regret when TU/TM > 1; even in the case TU/TM = 1, the only algorithm
in this group that achieves good performance is the ε-decreasing.
Finally, results for the exponential distribution, presented in Figures 7b–9b, also confirm the behavior
observed for the other distributions: MLI and muUCB1 algorithms lead to the best performance,
and UCB1 is the only traditional algorithm leading to a logarithmic regret when TU/TM > 1,
while ε-greedy, ε-decreasing and POKER algorithms show a steep linear regret over time.

Overall, results obtained in the Easy configuration show that when an arm provides a significant
advantage over the others, traditional algorithms that tend to favor exploitation over exploration,
and in particular POKER and ε-decreasing, typically perform either extremely well o extremely poorly,
depending on the selection of the arm in the early steps.

The proposed algorithms are confirmed to perform better than traditional ones when TU/TM > 1;
in this configuration, however, MLI performs better then muUCB1, thanks to its capability of taking
advantage of the measure action introduced in the muMAB model, combined with an aggressive
approach favoring use over measure. The MLI algorithm is thus the best choice, also in light of its
robustness to different reward distributions.



Algorithms 2018, 11, 13 17 of 22

4.3. Real Data-Linear Conversion

Figures 11a–13a present results obtained with real data when a linear conversion from latency
to reward is adopted. Results show that MLI obtains the worst performance with all the considered
TU/TM ratios, with a large gap in terms of regret with respect to the other algorithms.

This outcome can be explained by observing that the rewards obtained by linear conversion from
the latencies present a large variance; in fact, every Internet web-site home page visited (corresponding
to a different wireless network, in the considered scenario) answered with extremely variable latency
values. This variability prevents the algorithms to correctly estimate their mean values with few
samples. This is particularly true for MLI, which strongly relies for its use actions choices on the
estimates built up during the first steps. This is an advantage in scenarios where the measured data
do not present such a high variability, as seen in Section 4.2, but leads to a significant performance
penalty in the opposite case. Overall, POKER and ε-decreasing are the algorithms that provide the
most reliable performance, leading to the best results for TU/TM = 5 and TU/TM = 10, respectively.
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Figure 11. Performance in terms of regret of the six considered algorithms, with real captured data
used as reward and TU/TM = 1. (a) linear conversion; (b) logarithmic conversion.
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Figure 12. Performance in terms of regret of the six considered algorithms, with real captured data
used as reward and TU/TM = 5. (a) linear conversion; (b) logarithmic conversion.
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Figure 13. Performance in terms of regret of the six considered algorithms, with real captured data
used as reward and TU/TM = 10. (a) linear conversion; (b) logarithmic conversion.

4.4. Real Data-Logarithmic Conversion

The adoption of the a logarithmic conversion has the effect of significantly reducing the variability
of the rewards when compared to the linear conversion analyzed in Section 4.3. This, in turn, has a
dramatic impact on the performance of the MLI algorithm. Results presented in Figures 11b–13b show
in fact that the MLI algorithm leads to a regret in line with the POKER and ε-decreasing algorithms,
in particular for TU/TM > 1. Oppositely, algorithms that are more conservative in exploiting/using,
such as UCB1 and muUCB1, are not capable of taking full advantage of the low variance in rewards;
in this case as well, however, the performance of the muUCB1 algorithm improves as TU/TM increases.

4.5. Discussion of Results

Results presented in this section clearly show that the best choice on the algorithm to use
strongly depends on the distribution of the rewards. Conservative algorithms that spend more
time measuring/exploring, such as UCB1 and muUCB1, should be preferred when the different arms
are characterized by similar rewards, while the MLI algorithm, more tilted towards use, should be the
preferred choice when one arm is significantly better than others. Other aggressive algorithms such
as POKER and ε-decreasing may potentially lead to an extremely low regret, but present a very high
variability in final regret, and are thus characterized by a low reliability.

Results also show that the proposed MLI and muUCB1 algorithms, which are capable of taking
advantage of the measuring phase introduced in the muMAB model, consistently improve their
performance as the TU/TM ratio increases.

Transferring the above observations into real world cases, this means that the choice of which
algorithm to use strongly depends on which network quality parameters are taken into account in
network selection. As an example, a binary parameter such as the availability of a network can be
modelled with a Bernoulli distribution [25], while a parameter such as the measured SNR in a channel
affected by Rayleigh fading can be modelled as an exponential random variable [26].

In the considered scenario, where the final goal is to offer the final user the best performance
in terms of perceived quality, the parameters of the networks we are interested on depend, in turn,
on the type of application that the user wants to use, and therefore on the requested traffic type;
models linking measurable network parameters to perceived quality have been indeed proposed in
the literature (see, for example, [26]).

Results also allow to observe that the variability of the selected network parameters may play a
significant role in the selection of the network selection algorithm: if the reward obtained by the network
parameters presents a large variance, some algorithms may incur in a large penalty in terms of regret.
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An additional important consideration should be done on the considered time horizon: given the
same reward distribution and the same TU/TM ratio, two different time horizons can require the
selection of different algorithms in order to guarantee the lowest regret. As an a example, MLI during
the very first steps only performs measure actions, thus obtaining a null gain. It is, therefore, obvious that
if the time horizon is very short, this algorithm should never be selected. In real world scenarios, where
it can be expected that the considered time horizon is usually much longer, this initial period can be
considered negligible; more details on this aspect can be found in [27]. Again, the definition of the time
horizon will, however, depend on the selected network QoS/QoE parameters: if parameters change
frequently, this will translate in a short available time horizon, which would call for an algorithm
capable of accumulating gain in a shorter time.

One last aspect worth mentioning regards computational complexity. Although a complete
complexity analysis is not carried out in this work, the proposed algorithms were compared with
existing ones by measuring the execution time assuming a ratio TU/TM = 1. Results are presented in
Figure 14, showing the ratio between the execution time of each algorithm and the execution time of the
ε-greedy algorithm, which proved to be the fastest one. Results show that ε-greedy, ε-decreasing and
MLI algorithms require similar execution times. The UCB1 and muUCB1 are characterized by a slightly
longer execution time, due to added complexity related to the calculation of indexes, while the POKER
algorithm is significantly slower, reflecting the higher complexity in the evaluation of the arm to select,
as discussed in [17]. A thorough analysis of complexity is planned in a future extension of this work.
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Figure 14. Execution time of the six considered algorithms normalized with respect to the execution
time of the ε-greedy algorithm.

5. Conclusions

In this work, a new model for Multi-Armed Bandit problems, referred to as muMAB, was
proposed. The model introduces the presence of two different actions: to measure and to use.
In addition, the model introduces a gain for measuring vs. using a resource, and the regret, that
is the classical parameter for the performance evaluation of MAB algorithms, is updated accordingly,
so as to measure the difference between gains. The muMAB model is better suited than classical MAB
models to represent real world scenarios, such as the choice of a wireless network among the available
ones based on criteria of final user perceived quality maximization.

Two algorithms designed to take into account the higher flexibility allowed by the muMAB
model, referred to as muUCB1 and MLI, were also introduced. Their performance was evaluated and
compared with the performance obtained by algorithms already present in literature by simulation.
The simulations were performed considering different conditions in terms of distributions for the
rewards PDF, and values of the ratio between the use period duration and the measure period duration.
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Results show that there is no optimal choice valid for every case; the algorithm that performs best,
i.e., that permits to obtain the lowest regret, depends on the reward PDF and on the TU/TM ratio.
Moreover, the choice should also depend on the considered time horizon, since different algorithms
show a different regret growth rate with time.

Results with synthetic data indicate, in particular, that the muUCB1 algorithm is the best option
when arms are characterized by similar rewards, especially for high TU/TM ratios, when the time
required to measure the performance of each candidate arm is significantly shorter than the time spent
using the selected arm before a change is possible. Oppositely, the more aggressive MLI algorithm is the
best choice when one arm has a significantly larger reward than the others, in particular, again, for high
TU/TM ratios.

Future work will investigate this aspect by determining the minimum threshold for TU/TM
that makes the use of algorithms that alternate measure and use actions advantageous with respect
to traditional algorithms that only perform use actions, and will assess the problem of adaptively
switching between a conservative algorithm, like muUCB1, and a more aggressive one, like MLI,
depending on the current estimate of the rewards provided by the different arms. Future work will
also address the issue of scalability of the proposed algorithms, to be considered a key aspect in their
application to 5G, given the massive number of devices expected in 5G network scenarios; since the
MAB model does not take into account interaction between users, this aspect can be introduced by
adopting a definition of the reward that is influenced by the behavior and by the selection of other
users; a glimpse of this kind of analysis can be found in [19]. An extension of this work will focus on
applying the proposed MAB model to real world scenarios related to wireless network selection in a
multi-RAT environment, in order to quantitatively assess its accuracy in combination with different
utility metrics to be adopted as reward, including those impacted by user interaction.
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BER Bit Error Rate
LAN Local Area Network
MAB Multi-Armed Bandit
MAC Medium Access Control
MLI Measure with Logarithmic Interval
muUCB1 measure-use-UCB1
PDF Probability Density Function
POKER Price of Knowledge and Estimated Reward
QoE Quality of Experience
QoS Quality of Service
RAT Radio Access Technology
RSSI Received Signal Strength Indicator
SIR Signal-to-Interference Ratio
SNR Signal-to-Noise Ratio
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