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Reviewer 1

This manuscript presents the comparison between two methods of mixing chitosan (CS) and abietic acid 
(AB). The first method is based on mechanical mixing, whereas the second method is based on dissolution. 
The two series of blending were characterized by DSC, IR, Raman and POM. Moreover, the antibacterial 
and antioxidant properties of those mixing were evaluated. The manuscript is well written and the 
language is good. However, several points are risen through this manuscript.

1) The major point is the characterization of the CS/abietic acid blends obtained by dissolution. Chitosan 
was first solubilized in acetic acid before to be mixed with abietic acid. Chitosan was protonated acetic acid 
and a solution of chitosan acetate was obtained. Chitosan acetate was further mixed with abietic acid and 
the resulting solution was freeze dried. No purification was realized. The content in acetate was not 
determined as well as the ratio of protonated and non-protonated abietic acid. The exact composition of 
these blends is not known and will depend of the experimental conditions. The lack of characterization 
affects the discussion through the manuscript. As example, what are the antibacterial properties of abietic 
acid, abietate and acetate ions?

We apologize to have left out the information about the purification of CS/AB blends during the 
description of their preparation. As correctly pointed out by the reviewer, the excess of acetic acid (used 
to solubilize CS) must be removed from the mixture because it may affect the properties of the resulting 
blends. We have, indeed, purified CS solution from the excess of acetic acid by dialysis before the abietic 
acid dispersion. We added these experimental details in the manuscript (Page 6 lines 119-127).
As for the antimicrobial properties of abietic acid and abietate, we have only determined the MIC of 
sodium abietate because abietic acid is not water soluble. This issue has been clarified in the manuscript 
(Page 8, line 171-172). 
The antimicrobial activity of acetate ions was not tested. We believe that acetate content in the solution 
is very low since the excess was removed by dialysis. That is reflected in the high MIC value of the 
(CS/AB)SD 0.5/1 solid dispersion, situation in which we expect the highest release of acetate ions from CS 
since AB is in molar excess (exchange with abietate). 

2) Comparison with literature of the glass transition temperature of chitosan should be discussed.

The discussion of CS glass transition temperature in the framework of the literature was added (Page 10 
lines 235-238, Page 11 lines 239-240). Four references were also  added [31-34].

3) The IR bands of abietic acid between 3000 and 2800 cm-1 are related to C-H stretching and not to O-H. O-
H stretching bands for carboxylic acid are very broad from 3600 to 2200 cm-1.

We agree with the reviewer. We changed the text and added a more in depth explanation of the abietic 
acid IR spectrum bands (see Page 11, lines 261-264) also with the help of new reference “V. Beltran et al. 
Anal. Bioanal. Chem. 408 (2016) 4073-4082”.

The band at 1690 cm-1 is related to C=O stretching of carboxylic group. Where the C=O stretching band of 
carboxylate is observed? Carboxylate band should be at much more lower value.

The carboxylated band of abietic acid is, indeed, at lower value compared to C=O stretching of carboxylic 
group, that is 1554 cm-1 (Page 12 line 278).

Contrary to line 617, the deacetylated repeating units of chitosan also possess aliphatic moieties that 
adsorb about 2800-3000 cm-1.

The mistake was corrected. Both deacetylated and acetylated units of chitosan contribute to the 
adsorption at 2800-3000 cm-1 (Page 12, line 267)



What is the assignation of the band at 1554 cm-1 ? This band was used in Fig 8. Quantification by ATR on 
solid sample is difficult to achieve due to the variation in contact between the sample and the probe. The 
authors did not mentioned if a calibration curve was performed. What is the accuracy on the A1554/A1690 
ratio?

The band at 1554 cm-1 is related to the carboxylated abietic acid. The shifting of the peak of AB carboxylic 
acid from 1690 to 1554 cm-1 was considered an indication of the formation of a salt between AB and CS. 
The (1690/1554) intensity ratio was used to highlight a trend of the AB-CS salt formation with the 
increase in CS/AB molar ratio. The ratio gives just a qualitatively estimation of such phenomenon and is 
not an absolute value (Page 12, lines 285-286). The curves reported in Figure 8 can be considered 
calibration curves if used to estimate the composition of an unknown mixture. 

4) The introduction section mentioned the importance of microbial biofilms, but all antibacterial 
experiments were realized in solution.

We revised the introduction to give less emphasis to the biofilm issue that was not faced in the 
experimental phase of this work. Future studies will be planned to test our blends towards S. epidermidis 
microbial biofilm in order to collect evidence on their activity vs sessile-growing bacteria.

5) Identification of curves in Fig. 4 and 6 is not clear.

We added markers on each curve to permit a clear identification of the samples.



-Reviewer 2
 
This manuscript details the development of antimicrobial compounds based on solid dispersions of abietic 
acid (AB) and chitosan (CS). 

Comments:

1. The abstract states that these compounds also could be anti-biofilm compounds, however no evidence 
or results were shown throughout the manuscript and statements like this should be removed from the 
manuscript. 

We removed in the abstract the concept of microbial biofilm and we focused on microbial colonization in 
general. 

2. The text is well written, but there are MANY abbreviations and letter combinations that all together 
make it hard to follow and understand, since the reader must concentrate on this instead of understanding 
the science itself. Therefore I recommend that the authors revise the paper so the majority of these 
abbreviations/letter combinations are removed and the most important ones left behind.

We made an effort to reduce the number of abbreviations along the manuscript. 

3. The figures are of poor quality and cannot be published as they appear. In particular Figures 4 and 6 
are difficult to understand, since all the lines are black and the different styles do not differentiate. The rest 
of the figures appear pixelated.

We added markers on Figures 4 and 6 curve to permit a clear identification of the samples. We also 
improved the resolution of figures, where needed.

4. Figure 10 legend: "Comparison of the MIC values of (CS:AB)PM 1:1 and (CS/AB)SD 1:1.". The descriptions 
underneath the 2 bars in the graph do not reflect this.

For sake of clarity, Figure 10 and the description underneath the 2 bars have been changed.

5. Figure 9 - why are these figures in color?

Different colors were used only to permit a good identification of the samples.

6. Figure 2. The microscopic images should be explained in more detail in the legend as well. It is really hard 
to see anything in panel C. Should it be removed?

In the capture of Figure 2, explanation of the POM images concerning the crystalline or amorphous state 
of the drug have been included. We believe that Panel C is needed because is the only image showing the 
amorphous state of the drug (no birifrangence).

7. Table 4: The concentrations should be added as a column in this table. It is not enough to say "2 x MIC".

As suggested, the concentrations have been added in Table 4

8. References: Bacterial names must be italicized. Other spelling mistakes should also be corrected.

Done



9. Conclusions: This was stated: "It is difficult to be sure of the effects of the various parameters.". Please 
revise this statement and other in the conclusion, so you write what it IS that you can say and what you can 
conclude does not occur. The conclusion must be stronger and based on the results in the paper. Other 
wise it must be characterized as Future experiments.

As suggested, Conclusions were rewritten to highlight the significant results obtained in the work.

10. The authors claim that the AB and CS compounds are antimicrobial. Limited experimental results have 
been shown to support this and none of these were referred to in the conclusion. I recommend that the 
authors revise the manuscript to reflect that they are interested in "antimicrobial properties" and not only 
the chemical characteristics and whether they dissolve or form solids. This should be discussed in the 
context of how and why this would make the compounds more/less antimicrobial.

The introduction was revised to reflect the real goal of the work, that is the development of formulations 
with improved antimicrobial activity.





1

1 Intermolecular interaction and solid state characterization of abietic acid/chitosan solid 

2 dispersions possessing antimicrobial and antioxidant properties.

3

4 Valentina Cuzzucoli Crucittia,1, Luisa Maria Mignecoa, Antonella Piozzia, Vincenzo Tarescob, 

5 Martin Garnettb, Richard H. Argentb, Iolanda Francolinia*

6

7 a Sapienza University of Rome, Department of Chemistry, Rome, Italy.

8 b School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.

9

10 1 Department of Chemical and Environmental Engineering, Faculty of Engineering, University of 

11 Nottingham, Nottingham, NG7 2RD, UK. (Present Address of Valentina Cuzzucoli Crucitti)

12

13

14 Corresponding author: Iolanda Francolini 

15 Sapienza University of Rome

16 Department of Chemistry

17 Piazzale Aldo Moro 5, 00185 - Rome, Italy

18 Tel. +39 06 4991 3162

19 Fax. +39 064991 3692

20 E-mail: iolanda.francolini@uniroma1.it

21

22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

mailto:iolanda.francolini@uniroma1.it


2

23 Abstract

24 The aim of this work was to prepare and characterize solid dispersions of abietic acid (AB) and 

25 chitosan (CS) to investigate how formulation of the mixture may help in the battle against microbial 

26 colonization in different areas, such as the biomedical field or the food industry. Solid dispersions 

27 were characterized by differential scanning calorimetry, infrared spectroscopy, Raman 

28 spectroscopy, polarized optical microscopy, zeta potential and size analysis. The data showed that 

29 the dispersion/solvent evaporation method formed solid dispersions in which abietic acid was 

30 molecularly dispersed in the carrier. A synergistic effect between the two components in terms of 

31 antioxidant and antimicrobial properties was found, especially in the formulations obtained with 1/1 

32 AB/CS molar ratio. Interestingly, the aggregation state (amorphous/crystalline) of AB seemed to 

33 affect the antimicrobial activity of the formulation, suggesting increased bioactivity when the drug 

34 was in the amorphous state. These findings, together with the demonstrated biocompatibility of the 

35 formulations, seem to open promising perspectives for a successful application of the developed 

36 AB/CS formulations in the biomedical field or in the food industry.
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42 Introduction

43

44 Microbial biofilms are defined as microbial populations irreversibly attached to a surface, 

45 embedded in an extracellular matrix, mainly composed of polysaccharides, produced by the 

46 microorganisms themselves [1]. The advantages of this highly cooperative community are mostly to 

47 do with survival, since microorganisms in biofilms are up to 1000-times more resistant to 

48 antibiotics with respect to their planktonic counterparts [2]. The ability of many microbial species to 

49 form biofilms has important implications in various sectors, especially in the biomedical field [3,4] 

50 and in the food industry [5,6].

51 Due to the emergence of antibiotic-resistant microorganisms, tThe understanding of mechanisms 

52 by which living organisms defend themselves from invasion by pathogens has become a major 

53 source of inspiration for the development of new antimicrobial formulations particularly for finding 

54 solutions to the emergence of antibiotic-resistant microorganisms [1,2]. Similarly there has been 

55 increased interest in natural antimicrobial agents. In the last decade, chitosan (CS) has been 

56 recognized as a versatile antimicrobial agent displaying excellent biocompatibility, physical 

57 stability and processability [3]. In the food industry, chitosan is used as a preservative for 

58 improvement of quality and shelf life of foods [4] and can be either added in the food or applied to 

59 the surface to provide an edible protective coating [5]. In the biomedical field, chitosan is mainly 

60 used for drug/gene delivery [6]. Recently, to improve its antimicrobial activity, chitosan has been 

61 blended with different antimicrobial agents including antibiotics [7,8] and natural antimicrobial 

62 extracts [9,10]. Plants are known to be able to produce a variety of small antimicrobial molecules 

63 (MW <500 g/mol), generally classified as "phytoalexins", among which the most common belong 

64 to the classes of glycosteroids, flavonoids, terpenes, di-terpenes, terpenoids and polyphenols 

65 [11,12]. In this framework, the di-terpene abietic acid (AB) has been recently recognized as a 

66 substance with important biological activities [13]. Abietic acid is the major component of rosin 

67 that is the non-volatile portion of the resin produced mostly by conifers [14]. The production of 
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68 such resin is associated with a defense mechanism against attack by insects or fungal infections in 

69 presence of a tissue injury and that in part explains why AB possesses antimicrobial activity against 

70 some Gram-positive bacteria, including Staphylococcus aureus, one of the most important 

71 pathogenic bacteria [15]. That has prompted research into potential applications as an antibacterial 

72 agent [16-18]. 

73 A limiting factor in the application of AB is its poor solubility in an aqueous environment 

74 resulting from the strong hydrophobicity of the hydrophenanthrene skeleton (Fig. 1a).To increase 

75 AB water solubility, AB has been either functionalized with quaternary ammonium groups or linked 

76 to hydrophilic polymers [19]. Acrylic and methacrylic polymers based on AB have also been 

77 synthesized [19] from monomers obtained by reaction of AB with hydroxyl ethyl methacrylate, 

78 hydroxyl ethyl acrylate and hydroxyl ethyl butyl acrylate. Although these strategies have had some 

79 benefits, they can be time consuming and expensive.

80 In this work, for the first time, antimicrobial solid mixtures based on abietic acid and chitosan 

81 were developed and characterized in order to improve AB water solubility and produce 

82 antimicrobial formulations with improved activity compared to pure components. The hypothesis is 

83 that the hydrophilic chitosan may interact with AB, reduce the size of drug particles, change the 

84 drug crystalline state and increase drug wettability. Indeed, CS possesses amine groups (Fig. 1b) 

85 potentially involved in acid/base interaction with the AB carboxylic group, thus favoring the 

86 intimate interaction between the drug and the carrier [20]. In the whole, the interaction between CS 

87 and AB could increase availability of the drug and its antimicrobial efficacy towards 

88 microrganisms. Additionally, being CS intrinsically antimicrobial, CS could have the dual function 

89 of allowing AB dissolution and to explicate a biocidal action as the same time as AB. That is of 

90 course beneficial for increasing the chances of success of the formulation and reducing the risk of 

91 selecting drug resistant microrganisms.

92 In order to find out the best condition promoting CS/AB interaction, different CS/AB molar 

93 ratios and different preparation methods were investigated. The resulting systems were 
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94 characterized by IR and Raman spectroscopy, differential scanning calorimetry, polarized optical 

95 microscopy, zeta potential and size analysis. The biological properties of the formulations were also 

96 evaluated. Particularly, the antimicrobial activity was determined versus a reference strain of 

97 Staphylococcus epidermidis, chosen because of its involvement in numerous nosocomial infections, 

98 such as wound infections and medical device-related infections. The antioxidant property of CS/AB 

99 formulations was also determined. This feature, in combination with the antimicrobial one, may be 

100 relevant since free radicals, produced during the inflammatory response of the body to a pathogen, 

101 have been shown to favor diversity and adaptability in biofilm communities [21]. Finally, a 

102 hemolysis test was performed. 

103

104 2. Experimental part

105

106 2.1 Materials and Methods

107 Chitosan (CS, deacetylated 85%, low molecular weight) was obtained from Sigma-Aldrich. Abietic 

108 Acid (AB, 85%) was supplied by Acros Organics. 2,2 diphenyl-1-picrylhydrazyl radical (DPPH), 

109 sodium hydroxide, acetic acid, methanol were purchased from Sigma-Aldrich. The regenerated 

110 cellulose membrane (Spectrapor membrane BIOTECH) had a cut-off of 3500 Da. The Gram-

111 positive Staphylococcus epidermidis ATCC 35984, grown in Muller Hinton (MH, Oxoid) medium, 

112 was employed for the microbiologic tests.

113

114 2.2 Preparation of drug-polymer solid mixtures

115 Drug-polymer solid mixtures were prepared by incorporating AB within CS in varying molar 

116 ratios(CS:AB 0.5:1, 1:1, 2:1, 4:1 and 6:1), corresponding to AB weight percentages equal to 80%, 

117 65%, 50%, 33% and 25%. Two methods were used for preparation of drug-polymer mixtures: (i) 
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118 physical mixing of the powders by grinding them in a mortar for about 10 min and (ii) dispersion of 

119 the drug in a water solution of protonated CS. In this latter method, the following procedure was 

120 used. First, CS was solubilized in an aqueous solution of 1% acetic acid. Subsequently, the solution 

121 was dialyzed against DI water, using a cellulose membrane with a 3500 Da cut-off, and the 

122 protonated CS was recovered by freeze-drying and re-dissolved in water. AB was dispersed to this 

123 latter solution using the desired amount according to the targeted molar ratio.in 1% acetic acid 

124 followed by lyophilization. The formulations obtained with the first method were named as 

125 (CS:AB)PM while the second ones as (CS:AB)SD, where the subscript PM stands for physical 

126 mixture and SD for solid dispersion. All the dispersions were left stirring overnight in order to get 

127 an intimate drug:polymer interaction.

128

129 2.3 Characterization of drug-polymer solid mixtures

130 Infrared analysis in attenuated total reflection (IR-ATR) was accomplished by using a Thermo 

131 Nicolet 6700 instrument equipped with a Golden Gate diamond single reflection device (Specac). 

132 Spectra were acquired at a resolution of 2 cm−1, in the range 4000–650 cm−1.Differential Scanning 

133 Calorimetry (DSC) was performed using a METTLER TA-3000calorimeter with3-5 mg of sample, 

134 in the 25-250°C temperature interval, at a heating rate of 10K/min, under nitrogen. 

135 The electrophoretic mobility was measured by the electrophoretic laser Doppler technique using 

136 a NanoZetaSizer (Malvern, UK) equipped with a 5 mWHeNe laser. The zeta potential of the 

137 particles was obtained from the measurement of mobility , by using the Smoluchowski equation:

138  = 4𝜋0𝑟


6𝜋µ

(1 + 𝑘𝑟)

139 where  and are the relative dielectric constant and the electrical permittivity of a vacuum, 0 𝑟

140 respectively, μ  is the solution viscosity, r is the particle radius, and k is the Debye–Hückel 

141 parameter defined as:
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142 𝑘 =
2𝑛0𝑧2𝑒2

0𝑟𝑘𝐵𝑇

143 where  is the bulk ionic concentration, z  is the valence of the ion, e  is the charge of an electron, 𝑛0

144  is the Boltzmann constant, and T  is the absolute temperature.𝑘𝐵

145 An advanced Polarising Optical Microscope (POM, HS1 microscope), Prior Lux POLTM with 

146 12V and 30W halogen lamp with variable brightness control, was employed to analyze the 

147 crystalline state of the drug in the different drug-polymer mixtures.

148 UV–Vis spectra were obtained by using a HP U2000 singular beam spectrophotometer working 

149 in the 190–1100 nm wavelength range and with a resolution of 0.004 nm.

150 A confocal spectroscopy system (Horiba-Jobin-Yvon Ltd, Middlesex, UK) was used to collect 

151 Raman spectra of raw materials and the drug-polymer formulations, in the wavelength range of 40-

152 1800 cm-1. The experiments were performed with a near-IR laser (785 nm) of 250 mW power. 

153 Spectra were acquired using a 50× objective and a 300 μm confocal hole. A 600 lines/mm rotatable 

154 diffraction grating was used to simultaneously scan a range of frequencies.

155

156 2.4 Evaluation of the antioxidant activity of the CS:AB solid mixtures

157 The antioxidant activity of the solid mixtures was determined by using DPPH as a free anionic 

158 radical [22]. For each sample, different concentrations were tested (expressed as the molar ratio 

159 between the antioxidant agent, in our case AB, and DPPH). Firstly, a 0.2 M MDPPH stock solution 

160 in methanol was prepared. Then, an aliquot of this solution (2 ml) was added to an acetic acid 

161 solution (1%, 2 ml) containing the different CS:AB solid mixtures at varying concentrations. CS 

162 and AB were also tested alone as control samples. The variation in absorbance was determined at 

163 room temperature at 520 nm after 30 min. The amount of residual DPPH was evaluated from a 

164 previously obtained calibration curve at the same wavelength. The antioxidant activity of each solid 

165 mixture was expressed in terms of Effective Concentration (EC50), which is the amount of 
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166 antioxidant agent necessary to decrease the initial DPPH concentration by 50%.EC50 values were 

167 extrapolated from a graph obtained by plotting the residual DPPH as a function of antioxidant 

168 agent:DPPH molar ratio.

169

170 2.5 Evaluation of the antimicrobial activity of the CS:AB solid mixtures

171 The antibacterial activity of the CS:AB solid mixtures was assessed against S. epidermidis. The 

172 minimum inhibitory concentration (MIC) of each sample was determined as previously described 

173 [23]. The activity of pure CS and AB was also evaluated, as controls. Specifically, due to AB 

174 insolubility in water, the MIC of sodium abietate was determined. Briefly, a bacterial inoculum at 

175  CFU/ml in tryptic soy broth (TSB) with an optical density of 0.05 at 550 nm was first 1 × 106

176 prepared. Subsequently, sample (1 ml)at various concentrations was added to test tubes containing 

177 bacterial inoculum (1 ml). A control tube containing bacterial inoculum and TSB was also prepared. 

178 Control and test tubes were incubated at 37°C for 24 h. Following incubation, bacterial growth was 

179 determined by measuring the absorbance at 550 nm and the percentage of bacterial inhibition (I%) 

180 was calculated as follows:

181

182 𝐼% = 1 ‒
𝐴𝑆 ‒ 𝐴0

𝐴𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ‒ 𝐴0
∗ 100

183

184 where A0 is the absorbance of the inoculum before incubation, Acontrol is the absorbance of the 

185 inoculum after incubation and As is the absorbance of the sample after incubation. All the 

186 experiments were performed in triplicate. Differences were considered significant for P < 0.05.

187

188 2.6 Evaluation of the haemolytic activity of the solid mixtures
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189 For the hemolysis assay, blood was collected into heparinised tubes and erythrocytes harvested and 

190 washed in Phosphate-Buffered Saline (PBS) as described [24]. The pure materials and CS:AB solid 

191 mixtures were diluted in PBS (100 µl) and added to 48-well plates followed by erythrocyte 

192 suspension (150 µl) and incubated for 1 h at 37°C, before centrifugation at 500 rpm for 5 min. 

193 Supernatant (100 µl) was carefully transferred to a clear 96-well plate and release of hemoglobin 

194 determined using a TECAN Spark 10M plate reader at 450 nm. PBS was used as the negative (no 

195 lysis) control and 0.2% Triton X-100 used as the positive (complete lysis) control, and percentage 

196 hemolysis was calculated relative to these controls:

197 %𝐻𝑒𝑚𝑜𝑙𝑦𝑠𝑖𝑠 =
(𝐴𝑏𝑠𝑡𝑒𝑠𝑡 ‒ 𝐴𝑏𝑠𝑃𝐵𝑆)

(𝐴𝑏𝑠𝑇𝑋 ‒ 𝐴𝑏𝑠𝑃𝐵𝑆) ∗ 100

198

199 3. Results and discussion

200

201 Several methods have been employed in the literature for the preparation of drug-polymer solid 

202 mixtures [25] in the formulation of water-insoluble drugs, among which the commonest are:(i) the 

203 physical mixing of the drug and polymer powders, and (ii) the dispersion of the drug into a polymer 

204 solution. These methods are simple and can be used for all kinds of drugs, even thermolabile ones, 

205 since the drugs do not need special treatments.

206 When developing drug-polymer solid mixtures, it is interesting to understand if the drug is 

207 molecularly dispersed (or not) in the polymer carrier since this condition is usually associated with 

208 a better drug solubility. Due to the complexity of the drug-polymer intermolecular interactions, it is 

209 not always trivial to delineate the differences between molecularly dispersed and not molecularly 

210 dispersed solid mixtures. In the case of drugs which are capable of crystallization, a formulation 

211 lacking ordered crystalline structures, is commonly considered as a molecularly dispersed mixture 

212 [26,27].In the present work, to evaluate the level of drug-polymer interaction in the solid mixtures 
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213 different analytical techniques were employed, namely POM,FT-IR, Raman spectroscopy and DSC 

214 analysis [28,29].

215

216 POM observation of the solid mixtures

217

218 The observations of the samples by POM were conducted to evaluate the state (crystalline or 

219 amorphous) of the drug, qualitatively and rapidly in different solid mixtures. Indeed, the 

220 observation of birefringence indicates the presence of a crystalline phase. AB alone is a crystalline 

221 compound as shown in Figure 2A. When AB is physically mixed with CS in any of the employed 

222 molar ratios, it keeps crystallinity, at least in part, as shown in Figure 2B where the POM image 

223 obtained for (CS:AB)PM 1:1 is reported. On the contrary, the (CS:AB)SD mixtures, obtained by drug 

224 dispersion in the polymer solution, did not show any birefringence for all CS:AB molar ratios equal 

225 to or greater than 1:1 (Fig.2C), suggesting a good drug-polymer interaction for these samples.

226

227 Differential scanning calorimetry

228

229 In solid drug-polymer systems, either the decrease, shift or disappearance of the endothermic 

230 peak usually indicates that the drug is present in an amorphous state rather than its crystalline form, 

231 or in an amorphous-latex mixture [29]. In Figure 3, the thermograms of pure AB and CS are 

232 reported. In the AB thermogram (Fig. 3A), an exothermic band at about 160°C is followed by an 

233 endothermic peak at 168°C indicating an initial partial drug crystallization during the DSC 

234 experiment followed by the melting of the whole crystalline phase. The enthalpy of melting (ΔHm) 

235 was found to be 36.8 J/g. The CS thermogram in the first scan (Fig. 3B) shows a wide endothermic 

236 band centered at about 100°C likely due to the presence of water. In the second cycle, however, a 

237 step at 116°C is observed relative to the glass transition of the amorphous portion of the 

238 polymer.The observation of this transition by DSC is not always easy to observe due to the rigidity 
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239 of CS that involves a low free volume associated with the chains [30]. The CS Tg value can be 

240 influenced by different factors such as crystallinity, molar mass, and degree of de-acetylation, as 

241 well as by the source and method of extraction. Different Tg values are, therefore, reported in the 

242 literature. Dhawade et al. [31] and Rotta et al. [32] obtained Tg values around 115 °C by DSC 

243 measurements while higher values (150-160 °C) were obtained by the dynamic mechanical analysis 

244 (DMA) [33,34].

245 The DSC thermograms of the(CS:AB)PM 1:1, 2:1, 4:1 and 6:1 samples are reported in Figure 4 in 

246 comparison to AB, in the temperature range of interest. Each thermogram was normalized as a 

247 function of the AB content and by keeping constant the total weight of each sample to 5 mg. 

248 A progressive decrease of the AB melting peak with increasing CS:AB molar ratio was 

249 observed. This trend is evident if the enthalpy of melting of each sample, normalized for the AB 

250 content in the sample, is reported as a function of the CS:AB molar ratio (Fig.5). This finding 

251 indicates the occurrence of drug-polymer interactions that hinder drug crystallization. The 

252 interactions are especially promoted for high CS contents ((CS:AB)PM 4:1 and 6:1). A decrease in 

253 the melting temperature (Tm) with the increase of the CS:AB molar ratio was also observed, further 

254 underlining the presence of drug crystals with reduced order as a result of the interaction with CS.

255 As expected, the CS:AB interactions were more pronounced in the solid dispersions. Indeed, in 

256 these samples the drug was present substantially in the amorphous state in all the (CS:AB)SD ratios, 

257 and in the DSC thermogram an endothermic band rather than a sharp drug melting peak was 

258 observed (Fig. 6). This finding was in accordance with POM observations that showed the absence 

259 of birefringence associated with the crystalline state of the drug in all of the (CS:AB)SD ratios. 

260

261 FT-IR Spectroscopy

262

263 FT-IR measurements were used to estimate the type and extent of drug-polymer interactions. In 

264 Fig. 7, the FT-IR spectra of AB, CS, (CS:AB)PM and (CS:AB)SD are reported. The IR spectrum of 
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265 AB (Fig. 7A) shows a large band at 3400 cm−1 and the two bands at 2650 and 2534 cm−1 

266 correspond to the group –COOH [35]. Specifically, the first band to free OH and the last two to 

267 bonded OH related to the formation of dimers in the solid state. The C–H stretching absorption 

268 bands in the 3000-2800 cm−1 spectrum range.  The band at 1690 cm-1 is related to the stretching of 

269 C = O. In the IR spectrum of CS (Fig 7B),the absorption related to the OH and NH stretching are 

270 present in the range between 3750 and 3000 cm-1, while the absorption peak of the aliphatic 

271 moieties , related to the fraction of acetylated CS, is present at about 2800 cm-1. The absorptions at 

272 1645 and 1590 cm-1 correspond to the C = O stretching of  the secondary amide of acetylated 

273 repeating units (amide I) and the NH bending of the secondary amine of residues of chitin, 

274 respectively. The stretching C-O-H and C-O-C are in the range between 1150 and 1000 cm-1.

275 In the IR spectra of the (CS:AB)PM formulations (Fig. 7C), the presence of the two components 

276 in the formulations was confirmed by the absorption at 1690 cm-1, related to the AB carbonyl group, 

277 and at ca. 1100 cm-1, related to the chitosan C-O-H and C-O-C stretching. No significant shifting of 

278 the bands at all the CS:AB ratios was observed.

279 In contrast, important changes in specific absorption bands were observed in the IR spectra of 

280 the (CS:AB)SD formulations (Fig. 7D). Specifically, a significant reduction in the absorbance of the 

281 peak at 1690 cm-1, related to the AB carboxylic acid group, accompanied by a corresponding 

282 increase in the absorbance of the peak at 1554 cm-1 (carboxylate C=O of AB) was observed as the 

283 CS content in the formulation increased. The shifting of the peak of AB carboxylic acid from 1690 

284 to 1554 cm-1  is likely to be attributed to the formation of a salt between AB and CS by electrostatic 

285 (acid/base) interactions.

286 To qualitatively estimate the magnitude of the electrostatic drug-polymer interactions as a 

287 function of CS:AB molar ratio, the ratio between the absorbance of the peak at 1554 cm-1(A1554) 

288 and that of the peak at1690 cm-1(A1690) was plotted vs CS:AB molar ratio for both series of samples 

289 (Fig. 8). The ratio is a relative value, not an absolute parameter, and was used to highlight the 
𝐴1554

𝐴1690
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290 trend of the CS-AB salt formation with variation in CS:AB molar ratio. Only for the (CS:AB)SD 

291 samples a significant increase of the ratiowas observed, suggesting that CS:AB interactions 
𝐴1554

𝐴1690

292 were promoted by the increase of CS:AB ratio.

293

294 Raman spectroscopy

295

296 In order to have a better insight into the AB level of structural interaction in the formulations and 

297 to reinforce the POM, IR and DSC observations, Raman spectroscopy analysis was carried out on 

298 some selected samples. Particularly, this technique allowed evaluation of the presence of drug 

299 crystals or their different polymorphs (Raman phonon-region) [36]. Indeed, the phonon region 

300 pattern of crystalline forms, generally, presents defined peaks, while amorphous materials are 

301 characterized by broad features [37]. As shown in Figure9A and9B, AB Raman spectrum presents a 

302 precise pattern in the range between 40 and 400 cm-1. On the contrary, CS does not show any peaks 

303 in this region. In Figure9A,the Raman traces of (CS:AB)PM samples are compared to AB and CS. 

304 The phonon regions show the same patterns which are weakened as the CS/AB ratio increased, 

305 confirming a crystalline AB order throughout the physical formulations. Moreover, observing the 

306 whole range of wave number (from 40 to 1800 cm-1) all the formulations, apart from (CS:AB)PM6:1, 

307 show the same pattern as AB alone with sharp and well-defined peaks. A less defined Raman 

308 spectrum can explain the reduction in crystallinity of AB in the (CS:AB)PM6:1 mixture and it is in 

309 agreement with the DSC observations. As for the (CS:AB)SD samples, only the phonon region of 

310 (CS:AB)SD 1:1 (Fig. 9B) shows the same pattern as free AB, likely due to a partial re-crystallization 

311 of the drug in the blend. This possible AB order was not detected by DSC. Instead, (CS:AB)SD 

312 2:1and (CS:AB)SD 6:1 samples do not show any peaks in the AB phonon region, suggesting the 

313 complete lack of order and thus drug amorphization in the formulations. This latter evidence 
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314 supports the lack of birefringence of those samples and lack of thermodynamic activity in the DSC 

315 traces. 

316

317 Bioactivity of the formulations

318

319 On the basis of the results of the formulation physical characterization, the biological tests were 

320 performed only on the solid dispersions because in these samples, unlike the physical mixtures, the 

321 abietic acid was molecularly dispersed in the polymer carrier. It is, therefore, reasonable to assume 

322 that the solid dispersions can show better performance than the physical mixtures. Amongst the 

323 investigated CS:AB ratios, the 0.5:1, 1:1 and 6:1 samples were chosen in order to investigate the 

324 effects on the biological properties of CS being equimolar, in deficit or in large excess with respect 

325 to AB.

326

327 Antioxidant activity of the formulations

328

329 An inflammation process is often concomitant with the infectious disease. This process causes an 

330 oxidative stress that seems to have some effects on the course of the infection. In general, the role of 

331 free radicals in infections is two-fold. On one hand, free radicals protect against invading 

332 microorganisms. On the other hand, they can accumulate during the infection disease, cause tissue 

333 damage and, sometimes, have fatal consequences. Though specific experiments on the effects of 

334 oxidative stress on the severity of infections have not been carried out yet, some authors claim that 

335 the mitigation of oxidative stress using exogenous compounds appears to be a suitable 

336 complementary approach to treat infections [38]. Free radicals have been also shown to promote 

337 antibiotic resistance in biofilm-growing bacteria, as recently demonstrated in different biofilm 

338 communities [21]. Specifically, in cystic fibrosis patients the oxidative stress was shown to be 

339 associated with the occurrence of antibiotic resistant bacteria in the lung [39]. In addition, in an 
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340 animal model of wound infection, Dhall et al. reported on the role of high levels of reactive oxygen 

341 species (ROS) in establishment of chronic wounds [40,41]. Consequently a reduction in oxidative 

342 stress during antibacterial therapy would be an advantage. 

343 To evaluate a possible antioxidant activity of the formulations, DPPH was used as the model free 

344 anionic radical and the activity was expressed in terms of EC50 and compared to the raw materials 

345 (Table 1). As expected, CS has a low antioxidant activity showing an EC50 of about 11 mg/ml, in 

346 agreement with literature data [42]. In contrast, AB showed a higher antioxidant activity, with an 

347 EC50 value of 1.65 mg/ml (5.4 x 10-3 M), even if less effective than common antioxidant 

348 polyphenols [43]. 

349 Looking at Table 1, for the SD formulations we can see that there is an inconsistency in the 

350 apparent EC50 for the formulations and their components in that two of the EC50 occur at a lower 

351 concentration, than we may expect. The relative contribution of each of the components is also 

352 unclear. However, if we calculate the amount of each component (CS and AB) present in the assay 

353 at the amount of EC50, a clearer picture emerges. We can see that the concentration of AB 

354 component at the EC50 is similar (range 0.40-0.60 mg/mL) in all of the formulations and has a value 

355 that is about one quarter the EC50 of the pure AB. Considering the CS component, for the 0.5:1 and 

356 1:1 CS/AB formulations the CS component is less than 2% of the EC50 and so unlikely to 

357 contribute significantly to antioxidant activity by its usual mechanism, but in the 6:1 formulation 

358 where it is 20% of the EC50 there may be some CS contribution.  Overall therefore it seems that the 

359 presence of AB in the amorphous form is a more effective antioxidant.

360 There are a number of aspects which may account for this formulation advantage some of which 

361 may depend on the mechanism of the AB antioxidant activity. The antioxidant activity seems to be 

362 related solely, to the double bonds [44], with a proposed mechanism providing two alternative 

363 oxidative pathways, which can occur individually or simultaneously [44]. One pathway sees the 

364 production of an epoxy structure, the other one, instead, involves the production of peroxides and 
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365 free radicals [44]. Some authors have synthesized a catechol-derived AB to increase the antioxidant 

366 activity [45].

367 For the formulations, firstly, the amorphous versus the crystalline nature of the drug may have 

368 some effect in terms of solubility and availability of drug. Secondly, it is possible that a stabilization 

369 of the radical form of AB occurred thanks to interaction with CS. In fact, it is known that the AB 

370 radical is unstable and reacts with oxygen to form peroxides. Such oxidation is the cause of the 

371 bitter taste that can result from chewing gum which has 90 % of ester compounds made of AB [43], 

372 for a prolonged time. Usually, to avoid this oxidation, a second antioxidant, α-tocopherol, is added 

373 in the chewing gum which decreases peroxide levels and thus the AB degradation leading to the 

374 sensory perception. Therefore, in the formulations, chitosan may act similarly to α-tocopherol, 

375 stabilizing the AB radical.

376

377 Antimicrobial activity

378

379 To evaluate the effect of the new drug-polymer formulations on antibacterial activity compared 

380 to the raw materials, a broth dilution assay was performed using S. epidermidis as the model 

381 microorganism. MICs of both AB and CS were determined to be 0.8 and 0.5 mg/ml, respectively. 

382 The activity of CS is related to the presence of partially protonated NH2 that can interact with the 

383 anionic bacterial cell membrane [46]. The AB activity is mainly attributable to the carboxylic 

384 functionality, which interacts with the lipid component of the bacterial cellular membrane allowing 

385 this molecule to penetrate inside the membrane, altering the membrane functions [47]. 

386 A preliminary screening of the antimicrobial activity of (CS:AB)SD and (CS:AB)PM 1/1 formulations 

387 was performed (Fig. 10) to assess whether the state of AB (amorphous or crystalline) might 

388 influence the antimicrobial activity. As determined from the physical-chemical characterization of 

389 the formulations, the state of AB in the two formulations tends to be partially crystalline in the 

390 (CS/AB)PM1:1 while is completely amorphous in the (CS/AB)SD 1:1, so this state may affect the 
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391 solubility and thus the bioactivity. As can be observed in Figure 10, the physical mixture 

392 (CS:AB)PM 1:1 showed a MIC of 1 mg/mL significantly higher than (CS:AB)SD 1:1 (0.25 mg/ml), 

393 suggesting that the amorphicity or dispersion state of the drug may significantly affect the 

394 bioactivity of the drug itself.

395 To shedlight on the low value of MIC of (CS:AB)SD 1:1 in Figure 11, the percentage of bacterial 

396 inhibition (I%), defined as described in Materials and Methods, is reported as a function of 

397 component concentration for (CS:AB)SD 0.5:1, (CS/AB)SD 1:1 and (CS/AB)SD 6:1. The biological 

398 tests showed that the MIC values (i.e. the first concentration for which there was complete 

399 inhibition of bacterial growth)varied with the CS:AB molar ratio. When CS was in a molar excess 

400 with respect to AB, the sample (CS:AB)SD 6:1,the CS concentration in the formulation exceeded the 

401 CS MIC value (Table 2), so this result would be as predicted. Similarly, when CS was in a molar 

402 deficit with respect to AB, i.e. in the sample (CS:AB)SD 0.5:1, the formulation showed antimicrobial 

403 activity at 1 mg/ml (Fig. 11), that is when the AB component is at its MIC (Table 2). The most 

404 interesting situation was found in the formulation(CS:AB)SD 1:1. In this case, the MIC of the 

405 formulation was equal to 0.25 mg/ml, where both CS and AB were at concentrations below the 

406 MICs of either CS or AB alone, and below that which may be expected for an additive effect(Table 

407 2). This finding strongly suggests a synergistic effect between the two components. 

408 To understand reasons behind this synergy, size and zeta potential of the formulations were 

409 determined (Table 3), since these two features may influence the nanoparticle/bacteria interaction. 

410 In general, small nanoparticulate size and positive charge promote interaction with cells [48]. In our 

411 case, sizes and PDI values decreased as AB content increased. In particular, a reduction in average 

412 sizes and a narrower size distribution were observed with AB excess. This probably results from the 

413 polymer being involved in ionic interactions with AB as suggested from the change in zeta potential 

414 data. The decrease of repulsive interactions between the CS chains, and the presence of 

415 hydrophobic interactions probably most likely amongst AB rings is likely to lead to a compaction of 

416 aggregates to a state more like a defined nanoparticle. The near neutrality of the 1:1 complex might 
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417 be a further demonstration of the equimolar ratio of the two molecules. The complex 0.5:1, where 

418 AB is in a molar excess, showed a negative Zeta Potential. In contrast, the 6:1 complex is positively 

419 charged due to the large molar excess of CS.

420 It would be expected that the net negative charge may interfere with the binding of the 

421 CS/AB0.5:1 formulation to the bacterial cells, and that this may reduce the effectiveness of this 

422 formulation.  However, the AB content is equivalent to the MIC of AB, so this component appears 

423 to have retained its normal effectiveness.

424 More difficult is to find an explanation for why (CS/AB)SD 1:1 had higher activity than 

425 (CS/AB)SD6:1. Indeed, from size and charge data, we would have expected a better activity for 

426 (CS/AB)SD 6:1 that has a size similar to CS/AB)SD 1:1 (370 vs 440 nm) but a positive charge, unlike 

427 the (CS/AB)SD 1:1 that is essentially neutral (zeta potential = -5). Indeed, the positive charge of 

428 (CS/AB)SD 6/1 should confer this formulation with a higher binding ability towards the bacterial 

429 cell membrane and, therefore, with an antimicrobial activity higher than that of the (CS/AB)SD 1/1 

430 formulation. Additionally, with the charges balanced between CS and AB, we may expect that this 

431 would affect the ability of each component to act by its normal mechanism through these charges 

432 being less available. To explain this odd behavior, we have called into question the role of the 

433 hydrophylic/hydrophobic balance on the antimicrobial activity of polymer formulations. It is known 

434 that the activity of cationic polymers is also related to the balance between cationic and 

435 hydrophobic moieties. Specifically, hydrophobic moieties can improve polymer activity since they 

436 promote the insertion of the polymer chain in the lipid bilayer of the cell membrane [49]. Therefore, 

437 it’s reasonable to hypothesize that the neutral (CS:AB)SD 1:1 formulation possesses a suitable 

438 hydrophylic/hydrophobic balance that causes the disruption of the bacterial membrane not primarily 

439 by establishing electrostatic interactions with the membrane but mainly by insertion of the AB 

440 hydrophenanthrene ring (and maybe also of the polymer chain) into the lipid bilayer.

441

442 Hemolysis assay

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062



19

443

444 To determine the biocompatibility of the most promising formulation, (CS:AB)SD 1:1, a hemolytic 

445 assay was carried out. The hemolysis activity of this sample was compared to that of CS, AB and 

446 (CS:AB)PM1:1 formulation. For each sample, the test was performed at the MIC, below the MIC 

447 (0.25*MIC) and above the MIC (5*MIC). The two tested formulations as well as pure CS and AB 

448 showed negligible lytic activity (Table 4). This activity was lower than 1%, in the concentration 

449 range of 0.25*MIC up to 5*MIC for each formulation, indicating that the formulations presented 

450 have good biocompatibility.

451

452 Conclusions

453

454 Solid mixtures based on AB and CS were developed in order to produce antimicrobial formulations 

455 with improved activity. Results obtained by IR spectroscopy, thermal and size analysis as well as by 

456 zeta potential measurements showed the importance of acid/base interactions between AB and CS 

457 to achieve an homogeneous dispersion of AB in CS and promote the stabilization of the amorphous 

458 state of the drug. These two conditions positively affect drug antimicrobial activity. Indeed, the 

459 (CS:AB)SD 1:1 sample, that possessed a good dispersion of AB in the amorphous state, was found 

460 to be the best in terms of MIC, also showing a synergy between the two components. Therefore, the 

461 (CS:AB)SD 1:1 formulation is promising for a potential application against microbial colonization in 

462 different areas, including the food industry and the biomedical field.
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590 Caption to figures

591

592 Figure 1. Chemical structure of abietic acid (A) and chitosan (B). In chitosan, m=0.8 and n=0.2.

593 Figure 2. POM images of AB (A) and solid mixtures (CS:AB)PM 1:1 (B) and (CS:AB)SD 1:1 (C). 

594 (A) and (B) images show the phenomenon of  light birefringence due to the presence of drug 

595 crystalline domains  in both the samples. Lack of light birefringence in (C) indicates the amorphous 

596 state of the drug in the solid dispersion.

597 Figure 3. DSC thermogram of abietic acid (A) and chitosan (B), this latter in the first and second 

598 cycle of heating.

599 Figure 4. DSC thermograms of (CS:AB)PM 1:1, 2:1, 4:1 and 6:1 compared to AB.

600 Figure 5. Enthalpy of melting of (CS:AB)PM as a function of CS:AB molar ratio.

601 Figure 6. DSC thermograms of (CS:AB)SD 1:1, 2:1, 4:1 and 6:1 compared to AB.

602 Figure 7. IR spectra of abietic acid (A), chitosan (B), (CS:AB)PM formulations (C) and (CS:AB)SD 

603 (D) formulations.

604 Figure 8. Ratio between the absorbance of the peak at 1554 cm-1(A1554, CS) and that of the peak 

605 at1690 cm-1(A1690, AB) vs CS:AB molar ratio for (CS:AB)PM and (CS:AB)SD formulations.

606 Figure 9. Raman traces for (CS:AB)PM(A) and (CS:AB)SD(B) formulations in comparison with 

607 pureCS and AB.

608 Figure 10. Comparison of the MIC values of (CS:AB)PM 1:1 and (CS/AB)SD 1:1.

609 Figure 11. Inhibition of bacterial growth for (CS:AB)SD 0.5:1, (CS:AB)SD1:1 and (CS:AB)SD 6:1 at 

610 different concentrations.
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615

616

Sample (molar ratio) CS Weight 

(%)

AB Weight 

(%)

[CS]

mg/ml

[AB]

mg/ml

EC50

mg/ml

CS 100 0 11 - 11

AB 0 100 - 1.65 1.65

(CS:AB)SD 0.5:1 20 80 0.104 0.416 0.52

(CS:AB)SD 1:1 35 65 0.214 0.396 0.61

(CS:AB)SD 6:1 75 25 1.95 0.60 2.40

617

618 Table 1.Analysis of formulation component antioxidant activity. Amounts of component present in 

619 each formulation at the EC50are calculated.
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Sample (molar ratio) CS Weight* 
(%)

AB Weight* 
(%)

[CS]§

mg/ml
[AB]§

mg/ml
MIC

mg/ml

CS 100 0 - - 0.5

AB 0 100 - - 0.8

(CS/AB)SD 0.5:1 20 80 0.20 0.80 1.0

(CS/AB)SD 1:1 35 65 0.088 0.162 0.25

(CS/AB)SD 6:1 75 25 0.562 0.188 0.75

621 * Weight percentage of each component in the formulation

622 § Concentration of each component in correspondence of the MIC

623

624 Table 2: MIC values for pure AB, pure CS, and (CS/AB)SD formulations. For each formulation, the 

625 weight percentage and the concentration of the two single components in relation to the MIC were 

626 calculated.
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628
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631

632

633

634

635

636

637

638

639 Table 3. Size, polydispersity index (PDI) and zeta potential of selected (CS/AB)SD samples

640

641

Sample Size 
(nm) PDI Zeta Potential

  (mV)

Chitosan 1000 0.70 +22

(CS/AB)SD 0.5:1 190 0.16 -35

(CS/AB)SD 1:1 370 0.38 -5

(CS/AB)SD 6:1 440 0.67 +11
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642

643

Sample
Concentration 
(expressed as 

multiplex MIC)

Real concentration 
(mg/mL) Hemolysis (%)

CS 5*MIC 2.50 0.04

1*MIC 0.50 0.01

0.25*MIC 0.13 0.08

(CS/AB)SD 1:1 5*MIC 1.25 0.15

1*MIC 0.25 0.06

0.25*MIC 0.06 0.17

(CS/AB)PM 1:1 5*MIC 5.00 0.08

1*MIC 1.00 0.18

0.25*MIC 0.25 0.20

AB 5*MIC 4.00 5.83

1*MIC 0.80 0.10

0.25*MIC 0.20 0.10

644 MIC values: CS = 0.5 mg/ml; AB = 0.8 mg/ml; (CS/AB)SD 1/1 = 0.25 mg/ml; (CS/AB)PM 1/1 = 1 mg/ml

645

646 Table 4. Hemolysis values for CS, AB, (CS/AB)SD 1:1 and (CS/AB)PM 1:1.
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658 Figure 1. Chemical structure of abietic acid (A) and chitosan (B). In chitosan, m=0.8 and n=0.2.
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660

661
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665

666

667

668 Figure 2. POM images of AB (A) and solid mixtures (CS:AB)PM 1:1 (B) and (CS:AB)SD 1:1 (C).

669 (A) and (B) images show the phenomenon of  light birefringence due to the presence of drug 

670 crystalline domains  in both the samples. Lack of light birefringence in (C) indicates the amorphous 

671 state of the drug in the solid dispersion.
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678 Figure 3. DSC thermogram of abietic acid (A) and chitosan (B), this latter in the first and second 

679 cycle of heating.
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685 Figure 4. DSC thermograms of (CS:AB)PM 0.5:1, 1:1, 2:1, 4:1 and 6:1 compared to AB.
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692 Figure 5.Enthalpy of melting of (CS:AB)PM as a function of CS:AB molar ratio.
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698 Figure 6. DSC thermograms of (CS:AB)SD 0.5:1, 1:1, 2:1, 4:1 and 6:1 compared to AB.
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706 Figure 7. IR spectra of abietic acid (A), chitosan (B), (CS:AB)PM formulations (C) and (CS:AB)SD 

707 (D) formulations.
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719 Figure 8. Ratio between the absorbance of the peak at 1554 cm-1(A1554, CS) and that of the peak 

720 at1690 cm-1(A1690, AB) vs CS:AB molar ratio for (CS:AB)PM and (CS:AB)SD formulations.
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728 Figure 9. Raman traces for (CS:AB)PM (A) and (CS:AB)SD (B) formulations in comparison with 

729 pure CS and AB.
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736 Figure 10. Comparison of the MIC values of (CS:AB)PM 1:1 and (CS/AB)SD 1:1.
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742 Figure 11. Inhibition of bacterial growth for (CS:AB)SD 0.5:1, (CS:AB)SD1:1 and (CS:AB)SD 6:1 at 

743 different concentrations.
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