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Abstract

Focusing on the receiving side of a communication system, the current trend in
pushing the digital domain ever more closer to the antenna sets heavy constraints
on the accuracy and linearity of the analog front-end and the conversion devices.
Moreover, mixed-signal implementations of Systems-on-Chip using nanoscale CMOS
processes result in an overall poorer analog performance and a reduced yield. To
cope with the impairments of the low performance analog section in this “dirty RF”
scenario, two solutions exist: designing more complex analog processing architectures
or to identify the errors and correct them in the digital domain using DSP algorithms.
In the latter, constraints in the analog circuits’ precision can be offloaded to a digital
signal processor.

This thesis aims at the development of a methodology for the analysis, the
modeling and the compensation of the analog impairments arising in different stages
of a receiving chain using digital calibration techniques. Both single and multiple
channel architectures are addressed exploiting the capability of the calibration
algorithm to homogenize all the channels’ responses of a multi-channel system
in addition to the compensation of nonlinearities in each response. The systems
targeted for the application of digital post compensation are a pipeline ADC, a
digital-IF sub-sampling receiver and a 4-channel TI-ADC.

The research focuses on post distortion methods using nonlinear dynamic models
to approximate the post-inverse of the nonlinear system and to correct the distortions
arising from static and dynamic errors. Volterra model is used due to its general
approximation capabilities for the compensation of nonlinear systems with memory.
Digital calibration is applied to a Sample and Hold and to a pipeline ADC simulated
in the 45 nm process, demonstrating high linearity improvement even with incomplete
settling errors enabling the use of faster clock speeds. An extended model based
on the baseband Volterra series is proposed and applied to the compensation of a
digital-IF sub-sampling receiver. This architecture envisages frequency selectivity
carried out at IF by an active band-pass CMOS filter causing in-band and out-of-
band nonlinear distortions. The improved performance of the proposed model is
demonstrated with circuital simulations of a 10th order band pass filter, realized using
a five-stage Gm-C Biquad cascade, and validated using out-of-sample sinusoidal and
QAM signals. The same technique is extended to an array receiver with mismatched
channels’ responses showing that digital calibration can compensate the loss of
directivity and enhance the overall system SFDR. An iterative backward pruning
is applied to the Volterra models showing that complexity can be reduced without
impacting linearity, obtaining state-of-the-art accuracy/complexity performance.

Calibration of Time-Interleaved ADCs, widely used in RF-to-digital wideband
receivers, is carried out developing ad hoc models because the steep discontinuities
generated by the imperfect canceling of aliasing would require a huge number of terms
in a polynomial approximation. A closed-form solution is derived for a 4-channel
TI-ADC affected by gain errors and timing skews solving the perfect reconstruction
equations. A background calibration technique is presented based on cyclo-stationary
filter banks architecture. Convergence speed and accuracy of the recursive algorithm
are discussed and complexity reduction techniques are applied.
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1

Chapter 1

Introduction

1.1 Scenario and Motivation

Thanks to the progressive technology scaling described by the Moore’s law, modern
CMOS processes have reached 10 nm gate lengths. These ultra-scaled nodes are
better suited for digital logic circuits that exploit device shrinking obtaining increased
performance in speed (fT ) and power efficiency (gm/ID).

The increasing demand of Systems on Chip (SoC) in consumer and telecommu-
nication markets has produced a big demand of mixed-signal circuits able to process
both analog and digital signals. Using BiCMOS Silicon-Germanium (SiGe) process is
the best design choice to boost the RF/MW performance (most advanced commercial
BiCMOS SiGe 55 nm process by STMicroelectronics exhibits fT > 300 GHz [1]).
Compared to bulk CMOS, the BiCMOS allows a much higher cut-off frequency at a
given technology node. To reach similar frequency, bulk CMOS designs have to use
much smaller process nodes, forcing compromises on the design and leading most of
the time to overall lower performance.

However, there are different reasons why often it is preferable to implement
mixed-signal systems using CMOS technology. The most substantial one is definitely
the cost difference due to the more complex fabrication process, because BiCMOS
requires a higher number of masking layers. So, to reduce system cost and to enhance
power efficiency, CMOS implementations of RF circuits are very attractive since
most of the RF complex functions have been demonstrated on CMOS processes.

While the scaling process (today in its 3D power scaling phase [4]) enables higher
integration levels leading to billions of transistors on a single chip, it also makes
these silicon ICs poorer in analog processing performance and more susceptible
to variations. Some of these variations are caused by the manufacturing process
itself, particularly due to the stringent dimensional tolerances associated with the
lithographic steps in modern processes [28]. The intra and inter-die variations in
modern VLSI realizations translate into the degradation of important figures of merit,
such as the standard deviation of devices’ nominal parameters and the mismatch
between different devices.

Due to these issues each circuital realization shows deviations in nominal parame-
ters’ values that introduce non-idealities in the analog processing chain. The effect
of these errors is to lower the overall process gain and dynamic range of the system.
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Furthermore, they can badly compromise the correct operation of systems that rely
on the consistency between different processing channels (e.g. Time-Interleaved
and Quadrature Mirror Filter banks ADCs, beam forming using antenna arrays,
monopulse radar). In this scenario, designers must face the heavy reduction in yield
and performance of the RF CMOS implementations.

To cope with the impairments of the poor performance analog section in this
“dirty RF” [37] scenario, two opposite approaches exist aimed at compensating
the resulting errors: to design more complex analog processing architectures or to
implement the correction in the digital domain using digital calibration algorithms.

Increasing precision, namely matching and linearity, by analog design is an
expensive task in terms of power dissipation. To first order, matching accuracy is
inversely proportional to component area. Therefore, additional precision requires
larger components with larger capacitance and a resulting net increase in power
dissipation [76] (higher transconductances to keep speed constant). Most of the time
linearity is achieved using electronic feedback, obtaining precision in return for high
gain. Achieving sufficient gain usually necessitates the use of complex amplifiers
that tend to be suboptimal in terms of speed and noise [76].

In the paradigm of digital calibration, the demanding requirements on analog
circuits’ precision can be traded with digital processing schemes complexity. This
solution, typically applied to A/D converters, is becoming more and more attractive
thanks to the availability of a large digital processing power due to the ever increasing
integration density of modern VLSI CMOS implementations (3 Mgate/mm2 for 28 nm
process and over 100 Mgate/mm2 for the Intel’s 10 nm [3]). From a communication
theory point of view the most common term for the post correction methods is
“equalization”. From an electronics engineering point of view the act of making
a device or a system to work as close as the nominal performance can be more
appropriately called “calibration”.

1.2 Digital calibration background

Digital calibration procedures consist in identifying a behavioral model of the device,
estimating model parameters that describe the unwanted device behavior and then
compensating the device response. The aim of calibration is to maximize a specific
or multiple figures of merit, as in a multivariate optimization problem in which the
variables are the model parameters, for example linearity in terms of SFDR or SNDR
and process gain. A number of research activities are reported in the literature on
the compensation of errors caused by analog circuits’ non-idealities using digital
post processing. Most of them have been applied to A/D converters and address the
compensation of static and dynamic nonlinearities. While static errors are easier
to model and to correct, frequency dependent distortions require more complex
models to be taken into account. Different techniques exist to compensate dynamic
nonlinear systems, the more common are based on Look-Up Tables (LUT) [47, 98],
on Feed-Forward [43, 65] and Feed-Back [46, 50] architectures and on the inverse
system cascade [87, 13].

The growing demand of high speed ADCs is directly linked to the current trend
in pushing the digital domain ever more closer to the antenna in the receiver chain.
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Variations in circuit’s parameter and transistor nonlinearities produce the degradation
of the THD and thus converter’s effective resolution reduction. Some methods are
based on the modeling of specific ADC’s error sources and non-linear contributions
like nonlinearity of the amplifier’s open-loop gain, offset in the comparators and
capacitors’ mismatch [36, 21, 51]. The application of digital calibration in [21] shows
a linearity improvement of more than 30 dB on SFDR, with resolution going from
7 to 12 bits, and a substantial reduction on the standard deviation of the nominal
performance after the calibration process using Monte Carlo simulations.

A large part of ADC calibration algorithms are based on more general models
both for direct or inverse system modeling. The most common is the Volterra series
[96], very important for its general approximation capability of nonlinear systems
and at the same time infamous for its implementation complexity. Volterra model
and its subsets are widespread in pre-distortion applications to enhance the efficiency
of power amplifiers in transmission chains. Applications at the receiver side are
less common also for the reduced generality of the model adopted, that depends
on the receiver architecture. In [93] a nonlinear equalizer (NLEQ) processor able
to compensate the nonlinear behavior of commercial-off-the-shelf (COTS) low-pass
systems has been designed. The processor uses a sparse Volterra representation to
keep the complexity to a minimum even for higher memory lags.

Results suggest that digital calibration techniques can be used together with
relaxed analog design specifications, if the cost of better analog circuits, even though
their design is feasible, is lower than the cost of the additional digital resources
required by calibration [69]. On the other hand digital calibration can be also used to
keep performance to a target level while lowering analog circuits’ power consumption.

1.3 Research framework – Scope of the Thesis
The research activity carried out in this thesis is focused on the identification and
compensation of nonlinearities arising in the analog front-end and in the A/D
converters of receiver chains, paying particular attention in low complexity digital
implementations. For this reason the study is devoted to post distortion methods,
using approximate nonlinear inverse of the nonlinear system under calibration. This
line of research has driven me to deal with three different target architectures and
calibration methods, closely related to the aforementioned issues:

• ADC pipeline calibration using Volterra model

• Digital-IF sub-sampling receiver modeling and compensation using an extended
band-pass Volterra model

• Time-Interleaved ADC calibration using filter banks

The first two target architectures share the same methodology for the identification
of the unknown parameters of the LIP models. The difference relies in the models:
the low-pass Volterra model is adopted for the pipeline calibration while a new
pass-band Volterra model is proposed to calibrate the sub-sampling receiver, taking
into account harmonic distortions generated by the active anti-aliasing filter and
inter-modulation distortions aliasing in critical sampling applications.
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The aim of this thesis is twofold: on one hand the analysis and the formalization
of the non-linear behavior of the target architectures, in both single and multiple
channels implementation, and on the other hand the development of calibration
techniques able to compensate these analog impairments in the digital domain.
Due to the huge cost difference between commercial devices that show a few dB’s
difference in dynamic range specifications, the design of calibration techniques that
can improve the linearity of ADCs or entire receiver chains and increase the overall
system dynamic range by only a few dBs, is worth pursuing.

To achieve the scope of this thesis, different problems are addressed, including:

• Complexity reduction of the Volterra model without sacrificing generality

• Design of efficient input data sets to be used in resource consuming transient
simulations for the evaluation of post calibration system performance

• Modeling and compensation of sub-sampling digital-IF receiver distortions

• Closed-form multi-rate signal processing calculations in TI-ADCs

Demonstrating overall system calibration performance on a specific technology
node enables the inclusion of the digital process gain in the design phase making
the digital processing block embedded in the system itself.

1.4 Thesis Outline
The rest of this thesis is organized as follows:

Chapter 2 aims to give an overview of the methods and the theoretical basis of
nonlinear system modeling and identification used throughout the thesis, in
particular an analysis limited to the identification of linear-in-the-parameters
(LIP) models using deterministic input-output data sets. The Volterra series is
presented along with an overview of its most commonly used subsets and the
definiton of p-th order inverse is given. Compensation techniques for nonlinear
dynamic systems are described focusing on the post-distortion using inverse
system cascade. The methodology to identify a post inverse LIP system is
outlined giving the basic mathematical tools needed for offline and online
linear parameters’ estimation, i.e. Least Squares and Recursive Least Squares
methods, and a description of input excitation design theory. The chapter
concludes with practical considerations for the implementation of the described
technique.

Chapter 3 discusses digital calibration techniques devoted to ADC nonlinear com-
pensation. The theory of operation of the A/D converter is described and
an overview of the most important ADC architectures is presented. A focus
is given on the pipeline ADC with 1.5-bit stages and on the redundancy me-
chanisms that provide robustness against comparators’ offsets. An overview
of the existing ADC calibration techniques is carried out, describing static
and dynamic post compensation techniques with a particular focus on model
inversion methods. A calibration technique based on the direct estimation of
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the post-inverse Volterra series is applied on a Sample and Hold simulated
using the 45 nm process by STMicroelectronics. PVT robustness checks are
performed and an iterative backward pruning procedure is introduced. The
same technique in conjunction with a radix calibration is applied to on a 16
1.5-bit stages pipeline ADC. Results using the proposed pruning procedure
are shown and compared with the literature.

Chapter 4 addresses the problem of post compensation in Time-Interleaved ADCs
(TI-ADCs) that require an ad-hoc analysis of non-idealities that cause distorti-
ons. Two approaches for the calibration of 4-channel TI-ADC are presented:
first, the correction method based on perfect reconstruction (PR) filter banks
is described and a closed-form solution for the 4-channel architecture is derived
and demonstrated with behavioral simulations. Second, a background calibra-
tion technique is described using cyclo-stationary filter banks to approximate
the reconstruction filters. Complexity reduction is carried out both in the
adopted models and in the digital filter implementation and convergence speed
versus linearity is discussed.

Chapter 5 deals with the application of post compensation techniques to a receiver
chain. Baseband Volterra model is derived and a novel extended model is
proposed able to represent and compensate nonlinearities in sub-sampling
digital-IF receivers. In such architectures that implement frequency selectivity
at IF using active band-pass filters, the aliasing of out-of-band harmonics due
to finite attenuation is taken into account. An offline calibration technique
using the new model is validated by means of circuital simulations of a 10-th
order pass-band active anti-aliasing filter implemented using 5 cascaded biquad
stages in 45 nm process by STMicroelectronics. Validation of the identified
post-inverter is carried out using out-of-sample QAM signals and a combination
of QAM and strong in-band sinusoidal signals. The iterative pruning technique
is used to reduce complexity with negligible impact on linearity.

Chapter 6 extends the calibration technique described in Chapter 5 to a multi-
channel array receiver. A wideband calibration architecture based on Volterra
filters is described and simulated using a mixed behavioral and circuital
approach. The Volterra model of a digital-IF receiver is extracted using
input-output data from circuital simulations. Statistical variations on the
model parameters are added to obtain an array of receivers with heterogeneous
responses. The performance of the array in terms of directivity and linearity are
compared before and after the digital calibration. The Chapter concludes with
an analysis of complexity and possible parallel realizations of the calibration
architecture.

Chapter 7 concludes the thesis describing the achieved results and the open issues
that will be addressed in future research activities

A list of the publications stemmed from this research activity is reported at the end
of the thesis.
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Chapter 2

Nonlinear system modeling and
estimation

This chapter aims to give an overview of the methods and the theoretical basis
of nonlinear system modeling and identification used throughout the thesis. This
discussion is not to be intended as a satisfactory and comprehensive survey on system
identification, for which detailed and exhaustive references exists [16, 61], but a
useful analysis limited to the identification of linear-in-the-parameters (LIP) models
with deterministic methods. In Sect.2.1 the Volterra series is presented along with an
overview of its most commonly used subsets and the definiton of p-th order inverse
is given. Compensation techniques for nonlinear dynamic systems are described in
Sect. 2.2 focusing on the post inverse system cascade. The methodology to identify
a post inverse LIP system is outlined in Sect. 2.3 giving the basic mathematical
tools needed for offline and online linear parameters’ estimation, i.e. Least Squares
and Recursive Least Squares methods, and a description of input excitation design
theory. Practical considerations for the implementation of the described technique
are given in Sect. 2.4.

2.1 Nonlinear System Modeling

The field of nonlinear systems is enormous. The need for nonlinear models arises
from many practical situations in which the input-output behavior of a system
cannot be represented using the classical linear system theory. In the nonlinear
regime, many problems are still open and many properties are no longer available:
existence and uniqueness of solutions are not guaranteed, closed form formula are
difficult to come by, linear superposition can’t be applied. Focusing on analog
circuits for communications, most of the times the processing blocks are weakly
nonlinear, in the sense that the dominant behavior is that of a linear system but
mild nonlinear contributions can be identified. It is precisely these components that
represent a limiting factor in applications that require high linearity (e.g. RF and
ADC front-ends). The simplest approach to the modeling of a nonlinear system is
the power series, that can be used to represent a memoryless nonlinearity up to
order P :

y[n] = α1x[n] + α2x
2[n] + · · ·+ αPx

P [n] (2.1)
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Such model, though, is only able to describe static nonlinearities and is incapable to
model more complex phenomena such as memory effects and frequency dependent
nonlinearities. A more powerful and general model is the Volterra series.

2.1.1 Volterra series

The Volterra series [66], developed by Vito Volterra in 1887, is one of the most
common representations of nonlinear systems. Due to its intuitive structure and
universal approximation capabilities it has received a considerable attention from
researchers of different areas, especially in the fields of electronics and communications
[38]. The discrete-time Volterra series can be written as:

y[n] =
∞∑
k=1

yk[n] yk[n] =
∞∑
q1=0
· · ·

∞∑
qk=0

hk[q1, . . . , qk] ·
k∏
i=1

x[n− qi] (2.2)

where hk[q1, . . . , qk] is the k-th order Volterra kernel. It represent a class of poly-
nomial models that can be viewed as a multidimensional extension of the linear
convolution, which makes easy the derivation of its Fourier transform representation.
When limited to a finite order and a finite memory support, the truncated Volterra
series is written as:

y[n] =
K∑
k=1

yk[n] yk[n] =
L−1∑
q1=0
· · ·

L−1∑
qk=0

hk[q1, . . . , qk] ·
k∏
i=1

x[n− qi] (2.3)

with K the maximum order and L the maximum lag. The advantages of this model
are principally two: it is stable in the bounded-input bounded-output (BIBO) sense
and most of all it is linear in the parameters. This enables the use of linear estimation
algortihms to identify the parameters of such a model. Although the representation
(2.3) has the same memory for all kernel orders, the most general case allows a
different memory for each order:

y[n] =
K∑
k=1

yk[n] yk[n] =
L1−1∑
q1=0
· · ·

Lk−1∑
qk=0

hk[q1, . . . , qk] ·
k∏
i=1

x[n− qi] (2.4)

A considerable reduction in the number of parameters can be performed exploiting
the symmetry property of the kernels. The Volterra series is symmetric if, for each
order k, kernels with different combinations of the same indices are equivalent. We
can express each symmetric kernel as:

h̃k[q1, . . . , qk] = 1
k!
∑
π(q)

hk[q1, . . . , qk] (2.5)

where π(·) is the permutation operator and q is the vector of indices q1, . . . , qk.
Using the symmetric kernels, the Volterra series becomes:

y[n] =
K∑
k=1

yk[n] yk[n] =
L1−1∑
q1=0

L1−1∑
q2=q1

· · ·
Lk−1∑

qk=qk−1

h̃k[q1, . . . , qk] ·
k∏
i=1

x[n− qi] (2.6)
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From now on, all the models adopted will be considered symmetric, so we will neglect
the tilde for ease of notation. If we set the memory of all kernels to zero, we obtain
the power series.

A disadvantage of the Volterra series is that its basis polynomials are not
orthogonal. This implies that kernel values are correlated: when estimating a model,
a higher number of parameters can give a worse performance in fitting capabilities.
To overcome this problem, different orthogonal expansions of the Volterra functionals
have been proposed. The most famous are the Wiener functionals Gn obtained
applying the Gram-Schmidt orthogonalization procedure respect to the Wiener
process to the Volterra functionals. The advantage of the orthogonality property
is that it allows the Wiener kernels to be measured by cross-correlation techniques
using a white gaussian input.

The main drawback of Volterra series concerns the exponential growth in parame-
tric complexity implying the need to estimate a huge number of parameters. Many
kind of model complexity reduction exist based on some assumptions that make the
model lose its general representation capabilities. In the following we describe the
most common lower complexity models derived from subsets of Volterra kernels [74].

Wiener model

The Wiener model is a special case of Volterra model obtained using the condition
of kernel separability hk[q1, q2, . . . , qk] = αkh[q1] · h[q2] · · ·h[qk]:

yW [n] =
K∑
k=1

αk

 L∑
q=0

h[q]x[n− q]

k (2.7)

This model can be represented as the cascade of a linear memory model followed by
a memoryless polynomial nonlinearity, as shown in fig.2.1.

()[ ]h q

Figure 2.1. Wiener model

Hammerstein model

The Hammerstein model is obtained setting to zero all the off-diagonal terms of
the Volterra series. The terms that remain have hk[q1, q2, . . . , qk] = βkg[q] for
q1 = q2 = · · · = qk = q. The output of a Hammerstein model can be written as:

yH [n] =
L∑
q=0

g[q]
K∑
k=1

βkx
k[n− q] (2.8)

This model can be represented as the cascade of a memoryless polynomial nonlinearity
followed by a linear memory model , as shown in fig.2.2.
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() [ ]g q

Figure 2.2. Hammerstein model

Memory Polynomial

An extension of the Hammerstein model is given by the Memory Polynomial (MP),
in which different filters g[q] are used for different kernels. We obtain:

yMP [n] =
L∑
q=0

K∑
k=1

βk[q]xk[n− q] (2.9)

The memory polynomial model has been used for predistortion of actual power
amplifiers under typical operating conditions [53].

2.1.2 p-th order inverse Volterra model

The theory of p-th order inverse of a nonlinear system has been developed by Schetzen
and published in 1976 [87]. We define a pth-order inverse of a given nonlinear system,
H, as one, when connected in tandem with H, results in a system in which the
second through the pth-order Volterra kernels are zero. Thus, calling T the system
operator of the two systems connected in tandem, we can write:

T{x[n]} = x[n] +
∞∑

k=p+1
Tk{x[n]} (2.10)

where Tk is the k-th order Volterra operator of the system T . An important property
of the p-th order inverse model is that, irrespective of its position in the cascade
making up the nonlinear system, the pre-inverse and the post-inverse models are
identical. In the case that the two systems don’t load each other (true in digital
processing), the order or the tandem connection only affects the residual terms of
order greater than p. The p-th order inverse is computed from the structure of
the nonlinear model solving a set of equations that arise from the cascade of two
Volterra systems. It becomes a difficult task for orders higher than 5-7. In [85] a
solution based on a recursive method has been proposed that reduces the complexity
implementation of a p-th order inverse.

2.2 Compensation techniques for nonlinear dynamic
systems

Four main approaches exist for the compensation of the nonlinearities in dynamic
systems:

LUT based Look-Up Tables can be used to compensate nonlinear systems with
short memory. Two main types are: Phase-Plane (using amplitude and slope
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of the current sample) and State-Space (using amplitudes of present and past
samples). This method is typically adopted in ADC calibration [47, 98] and
will be analyzed in subsection 3.4.2.

Feed-Forward architectures consist on the subtraction of the distortions from
the main signal path that are regenerated by means of digital processing on a
parallel path. Adaptive Interference Canceling (AIC) is based on feed-forward
architectures [43, 65, 88, 101]

Feed-Back architectures consist on using feedback loops to generate pre-distorter
or post-distorter blocks used in connection with linear blocks to obtain an
overall linear system with desired dynamics. Hirschorn’s method is based on a
feedback architecture [46, 50].

Inverse System Cascade consists in the series connection of the pre or the post-
inverse system before or after the forward system [87, 13]. Adaptive imple-
mentations of cascaded inverse systems make obviously use of feed-forward or
feed-back signal processing paths.

Inverse systems are widely used in many disciplines both in linear and nonlinear
applications. In the field of communications the main usage is for equalization.
Nonlinear behavior of power amplifiers when driven with low back-offs in transmission
chains can be compensated using pre-distortion, i.e. an approximation of the system
pre-inverse used to linearize the amplifier response. Nonlinear dynamics in receiver
chains or in sensors require instead to be compensated using a post-distorter. The
problem of finding the inverse of a nonlinear system is a nontrivial task requiring
knowledge in system identification and modeling and can be carried out using
different methods. Focusing on the fourth approach, adopted throughout the thesis,
it is clear that when the target application is the nonlinear post-compensation we
are interested in identifying a post-inverse system, as shown in Fig. 2.3. There are

S
[ ]y n

1S
[ ]x n [ ]z n

Figure 2.3. Post-inverse system S−1 in series with the forward system S realizes the
condition z[n] = x[n]

two practical ways to estimate a post-inverse system [50], graphically represented in
Figs.2.4a and 2.4b :

a) First, forward system Ŝ is estimated from input x[n] and output y[n], then
the post inverse system Ŝ−1 is calculated

b) The post inverse system Ŝ−1 is directly estimated using y[n] as input and x[n]
as output

In the first method (Fig.2.4a), when dealing with truncated Volterra series,
the pth-order inverse [46, 34] has to be computed. This task can become very
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hard depending on the order and memory of the forward system. The second
method (Fig.2.4b), used also in Indirect Learning Architecture (ILA), is the most
straightforward and flexible way to identify an approximation of the post-inverse
system. In [97] was shown that the analytical Volterra inverse gives much lower

S
[ ]y n[ ]x n

Ŝ [̂ ]y n

S
[ ]x n [ ]y n [ ]az n1Ŝ

(a)

S
[ ]y n[ ]x n [̂ ]x n1S

[ ]x n [ ]y n [ ]bz nS 1S

(b)

Figure 2.4. Two ways to approximate a post-inverse system in an offline compensation:
mathematical inversion of the estimation of the forward system (a) and direct estimation
of post-inverse system (b)

computational complexity than the direct estimated inverse. However, for the simple
architecture, the flexibility and the ease of application, the second method is adopted
throughout the thesis for finding the post-distorters to compensate ADC and RF
front end nonlinearities. We are thus interested in acquiring and further define the
methodology for system identification techniques.

2.3 System Identification elements
System Identification consists in determining a mathematical model of a system of
interest using a-priori (e.g. error and noise statistics) and a-posteriori (experimental
observations) information [16].

The methodology to approach system identification can be summarized in these
steps:

1) Input stimuli design that is a persistent excitation (PE) for the system under
test

2) Model structure selection

3) Choosing a criterion to measure the “quality” of the estimated model

4) Perform the system identification according to steps 1, 2 and 3

5) Validate the estimated model using a new out-of-sample set of data

The first three points are the basis of the estimation process and they’re not
independent. The design of input signals is driven by some knowledge or assumption
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on the system model and by physical constraints like bandwidth and input-output
dynamics. The selection of the model structure can be carried out using information
obtained by some preliminary analysis such as a frequency response function that
can give a coarse idea of the system behavior.

The estimation process is an optimization problem that requires the minimization
of a specified cost function and can be convex or non-convex . The choice of the
estimator depends on the type of the problem (linear or nonlinear), on the kind of
application in which the estimation is needed (offline or adaptive calibration) and on
the statistics of the signals. In a linear-in-the-parameters (LIP) model, if the errors
are uncorrelated, have zero mean and equal variances the Gauss-Markov theorem
states that the Least Squares (LS) estimator is the Best Linear Unbiased Estimator
(BLUE), i.e. it has the lowest variance on the estimated parameters with respect to
the other linear unbiased estimators. For this reason LS is a common choice in offline
LIP estimation problems and it’s used in this thesis in the calibration procedures
that don’t require adaptive mechanisms.

The final validation of the estimate is required to assess whether the model
performs well on new sets of data or overfitting of the model occurred. In the latter
case the estimated model describes the system behavior only for the particular
realization of the measurements and is not usable in real operational conditions
when different data is processed by the system.

In this thesis we focus on truncated Volterra models identification in the time
domain. Time-series analysis leads directly to estimates of the model parameters
unlike the non-parametric estimates in the frequency domain.

2.3.1 Linear Least Squares estimator

When a LIP model is considered the input-output relation of the system can be
easily written using matrix notation:

y = Xh + w (2.11)

where

y is the N × 1 output samples vector [y[0] y[1] · · · y[N − 1]]T

X is the N × P input samples matrix expansion
h is the P × 1 vector of parameters to be estimated
w is the N × 1 noise vector

With the only assumption that w has zero mean, we want to find the parameters h
that minimize the squared l2-norm of the error e = y−Xh. The cost function thus
becomes:

J(h) = ‖e‖22 = (y−Xh)T (y−Xh) (2.12)
The parameters are obtained solving the convex problem:

ĥ = arg min
h
J(h) (2.13)

To find the global minimum of J(h) we differentiate it and set the derivative to zero:
∂J(h)
∂h

∣∣∣∣
h=ĥ

= −2XTy + 2XTXĥ = 0 (2.14)
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The Least Squares Estimator is then:

ĥ = (XTX)−1XTy = S−1θ (2.15)

where S = XTX and θ = XTy. The LS parameters estimation can be easily
extended to a batch of measurements. If we have M input-output data sequences
we can write: 

y1
y2
...

yM


︸ ︷︷ ︸
MN×1

=


X1
X2
...

XM


︸ ︷︷ ︸
MN×P

h +


w1
w2
...

wM


︸ ︷︷ ︸
MN×1

(2.16)

2.3.2 Recursive Least Squares

In applications that require to track model variations (e.g. depending on temperature)
an adaptive calibration is needed because the parameters vector changes over time.
It is useful in terms of computational cost and latency not to start from scratch with
the estimation process but to update the parameters vector using the old estimation
and the new gathered data. Considering the estimator in Eq.2.15 obtained from
training sequences of N samples, a new estimator can be calculated adding the new
rows (xN+1, yN+1) to the data set:

ĥN+1 =

[ XN

xN+1

]T [
XN

xN+1

]−1 [
XN

xN+1

]T [
yN
yN+1

]
= S−1

N+1θN+1 (2.17)

The matrix XN acquires the new row xN+1, a 1× P vector, and the vector yN the
new row with the sample yN+1. We have:

SN+1 = XT
N+1XN+1 =

[
XT
N xTN+1

] [ XN

xN+1

]
= SN + xTN+1xN+1 (2.18)

θN+1 = XT
N+1yN+1 =

[
XT
N xTN+1

] [ yN
yN+1

]
= θN + xTN+1yN+1 (2.19)

For adaptive purposes, we add exponential windowing of data:

SN+1 = λSN + xTN+1xN+1 (2.20)
θN+1 = λθN + xTN+1yN+1 (2.21)

where 0 < λ ≤ 1 is the “forgetting factor” which gives exponentially less weight to
older samples. The matrix inversion lemma [45] can be used to find the expression
of S−1

N+1:

(
λSN + xTN+1xN+1

)−1
= 1
λ

(
S−1
N −

S−1
N xTN+1xN+1S−1

N

λ+ xN+1S−1
N xTN+1

)
(2.22)
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Assuming S−1 = P, we can summarize the results as follows:
PN+1 = 1

λ

(
PN −

PNxTN+1xN+1PN
λ+xN+1PNxTN+1

)
θN+1 = λθN + xTN+1yN+1

ĥN+1 = PN+1θN+1

(2.23)

A smaller λ makes the estimation more sensitive to recent samples, which means
more fluctuations in the estimator coefficients. This recursive formulation requires
the initialization values P0 and θ0. One way can be to gather the first N samples
and to compute these values in a non recursive manner. Otherwise, the following
initialization values can be assumed [14]:

P0 = δ−1I (2.24)
θ0 = 0 (2.25)

where δ is a very small positive constant.

2.3.3 Input excitation design

Input excitation design is a key aspect of system identification. Intuitively, the
essential idea is that the input stimuli shall sufficiently excite the system under test
to produce enough information in the output sequences to allow the exact model
estimate. This behavior is described by the persistence of excitation (PE) property,
which, for deterministic inputs in a truncated Volterra model of order K and memory
span M , can be described as follows [78].

Given the sample matrix SN = XT
NXN , built over an observation period of

length N , and λmin and λmax its minimum and maximum eigenvalues, if these
values are bounded by two arbitrary chosen ρ1, ρ2 > 0 independently of the time
index n, then the input sequence is said PE of degree M and order K. The PE
condition for Volterra systems depends on both memory and order, and is related to
the conditioning number of the sample matrix.

Different kinds of input excitation can drive the system identification process:
random signals [40], pseudo-random binary and multilevel sequences [78, 31], multi-
sines [12] and impulses. Some studies focus on the identification process using the
same kind of signals that the device will process when operating, such as PSK and
QAM modulated waveforms [25, 94]. It is possible that this approach could not
give good results in terms of channel equalization when other types of signals (e.g.
sinusoidal interferers) are processed by the system.

In this thesis we focus on parameters identification using multisines excitations
mainly for two reasons: the first is to prefer deterministic inputs of limited length
due to the high computational power required by circuit-level transient simulations
used to assess calibration performance. Random inputs require longer sequences
to fulfill the expected statistics on high-order moments. The second is to foresee a
laboratory implementation working on RF receivers up to Ku and Ka bands and
the generation of impulses or multi-level sequences with sharp edges is difficult to
achieve at that carrier frequencies.
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A real discrete-time multisine can be written as:

x[n] =
M∑
m=1

Am sin
(

2πfm
fs
n+ φm

)
(2.26)

where Am, fm and φm are respectively the amplitude, the frequency and the phase of
the m-th sinusoidal component. The selection of the multisine’s parameters is done
to optimize the estimate. When estimating Volterra Frequency Response Functions
(VFRF) one way is to select a combination of fm’s such as kernels with different
order produce output signals with components at different frequencies. It should
be mentioned that complete separation of the components of different order by
frequency separation is impossible[15]. To determine a n-th degree VFRF, that is a
n-dimensional function, a multisine with n frequencies is required[12]. To obtain
different samples of the VFRF values in a given bandwidth, many tests must be
carried out that may take a lot of time. The frequency separation property of the
kernels becomes unfeasible when dealing with high order models and an efficient
DFT representation with a small number of bins.

A different approach consists in using a batch of multisines that produce an
overdetermined system of equations. The use of different combinations of frequencies
can remove the uncertainty leaved by the nonlinear products mapped on the same
bins. Since we are dealing with discrete-time Volterra kernels estimation, a good
choice is to use coherent sampling, i.e. to select input frequencies whose ratio to
the ADC clock frequency is a rational number. Assuming that a NDFT -point DFT
is foreseen to perform spectral analysis for pre and post calibration performance
assessment, the discrete set of distinct frequencies is determined by:

fm = Jm
NDFT

· fs with Jm ∈ N, 1 ≤ Jm ≤
NDFT

2 (2.27)

The adopted method to select the frequencies of the multisines consists of two
steps:

1) Search the combination of n frequencies that, passing through a n-order
polynomial nonlinearity, produce the highest number of components lying on
distinct DFT bins. In this process, aliasing of nonlinear products at frequencies
higher than Nyquist is taken into account and spectrum folding occurring in a
subsampling scenario can be implemented.

2) Select other combinations of frequencies that produce non-overlapping nonlinear
contributions on the DFT bins not covered in step 1.

It is beneficial to use waveforms with different Peak-to-Average Power Ratio
(PAPR) when estimating the model parameters in order to catch the system behavior
at different power levels keeping the peak amplitude of the excitation constant. The
PAPR of a sequence x[n] expressed in decibel is defined as follows:

PAPR = 10 log10
(max |x[n]|)2

x2
rms[n] (2.28)

The PAPR of a multisine depends on the amplitude and the phase of each sinusoid.
From an implementation point of view, a simple approach is to use multisines with a
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different number of sinusoids keeping the amplitude and phases equal. For example,
the value of PAPR goes approximately from 3.5 to 7dB using multisines with 2 to 5
tones with constant amplitude and zero phases. Using a batch of multisines with a
different number of frequencies and PAPR values is somewhat similar to generate
multisines with different peak amplitude levels (used in the polynomial interpolation
method exploiting Vandermonde matrix [15]) because the power of each component
has different values while keeping constant the signal envelope.

2.4 Practical Volterra post-inverse system estimation

S
[ ]y n Post 

Distorter

[ ]x n [̂ ]x n

(a)

S
[ ]y n Post 

Distorter

[ ]r n

[̂ ]r n[ ]x n

(b)

Figure 2.5. Direct estimation of post-inverse system. Ideal (a) architecture and practical
implementation (b) that uses the reference signal r[n] considering the unavailability of
the real input data u[n]

The direct post-inverse estimation of a system uses the output signal y[n] and a
reference signal r[n] that represents the post-compensation target. Referring to the
scheme in Fig.2.5b we can write the LS estimate of the parameters:

ĥ = (YTY)−1YT r (2.29)

When a truncated Volterra model is adopted as the post-distorter, Y is the N × P
Volterra matrix expansion of the signal y[n]. The number of parameters P is the
sum of the parameters of each sub-matrix in the model. For a K-order model we
can write:

Y =
[
Y(1) Y(2) · · ·Y(K)

]
ĥ =


ĥ(1)

ĥ(2)

...
ĥ(K)

 (2.30)

The first order sub-matrix of Y is a N × P1 Toeplitz matrix that realizes the linear
discrete convolution with ĥ(1). Using the notation y[n− q] = yq, we have:

Y(1) =


y0 0 · · · 0
y1 y0 · · · 0
y2 y1 · · · 0
...

... . . . ...
yN−1 yN−2 · · · yN−P1

 ĥ(1) =



ĥ0
ĥ1
ĥ2
...

ĥN−1


(2.31)
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The number of columns of higher order sub-matrices depends on the order and
the memory span of the model. For example, considering a symmetric model with
memory span L2 = 1 that gives P2 = 3, the second order sub-matrix and the
parameters sub-vector are:

Y(2) =


y2

0 0 0
y2

1 y2
0 y1y0

y2
2 y2

1 y2y1
...

...
...

y2
N−1 y2

N−2 yN−2yN−1

 ĥ(2) =

ĥ00
ĥ11
ĥ01

 (2.32)

The actual input of the system x[n] is not available, the reference r[n] is an ideal
representation of the input signal that represents the post-compensation goal.

r′[n] = x[n]ideal r[n] = Ar′[n− d] (2.33)

We can choose a delay offset and a scale factor of the reference signal to drive the
estimation process towards a profitable implementation of the correction filter. The
advantages in appropriately choosing the delay d and the amplitude A are discussed
in the following.

Reference amplitude scaling : when estimating Volterra kernels of an A/D
converter, we expect that the system has approximately unitary gain. This
translates in max |y[n]| ≈ max |x[n]ideal|. Differently, if the inverse model to
estimate is that of a receiving chain or a power amplifier there is an input-
output gain of tens of dBs. In the latter case the reference shall not have
the amplitude of the actual input x[n] (in this case the estimated filter would
attenuate the output of the system down to the input amplitude). The reference
should have the same amplitude of the output if we want the correction filter
to have unitary linear gain. In general we should choose the amplitude of the
reference as that of the desired post correction output.

Reference delay offset : delaying the reference impacts the estimation of the
unknown parameters. Typically, electronic circuits with dynamic nonlinearities
show short memory effects because of exponential decaying response of the
capacitive nodes. Thus to obtain a good compensation performance a short
memory of the model should suffice. We can obtain this goal choosing a delay
value that aligns the reference signal to the system output in the time domain.
Conversely, a reference signal “far” from the output signal would require
a Volterra model with higher memory lag to include the useful nonlinear
terms, with many short-memory terms being useless (ideally zero). This
behavior would produce a sparse Volterra model, that worsen the quality of
the estimate due to the increased parameters number and conditioning of the
sample matrix. Usually, linear lag of the compensation filter is sufficiently high
to cover the input-output group delay, so in linear equalization this effect is
negligible. Introducing the reference delay is equivalent to add a time shift
in the Volterra model. The choice of the optimum delay can be driven by
the post compensation performance using a fixed lag configuration. In low
oversampling conditions, the optimum delay value could be also fractional.
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Chapter 3

ADC digital calibration using
post compensation

In modern digital radio receivers the system performance heavily rely on the Analog-
to-Digital converters specifications. When high quality RF analog front-end is
employed, the ADC is the bottleneck for the system overall performance making
very difficult to meet high dynamic range requirements. The reasons that motivate
the use of digital post-compensation techniques stem from two main practical needs:
the first is to overcome the performance of the converters available on the market
when designing applications with beyond state-of-art specifications. The second
is to enable the use of a converter with lower nominal performance with respect
to the design requirements. This is the case when stricter constraints on power
consumption or area limit the device choice or also the very common case when the
ADC is integrated on the same chip with digital processing section using sub-micron
CMOS processes less suited for high precision analog design.

In this chapter digital calibration techniques for the ADC nonlinear compensation
are discussed and applied, and a method for model complexity reduction is proposed.
In Section 3.1 the theory of operation of the A/D converter is described and in
3.2 an overview of the most important ADC architectures is presented. Sect. 3.3
describes the pipeline ADC with 1.5-bit stages and the redundancy mechanisms
that provide robustness against comparators’ offsets. In Sect. 3.4 an overview of
the ADC calibration techniques is carried out, describing static and dynamic post
compensation techniques with a particular focus on model inversion methods. In
Sections 3.6 and 3.7 a calibration technique based on the direct estimation of the
post-inverse Volterra series is applied on a Sample and Hold and on a pipeline ADC,
simulated using the 45 nm process by STMicroelectronics, PVT robustness checks
are performed and an iterative backward pruning procedure is introduced.

3.1 A/D Converters theory of operation

The Analog-to-Digital Converter is a mixed-signal electronic device that represents
the boundary between the analog and the digital domain. It converts a continuous
time (CT), continuous amplitude input signal into a discrete time (DT), discrete
amplitude one. This process can be realized by two devices, as represented in Fig.3.1:
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Figure 3.1. Concept scheme of an ideal A/D converter

a Sample and Hold (S/H) stage that samples the input signal s(t) at specific time
instants nTs and a quantization stage that maps the continuous amplitude of the
sample into a discrete set of levels, also called codebook.

When the analog input is sampled by the S/H uniformly and instantaneously at a
frequency fs, the output spectrum will be the superposition of infinite replicas of the
input one centered around multiples of the sampling frequency. Mathematically, the
multiplication of a signal s(t) by a Dirac comb

∑
δ(t−nTs) in the time domain is equal

to the convolution of the input spectrum S(ω) by the Dirac comb 2π
Ts

∑
δ(ω −mωs).

For low-pass signals, if the input signal power is contained in the 0 to fs
2 band, which

is the first Nyquist band, the aliases of the input spectrum won’t be superposed, so
the original signal will be represented without loss of information. The analog signal
can be theoretically reconstructed using an ideal low-pass filter with fc = fs

2 .
The uniform b-bit quantization process can be viewed as an operator Qb that

maps the amplitude of the signal s[nTs] on a discrete set of equal size quantization
regions Si, with i ∈ {1 . . . L}, each of them associated to an output reconstruction
level xi ∈ {xj , j = 1 . . . L}. Each quantization region is bounded by a lower and
upper transition level, Ti and Ti+1. The distance between adjacent levels is the code
width ∆ and the maximum analog input level is the full scale (FS). The FS and the
number of bits of the quantizer limit the conversion accuracy with which the input
samples can be approximated. Considering a symmetric quantizer, the input signal
headroom goes from -FS to FS giving a total range of 2FS. The value of the code
width is equal to:

∆ = FS
2b−1 (3.1)

An example of a 3-bit quantizer transfer function is shown in Fig.3.2, where a half
code width shift has been applied to bound the maximum conversion error to ±∆

2 .
The quantization error eq[n] is the difference between the actual value s[nTs]

and the quantized one x[n]. This error can be viewed as an additive random noise
that generally is correlated with the input signal and assumes particular statistical
properties under certain conditions. It is stated in [82] that if ∆ is sufficiently small
and successive samples of the signal lie on distant quantization regions, eq[n] is a
stationary, white process with its samples uniformly distributed in {−∆/2,∆/2}
showing zero mean and variance σq = ∆2/12. The same result can be derived also
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Figure 3.2. Transfer function of an ideal 3 bit A/D converter. The linear fit of the mid
points of the quantization regions Si is a perfect straight line.

for a deterministic sinusoidal input, calculating the power of the quantization noise:

Pq = 1
∆

∫ ∆/2

−∆/2
t2 dt = 1

∆
t3

3

∣∣∣∣
∆
2

−∆
2

= 2
∆

∆3

3 · 8 = ∆2

12 (3.2)

Real A/D converters are also affected by other types of errors that arise from
the imperfections of the actual implementation, both stochastic and deterministic.
Mismatches in the components, clock jitter and non-linear behavior produce distor-
tions at the converter output that, together with noise, limit its effective precision.
In the following, the main Figures of Merit that describe static and dynamic ADC
performance are briefly described.

3.1.1 Performance Metrics

The most useful FoMs regard the noise and the linearity performance of the converter.
From a static point of view, we are interested in how much the actual transfer function
differs from the ideal one: we can evaluate it measuring the Differential Non Linearity
(DNL) and the Integral Non Linearity (INL). The static characteristic of the converter
can also show non-monotonicity and missing codes. We have a non-monotonicity
when the output code decreases after the input voltage has increased, and a missing
code when an output code never occurs for any possible value of the input.

Differential Non Linearity: The DNL is the difference between the actual and
the ideal code bin width after correcting for static gain, divided by the ideal
code width, evaluated for each quantization region and expressed in Least
Significant Bits (LSB):

DNLi = G∆real
i −∆
∆ (3.3)
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An ideal converter has an all-zero DNL vector. The presence of missing codes
produces DNL values equal to −1. The DNL describes a local relative error.
Fig. 3.3 shows a non-ideal transfer characteristic in which DNL measures are
highlighted.
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Figure 3.3. Transfer function of a non-ideal 3 bit A/D converter. The DNL is positive
when the actual bin width is greater than the ideal one, negative when it is smaller.

Integral Non Linearity: The INL is a measure of the cumulative effect of DNL
errors on the overall transfer function of the converter. From the standard
“Terminology and Test Methods for Analog-to-Digital Converters” [6], the INL
can be expressed as the difference between the ideal and the actual transition
levels after correcting for static gain and offset :

INLi = GTi + Vos − Tnomi

∆ (3.4)

From this expression it is clear that INL describes an absolute error because
it is related to the nominal transition levels Tnomi . Ideally, it should be an
all-zero vector. Fig. 3.4 shows a non-ideal transfer characteristics in which
INL measures are highlighted.

The dynamic characteristic of the converter can be described by FoMs that
include the stochastic and deterministic behaviors. Stochastic errors are summarized
by the Signal-to-Noise Ratio (SNR), which is the ratio between the power of a full
swing sinusoid and the noise power. Deterministic errors can be linear (gain and
offset) and non-linear, the latter more harmful for ADC performance. Non-linear
distortions, like those generated by non-uniform sampling (Time-Interleaved ADCs
will be analyzed in detail in Section 4), generate harmonic or spur components in
the ADC output spectrum.
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Figure 3.4. Transfer function of a non-ideal 3 bit A/D converter. The INL is positive
when the actual transition precedes the ideal one, negative when it follows.

Total Harmonic Distortion: Given an input sinusoid of power Ps and frequency
f0, THD is the ratio between the root-sum-of-squares of all the harmonic
distortion components including their aliases in the spectral output of the
analog-to-digital converter and the power of the desired signal:

THD =

∑
h
|X(fh)|2

|X(f0)|2 (3.5)

with h the first H harmonics of the frequency f0 (to catch only the harmonics
without noise).

Spurious Free Dynamic Range: SFDR is the ratio between the power of the
desired signal and the highest harmonic or spurious component:

SFDR = |X(f0)|
max
fd 6=f0

|X(fd)|
(3.6)

It is frequency dependent, so different values of f0 will produce different SFDR
values, typically worsen when increasing frequency. SFDR is an important
FoM because sets the ratio between the strongest and the weakest signals that
can be processed together by the ADC keeping the latter distinguishable (from
spurs).

The FoM that takes into account both noise and distortions is the Signal-to-Noise
and Distortions Ratio (SNDR, or SINAD), used to evaluate the effective resolution
of the converter in terms of Effective Number Of Bits (ENOB). An upper bound for
the SNDR is given by the Signal-to-Quantization Noise Ratio (SQNR), evaluated
for an ideal ADC affected by the quantization noise only.
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SNDR: The power of an input full scale swing sinusoidal signal is:

Ps = 1
T

∫ T

0
FS sin2(ωt) dt = FS2

2 (3.7)

if only the quantization noise is considered, the expression of the Signal-to-
Quantization Noise Ratio can be derived remembering the Eq.3.1:

SNDRideal = SQNR = Ps
Pq

= FS2

2 · 12 · 22b−2

FS2 = 1.5 · 22b (3.8)

that, expressed in dB produces the famous 6dB per bit rule of thumb:

SNDRidealdB = SQNRdB = 1.76 + 6.02 · b (3.9)

In a real case also electronic noise and distortions will affect the converter,
obtaining a lower value of the SNDR.

ENOB: The effective resolution of an ADC can be evaluated using the measured
SNDR. An equation identical to (3.9) can be written with the real SNDR at
the left side of the equation and the ENOB in place of the number of bits b:

SNDRdB = 1.76 + 6.02 · ENOB (3.10)

From this relation we obtain the effective number of bits of the converter:

ENOB = SNDRdB − 1.76
6.02 (3.11)

3.2 ADC Architectures overview
In this section we will give a brief description of the most important ADC architec-
tures: Flash, Successive Approximation and the Sigma-Delta (Σ-∆). A focus on
the pipelined ADC architecture will also be given for its widespread diffusion in
medium speed and accuracy applications (< 1GS/s, 14 bits). The digital calibration
techniques presented here are applicable to any ADC architecture but, depending
on the specific errors to be compensated, they can be more or less effective. This
description is in no way exhaustive but is sufficient in the context of the thesis to
outline the field of application of the correction methods. More accurate discussions
on A/D converters architectures can be found in [49, 82, 44].

3.2.1 Flash ADC

The architecture of a Flash ADC is shown in Fig.3.5. It consists of a sample-and-hold
stage, a linear voltage reference ladder, an array of comparators and a digital logic
section that encodes the array output into a b-bit output. The theory of operation is
very simple: the sampled input is compared with all the reference thresholds using the
2b − 1 comparators. All the comparators whose reference threshold is lower than the
input will output a “0”, while all the others a “1”. The ensemble of the comparators
outputs forms a thermometer code with 2b − 1 bits that is then translated into a
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Figure 3.5. Flash ADC Architecture

b-bit output by the encoder. This is the simplest and fastest ADC architecture
but, due to the exponential growing number of comparators and thresholds with
respect to the number of bits, it is limited to low resolutions (< 8 bits) in practical
implementations. The maximum achievable converter resolution is limited by the
accuracy of the reference thresholds and by the comparators offsets whose precision
must exceed b-bits resolution.

3.2.2 Pipeline ADC

The pipeline ADC divides the conversion process in many steps using many cascaded
stages. The architecture of the first stage of a pipeline ADC is shown in Fig.3.6.
At each stage, a bj-bit conversion is carried out together with the computation of

S/H( )inv t

DACADC

2b

bitsb

( )r t

Figure 3.6. First stage of a pipeline ADC
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the residue rj(t), that is the quantization error of the stage extended over the input
range. The pipeline introduces a latency in the conversion process equal to the
number of stages. In the simpler case, 1-bit per stage conversion is carried out.
Considering a symmetrical input range ±VR, the following steps are performed by
each stage:

1) 1-bit ADC checks the input’s sign and outputs a digital 1 or 0 whether it is
positive or negative

2) The DAC outputs +VR/2 or −VR/2 accordingly, and this value is subtracted
from the original analog input

3) The signal obtained is multiplied by 2 and fed to the following stage

In practical implementations, a higher number of bits per stage is used. Typically,
due to circuital imperfections such as comparator offsets, redundancy is added at each
stage overlapping the quantization regions: this consists in using more comparators
than that needed for the effective resolution of the stage, and implementing digital
correction using the information of the following stages. A scheme of the pipeline
architecture is shown in Fig.3.7. A widespread architecture is the 1.5-bit per stage
that will be analyzed in detail in Section 3.7.1. The advantage of pipeline converters

( )inv t

[ ]x n

st1 stage

1b 2b Kb

nd2 stage th stageK

Digital Correction Logic

-bitsb

S/H

Figure 3.7. Pipeline ADC architecture with digital correction logic

is that the number of stages (comparators) is linearly dependent on resolution,
instead of exponentially dependent, like in flash converters. These converters are
more complex than flash ADCs, from the architectural point of view, and this causes
the achievable sampling frequency to be lower.

3.2.3 Successive Approximation ADC

The SA-ADC architecture is depicted in Fig.3.8. It consists of a Sample-and-Hold, a
comparator, a Successive Approximation Register (SAR) and a Digital-to-Analog
Converter (DAC).

The principle of operation is an iterative binary search through all possible
output codes that converges to the best digital approximation minimizing the output
of the DAC and the sampled input. For each conversion, the SAR changes a bit
per clock cycle starting from the Most Significant Bit (MSB) of the digital code.
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Figure 3.8. Successive Approximation ADC Architecture

Then, for each clock cycle, the present code is converted by the DAC and supplied
to the comparator. Depending on the comparator’s output, the SAR keeps the bit
to 1 or otherwise reset it to zero. When the process arrives at the Least Significant
Bit (LSB) of the SAR the End Of Conversion (EOC) signal is asserted. This ADC
architecture is not suited for high-speed applications because it requires b clock
cycles to produce a b-bit output sample. The precision of the conversion relies on
the precision of the comparator and that of the DAC.

3.2.4 Σ-∆ ADC

The sigma-delta ADC is an oversampling converter that uses a 1 bit ADC and
noise shaping techniques to obtain a slow but very accurate conversion, trading
speed for resolution. The bandwidth of the input signal is much less than the
Nyquist band (let’s say 1/M). The scheme of a first-order Σ-∆ converter is shown
in Fig.3.9. The analog section consists of an integrator, a comparator (1-bit ADC)
and a 1-bit DAC, followed by the digital section that includes a low-pass filter and a
decimator. The feedback DAC maintains the average output of the integrator near

( )inv t

1-bit
DAC

LPF M [ ]x n

Figure 3.9. Sigma-Delta ADC Architecture

the comparator’s reference level. At the comparator’s output, the density of "ones"
is proportional to the amplitude of the input signal. For an increasing input the
comparator generates a greater number of "ones," and vice versa for a decreasing
input. The integrator is a first-order filter in the feedback loop that acts as low-pass
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for the input signal and high-pass for the quantization noise. Thanks to this behavior
and to the oversampling, the noise is pushed at high frequencies. The digital 1-bit
stream is then low-pass filtered with fc = fs/M . If the input has been sampled at
fs, the filtered-output data rate can therefore be reduced by the decimator to fs/M
without loss of information. This first-order converter provides a 9dB improvement
in SNR for every doubling of the sampling rate [5].

3.3 Pipeline ADC with 1.5-bit stages

Pipeline architectures are very common in communication applications because they
can combine both good accuracy (∼ 12− 14 bits) and good speed (∼ 1− 100MS/s)
at the same time. Different types of stages can be employed, going typically from
1 to 4 bits per stage. Each stage is also called Multiplying DACs (MDAC) for the
presence of the 2b gain. As already mentioned, due to imperfections in the circuital
implementation that cause offset errors in the comparators, robust MDAC stages
can be realized exploiting digital redundancy.

To better understand the effect of comparator’s offset on a pipeline we can take
the cascade of two 1-bit MDACs with the first one affected by offset. The 1-bit
MDAC has only one zero-crossing comparator that outputs 1 bit, thus having two
output possible states. The transfer characteristic of the ideal 1-bit MDAC and the
cascade of two 1-bit stages is shown in Fig.3.10a. When the first comparator has

1 0.5 0 0.5 1
1

0.5

0

0.5

1

1INV

1OUTV

(a)

1 0.5 0 0.5 1

1INV

2OUTV

(b)

Figure 3.10. 1-bit MDAC transfer characteristic (a) and corresponding 2 stages cascade
(b) normalized to VR

an offset, it produces an output residue out of the range {−1, 1} that saturates the
second stage (and the rest of pipeline if we consider more than two stages) as shown
in Fig.3.11a.

To counteract the saturation problem, an input-output characteristic that has a
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Figure 3.11. 1-bit MDAC transfer characteristic affected by offset (a) and corresponding 2
stages cascade considering the second stage ideal (b) normalized to VR

margin before saturation is used. Offsets can still impact the behavior of the stage,
but, as long as their effect doesn’t exceed the redundant margin, they don’t impact
the pipeline performance. The simplest MDAC that implements redundancy in
the quantization regions is the 1.5-bit architecture, shown in Fig.3.12. The 1.5-bit
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Figure 3.12. 1.5-bit MDAC architecture

MDAC has 2 output bits, b0 and b1, and have three possible output states, depending
on the value of the input signal with respect to the thresholds −VR

4 and VR
4 . The

three combinations can be associated to a three state variable D, useful to express
the input-output characteristic of the 1.5-bit MDAC. The possible 2-bit outputs are
mapped in Table 3.1.
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Table 3.1. Output bit mapping of a 1.5-bit MDAC

VIN range b1 b0 D{
−VR,−

VR
4

}
0 0 -1{

−VR4 ,
VR
4

}
0 1 0{

VR
4 , VR

}
1 1 1

Using this notation, we can write:

VOUT = 2VIN −DVR (3.12)

Considering again the case of two stages cascade, the transfer characteristic of the
single 1.5-bit MDAC and that of the cascade are shown in Fig.3.13a. In this case it
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Figure 3.13. 1.5-bit MDAC transfer characteristic (a) and corresponding 2 stages cascade
(b) normalized to VR

is clear that the comparators’ offset can’t cause the saturation of the following stages
of the pipeline. Digital correction is realized properly combining the output codes of
each stage, exploiting the redundancy of the 1.5-bit MDAC. It can be noted in Table
3.2 that the codes around the thresholds of the first stage are logically equivalent.
Digital correction makes the converter insensitive to comparators’ offset up to a
certain extent. The maximum amount of offset that the stage can tolerate is ±VR

4
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Table 3.2. Output digital redundancy of the cascade of 2 1.5-bit MDAC. D1 and D2 are
the output state of the first and second stage respectively

VIN range D1 D2 2D1 +D2{
−VR,−

5VR
8

}
-1 -1 -3{

−5VR
8 ,−3VR

8

}
-1 0 -2{

−3VR
8 ,−VR4

}
-1 1 -1{

−VR4 ,−VR8

}
0 -1 -1{

−VR8 ,
VR
8

}
0 0 0{

VR
8 ,

VR
4

}
0 1 1{

VR
4 ,

3VR
8

}
1 -1 1{3VR

8 ,
5VR

8

}
1 0 2{5VR

8 , VR

}
1 1 3

due to the output available range (±VR
2 ) and the stage gain equal to 2. In Section

3.7 a switched capacitors implementation of the 1.5-bit architecture described here
will be shown using 45 nm CMOS process by STMicroelectronics.

Since other kind of errors in addition to comparators’ offset can affect actual
ADC realizations, many different post compensation techniques have been developed
to overcome the performance limitations introduced.

3.4 Post compensation methods for ADCs
In this section an overview of the main error correction techniques applied to A/D
converters is given, following the outline used by [63]. These techniques are based
on four main methods, as summarized in [10]:

• Architecture-based

• Dithering

• Look Up Tables

• Post inversion models

The architecture-based methods are specific for each of the ADC architectures. In
the previous Section we have seen the mechanism of digital redundancy implemented
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by the 1.5-bit stages that eliminates the risk of saturation and missing codes. Another
widespread error correction method for the pipeline ADC is the radix calibration:
due to finite opamp gain and capacitors’ mismatch, the inter-stage gain between
MDACs is different from the ideal value of 2b. Thus the real radix of each stage
must be estimated by the calibration algorithm in order to obtain the corrected
reconstructed output [24].

3.4.1 Dithering

Dithering methods are based on the statistical theory of quantization and rely on
the idea that adding some kind of noise to the signal before the quantization process
improves the converter’s performance. The main aims of dithering are to decorrelate
the input and the quantization error and to randomize the INL/DNL patterns. The
fulfillment of the quantizing theorem [104] is a necessary condition (Widrow [105])
for the adoption of the simple pseudo-quantization noise model consisting in an
additive noise source with predictable statistics at the output of an ideal quantizer.
The injection of a proper dither can help the input signal satisfy that condition.

With a time invariant DNL characteristic, a given input value is always affected
by the same error and produce the same deterministic distortion. The dither can
occasionally change the quantization region to which that input value is associated
to, thus changing DNL and eliminating the deterministic nature of the distortion.

Particular applications such as [9] use averaging in conjunction with dithering to
increase the resolution of the ADC but are effective only for slowly varying signals
(similarly to oversampling in Σ-∆). A satisfactory analysis of the statistical theory
of quantization is out of the scope of this thesis and can be carried out in [42, 59].

We focus on the LUT-based and post inversion methods that, as already specified
in Chapter 2, are applicable to the more general compensation of nonlinearities in
dynamic systems.

3.4.2 Look Up Table based methods

The LUT based compensation techniques have been widely applied to the correction
of static and dinamic ADC errors. The method consists in using the output samples
from the ADC as index of a table which can have one or more dimensions. The
entry value in the table is either added to or used to replace the current ADC output
sample. LUT methods differs mainly depending on the indexing scheme with which
the table index is generated and the type of value stored in the table. Furthermore,
LUT methods rely on other steps common to different compensation techniques, such
as the selection of proper input “calibration” signals and the estimation algorithms
and criteria already seen in Section 2.3. In the following we describe the two specific
aspects of LUTs.

Indexing scheme

The indexing scheme specifies how the table index is generated using the output
samples. Correction methods are based on static, state-space and phase-plane
architectures, each of them requiring a proper indexing scheme that determines size
and structure of the LUTs.
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In the static indexing case, each output b-bit code x[n] or only a subset is mapped
to an index, requiring a 2b table entries. Less than b bits can be used if the table
contains correction values that are added only to a limited input range. This kind
of method doesn’t take into account dynamic errors, so it is limited to narrowband
applications.

The state-space indexing takes into account of the error dynamics using the
current and a certain number of past values of the output code. If N previous
samples are used, a N -dimensional state-space indexing is realized. If the full b-bit
code is used for each dimension, the number of the table entries is 2(N+1)b [95]. It
is clear that the memory requirements for the LUT grow exponentially with the
memory span, so practical implementations are limited to medium resolutions and
lags not greater than 2. To overcome the memory limitation, different approaches
have been proposed based on the reduction of the size of the stored values, made by
truncation [99] or with a more sophisticated bit mask selecting a subset of the b-bits
[64].

In the phase-plane indexing, the index is built using the present sample and an
estimation of the signal slope [75]. N -dimensional phase-plane LUTs include the
derivatives up to the N -th order [29]. The approximation of the derivative can be
computed as a backward difference using the output samples, or with a differentiator
filter, either digital or analog (in the latter case another ADC is needed to sample
the analog derivative). The considerations for memory occupation are the same that
in state-space LUTs.

Table values

The data inserted into each LUT register can be a replacement or a correction value.
In the former case, the calibrated output value is stored into the LUT and is fed
to the output when the actual output code (used as index) points to its location.
In the latter, only the difference between the calibrated and the actual output is
stored in the table. The calibrated output is obtained summing the actual output
and the corresponding correction value stored in the LUT. Using correction values
can improve memory occupancy at the expense of a slightly increased architectural
complexity and power consumption.

3.4.3 Post inversion methods

Many correction methods rely on the mathematical model of the ADC errors and its
inverse. The application of such methods is limited to post-inversion when applied
to ADC compensation, but the same mathematical principles also apply to the
pre-distortion case (e.g. PA linearization). The inverse models are used in cascade
after the ADC in order to obtain an overall system with improved performance in
terms of linearity and thus resolution.

Some methods are based on the modeling of specific ADC’s error sources and
non-linear contributions like nonlinearity of the amplifier’s open-loop gain, offset
in the comparators and capacitors’ mismatch [36, 21, 51]. A large part of ADC
compensation methods are based on more general models both for direct or inverse
system modeling. The most common are the Volterra series [96] and its subsets
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(Memory Polynomial [74], Modified Generalized Memory Polynomial [90], Hammer-
stein model [89]), Wiener model [96], Chebyshev polynomials [8] and orthogonal
polynomials [106]. The theory on inverse system estimation presented in Chapter 2
apply to the calibration techniques based on these linear in the parameters models.
In the following we apply digital calibration based on model inversion using a grey
box approach: the target post-distorter is assumed to be a Volterra model but no
specific information from the knowledge of the system response is used to prune
the model. A backward iterative algorithm is used to reduce the model complexity
while maximizing the post compensation performance.

3.5 ADC calibration techniques

The models we have seen in the previous section are used to represent and correct
the converter static and dynamic errors. The estimation phase of the unknown
model parameters or the LUT entries can be done once before ADC operation or
continuously to track system variations. Depending on how the estimation and
correction procedures are carried out, we can divide these techniques in foreground
and background calibrations.

3.5.1 Foreground calibration

Foreground calibration requires the interruption of the normal ADC operation for
the model parameters estimation one or more times, depending on how fast the
system parameters change. Offline calibration may require only one estimation
phase when the system is robust to environmental variations or when multiple
calibration coefficients sets are computed to take into account different operational
conditions. Examples of foreground ADC calibration can be found in [41] and [24].
The main advantage of this technique is that the estimation phase can be done with
a selected set of input test signals and least squares method, without worrying about
convergence speed of iterative algorithms. On the other hand, it may not be possible
to interrupt the ADC operation or the system parameter may change too rapidly,
requiring the use of background calibration.

3.5.2 Background calibration

Background calibration is a continuous process that is carried out in parallel to the
normal ADC operation. Many background calibration techniques in literature focus
on the correction of static errors due to capacitors mismatch and finite amplifier gain.
Typically, when addressing the correction of specific errors, these techniques belong
to the architecture-based methods therefore being targeted for a particular ADC
architecture. Among the background calibration techniques there are correlation-
based, skip and fill and queue-based ones. The correlation based techniques rely on
statistical properties of the errors, such as the dithering methods described before
or the random swapping of the capacitors in the MDAC proposed in[84]. The skip
and fill [54, 73] consists in skipping the conversion of one sample and use that
time slot to perform calibration. The sample missed is filled with a polynomial
interpolation using leading and lagging samples. The queue-based methods [41, 32]
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applied to pipeline ADC need two different clock domains, one for the S/H and one
for the MDACs with a significant design complexity increase. The faster MDACs
will have empty conversion cycles in which to perform calibration. To correct also
frequency dependent errors (i.e. memory effects), background calibration using
inverse dynamical models are used. The most common approach requires the use
of a slower but more accurate ADC that acts as a reference channel, as shown in
Fig.3.14. Trade-offs between convergence speed of the iterative algorithms (that
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Figure 3.14. Reference channel based background calibration architecture

must be sufficient to track system variations) and correction accuracy have to be
taken into account. Focusing on the adoption of LIP models, iterative algorithms
for a linear estimation problem can be used. In Sect. 4.6 a background calibration
technique is applied to a Time-Interleaved ADC using RLS algorithm to estimate
the parameters of a linear filter bank.

3.6 S/H digital calibration in 45nm CMOS process

Sample & Hold stages are the front-end of most analog-to-digital converters and
many S/H implementations are based on switched capacitor (SC) circuit techniques.
SC circuits are discrete-time, continuous-amplitude functional blocks which store
information as charge held in capacitors, and use switches and operational amplifiers
to manipulate this charge and perform signal processing functions, such as summation,
integration and filtering. Due to errors in the physical implementation such as
switch and amplifier nonlinearities, capacitor’s mismatch, or particular operational
conditions like incomplete settling and slew rate, the performance of the S/H can be
a limiting factor for the linearity of the overall system, especially at high sampling
frequencies.

Discrete-time Volterra filters can be used as post distorters to improve the
linearity of such mixed-signal circuits. Due to exponential growth of the number of
parameters to be estimated, computational costs could be unsustainable. Subsets of
Volterra kernels with a reduced number of parameters can be used to model specific
nonlinearities, for instance the nonlinear switch on-resistance [77, 86]. [77] achieves a
performance improvement of more than 20dB using hundreds of coefficients, whereas
without complexity reduction the number of parameters would have run in the
thousands. [86] uses the p-th order Volterra inverse and develops a model which
reduces complexity (to tens of parameters) with a linearity improvement of about
10dB, up to close to 30dB for larger models and using inherently more linear analog
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circuit techniques such as bootstrap switches. These techniques are tailored for a
specific model of distortion and may thus be less effective in a more general case in
which switch nonlinearities, amplifier nonlinearities and incomplete signal settlings
are present, which is often the case in low-power high-speed S/H stages. [86] also
shows that some circuit techniques can be less amenable to calibration, as switches
implemented using transmission gates achieve lower linearity improvement.

In the following we describe the application of digital calibration to a S/H
in CMOS 45nm STMicroelectronic process using direct estimation of the inverse
Volterra model. We show that Volterra kernels of limited complexity (short memory)
which use a specific lag for each order of nonlinearity, after careful pruning of the
model to eliminate the parameters which add little to overall performance, achieve
robust performance improvement.

3.6.1 Switched Capacitors S/H

The simulated circuit is a fully-differential flipped-around S/H shown in Fig.3.15a,
that uses Correlated Double Sampling (CDS) and Bottom Plate Sampling (BPS)
techniques, with a folded cascode amplifier and transmission gate switches.
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(b)

Figure 3.15. Flipped-around fully differential Sample and Hold scheme (a) and associated
clocking scheme (b)

During Sample Phase (φ1), the input signal charges the capacitors CH , that
are closed towards the “virtual” ground of the closed loop amplifier. The capacitor
voltage is equal to the input, as soon as the sampler’s bandwidth, limited by the
switches’ resistance, is higher than the signal bandwidth. Before the end of φ1,
the switches φ1e open leaving the capacitors floating. This technique eliminates
charge injection and clock feedthrough. When φ1 is over, the input signal at the
switching-off instant is held on the capacitor. During the Hold Phase (φ2), the
voltage stored in the capacitor is fed to the output. If the operational amplifier is
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ideal, the output voltage is equal to the voltage on the capacitor, that is equal to
the input voltage at φ1. The output voltage is ready at the end of φ2, so the S/H
output introduces a Ts

2 delay.
The S/H has a clock period Ts = 50MHz and shows incomplete settling at this

speed. No analog techniques to improve switches’ accuracy have been employed,
such as clock voltage doublers or input dependent bootstrap: simple Transmission
Gates (TG) switches are employed. The fully differential amplifier has an open-loop
gain of 36dB, a gain-bandwidth product of 250MHz and consumes 30µW. Also the
CMFB is implemented using a switched capacitor architecture.

3.6.2 Volterra parameters estimation

The symmetrical truncated Volterra series described in 2.1.1 is adopted to model
the S/H post-inverse system.

y[n] =
K∑
k=1

yk[n] yk[n] =
Lk−1∑
q1=0
· · ·

Lk−1∑
qk=qk−1

hk[q1, . . . , qk] ·
k∏
i=1

x[n− qi] (3.13)

Different configurations of memory lags and maximum order have been tested, with
different memory lags for each kernel order (Li not necessarily equal to Lj). Dealing
with a fully differential circuit, even order distortions are usually negligible thus odd
order kernel are mainly used in the following. Monte Carlo simulations including
mismatch have shown that a few even-order terms (including DC offset) suffice.

A set of 30 input-output signals have been simulated, and then “sampled” at
50MS/s in the Cadence simulation environment (remembering the in-out half clock
cycle delay). Coherent sampling is adopted, as described in Subsection 2.3.3, for the
selection of 30 sinusoids in the first Nyquist band:

sin,j(t) = A sin(2πfjt) with fj = j

64fs, j ∈ {1, 31} ∧ j 6= 16 (3.14)

The frequency fs
4 has not been used because all of its odd harmonics fall on fs

4 itself
due to aliasing and all the even harmonics fall to DC.

Among the 30 waveforms, 22 are used for parameters’ estimation and the
other 8 for out-of-sample validation of the robustness of the technique: linearity
improvement is similar for in-sample and out-of-sample tones, implying robust
performance improvement also for signals not included in the calibration set. Least
Squares estimation of the model parameters has been performed in the time domain
using all the 22 input-output waveform data points as a batch.

3.6.3 Simulation results

In the following, simulations are reported with a lag structure [L1, L3, L5, L7], im-
plying that the lag of the kernel of order k is Lk. To account for mismatch effects
in Monte Carlo simulations, which create even-order distortions, terms of order
0 (offset), 2 and 4 have been added, with L0 = L2 = L4 = 0: a constant term
and two terms x2[n] and x4[n] are sufficient for correction at a computational cost
of 3 additional multiplications. More complex even-order kernels do not improve
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linearity further. Linearity improvement has been defined as the difference between
the minima of the SNDR after and before calibration in a specified band. Gain
flatness is the variation of the linear gain in the same band. An improvement in
the results has been reached with respect to that already published in [19] adding a
delay to the reference signals in the estimation phase, as explained in Subsection
2.4, that doesn’t add complexity to the correction filter.
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Figure 3.16. Comparison between pre and post calibration SNDR and Gain, using a
[20, 2, 2, 2] lag configuration

Fig.3.16 shows that an improvement of 20dB can be obtained from DC to 80%
of the Nyquist band with lags [20, 2, 2, 2]. There are 87 coefficients to estimate, and
gain flatness in the band of interest is below 0.01dB. Out-of-sample frequencies are
shown using markers. Fig. 3.17 shows the same figure for lags [20, 4, 2, 2], with 113
free coefficients and a slightly higher SNDR improvement of 23.6dB. Simulations
do not include noise, so that SNDR=-THD. Calibration cannot improve SNR, and
noise would only increase the duration of the offline estimation phase.

Figs. 3.18 and 3.19 show the effect of pruning. The adopted method is a
backward pruning technique based on an iterative algorithm that, starting from the
largest number of parameters given by the initial lag structure, discards at each step
the parameter that impacts linearity the least. The quality criterion that drives
the pruning algorithm is the post calibration SNDR. Removing a few parameters
improve both linearity and computational cost, and a large reduction in the number
of parameters can be achieved preserving the same linearity enhancement obtained
without pruning.
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Figure 3.17. Comparison between pre and post calibration SNDR and Gain, using a
[15, 4, 2, 2] lag configuration
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Figure 3.18. SNDR improvement and gain variations with pruning, starting from a
[20, 2, 2, 2] lag configuration

Fig. 3.18 shows that the number of parameters can be reduced up to 39,
keeping more than 12dB of improvement, starting from lags [20, 2, 2, 2]. The peak
linearity improvement is 25.7dB with 70 parameters and 24 dB are obtained with
58 parameters. Fig. 3.19 shows that a peak linearity gain of 26dB can be achieved
with 87 parameters, 24dB gain with 57 and 12 dB with 37 parameters starting
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from lags [20, 4, 2, 2]. Because the minimum number of coefficients for a given
SNDR improvement varies with the initial lag structure, many simulations have been
performed to achieve a given improvement with a minimal number of coefficients.
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Figure 3.19. SNDR improvement and gain variations with pruning, starting from a
[20, 4, 2, 2] lag configuration

Out-of-sample data have been used to test algorithm performance with signals
not used in estimation. There is no significant difference between in-sample and out-
of-sample frequencies. Temperature and voltage variations have been tested. Offline
calibration techniques need the calibrated system to be stable against operational
conditions because parameters are kept constant after estimation. The uncalibrated
S/H show a SNDR variation of more than 3 dB between 7 and 47 ◦C. Temperature
variations of ±10 ◦C and supply voltage variations of ±1% (12 mV) have little effect,
especially for simpler models. Fig.3.20 show the post calibration SNDR of the typical
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Figure 3.20. Comparison between post calibration SNDR in case of supply voltage
variations of ±1% using a 54 parameters pruned model



3.7 ADC pipeline digital calibration in 45nm CMOS process 41

case against the VDD variations using a pruned model with 54 parameters. The
typical SNDR improvement is 23 dB: in case of 99% and 101%VDD it is 4.5 dB and
2 dB less respectively. Parameter sets optimized for different operating conditions
may be stored in a Look-Up Table, increasing the operational range. Monte Carlo
simulations show that a limited number of even-order correction terms (3 including
offset) are sufficient.

3.7 ADC pipeline digital calibration in 45nm CMOS
process

Calibration using Volterra models with iterative pruning, presented in the previous
Section[19] for a sample and hold stage, can be extended to pipeline ADCs, and
its performance advantage increases with the sampling frequency of the ADC. This
approach achieves better linearity with comparable complexity than other simplified
Volterra models found in the literature. Volterra models are better suited for
representing weakly non-linear systems with mild distortions. For this reason ADC
front-end stages, such as SHAs [77, 86], can be more accurately represented with
Volterra models, as they do not contain comparators, which produce heavily non-
linear behaviour. More complex models, in terms of higher order rather than higher
lags, can be expected to be required for the correction of ADCs.

Model complexity is a limiting factor in the applicability of Volterra models.
The literature on ADC calibration usually employs a different approach. Volterra
kernels used for generic ADCs are based on a priori hypotheses on the structure
of the kernels [77, 86, 91, 68] to reduce the number of parameters. In [68], a very
compact model is used, as it is a second-order model of mixed products of the input
and its derivative, approximated as a central difference. The memory span is thus
limited to 1 lead and 1 lag samples, equivalently to a Volterra model with order and
lag equal to 2. This model can be extended to higher orders. In [77] a simplified
model is obtained by forcing hk[q1, . . . , qk] = 0 for q2, . . . , qk 6= 0 in Eq. 3.13, i.e. the
term of order k is the product of a polynomial memoryless term of order k − 1 and
a linear term with memory. This model is also used in [67], though in the frequency
domain, as described in Subsection III.A in that paper. In [91], two models are used
– memory polynomial [74] and modified generalized memory polynomial [90] – to
compensate a commercial ADC, reaching, however, a limited 10 dB gain in SFDR.

Other approaches [89, 57] use pruned models such as Hammerstein and Wiener
models. We show that these approaches may be less effective, and sometimes
ineffective, for the calibration of high-speed pipeline ADCs.

In the following, we apply digital calibration based on Volterra filtering on a
pipeline ADC with 1.5-bit MDACs after a radix-based calibration [56] used to correct
errors such finite gain and capacitor mismatch. Only the output of the pipeline
ADC (after conventional calibration) is used in our non-linear calibration technique.
This makes this technique suitable for calibrating off-the-shelf components, as it
does not require modifications in the ADC hardware [91].

Performance is assessed with respect to the clock frequency and the number of
stages. The iterative pruning technique shown in the previous Section is applied and
improvements are discussed.
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3.7.1 Switched Capacitors Pipeline ADC

The pipeline ADC has a S/H stage followed by 16 1.5-bit MDACs, simulated in the
CMOS 45 nm STMicroelectronic process with a 1.2 V power supply. The amplifier
is a two-stage Miller-compensated operational transconductance amplifier (OTA)
with a telescopic cascode as first stage. Each fully differential amplifier has a CMFB
with resistive-partitioning and a diode-loaded differential pair. The reference voltage
is 1 Vpp differential and it is buffered using one buffer per stage.

Both the S/H and the MDAC stages are implemented using switched capaci-
tors technique. The S/H topology is the same of Fig.3.15a. All the switches are
transmission gates. Each stage is composed by:

• the 2-bit sub-ADC, consisting of two dynamic comparators

• the sub-DAC, realized as a simple multiplexer that converts the 2-bit represen-
tation into the three level signal D

• the summing node and the multiplier implemented as a whole

The dynamic comparator topology is shown in Fig.3.21. The clock signal controls
both the differential pairs and the output buffer with only one phase. When the
clock signal is low the differential pairs are disabled and both the output are reset.
When it is high, the differential pairs are enabled and control the regenerative loop
above them.

inV RV

CKV

RVinV

CKV

CKV CKV

outV outV

DDV

Figure 3.21. Latch comparator circuit

The circuit that produces the double of the subtraction between the input data
and D is represented in Fig.3.22. The principle is similar to that of a S/H stage, but
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1
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Figure 3.22. Circuit that implements subtraction and multiplication of the input and the
D signals

the digital circuits change the input-output relation in order to obtain the typical
characteristic of a 1.5-bit MDAC.

During φ1, the charge stored in the two capacitors equals 2CHVin. During
φ2, with an ideal operational amplifier, we have that the charge stored in the two
capacitors is CH(Vout +DVR). The equality of the two terms produce the wanted
relation: Vout = 2Vin −DVR.

The digital circuits compare the input voltage with the thresholds of the two
comparators (−VR

4 and VR
4 ) and select one of the three input reference voltage of

the multiplexer (−VR, 0 and VR) in order to obtain what we have called DVR.
Circuit non idealities such as opamp finite gain and input capacitance and

capacitors’ mismatch produce linear static errors in the gain of the MDAC. Switch
and amplifier nonlinearities introduce more complex non linear errors that can show
memory effects. Even if the signals in the system are not perfectly settled, there
can be residual memory effects, which consists in outputs that partially depend
upon previous samples. This generally occurs because capacitors do not discharge
completely, and their final value depends both on the initial condition and on the
final state which would be reached, if enough time were available. This behavior is
most likely to be apparent when the clock frequency increases.

3.7.2 Simulation results

The methodology for the selection of the post inverse model, the design of the input
data set and the estimation of the parameters is the same adopted for the sample
and hold in the previous Section. The ADC’s SNDR has been defined as that of
the tone from DC to 80% of the Nyquist frequency with the highest distortion.
All the 30 frequencies are considered: if the model overfits the data, out-of-sample
tones have lower SNDR. The pipeline was originally designed to work with a clock
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frequency of 50 MHz but thanks to digital calibration it has been possible to push
it up to 125 MHz. Power consumption does not change appreciably with the clock
frequency.
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Figure 3.23. SNDR improvement against nominal ADC resolution using a lag structure
[30, 4, 2, 2, 1, 1, 1, 0, 0, 0].

Fig. 3.23 shows SNDR improvement (in ENOB) against nominal ADC resolution
and sampling period, using a lag structure [30, 4, 2, 2, 1, 1, 1, 0, 0, 0] for odd orders
from 1 to 19. Number of parameters is 162 without pruning. The nominal resolution
of the pipeline is the number of MDAC stages plus 1. The Volterra model has
been used to simulate both the improvement in the S/H stage alone (assuming
an ideal ADC) and of the whole pipeline ADC. Simulations with 8 ns sampling
period show that the ADC has about 9 bits of ENOB before calibration and close
to 11.5 after. The S/H’s ENOB is 10.5 bits and reaches 14 bits after calibration.
A memoryless polynomial model with odd-order kernels from 3 to 19 has been
simulated: it improves linearity by 0.5 bit at 16 and 12 ns of clock period, but it has
no effect at 8 ns (125 MS/s). The effects of pruning are shown in Fig.3.24 for the
three sampling frequencies, starting from the lag structure [30, 4, 2, 2, 1, 1, 1, 0, 0, 0].
Pruning improves linearity, initially, and reduces model complexity by a factor of
about 2.

The models in [77, 68] and in [91, 74, 90] have been used to calibrate our 8 ns
sampling time data set. Table 3.3 reports the best results we have found for each
algorithm.

The model [68] is simple but not effective. The MP model in [91] has limited
effectiveness (about 0.5 bit peak improvement), with a low parameter count. The
MGMP model is marginally better, but more complex. The model in [77] is more
effective, yielding a maximum improvement of about 1.2 bits with 205 coefficients,
and about 0.9 bit with 21 coefficients. ENOB improvement saturates at 1.2. Our
pruned Volterra model achieves performance improvements larger than 1.2 bits, up
to 2.5 bits, with a cost from about 40–101 parameters.



3.7 ADC pipeline digital calibration in 45nm CMOS process 45

Number of coefficients

406080100120140160

L
in

ea
ri

ty
 [

E
N

O
B

]

9.5

10

10.5

11

11.5

12

12.5

8 ns

12 ns

16 ns

Figure 3.24. SNDR improvement against number of coefficients using a lag structure
[30, 4, 2, 2, 1, 1, 1, 0, 0, 0].

Table 3.3. Linearity improvement and complexity for various models

Reference Max Order Max Lag Complexity ∆ENOB

[68] 3–19 – – 0

[77]
5 3 21 0.9

9 20 205 1.2

[91] (MP) 5 2 6 0.5

[91] (MGMP)
9 4 20 0.4

11 5 30 0.7

This work Pruning from model in Fig.3.24
referring to the 8 ns curve

53 1.5

72 2

101 2.5
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3.8 Conclusions
In this chapter an offline post compensation technique based on the Volterra series
has been applied to calibrate a S/H stage and a pipeline ADC. An iterative pruning
algorithm has been used to reduce computational complexity of the model, demon-
strating that a slightly better performance is reached with less parameter than the
complete model. In the S/H, improvements greater than 24 dB are obtained using
57 model parameters after pruning. Moreover, it is possible to enhance performance
for pipeline ADCs driven at much higher sampling frequencies than the nominal
one, as the Volterra model can correct for the effects of the non-linear dynamics of
the circuits. The performance improvement is in fact particularly significant for the
largest simulated sampling frequency of 125 MS/s.
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Chapter 4

Time-Interleaved ADC
calibration using filter banks

Widespread applications such as direct sampling receivers, radar and instrumentation
require both high speed and high linearity analog-to-digital converters. Pushing
the ADC technology to the limit may not be sufficient, considering even greater
challenges in IC design due to scaling down to nanometer technology nodes. One
possibility to achieve combined speed-resolution goal and to overcome technology
limit is to exploit parallelism: Time-Interleaved ADC achieve high conversion rates
by interleaving samples coming from multiple slow and accurate ADCs connected in
parallel. An M -channel architecture produce a digital output sampled at M times
the single ADC sampling frequency. From a theoretical point of view, considering
identical converters on each channel and a perfect clocking scheme, there is no
limit in increasing M (however the analog bandwidth of the single ADC must be
grater or equal to the full input bandwidth). In practice gain, bandwidth and
timing mismatches between the channels produce distortions on the reconstructed
output, limiting the effective number of bits of the overall converter. For this reason
calibration techniques are mandatory to fully exploit the interleaving potential.
While analog calibration architectures are resource consuming in terms of area and
power [83], digital ones are even more cheaper thanks to the increasing component
density and lower power supply. Different calibration techniques have been proposed
that use additional circuitry or known input signal properties to estimate these errors
and correct them using digital processing [44, 55, 103]. In this chapter two approaches
for the calibration of 4-channel TI-ADC are presented: first, the correction method
based on perfect reconstruction (PR) filter banks is described and a closed-form
solution for the 4-channel architecture is derived and demonstrated with behavioral
simulations. Second, a background calibration technique using cyclo-stationary
filter banks along with fixed-point complexity reduction methods is presented. In
Section 4.1 the general architecture of a TI-ADC and the behavioral model based
on analysis-synthesis filters are described. Section 4.2 introduce the simple problem
of finding perfect reconstruction filters for a 2-channel architecture while in Section
4.3 the filters for the 4-channel TI-ADC are calculated in closed form. In Section
4.4 the first-order Taylor approximation of the PR filters is derived and in Section
4.5 the exact and approximated forms are validated by simulations. In Section
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4.6 a background calibration technique exploiting cyclo-stationary filter banks is
described, complexity reduction is carried out both in the adopted models and in
filter implementation and convergence speed versus linearity is discussed. Section
4.7 concludes.

4.1 TI-ADC Architecture
An M -channel Time-Interleaved ADC architecture is depicted in Fig. 4.1 and the
related clocking scheme is represented in Fig. 4.2. The analog input x(t) is sampled
by each sub-ADC at a rate of fs/M with a delay of one clock period Ts between
adjacent channels. At the output, a multiplexer merges the sub-ADC outputs into a
single output running at fs.

0ADC

( )x t

0 (t)

1ADC

1(t)

2ADC

M-1ADC

2 (t)

M-1(t)

[ ]y n

Figure 4.1. M -Channel TI-ADC architecture

( )t

0( )t

1( )t

2( )t

M-1( )t

ST
( 1) SM T

Figure 4.2. M -Channel TI-ADC clocking scheme

Mathematical models of the architecture in Fig. 4.1 are well known in literature
[102]. A practical representation consists in describing the input-output signals in the
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frequency domain using digital modeling of the analog section non-idealities (i.e. gain,
bandwidth, timing skew). To better understand the mathematical representation
issues, the simple 2-channel architecture [82] is described first, introducing the
notation used in the 4-channel reconstruction problem.

4.2 2-channel TI-ADC

4.2.1 Ideal reconstruction

)( jX e
1z 2

2 2

2

1z

)( jY e

Figure 4.3. 2 Channel TI-ADC ideal signal reconstruction

The signals on the upper and lower branch at the dotted interface of figure 4.3
are:

X0(ejω) = 1
2
[
X(ej

ω
2 ) +X(ej

ω
2−jπ)

]
(4.1)

X1(ejω) = 1
2
[
X(ej

ω
2 )e−j

ω
2 +X(ej

ω
2−jπ)e−j

ω
2−jπ

]
(4.2)

Before summing up, the signals become:

Y0(ejω) = 1
2
[
X(ejω) +X(ejω−jπ)

]
e−jω (4.3)

Y1(ejω) = 1
2
[
X(ejω)e−jω +X(ejω−jπ)e−jω−jπ

]
(4.4)

The output of the ideal TI-ADC is the sum of these two signals:

Y (ejω) = 1
2
[
2X(ejω) +X(ejω−jπ) +X(ejω−jπe−jπ)

]
e−jω =

= 1
2
[
2X(ejω) +X(ejω−jπ)−X(ejω−jπ)

]
e−jω =

= X(ejω)e−jω

(4.5)

Thanks to ideal architecture symmetry the terms containing aliasing are cancelled.

4.2.2 Introducing time skew on branches: non integer delay

In a real environment the presence of a static time skew error in each branch must
be considered. If the delay ∆Ts is an integer multiple of the sampling period (i.e. ∆
is an integer) its transfer function is easily represented in the DFT periodic domain:

H(ejω) = e−jω∆ (4.6)
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The periodicity of this expression in the frequency domain can be shown:

H(ej(ω+2π)) = e−j(ω+2π)∆ = e−jω∆e−j2π∆ = e−jω∆ · 1 = H(ejω) (4.7)

If ∆ has a non integer value, the transfer function expression as it is does not respect
anymore the mathematical constraint on frequency periodicity of 2π, so the explicit
periodic domain has to be added. This must be taken into account when performing
frequency translations (typical in multi-rate processing).

H(ejω) = e−jω∆ − π < ω < π (4.8)

The phase of the delay transfer function is represented in figure 4.4.

)( jH e

Figure 4.4. Phase response of delay element transfer function

4.2.3 Non-ideal reconstruction

If we consider a real TI-ADC, gain errors in each channel must be considered too.
Offset errors can be neglected for ease of notation because their correction model
is very simple. Gain and offset errors produce modulation effects that generate
interleaving spurs at the output. Assuming that the channel responses are affected
by gain errors and timing skews the following frequency domain transfer function is
added in each branch as analysis filter.

Hi(ejω) = (1 + gi)e−jω∆i − π < ω < π (4.9)

Due to the non-integer values of ∆i the 2π-periodicity of the Hi(ejω) is obtained
defining the function on a bounded but periodic domain.

Consider now the scheme represented in figure 4.5 with the synthesis filters
Fi(ejω): the signals on the upper and lower branch at the dotted interface are

X0(ejω) = 1
2
[
X(ej

ω
2 )H0(ej

ω
2 ) +X(ej

ω
2−jπ)H0(ej

ω
2−jπ)

]
(4.10)

X1(ejω) = 1
2
[
X(ej

ω
2 )H1(ej

ω
2 )e−j

ω
2 +X(ej

ω
2−jπ)H1(ej

ω
2−jπ)e−j

ω
2 +jπ

]
=

= 1
2
[
X(ej

ω
2 )H1(ej

ω
2 )−X(ej

ω
2−jπ)H1(ej

ω
2−jπ)

]
e−j

ω
2 (4.11)
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Figure 4.5. 2 Channel TI-ADC non-ideal signal reconstruction

The two signals at the summing node become:

Y0(ejω) = 1
2
[
X(ejω)H0(ejω) +X(ejω−jπ)H0(ejω−jπ)

]
F0(ejω)e−jω (4.12)

Y1(ejω) = 1
2
[
X(ejω)H1(ejω)−X(ejω−jπ)H1(ejω−jπ)

]
F1(ejω)e−jω (4.13)

The condition of perfect reconstruction Y (ejω) = X(ejω) generates the two-equation
system below: {

H0(ejω)F0(ejω) +H1(ejω)F1(ejω) = 2
H0(ejω−jπ)F0(ejω)−H1(ejω−jπ)F1(ejω) = 0

(4.14)

The first equation of (4.14) represents an equalization condition while the second
one is a non-aliasing condition. The timing skews produce spectral replicas due to
aliasing.

4.2.4 Reconstruction without equalization

If we neglect the first condition we can assume F0(ejω) = 1 and solve the second
equation:

F1(ejω) = H0(ejω−jπ)
H1(ejω−jπ) (4.15)

The mathematical representation of Hi(ejω−jπ) in the periodic DFT domain is:

Hi(ejω−jπ) = (1 + gi)e−jω∆i−j sign(ω)π∆i − π < ω < π (4.16)

The graphical representation of its phase is shown in figure 4.6. The expression of
the reconstruction filter becomes

F1(ejω) = 1 + g0
1 + g1

e−j[ω−π sign(ω)](∆0−∆1) (4.17)

4.2.5 Reconstruction with equalization

For ease of notation, set ∇i(ejω) = ∇i and ∇i(ejω−jπ) = ∇πi . We can write the
equation system in matrix notation and solve it using Cramer’s rule.(

H0 H1
Hπ

0 −Hπ
1

)(
F0
F1

)
=
(

2
0

)
(4.18)
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Figure 4.6. Phase response of H(ejω−jπ) transfer function

F0 = 2Hπ
1

H0Hπ
1 +Hπ

0H1
F1 = 2Hπ

0
H0Hπ

1 +Hπ
0H1

(4.19)

Substituting the values of Hi in the expressions gives

F0 = 2(1 + g1)e−jω∆1+jπ∆1 sign(ω)

(1 + g0)(1 + g1)e−jω(∆0+∆1)(ejπ∆1 sign(ω) + ejπ∆0 sign(ω))
(4.20)

F1 = 2(1 + g0)e−jω∆0+jπ∆0 sign(ω)

(1 + g0)(1 + g1)e−jω(∆0+∆1)(ejπ∆1 sign(ω) + ejπ∆0 sign(ω))
(4.21)

The expressions (4.20) and (4.21) can be reduced removing common factors:

F0 = 2ejπ∆1 sign(ω)

(1 + g0)e−jω∆0(ejπ∆1 sign(ω) + ejπ∆0 sign(ω))
(4.22)

F1 = 2ejπ∆0 sign(ω)

(1 + g1)e−jω∆1(ejπ∆1 sign(ω) + ejπ∆0 sign(ω))
(4.23)

The sum of complex exponentials at the denominator can be rewritten using the
identity (4.24)

ejx + ejy = 2 cos
(
x− y

2

)
ej(

x+y
2 ) (4.24)

The expressions become

F0 = ejω∆0 · ejπ∆1 sign(ω) · e−j
π(∆1+∆0)

2 sign(ω)

(1 + g0) cos
[
π(∆1−∆0)

2 sign(ω)
] (4.25)

F1 = ejω∆1 · ejπ∆0 sign(ω) · e−j
π(∆1+∆0)

2 sign(ω)

(1 + g1) cos
[
π(∆1−∆0)

2 sign(ω)
] (4.26)

Further reductions can be done since the cosine is an even function

F0 = ejω∆0 · ej
π(∆1−∆0)

2 sign(ω)

(1 + g0) cos
[
π
2 (∆1 −∆0)

] (4.27)

F1 = ejω∆1 · e−j
π(∆1−∆0)

2 sign(ω)

(1 + g1) cos
[
π
2 (∆1 −∆0)

] (4.28)
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4.3 4-channel TI-ADC Perfect Reconstruction Filters

In previous works the problem of finding a suitable filter basis to approximate the
perfect reconstruction filters has been addressed [70], using numerical simulations to
assess the one with better performance in terms of post-compensation linearity. In
[81] the problem of finding synthesis filters for perfect reconstruction as a function of
analysis filters is addressed for an M -channel architecture, but numerical methods
are used and no closed-form solution is presented. In this Section the closed-form
calculation for 4-channel TI-ADC PR filters is presented, when the analysis filters
model gain and timing errors.
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Figure 4.7. 4 Channel TI-ADC non-ideal signal reconstruction

Figure 4.7 shows the discrete-time equivalent architecture of a 4-channel TI-ADC
where, for each channel i = {0, 1, 2, 3}, Hi(ejω) is a frequency response that can
model gain, bandwidth and timing errors [70] and Fi(ejω) are the reconstruction
filters needed to fulfill the condition of perfect output reconstruction. Additional
integer delays are added to align the output samples. The expressions of the signals
after the downsamplers and before the summing node are:

Xi(ejω) = 1
4
∑3

k=0
X(ej

ω−2kπ
4 )Hi(ej

ω−2kπ
4 )e−ji(

ω−2kπ
4 ) (4.29)

Yi(ejω) = 1
4
∑3

k=0
X
[
ej(ω−

2kπ
4 )]Hi

[
ej(ω−

2kπ
4 )] eji kπ2 · Fi(ejω)e−j3ω (4.30)

Calibration consists in solving the system of equations with four unknowns
Fi(ejω) arising from the condition of perfect reconstruction.

Y (ejω) =
∑3

i=0
Yi(ejω) ≡ X(ejω)e−j3ω (4.31)

Using the notation [·]i(ej
ω−2kπ

4 ) = [·]ki and considering that eji
kπ
2 = {±1,±j} the

system becomes:
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H0

0 H0
1 H0

2 H0
3

H1
0 jH1

1 −H1
2 −jH1

3
H2

0 −H2
1 H2

2 −H2
3

H3
0 −jH3

1 −H3
2 jH3

3



F0(ejω)
F1(ejω)
F2(ejω)
F3(ejω)

 =


4
0
0
0

 (4.32)

The linear system can be simplified neglecting the equalization condition, i.e.
F0(ejω) = 1, leaving a linear error on the reconstructed output. jH1

1 −H1
2 −jH1

3
−H2

1 H2
2 −H2

3
−jH3

1 −H3
2 jH3

3


 F1(ejω)
F2(ejω)
F3(ejω)

 =

 −H1
0

−H2
0

−H3
0

 (4.33)

A key point to proceed with the calculus is to find a mathematical representation
for the the phases of the aliased fractional delay transfer functions valid within the
periodic interval −π < ω < π.

∠Hi

[
ej(ω−

π
2 )
]

=− ω∆i + π∆i sign
(
ω + π

2

)
− π∆i

2
∠Hi

[
ej(ω−π)

]
= −ω∆i + π∆i sign(ω) (4.34)

∠Hi

[
ej(ω−

3π
2 )
]

=− ω∆i + π∆i sign
(
ω − π

2

)
+ π∆i

2

The functions in (4.34) are represented in Figs. 4.8a, 4.8b and 4.8c.
To use Cramer’s rule to solve the linear system we need to calculate the determi-

nant of the 3× 3 square matrix in (4.33) called H:

det(H)=− jH2
1
(
H3

2H
1
3 +H1

2H
3
3
)
+H2

2
(
H3

1H
1
3−H3

3H
1
1
)
−jH2

3
(
H3

1H
1
2 +H1

1H
3
2
)
(4.35)

Defining:
Ψ = −j|H1||H2||H3|e−jω(∆1+∆2+∆3), S(·) = sign(·) (4.36)

the expression becomes:

det(H)=

Ψ
{
ejπ∆1S(ω)

[
ejπ[∆2(S(ω−π2 )+ 1

2)+∆3(S(ω+π
2 )− 1

2)]+ejπ[∆2(S(ω+π
2 )− 1

2)+∆3(S(ω−π2 )+ 1
2)]]+

+ejπ∆2S(ω)
[
ejπ[

1
2 +∆1(S(ω−π2 )+ 1

2)+∆3(S(ω+π
2 )− 1

2)]+

+ejπ[−
1
2 +∆1(S(ω+π

2 )− 1
2)+∆3(S(ω−π2 )+ 1

2)]]+

+ejπ∆3S(ω)
[
ejπ[∆1(S(ω−π2 )+ 1

2)+∆2(S(ω+π
2 )− 1

2)] + ejπ[∆1(S(ω+π
2 )− 1

2)+∆2(S(ω−π2 )+ 1
2)]]}
(4.37)

We introduce the piecewise functions R(ω) and Z(ω) whose graphical representations
are shown in Figs. 4.9a and 4.9b:

R(ω) = S
(
ω − π

2
)
− S

(
ω + π

2
)

+ 1 (4.38)
Z(ω) = 1

2
[
S
(
ω − π

2
)

+ S
(
ω + π

2
)]

(4.39)
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Using the trigonometric identity (4.24) and the functions (4.38) and (4.39) we
can rewrite the determinant obtaining the expression in (4.40).

det(H)=
2Ψ
{
ejπ∆1S(ω) cos

[
π(∆2−∆3)R(ω)

2

]
ejπ(∆2+∆3)Z(ω)+

+ejπ∆2S(ω) cos
[
π+π(∆1−∆3)R(ω)

2

]
ejπ(∆1+∆3)Z(ω)+

+ejπ∆3S(ω) cos
[
π(∆1−∆2)R(ω)

2

]
ejπ(∆1+∆2)Z(ω)

}
(4.40)

The following rules can be applied to the piecewise function R(ω):

cos [k ·R(ω)] = cos(k) (4.41)
sin [k ·R(ω)] = R(ω) · sin(k) (4.42)

Using the new piecewise function Q(ω) = Z(ω)− S(ω) depicted in Fig. 4.9c and
grouping the common factor ejπ(∆1+∆2+∆3)S(ω) = ΓS(ω) gives the expression:

det(H) = 2ΨΓS(ω)
{

cos
[
π(∆2−∆3)

2

]
ejπ(∆2+∆3)Q(ω)+

+R(ω) sin
[
π(∆3−∆1)

2

]
ejπ(∆1+∆3)Q(ω) +

+ cos
[
π(∆1−∆2)

2

]
ejπ(∆1+∆2)Q(ω)

}
(4.43)
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Figure 4.9. R function (a), Z function (b) and Q function (c)

In order to factorize (4.43) we evaluate it in the 4 frequency intervals −π(1− b
2) <

ω < −π
2 (1− b), with b = {0, 1, 2, 3}, for further simplifications and then reassemble

the results back in one expression using the piecewise functions found.
Inside the intervals with b = 0 and b = 3 we have R(ω) = 1 and Q(ω) = 0. The

expression can be written as

det(H(0,3)) = 8ΨΓS(ω) cos
[
π(∆1−∆3)

4

]
sin
[
π(∆1−∆2−1)

4

]
sin
[
π(∆2−∆3−1)

4

]
(4.44)

Inside the interval with b = 1 we have R(ω) = −1 and Q(ω) = 1. The expression
can be written as

det(H(1))= det(H(0,3))
(
−jej

π∆1
2 +ej

π∆2
2 +jej

π∆3
2

)
ej

π(∆1+∆2+∆3)
2 (4.45)

Inside the interval with b = 2 we have R(ω) = −1 and Q(ω) = −1. The expression
can be written as

det(H(2))= det(H(0,3))
(
je−j

π∆1
2 +e−j

π∆2
2 −je−j

π∆3
2

)
e−j

π(∆1+∆2+∆3)
2 (4.46)

By visual inspection it can be noted that only the final parenthesis and the
complex exponential change between the four intervals. Multiplying each imaginary
unit by Q(ω) and considering the new piecewise function P (ω) = S(ω) + Q(ω)

2 , an
expression valid in all the intervals is obtained:

det(H) = 8ΨΓP (ω) cos
[
π(∆1−∆3)

4

]
sin
[
π(∆1−∆2−1)

4

]
sin
[
π(∆2−∆3−1)

4

]
·

·
(
−jQ(ω)ejQ(ω)π∆1

2 + ejQ(ω)π∆2
2 + jQ(ω)ejQ(ω)π∆3

2

)
(4.47)
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Table 4.1. Indices permutation of the ∆i and Hi used to find the other three determinants.
The first column represent the references and the other three contain the values with
which the reference is modified.

det(H) det(H1) det(H2) det(H3)
1 2 3 0
2 3 0 1
3 0 1 2

The other three determinants needed to calculate the solutions are derived from (4.47)
with a permutation of the indices of the ∆i and Hi shown in Table 4.1. Remember
that also Ψ and Γ are affected by this permutation since they contain ∆i and Hi.
The reconstruction filters are then calculated as the ratio between two determinants,
following the Cramer’s rule, and with further simplifications of common factors we
finally obtain the expressions (4.48), (4.49) and (4.50).

F1
(
ejω
)
= |H0|
|H1|
·
cos

[
π(∆2−∆0)

4

]
sin
[
π(∆3−∆0−1)

4

]
cos

[
π(∆1−∆3)

4

]
sin
[
π(∆1−∆2−1)

4

] ·
· −jQ(ω)ejQ(ω)π(∆2−∆0)

2 +ejQ(ω)π(∆3−∆0)
2 +jQ(ω)

−jQ(ω)+ejQ(ω)π(∆2−∆1)
2 +jQ(ω)ejQ(ω)π(∆3−∆1)

2

·e−j[ω−πZ(ω)](∆0−∆1) (4.48)

F2
(
ejω
)
= |H0|
|H2|
·
sin
[
π(∆3−∆0−1)

4

]
sin
[
π(∆0−∆1−1)

4

]
sin
[
π(∆2−∆3−1)

4

]
sin
[
π(∆1−∆2−1)

4

] ·
· −jQ(ω)ejQ(ω)π(∆3−∆0)

2 +1+jQ(ω)ejQ(ω)π(∆1−∆0)
2

−jQ(ω)ejQ(ω)π(∆1−∆2)
2 +1+jQ(ω)ejQ(ω)π(∆3−∆2)

2

·e−j[ω−πZ(ω)](∆0−∆2) (4.49)

F3
(
ejω
)
= |H0|
|H3|
·
cos

[
π(∆2−∆0)

4

]
sin
[
π(∆0−∆1−1)

4

]
cos

[
π(∆1−∆3)

4

]
sin
[
π(∆2−∆3−1)

4

] ·
· −jQ(ω) + ejQ(ω)π(∆1−∆0)

2 + jQ(ω)ejQ(ω)π(∆2−∆0)
2

−jQ(ω)ejQ(ω)π(∆1−∆3)
2 +ejQ(ω)π(∆2−∆3)

2 +jQ(ω)
· e−j[ω−πZ(ω)](∆0−∆3) (4.50)

4.4 First-Order Taylor Approximation
In order to use calibration techniques based on linear estimation methods, the
first-order approximation of the filters must be derived. We can write the first order
Taylor expansion of a multivariable function in the following way:

f(x) ≈ f(c) +∇f(c) · (x− c) (4.51)
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where ∇f(c) is the vector of partial derivatives evaluated in x = c. We define:

∆i −∆0
2 = xi (4.52)

The total number of variables is 6 but each transfer function Fi depends on 4
variables only: εi, x1, x2 and x3. This implies the calculation of 4 partial derivatives
for each Fi. For ease of notation and calculus consider the function Fi as the product
of three functions:

Fi
(
ejω,x

)
= Gi(gi) · Ii(x1, x2, x3) ·Di(ejω, x1, x2, x3) (4.53)

Gi contains the dependence from gain error while Ii and Di that from the timing
skews, respectively frequency independent and frequency dependent. For example,
the three functions for the decomposition of F1 are:

G1 = |H0|
|H1|

= 1 + g0
1 + g1

(4.54)

I1 =
cos

[πx2
2
]
sin
[
π(x3−1/2)

2

]
cos

[
π(x1−x3)

2

]
sin
[
π(x1−x2−1/2)

2

] (4.55)

D1 = −jQ(ω)ejQ(ω)πx2 + ejQ(ω)πx3 + jQ(ω)
−jQ(ω) + ejQ(ω)π(x2−x1) + jQ(ω)ejQ(ω)π(x3−x1) · e

j[ω−πZ(ω)]2x1 (4.56)

To evaluate Taylor’s expansion of the Fi functions we need Fi
(
ejω, c

)
and ∇Fi

(
ejω, c

)
,

with c = 0. It’s easy to verify that Fi
(
ejω,0

)
= 1. For the calculation of the partial

derivatives, neglecting the dependencies from the variables in the notation, it’s useful
to obtain the relations:

∂Fi
∂g0

∣∣∣∣∣
x=0

= ∂Gi
∂g0
· Ii ·Di

∣∣∣∣∣
x=0

= ∂Gi
∂g0

∣∣∣∣∣
x=0

= 1 (4.57)

∂Fi
∂gi

∣∣∣∣∣
x=0

= ∂Gi
∂gi
· Ii ·Di

∣∣∣∣∣
x=0

= ∂Gi
∂gi

∣∣∣∣∣
x=0

= −1 (4.58)

∂Fi
∂xj

∣∣∣∣∣
x=0

= Gi ·
[
∂Ii
∂xj

+ ∂Di

∂xj

]∣∣∣∣∣
x=0

=
[
∂Ii
∂xj

+ ∂Di

∂xj

]∣∣∣∣∣
x=0

(4.59)

4.4.1 Compact expression synthesis

The first-order expansions of the filters with c = 0 are calculated. Considering the
relation 1− 2Q2(ω) = R(ω) the expressions are:

F1
(
ejω,x

)
≈ 1 + ε1 + π

[
R(ω)

2 + jQ(ω) + j
2ω
π
− j2Z(ω)

]
· x1+

− π
[
R(ω)

2 + jQ(ω)
]
· x2 − π

[
R(ω)

2 − jQ(ω)
]
· x3 (4.60)

F2
(
ejω,x

)
≈ 1 + ε2 + πR(ω) · x1 + jπ

[2ω
π
− 2Z(ω)

]
· x2 − πR(ω) · x3 (4.61)
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F3
(
ejω,x

)
≈ 1 + ε3 + π

[
R(ω)

2 + jQ(ω)
]
· x1 + π

[
R(ω)

2 − jQ(ω)
]
· x2+

+ π

[
−R(ω)

2 + jQ(ω) + j
2ω
π
− j2Z(ω)

]
· x3 (4.62)

whit εi = g0 − gi. To produce a more compact representation assume:

Fa(ω) = π
[
R(ω)

2 + jQ(ω)
]

(4.63)
Fb(ω) = j2 [ω − πZ(ω)] (4.64)

The expressions of the approximated filters are:

F1
(
ejω
)
≈ 1 + ε1 + [Fa(ω) + Fb(ω)]x1 − Fa(ω)x2 − F ∗a (ω)x3 (4.65)

F2
(
ejω
)
≈ 1 + ε2 + πR(ω)x1 + Fb(ω)x2 − πR(ω)x3 (4.66)

F3
(
ejω
)
≈ 1 + ε3 + Fa(ω)x1 + F ∗a (ω)x2 − [F ∗a (ω)− Fb(ω)]x3 (4.67)

The filters’ responses are Hermitian as expected, and thus real in the time domain.
The filters are a linear combination1 of (4.63) and (4.64), whose magnitude and
phase responses are shown in Figs 4.10 and 4.11. In other works [30, 72, 23] these
responses are approximated using linear combinations of simple filters (i.e LPF,
Hilbert, Differentiator) but using a higher number of free parameters. The results
in this work set a lower bound of 4 parameters (3 time skews and 1 gain error) for
each channel.
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Figure 4.10. Fa(ω) filter magnitude and phase responses
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Figure 4.11. Fb(ω) filter magnitude and phase responses

1Note that πR(ω) = Fa(ω) + F ∗a (ω).
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4.5 Behavioral Simulations and Results

To validate the exact and approximated results, numerical simulations are performed.
In the test environment gain and timing mismatches are simulated using fractional
delay filters on each channel with specified error parameters ∆i. The same parameters
are then used to generate the filter responses with which each channel is filtered.
A length of 256 taps is used to realize both exact and approximated filters in the
frequency domain and then impulse responses are calculated by the inverse DFT.
The comparison between the un-calibrated output and the output calibrated with
the exact and approximated filters in the case of 1% gain error and 0.5% time skews
is shown in Fig.4.12. The exact filters completely remove distortions proving the
correctness of the calculations. Calibrating with the first-order approximations gives
more than 40dB SFDR improvement.
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Figure 4.12. Comparison between output signal spectra before and after calibration using
the exact and the approximated reconstruction filters for a known combination of timing
skews and gain errors.



4.6 Background calibration using cyclostationary filter banks 61

4.6 Background calibration using cyclostationary filter
banks

Perfect reconstruction filters which cancel distortions due to aliasing exist under
certain assumptions [79], and calibration can be interpreted as approximating these
filters to minimize distortions [72]. This can be performed by adaptive FIR structures,
but least squares (LS) estimation of large models is computationally expensive and
prone to numerical stability issues [82]. It is thus important to find models which
are both accurate and simple: the number of free parameters and computational
costs should be minimized.
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Figure 4.13. 4-Channel TI-ADC error model

Fig. 4.13 shows the discrete-time equivalent model of a 4-channel TI-ADC
affected by the channel filters Hi

(
ejω
)
, similar to the one presented in Section 4.3.

These filters represent the analog frequency response of each channel and can model
gain, timing, or bandwidth errors, or any linear mismatch among the channels. When
these responses are mismatched, recombination of the channels produces aliasing
at the output. A cyclo-stationary filter with period M=4 can be used to perform
mismatch correction. Such a filter can be implemented by an architecture identical
to that shown in Fig. 4.13, with the correction filters Gi

(
ejω
)
in place of Hi

(
ejω
)
.

The input of the correction block is Y
(
ejω
)
, and the calibrated output is Z

(
ejω
)
:

Z
(
ejω
)

=
3∑

k=0
Y
(
ejω−j

π
2 k
) [1

4

3∑
i=0

Gi
(
ejω−j

π
2 k
)
ej

π
2 ih

]
(4.68)

The analytical solution of the system of equations arising from the perfect recon-
struction condition can be carried out using an approach similar to that adopted
in the previous Section or an approximation can be found using adaptive methods.
Calibration forces Z

(
ejω
)
≈ X

(
ejω
)
by adjusting the correction filters Gi

(
ejω
)
,

which depend on the error filters Hi
(
ejω
)
. Usually, the Hi

(
ejω
)
’s are not known

and the Gi
(
ejω
)
’s are estimated adaptively. It is common to only cancel the aliasing

terms and leave a linear error, as this doesn’t affect linearity.
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Figure 4.14. 4-Channel TI-ADC calibration architecture (a) and corresponding clocking
scheme (b)

Fig. 4.14a shows the poly-phase architecture of the calibration system, described
in [22, 72]. As in previous literature, a reference channel is used, which is periodically
aligned with the other channels. The calibration algorithm compares the outputs of
the channel under calibration, y[n], and of the reference channel, r[n], when they are
aligned, and chooses the correction coefficients to minimize their difference, obtaining
the calibrated output z[n]. At steady state, if both the estimates and the model are
accurate, each channel has the same frequency response as the reference channel, and
aliasing distortions are minimized. The algorithm also corrects for offset mismatches,
not shown for simplicity. Adding a reference channel has an overhead in terms of
area, and power consumption, which falls with the number of channels. With two
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different clock domains, signal integrity is of the essence to avoid spurs. Circuit-level
(voltage buffers) and layout-level (guard-rings, decoupling capacitors) techniques
are required for robust design. In [60] a comparable scheme has been implemented
and measured in CMOS 130 nm. Fig. 4.15shows the approximation of the desired
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Figure 4.15. Approximation of the desired frequency response with a filter base. The
calibrated output Z

(
ejω
)
is computed from the uncalibrated output Y

(
ejω
)
given the

weights αij estimated by the adaptive loop (offset correction not shown)

correction filters’ frequency response as a linear combination of base filters. The
adaptive filters estimate the coefficients of this combination. This architecture can
simulate the algorithms in [22, 72, 23] and a generic FIR model [72], by changing
the number and frequency responses of the base filters.

4.6.1 Expression of the filter base

The error filters modeling gain, timing and bandwidth mismatches, gi, ti and bi, can
be expressed as [71]:

Hi (ω) = (1 + gi)e−jωti
1 + jω/bi

(4.69)

Alternatively, the mixed signal model for bandwidth mismatch can be used [71], but
it has been shown to be equivalent to the analog model in (4.69) if the bandwidth of
the filters is just a few times larger than the Nyquist frequency [71].

Assuming (4.69), a numerical solution for the four correction filters, shown in Fig.
4.16, can be found for a given realization of the mismatch parameters. The shape
of the frequency response of the correction filters is due to frequency translations,
which create discontinuities at π

2 (fS/4) both in level and slope. This suggests the
use of low-pass filters with a bandwidth of π

2 (0.25 in normalized frequency) and
their combination with other filters, to replicate the frequency responses in Fig.4.16.
Low-pass filters were not present in previous works [22, 23, 72], whose models could
not replicate the observed discontinuity in the middle of the Nyquist band. The
model used in [22] approximated the correction filters as Gi

(
ejω
)
≈ 1 + ai1 + jωai2.

Accuracy is limited, because the model cannot replicate the discontinuities at π
2 , and
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Figure 4.16. Correction filters shape (errors have 1% standard deviation, mean bandwidth
is 4fS , one random realization is shown for the four channels).

the different slopes of the signals in the two halves of the spectrum. The following
model yields much better accuracy. The residual error is parabolic, so that all the
linear-in-frequency terms are cancelled. Furthermore, removal of any term yields a
linear (in frequency) error:

Gi
(
ejω
)
≈ 1 + ai1 + jωai2 +GH

(
ejω
)
ai3 +GL

(
ejω
)
ai4 +GH

(
ejω
)
GL
(
ejω
)
ai5+

+ jωGH
(
ejω
)
ai6 + jωGL

(
ejω
)
ai7 + jωGH

(
ejω
)
GL
(
ejω
)
ai8 (4.70)

In this expression, GH
(
ejω
)
is the Hilbert filter, and GL

(
ejω
)
the low-pass filter

with π
2 bandwidth. The approximation error after least squares fitting is shown in

Fig. 4.17. With 8 parameters, it is lower than 0.04%. The estimation of a model with
8 parameters can be cumbersome. Monte Carlo simulations have been performed to
derive the distribution of the aij coefficients, to determine the more relevant base
filters for calibration. The most important is the differentiator term ai2, while the
terms ai1, ai3, ai4, and ai5 are also significant. The resulting simplified model is:

Gi
(
ejω
)
≈ 1 + ai1 + jωai2 +GH

(
ejω
)
ai3 +GL

(
ejω
)
ai4 +GH

(
ejω
)
GL
(
ejω
)
ai5 (4.71)

The maximum approximation error of this model is 0.2% (not shown). Though less
accurate, the model is easier to estimate, and less computationally expensive.

Adding a second-order differentiator to the model (4.70) yields a 9-parameter
model whose maximum error is 0.0013%:

Gi
(
ejω
)
≈ 1 + ai1 + jωai2 +GH

(
ejω
)
ai3 +GL

(
ejω
)
ai4 +GH

(
ejω
)
GL
(
ejω
)
ai5+

+ jωGH
(
ejω
)
ai6 + jωGL

(
ejω
)
ai7 + jωGH

(
ejω
)
GL
(
ejω
)
ai8 − ω2ai9 (4.72)
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Figure 4.17. Approximation error of using (4.70) to fit the filters in Fig. 4.16

4.6.2 Complexity reduction

The FIR structures implementing the base filters in (4.70) and (4.71) are truncated
to 2T+1 terms, from -T to T, windowed, and translated for causality. T=10 in the
following. A few products have been spared by scaling the maximum coefficients
of each filter to 1. This comes at no cost in terms of accuracy because, if one of
the filters is scaled, its coefficient is inversely scaled by the adaptive algorithm. As
the correction filters are approximated as a linear combination of filters, they can
be expressed in another base. Because this process does not affect the accuracy
of the model, it is possible to minimize complexity by maximizing the number of
zeros and ones in the correction filters, thus reducing the number of multipliers.
For instance, a differentiator filter has impulse response (−1)n/n, whereas a Hilbert
filter (if scaled to a maximum value of 1) has impulse response 1/n for odd values,
and 0 for even values. The odd values are the same (except for the sign) for the two
filters. Hence, instead of using a Hilbert and a differentiator filter (requiring 3T/2-2
products), the differentiator filter can be substituted with a linear combination of
the two whose odd coefficients are zero (total complexity: T-2 products), saving T/2
products. This procedure has been used, after grouping the filters in symmetrical
and anti-symmetrical, for the models (4.70) and (4.71), as those in [23]. With no
cost in terms of accuracy, the improvement in complexity is significant for the new
models.

A further technique, though approximated, has been employed. Many coefficients
in the filter banks are small, as they fall as 1/n or faster. By removing the coefficients
lower in absolute value than 0.01, the models in [23] save 2 coefficients (in the
differentiator), and the models (4.71), 4.70, (4.72) spares 6, 14 and 19, respectively.
The threshold 0.01 is the largest we could choose before reducing average linearity
in Monte Carlo simulations.
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4.6.3 Behavioral simulations and results

The three models (4.71), (4.70) and (4.72) have been simulated for a 4-channel
Nyquist TI-ADC affected by offset, gain, timing, bandwidth mismatches of 5%
standard deviation (average bandwidth is twice fS). Because of the offset term, the
three models have 9, 6 and 10 parameters, respectively. The input signal is bandpass
noise from 20% to 80% of the Nyquist band ([0.1fs, 0.4fs]). Models in [22, 23, 72]
have also been simulated.
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Figure 4.18. Complexity / accuracy trade-off for several correction filter models.

Fig. 4.18 shows a comparison of average linearity (in ENOB) versus computatio-
nal complexity (defined as number of products plus 3 times the number of divisions
per sample) of several algorithms, divided in five groups. These are: adaptive FIR
filters with T = 3, . . . , 8; models obtained from the real (orders 1, 2, 3) and complex
(orders 1, 2) Taylor expansions described in [23] (called REAL and CPLX in Fig.
4.18); models derived from [23] for different values of the parameter NL = 1, . . . , 5
(equation (10), in [23]); and the three new models. The new models are better (more
accurate or less expensive) than FIR filters and real and complex Taylor expansions,
but are no better than the models obtained from [23], before the new complexity
reduction techniques described in Subsection 4.6.2 are used. Fig. 4.19 shows the
results of using the complexity reduction techniques only for the two families of
algorithms with the best performance (and the FIR filters, for reference). The new
models are now more efficient than those in [23], because the reduction in numerical
complexity in the filtering section is more pronounced with the new models. Further
complexity reduction may be achieved because the new models have 6, 9 and 10
parameters, whereas the closest models in [23] in terms of linearity have 7, 11 and 13
(NL = 2, 4, 5). Numerical accuracy is required mainly in the adaptive loop, because
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Figure 4.19. Complexity / accuracy trade-off after optimization.

Table 4.2. Computational costs of the models after optimization

# of products # of divs.
Filt. Est. Corr. Tot. Est. ENOB

Eq. 4.71 8 17.4 5 30.4 1.4 9.1
[23],NL = 2 4 22.4 6 32.4 1.6 9.0
Eq. 4.70 14 34.2 8 56.2 2 10.7

[23],NL = 4 2 48.4 10 60.4 2.4 10.7
Eq. 4.72 15 41 9 65 2.2 10.9

[23],NL = 5 1 65 12 80 2.8 11

of potential numerical instability. It may thus be possible to reduce the number of
bits in the fixed-point implementation of the filtering section. This would further
increase the relative efficiency of the new models.

Table 4.2 shows the computational costs of the models after optimization, com-
pared with those in [23] and the average linearity in ENOB, expressed in dB. The
cost is expressed in number of products and divisions per sample. Divisions are only
used during estimation [11], whereas multiplications are required during filtering,
estimation, and correction.

The new three models and the ones in [23] have been compared in terms of
stability in fixed-point arithmetic and convergence speed. Fig. 4.20 shows the models
in [23] and the new models (4.70-4.71) in 24-bit fixed-point arithmetic. Model 4.72
is no more accurate than (4.71) in fixed point and is not shown. The new models
have the same speed and steady-state accuracy as the models in [23] in fixed-point
arithmetic. Convergence takes about 2400 samples for the models (4.70) and [23]
with NL = 4, and 1000 samples for the models (4.71) and [23] with NL = 2. With
one update every 20 samples (when the reference and the calibrated channels are
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Figure 4.20. Convergence speed and average accuracy of the models. With NL in [23]
chosen to achieve comparable steady-state accuracy to (4.70) and (4.71), respectively

aligned) this means 120 and 50 updates to convergence, respectively.

4.7 Conclusions and future work
Two different approaches to the calibration of TI-ADC have been shown: the
analytical solution of the Papoulis model and the approximation of the correction
filters in the cyclo-stationary architecture. In the first approach the exact form of the
4-channels TI-ADC perfect reconstruction filters has been calculated and validated
by numerical simulation. The first order approximation of the solutions has been
derived and expressed in a compact form. The lower bound of 4 free parameters
needed for calibrating gain and timing mismatches has been reached. No fixed-point
performance has been analyzed yet nor practical adaptive estimation algorithms have
been tested, these topics will be addressed in future studies. In the second approach
a background calibration based on cyclo-stationary (periodic time-varying) filter
banks is addressed. The correction is performed with a 4-periodic filter at the output
of the adding node of the TI-ADC, turning the estimation problem into four separate
adaptive filtering problems with one quarter of the complexity with respect to the
Papoulis architecture. Three new models for the approximation of the correction
filter are described in terms of a linear combination of base filters, and these models
are more accurate than the ones in [72]. After applying a complexity reduction
the new models are also better than the ones in [23], with comparable convergence
speed and accuracy in fixed-point implementation and lower computational cost.
The methodology has been developed for 4-channel TI-ADCs and may be extended
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to a higher number of channels in future works.
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Chapter 5

Digital-IF receiver nonlinear
calibration

Future mobile multi-antenna architectures require an ever growing number of re-
ceivers, imposing critical constraints on cost, power and size of each receiver chain.
The straightforward approach is to exploit nanometer CMOS processes even for
the analog processing section and to minimize power consumption. Moreover, data
rates in wireless communications continue to increase approximately five times every
four years [37] (mobile 5G specification calls for a 20 Gb/s peak download data
rate [48]). In these conditions, achieving high linearity and dynamic range for
wide-band multi-carrier communications or radar applications becomes extremely
difficult. Performance can be improved by analog design, increasing complexity and
power consumption. Furthermore, the design of analog compensation architectu-
res heavily depends on the technological node and represent a recurring cost for
successive implementations with future scaled processes. Conversely, calibration
techniques implemented in the digital domain can have a smaller impact on the
power consumption and are “portable” with respect to technological node scaling
if the implemented model is capable of representing the behavior of the non-linear
analog section.

Different digital signal processing (DSP) techniques have been presented in the
literature for the compensation of RF front-ends and analog baseband nonlinearities,
mainly using feed-forward or post-distortions architectures. [43, 65, 101] present feed-
forward techniques for Adaptive Interference Cancellation (AIC) applied on Direct
Conversion Receiver (DCR) architectures. DCRs are widespread in Software Defined
Radio (SDR) applications: they have little selectivity at RF, featuring wideband front-
ends and flexible digital processing. AIC methods require adaptive signal processing
algorithms that often assume statistical independence between signals in different
frequency bands, which is true for physically uncorrelated sources. Some results
are limited to particular waveforms as in [88], where detection and compensation
algorithm only works on two-tone signals, and others only in particular conditions,
like [80], where the blind identification technique works only for strongly nonlinear
systems being limited by the convergence precision of the detection algorithm. [13]
describes a mixed analog-digital co-design of a receiver using a sparse Volterra
equalizer. Orthogonal Matching Pursuit (OMP) is used to estimate the parameters
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of a sparse subset of the real-valued Volterra series. The same approach in [93] has
been used to build a nonlinear equalizer IC processor (NLEQ) able to compensate
the nonlinear behavior of commercial-off-the-shelf (COTS) low-pass systems. This
method relies upon real valued processing and it is not straightforwardly applicable
to communication systems exploiting baseband complex signal processing.

In this chapter baseband Volterra models are analyzed and a novel one is proposed
able to represent and compensate nonlinearities in sub-sampling digital-IF receivers.
An offline calibration technique using the new model is validated by means of
behavioral and circuital simulations on a bandpass anti-aliasing filter implemented
using 45 nm process by ST Microelectronics.

5.1 Receiver Target Architecture

Calibration techniques for linear and nonlinear equalization are applied in the digital
domain using complex baseband notation. This approach has been chosen instead
of using real low-pass representation, as in [13], for its greater flexibility because
it can be used in both Digital-IF receivers and native IQ receivers that have one
or two real outputs respectively. In the first architecture, shown in Fig. 5.1, the
baseband components are extracted in the digital domain while in the second one,
shown in Fig. 5.2, the extraction is made in the analog domain by an IQ mixer.
Even if the data format for baseband processing is the same, the IQ architecture
can show additional impairments due to IQ imbalance.

MixerLNA ADC

LO

IQ NCO

[ ]Iy n

[ ]Qy n
RFF AAF

Figure 5.1. Digital-IF Receiver Architecture with digital I/Q extraction

In this study the Digital-IF architecture [33] has been chosen as a target to
develop and validate models and algorithms for RF system digital calibration. The
Digital-IF receiver architecture shown in Fig. 5.1 is composed of a RF band pass
filter (RFF), a Low Noise Amplifier (LNA), a mixer for the down conversion to IF, an
Anti-Aliasing Filter (AAF), the A/D converter and the digital baseband processing
section. A typical choice is to exploit sub-sampling: using a lower sampling rate
decreases power consumption but care must be given to Signal-to-Noise Ratio (SNR)
because of noise folding.

The digital IQ extraction is carried out multiplying the digitized IF signal by two
quadrature sinusoidal sequences (sin(2πfIFnTs) and cos(2πfIFnTs)) and low-pass
filtering the results to obtain the In-phase and Quadrature sequences, respectively
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Figure 5.2. IQ Receiver Architecture

yI [n] and yQ[n]. The complex baseband output sequence is then:

ỹ[n] = yI [n] + j yQ[n] (5.1)

An efficient way to implement the quadrature signals is to choose an intermediate
frequency fIF equal to a quarter of the sampling frequency:

fIF = fs
4 (5.2)

With this condition the quadrature sinusoids become:

sI [n] = cos(2πfIFnTs) = cos
(
π

2n
)
→ {1, 0,−1, 0, . . . } (5.3)

sQ[n] = sin(2πfIFnTs) = sin
(
π

2n
)
→ {0, 1, 0,−1, . . . } (5.4)

Mixing can be implemented efficiently without using multiplications, multiplexing
even and odd samples on each branch with zeros and changing the bit sign alternati-
vely. This technique can be applied also when exploiting sub-sampling, choosing an
intermediate frequency in the center of the Nyquist band used and remembering to
invert the sign of the quadrature component when the Nyquist band is even.

5.2 Baseband Volterra models for bandpass systems

Most of the literature [58, 108, 35, 92] focuses on baseband Volterra series for
power amplifiers modeling and pre-distortion applications. Dealing with receiver
nonlinearities mitigation, [43], [65] and [88] find specific nonlinear terms in a Direct
Conversion Receiver (DCR) generated by the cascade of the RF front-end analog
section (LNA) and the BB section, don’t use a generalized model and don’t deal
with sampling frequency issues. In [13] a real sparse Volterra model is used for both
the I and Q channels without exploiting the efficiency of the baseband notation. In
this Section the complex-signal baseband Volterra model for bandpass systems is
derived and an extension is proposed that includes out-of-band harmonic distortions
aliasing in active bandpass filters exploiting sub-sampling down-conversion.
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5.2.1 Classic baseband model derivation

The Volterra series for a discrete-time non-linear system is given by:

y[n] =
K∑
k=1

yk[n] yk[n] =
∑
q1

· · ·
∑
qk

hk[q1, . . . , qk] ·
k∏
i=1

x[n− qi] (5.5)

where K is the maximum order of nonlinearity and hk is the k-th order Volterra
kernel. The system memory shall be specified by the limits of the sums. Assume
also that the input sequence is obtained by sampling an analog signal verifying the
Nyquist criterion. Since we are modeling a bandpass system we can write the input
signal with the complex envelope notation:

x[n] = <
{
x̃[n]ejωcn

}
= 1

2
(
x̃[n]ejωcn + x̃∗[n]e−jωcn

)
(5.6)

where ωc is the normalized carrier frequency equal to ω̃c
ωs
. Let’s write the above

equation in the following way:

x[n] = 1
2

1∑
b=0

x̄b exp
[
(−1)bjωcn

]
(5.7)

where b is a binary index, b ∈ {0, 1}. With this notation the argument of the product
in 5.5 becomes:

x[n− qi] = 1
2

1∑
b=0

x̄b exp
[
(−1)bjωcn

]
exp

[
(−1)b+1jωcqi

]
(5.8)

in which

x̄b =
{
x̃[n], if b = 0
x̃∗[n], if b = 1

(5.9)

We can rewrite 5.5:

yk[n] = 1
2k
∑
q1

· · ·
∑
qk

hk[q1, . . . , qk] ·
k∏
i=1

1∑
b=0

x̄b exp
[
(−1)bjωcn

]
exp

[
(−1)b+1jωcqi

]
(5.10)

Using the identity:

k∏
i=1

1∑
b=0

fb[qi] =
1∑

b1=0
· · ·

1∑
bk=0︸ ︷︷ ︸

k sums

k∏
i=1

fbi [qi] (5.11)
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we can rewrite 5.10

yk[n] =

= 1
2k
∑
q1

· · ·
∑
qk

hk[q1. . .qk]
1∑

b1=0
· · ·

1∑
bk=0

k∏
i=1

{
x̄bi [n−qi]e[

(−1)bijωcn]e[(−1)bi+1jωcqi]
}

=

= 1
2k

1∑
b1=0
· · ·

1∑
bk=0

∑
q1

· · ·
∑
qk

hk[q1 . . . qk]
k∏
i=1

x̄bi [n−qi]·

· exp
[
jωcqi

k∑
n=1

(−1)bn+1
]

exp
[
jωcn

k∑
n=1

(−1)bn
]

(5.12)

We can see that for k = 1 the resulting expression for the first order linear term is:

y1[n] = 1
2

1∑
b1=0

∑
q1

h1[q1] · x̄b1 [n− q1] · exp
[
jωcq1(−1)b1+1

]
exp

[
jωcn(−1)b1

]
(5.13)

Like in5.6 the expression of the output signal can be written as:

y[n] = <
{
ỹ[n]ejωcn

}
= 1

2
(
ỹ[n]ejωcn + ỹ∗[n]e−jωcn

)
(5.14)

By visual inspection we determine the expression for the output complex envelope:

ỹ[n] =
∑
q1

h1[q1] · x̄0[n− q1] · exp (−jωcq1) =
∑
q1

h̃1(q1) · x̃[n− q1] (5.15)

with:
h̃1[q1] = h1[q1] · exp (−jωcq1) (5.16)

Focusing on the 5.12 we can see that the expression is composed by a sum of k-
dimensional sums multiplied by complex exponentials. We can represent this signal
as:

yk[n] =
∑
π(Bk)

gk[Bk, n] · exp [jm(Bk)ωcn] (5.17)

where:

• Bk is a k-elements binary vector such that Bk(i) = bi

• π(Bk) is the set containing the 2k permutations of k binary values {0, 1}

• gk[Bk, n] = 1
2k
∑
· · ·
∑
hk[q1 . . . qk]

∏k
i=1 x̄bi [n−qi] exp

[
jωcqi

∑k
n=1(−1)bn+1

]
• m(Bk) =

∑k
n=1(−1)bn is equal to the difference between the number of

zeros and the number of ones in Bk. For even values of k, m(Bk) has
even values {0,±2,±4, . . . ,±k}; for odd values of k, m(Bk) has odd values
{±1,±3, . . . ,±k}.
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To understand the “useful” contributions of the non-linear terms to the bandpass
output we must analyze the problem in the frequency domain. Using the Discrete
Fourier Transform rule:

F
{
f [n]ejωcn

}
= F [ej(ω−ωc)n] (5.18)

we can write the Fourier transform of 5.17 as:

Yk(ejω) =
∑
π(Bk)

Gk
[
Bk, e

j[ω−m(Bk)ωc]
]

(5.19)

where Gk
(
Bk, e

jω
)
is the DFT of gk[Bk, n], whose bandwidth is k times the one of

the input signal. The above equation tells us that the spectrum of the k-th order
Volterra kernel is composed by 2k contributions centered around integer multiples
of the carrier frequency ωc, as shown in Figure 5.3. Only the ones around ±ωc will
remain after a bandpass filter (i.e. an anti-aliasing filter); these are generated by
odd values of k. In a system with K (odd) as the maximum order of non-linearity
we can apply the change of variable:

k = 2l − 1 with l ∈ N , 1 ≤ l ≤ K + 1
2 (5.20)

The output signal expression becomes:

y2l−1[n] =
∑

π(B2l−1)
g2l−1[B2l−1, n] · exp [jm(B2l−1)ωcn] (5.21)

Between the 22l−1 vectors given by π(B2l−1) only the ones in which m(B2l−1) = ±1
(the difference between the number of zeros and the number of ones is ±1) must be
considered. The target subset is composed by twice the permutations of l elements
in 2l − 1 positions, because the l elements are in one case zeros and in the other
ones. We can define Bl

2l−1 the generic vector containing l zeros and symmetrically
Bl−1

2l−1 the generic vector containing l ones. We can write:

π
(
Bl

2l−1

)
=
{
π(B2l−1) : m(B2l−1) = 1

}
(5.22)

π
(
Bl−1

2l−1

)
=
{
π(B2l−1) : m(B2l−1) = −1

}
(5.23)

The number of permutations is given by the multinomial coefficient.

card
[
π
(
Bl

2l−1

)]
= card

[
π
(
Bl−1

2l−1

)]
=
(

2l − 1
l, l − 1

)
= (2l − 1)!
l!(l − 1)! = 1

2

(
2l
l

)
(5.24)

The useful output signal around ±ωc can be written as the sum of the components
generated by the two subsets:

y±ωc2l−1[n] =
∑

π(Bl
2l−1)

g2l−1
[
Bl

2l−1, n
]
· ejωcn +

∑
π(Bl−1

2l−1)
g2l−1

[
Bl−1

2l−1, n
]
· e−jωcn (5.25)
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Figure 5.3. Nonlinear contributions to output spectrum. Even orders kernels don’t produce
components around fc

We are interested in simplifying the functions inside the sums for the vector subsets
that we are considering. For each vector Bl

2l−1 we can write:

2l−1∏
i=1

x̄bi [n− qi] =
l∏

i=1
x̄0[n− qi]︸ ︷︷ ︸
l zeros

·
2l−1∏
i=l+1

x̄1[n− qi]︸ ︷︷ ︸
l−1 ones

(5.26)
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Therefore the first sum in 5.25 becomes:∑
π(Bl

2l−1)
g2l−1

[
Bl

2l−1, n
]

=

= 1
22l

(
2l
l

)∑
q1

· · ·
∑
q2l−1

h2l−1[q1 . . . q2l−1] ·
l∏

i=1
x̃[n− qi] ·

2l−1∏
i=l+1

x̃∗[n− qi] ·
2l−1∏
i=1

e−jωcqi

(5.27)

If we consider the same limit of integration for each variable qi in (5.25), we can use
arbitrary indexes for the terms inside the products, obtaining the key condition for
the conjugate simmetry. The second sum can be written as :

∑
π(Bl−1

2l−1)
g2l−1

[
Bl−1

2l−1, n
]

=

= 1
22l

(
2l
l

)∑
q1

· · ·
∑
q2l−1

h2l−1[q1 . . . q2l−1] ·
l∏

i=1
x̃∗[n− qi] ·

2l−1∏
i=l+1

x̃[n− qi] ·
2l−1∏
i=1

ejωcqi

(5.28)

The equations (5.27) and (5.28) verify the following identity:

∑
π(Bl−1

2l−1)
g2l−1

[
Bl−1

2l−1, n
]

=


∑

π(Bl
2l−1)

g2l−1
[
Bl

2l−1, n
]
∗

(5.29)

We have reached a useful mathematical notation for determining the bandpass
response between input and output complex envelopes. In [58] this notation is called
RF Volterra Model (RF-VM). Considering 5.14 and 5.29, by visual inspection of
5.25 we can write :

ỹ2l−1[n] =

= 1
22l−1

(
2l
l

)∑
q1

· · ·
∑
q2l−1

h2l−1[q1 . . . q2l−1]
l∏

i=1
x̃[n− qi]

2l−1∏
i=l+1

x̃∗[n− qi]
2l−1∏
i=1

e−jωcqi

=
∑
q1

· · ·
∑
q2l−1

h̃2l−1[q1 . . . q2l−1] ·
l∏

i=1
x̃[n− qi]

2l−1∏
i=l+1

x̃∗[n− qi]

(5.30)

with

h̃2l−1[q1 . . . q2l−1] = 1
22l−1

(
2l
l

)
h2l−1[q1 . . . q2l−1]

2l−1∏
i=1

e−jωcqi (5.31)

Actual implementations of Volterra filters require a finite support and are thus able
to represent only finite memory systems. Considering a truncated Volterra series
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with a finite memory M for the kernel 2l − 1 and exploiting the symmetry of the
kernels, we can write:

ỹ2l−1[n] = (5.32)
M∑
q1=0

M∑
q2=q1

· · ·
M∑

ql=ql−1

M∑
ql+1=0

· · ·
M∑

q2l−1=q2l−2

h̃2l−1[q1. . .q2l−1]
l∏

i=1
x̃[n− qi]

2l−1∏
i=l+1

x̃∗[n− qi]

(5.33)

Note that different kernels can have different values of memory lags.

5.2.2 Model extension considering finite out-of-band attenuation

In practical bandpass systems the out-of-band attenuation is a finite quantity. It
depends on the order and the circuital implementation of the bandpass filter (anti-
aliasing filter in a receiver chain). Consider that in a multistage active filter the
distortions are generated in each stage so the ones arising in the latest stage are
not attenuated. Moreover, in an active filter with gain, the highest distortions are
generated in the latest stages that work with higher signal amplitudes. Depending on
the operating point of the active circuits, non-negligible distortion contributions can
be found around ±3ωc that can be higher than the fifth-order in-band distortions. If
such spectrum is sampled, the out-of band distortions can alias in band depending
on the value of the sampling frequency. Figures 5.4 and 5.5 show the output of an
Anti-Aliasing filter with a pass band of 10MHz and a center frequency of 30MHz.
The input of the filter is a two-tone signal with frequencies 25 and 25.3125MHz. To
obtain the first spectrum, the signal is sampled at 320MS/s allowing the identification
of the spurious products in the frequency domain up to the fifth harmonic, while
the second is obtained sampling the signal at 40MS/s, the actual choice used for
down-converting it at a center frequency of 10MHz with sub-sampling. It is clear
that HD3 and HD5 unwanted components alias back in the pass band of the filter.
This behavior can be modeled including out-of-band distortion terms centered

around ±3ωc and ±5ωc in the equivalent baseband Volterra model, i.e. considering
only the third order for the sake of simplicity we are interested in the vectors given
by π(B2l−1) with m(B2l−1) = ±3 (the difference between the number of zeros and
the number of ones is ±3). The target subset is composed by twice the permutations
of l+ 1 elements in 2l− 1 positions, because the l+ 1 elements are in one case zeros
and in the other ones. We can define Bl+1

2l−1 the generic vector containing l + 1 zeros
and symmetrically Bl−2

2l−1 the generic vector containing l + 1 ones. We can write:

π
(
Bl+1

2l−1

)
=
{
π(B2l−1) : m(B2l−1) = 3

}
(5.34)

π
(
Bl−2

2l−1

)
=
{
π(B2l−1) : m(B2l−1) = −3

}
(5.35)

The number of permutations is given by the multinomial coefficient.

card
[
π
(
Bl+1

2l−1

)]
=card

[
π
(
Bl−2

2l−1

)]
=
(

2l − 1
l + 1, l − 2

)
= (2l − 1)!

(l + 1)!(l − 2)!=
1
2
l − 1
l + 1

(
2l
l

)
(5.36)
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Figure 5.4. Spectrum of the Anti-Aliasing Filter output with fs = 320MS/s.
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Figure 5.5. Spectrum of the sub-sampled Anti-Aliasing Filter output with fs = 40MS/s.

The output signal containing third-order harmonic distortions can be written as the
sum of the components generated by the two subsets:
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y±3ωc
2l−1 [n] =

∑
π(Bl+1

2l−1)
g±3ωc

2l−1

[
Bl+1

2l−1, n
]
· ej3ωcn +

∑
π(Bl−2

2l−1)
g±3ωc

2l−1

[
Bl−1

2l−2, n
]
· e−j3ωcn

(5.37)
We are interested in simplifying the functions inside the sums for the subsets of
vector that we are considering. For each vector Bl+1

2l−1 we can write:

2l−1∏
i=1

x̄bi [n− qi] =
l+1∏
i=1

x̄0[n− qi]︸ ︷︷ ︸
l+1 zeros

·
2l−1∏
i=l+2

x̄1[n− qi]︸ ︷︷ ︸
l−2 ones

(5.38)

Therefore the first sum in 5.37 becomes:

∑
π(Bl+1

2l−1)
g±3ωc

2l−1

[
Bl+1

2l−1, n
]

=

= 1
22l

l − 1
l + 1

(
2l
l

)∑
q1

· · ·
∑
q2l−1

h2l−1[q1. . .q2l−1]
l+1∏
i=1

x̃[n−qi]
2l−1∏
i=l+2

x̃∗[n−qi]
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(5.39)

The second sum can be written as :∑
π(Bl−2

2l−1)
g±3ωc

2l−1

[
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=

= 1
22l
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· · ·
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ej3ωcqi

(5.40)

The two sum terms are complex conjugate. Since we are considering the baseband
notation with respect to ωc we must compare expression 5.37 with 5.14. This lets us
identify the expression of the complex envelope:

ỹ±3ωc
2l−1 [n] =

=ej2ωcn

22l−1
l − 1
l + 1

(
2l
l

)∑
q1

· · ·
∑
q2l−1

h2l−1[q1. . .q2l−1]
l+1∏
i=1

x̃[n−qi]
2l−1∏
i=l+2

x̃∗[n−qi]
2l−1∏
i=1

e−j3ωcqi

=
∑
q1

· · ·
∑
q2l−1

h̃±3ωc
2l−1 [q1. . .q2l−1]

l+1∏
i=1

x̃[n− qi]
2l−1∏
i=l+2

x̃∗[n− qi] · ej2ωcn

(5.41)

with

h̃±3ωc
2l−1 [q1. . .q2l−1] = 1

22l−1
l − 1
l + 1

(
2l
l

)
h2l−1[q1. . .q2l−1]

2l−1∏
i=1

e−j3ωcqi (5.42)

Focusing for example on the contributions around 3ωc generated by third order
kernels (l = 2, HD3), we have:
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Table 5.1. Baseband polynomial distortion components up to fifth order

Component Expression

IM3 x̃[n] · |x̃[n]|2

IM5 x̃[n] · |x̃[n]|4

HD3 x̃[n]3

HD5 x̃[n]5

IM5 to HD3 x̃[n]4 · x̃∗[n]

ỹ±3ωc
3 [n] =

∑
q1

∑
q2

∑
q3

h̃3(q1, q2, q3) · x̃[n− q1] · x̃[n− q2] · x̃[n− q3] · ej2ωcn (5.43)

The result in 5.41 is directly applicable when considering the architecture of the
IQ receiver in Fig.5.2 where the baseband components are extracted in the analog
domain and then sampled. For the digital-IF receiver, where the sampling process is
done before the quadrature mixing, further analysis is carried out in the following
sub-section considering also sub-sampling and aliasing effects. Anyway, thanks to
the calculations made so far we gain insight into how to model both IMD3 and
HD3 and we can deduce thus the mathematical representation of other distortion
components, reported in Table 5.1 up to the fifth order.

5.2.3 Baseband modeling of sub-sampled bandpass systems

The goal of this analysis is to model RF distortions directly at baseband including
aliasing effect occurring on the in-band and out-of-band distortions in a sub-sampling
receiver. If we have to sample the analog output of a linear bandpass system with
a bandwidth B centered in one of the Nyquist zones, for the Nyquist criterion we
must use a sampling frequency fs > 2B to prevent information losses due to aliasing.
When a more realistic nonlinear bandpass system is taken into account (i.e. RF
receivers, active filters) we must consider its in-band distortion components up to
a certain order. The distortions bandwidth is proportional to their order: third
order distortions bandwidth is 3B, fifth order is 5B, etc. Considering for example
only third order systems, there are different behaviors of the distortion spectrum
depending on the choice of fs: we can find out the constraints relative to fs that
don’t produce distortions aliasing and the ones that produce distortions aliasing
non-overlapping with the useful signal spectrum.

• fs ≥ 6B → no third order distortions aliasing

• 4B ≤ fs < 6B → third order distortions aliasing outside the useful signal
spectrum

• 2B ≤ fs < 4B → third order distortions aliasing inside the useful signal
spectrum
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Thus depending on the choice of fs and B, different spectra are observed in the
first Nyquist zone after bandpass sampling. Classical modeling of IMD at baseband
(x̃[n] · |x̃[n]|2) is unable to describe this behavior for every value of fs.

Let’s focus on the bandpass signal in Fig. 5.6 that meets the constraint
4B ≤ fs < 6B. The central frequency is supposed to fall at the center of an odd
Nyquist zone so there will be no need to flip the spectrum in the first zone after
sampling. After the sampling process the spectrum of the real digitized signal

cf

B

3B

IMD3

f

2
sf

Figure 5.6. Real analog spectrum before the sampling process composed by the useful
signal and the IMD3

looks like the one showed in Fig. 5.7. Low-IF down-conversion is performed with
fIF = fs/4 if the original carrier frequency fc is centered in a Nyquist Zone. Aliasing
of the distortion spectrum occurs. We obtain the real and the imaginary components

fIFf

2
sf sf0sf IFf

2
sf

Figure 5.7. Real digital spectrum after the sampling process

of the baseband signal multiplying the real sampled signal for the cosine and the sine
of fs/4 and then low-pass filtering with an half band filter. The actual baseband
spectrum is depicted in Fig.5.8a.
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Figure 5.8. Comparison between the BF spectrum obtained after sub-sampling and the
one generated directly at baseband

As it can be seen in Fig. 5.8b the classical way of modeling IMD doesn’t reproduce
the actual behavior of a sub-sampled bandpass nonlinear system when fs < 6B. The
cause is that it doesn’t take into account the spectrum folding properly. Even if
we use half the sampling frequency at baseband prior to the generation of the IMD
component, the aliasing on the complex spectrum will not reproduce the folding
behavior of a real symmetric spectrum.

To correctly model the distortions at baseband a conjugated replica of the IMD
must be added, shifted in the frequency domain by fs/2 and then low-pass filtered
with an half band filter. The resulting spectrum is shown in Fig.5.9. The fs/2 shift
equals to exp(jπn) because the sampling frequency is fs:

exp
(
j2πfs2 n

1
fs

)
= exp(jπn) = (−1)n (5.44)

The IMD components can be written as:

ỹIMD[n] = LPF{x̃[n] · |x̃[n]|2 + x̃∗[n] · |x̃[n]|2(−1)n} (5.45)

The above method applies also to the modeling of harmonic distortions in
nonlinear bandpass systems such as active multistage filters. The HD components
will alias in the first NZ after sub-sampling and they will also be affected by folding
due to the constraint fs < 6B. Thanks to the analysis in the previous subsection we
know that the term x̃[n]3 produces HD3 but we have to take into account spectral
folding depending on the value of 3fc. Considering again the case of useful signal
spectrum centered in a NZ, we can write:

fc = fs
4 + k

fs
2 3fc = fs

4 + (3k + 1)fs2 (5.46)
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f

2
sf0

2
sf

Figure 5.9. Complex digital spectrum with the addition of the shifted conjugated replica
of the IMD components and low-pass filtered

For each value of k the first and the third harmonic always fall in even and odd NZs
or vice versa. This behavior implies the conjugation of the HD3 component in the
model. We must include the frequency shift and low-pass filtering as in the IMD
case obtaining the following formula:

ỹHD3[n] = LPF{(x̃∗)3[n] + x̃3[n](−1)n} (5.47)

The overall RF extended Volterra model (RFeVM) will include both IMD and HD
components with memory.

5.2.4 Behavioral simulations

To prove the validity of the RFeVM a bandpass nonlinear system with memory
has been simulated at IF with a sampling frequency high enough to represent HD3
without aliasing. The presence of HDs in the output spectrum of active bandpass
filters has been proven by circuital simulations in Subsection 5.2.2. After sub-
sampling the BF output is computed. Then the classical RFVM and the proposed
RFeVM are used to model the post-inverse system able to equalize the linear and
nonlinear transfer functions. The model parameters have been estimated using Least
Squares on a batch of 17 three-tone input-output BF signals. The signal bandwidth
is B = 15 MHz centered around fc = 30 MHz. Nonlinearities with memory are
generated at f ′s = 320 MHz, obtaining:

yIF [n] = xin[n] + αx3
in[n] + βx2

in[n]xin[n− 1] (5.48)

The sub-sampling frequency is fs = 40 MHz: fc is centered in the second NZ and
the 3fc component in the fifth. In this case the relation 2B ≤ fs < 4B holds. Both
the BF Volterra models are set symmetric and with a maximum memory equal to 2.

In Fig.5.10 the comparison between the post calibration spectra using RFVM
and RFeVM is shown. The input signal is an out-of-sample two tone with frequencies
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near the bounds of the passband that produces IMD and HD3 affected by aliasing.
It is clear that the RFVM is not able to correct these distortions. The RFeVM
compensate for both IMD and HD affected by aliasing: it has no out of band
components thanks to the low-pass filters included in the model. Higher order
residual components are generated due to the cascade of two third order systems
(the original and the post inverse one).
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Figure 5.10. Comparison between post calibration spectra using RFVM and RFeVM using
an out-of-sample detached two-tone signal

Fig. 5.11 shows that the RFVM is only able to compensate IMD not affected
by aliasing but fails to correct HD components that alias in band. In Fig. 5.12 the
comparison between SFDR enhancements obtained with the two models is shown.
The test has been performed using a set of 25 two-tone out-of-sample signals with
frequencies lying on adjecent FFT bins. The RFeVM achieves more than 20dB of
SFDR enhancemet within all the passband while the classical model shows very
poor performance due to its inability to compensate the harmonic distortions. In
such a test the IMD aliasing does not occur because each test signal is narrowband.
One way to check the wideband behavior of the estimated models is to evaluate
the post calibration Noise to Power Ratio (NPR) using an out-of-sample multisine
signal with a notch at the center of the spectrum. Fig.5.13 shows that using the
RFeVM the spectral regrowth decreases by more than 10dB while it gets worse
by the same value using the RFVM. The NPR value before calibration is 23.7dB,
and becomes 39.6dB after calibrating with RFeVM and 20.7dB using RFVM. From
these simulations we can say that the classical RFVM can model nonlinear bandpass
systems without out of band distortions (i.e. only nonlinear systems followed by
passive band pass filters) and it is limited to the condition fs > 4B that ensures no
IMD aliasing in the useful signal band. The proposed RFeVM can model nonlinear
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Figure 5.11. Comparison between post calibration spectra using RFVM and RFeVM using
an out-of-sample two-tone signal
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Figure 5.12. Comparison between post correction SFDR of the two models using out-of-
sample two-tone signals

bandpass systems even with HDs (i.e active multistage filters) and pushes down the
fs value (fs > 2B) towards critically sampled systems (with IMD experiencing in
band aliasing). The price to be paid is a higher number of model parameters due to
the presence of HD terms in the RFeVM. The presence of an half-band filter for each
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Figure 5.13. Comparison between the post calibration spectra using a wideband notched
multisine useful for the computation of the Noise to Power Ratio (NPR)

model parameter is only required in the offline estimation phase, where out-of-band
signals contribute to magnitude errors in the Least Squares algorithm. Once the
parameters have been determined, the RFeVM filter implementation requires only
one half-band filter after the linear combination of the model components.

5.3 System operating point impact on digital calibra-
tion performance

Post-distortion can be applied to improve Dynamic Range (DR) in receiver chains.
The nonlinear behavior of a receiver is highly dependent on the power level of the
input signal that determines the compression level of the system. In the selection
of the input stimuli needed for the calibration procedure, care must be taken in
choosing the peak amplitude of the signals and their Peak-to-Average Power Ratio
(PAPR). This parameter will impact on the operating range of the digitally enhanced
receiver. The approach can be summarized in these steps:

• Set the level of the input signals so that at the output the distortions exceed
the noise floor.

• Acquire N periods of the useful signals (averaging the noise lowers the estima-
tion error).

• Estimate the parameters. If the Volterra model have been chosen appropriately,
the post-correction distortions are pushed down to the noise floor.

Increasing the compression level of the system gives rise to a higher order set of
distortions that degrade exponentially the conditioning number of the sample matrix.
The estimated Volterra model is definitely capable of representing the input-output
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behavior of the system for input amplitudes lower or equal to the amplitude used
during the estimation phase. The modeling error increases when further increasing
the input level for the absence of higher orders kernel.

DR
Noise Floor

IMD3 
improvement 

DR 
improvement

IP3

inP

outP

Figure 5.14. Ideal dynamic range improvement

This method extends the operating region of the system up to the input level
used in the estimation phase and it is particularly advantageous if the system is
working in low compression. In these conditions, there is an increase in both SNR
and SFDR that translate in dynamic range improvement, as shown in Fig. 5.14. The
nearest the amplifying chain is to the saturation, the less the digital enhancement
to the DR will be: the effects of compression are highlighted in Fig. 5.15.
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Figure 5.15. Dynamic range improvement limited by compression

The most suitable architecture for the application of digital calibration is then a
system with weak nonlinearities, even with memory, and low noise floor. Regarding
IF bandpass filters in receiver chains, the ones based on Gm-C architectures are
characterized by medium linearity and poor noise performance while the ones based
on OPA-RC architectures show better noise figures.
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5.4 40nm CMOS AAF calibration

In a digital-IF receiver architecture the active anti-aliasing filter with gain is the
major contributor to system non-linearity because it works with the highest signal
swing. This behavior has been verified simulating an entire receiving chain in 40 nm
process made by LNA, mixer and AAF: when the output of the filter (designed with
lower voltage supply to reduce the overall power consumption) shows the effects
of heavy compression with fifth and seventh harmonics, its input has still a good
linearity. In this Section a calibration technique with the proposed model is applied
to an active multistage anti-aliasing bandpass filter designed in 40 nm CMOS using
mixed circuital and behavioral simulations, according to the scheme in Fig.5.16.

5-stage 
BQ BPF

Circuital simulation

IF/BF

IF/BF

IF Gen
Volterra 
Filter

Delay
@ Sf

@ SMf @ Sf

Figure 5.16. Calibration test-bed using behavioral and circuital simulation environments.

In the system under test a bandpass signal centered at 30 MHz with a 10 MHz
bandwidth is filtered with an Anti Aliasing Filter (described in detail in subsection
5.4.1) and then sub-sampled in the second Nyquist zone with a fS = 40 MS/s.
The resulting digitized IF spectrum is flipped (conjugated) and shifted around
fIF =10 MHz. Baseband components are extracted with a quadrature NCO using
fLO = fIF = fS/4 inverting the sign of the imaginary part to obtain the correct BF
spectrum.

The generation of the input stimuli is performed in MATLAB and saved in two
formats: IF high sampling rate waveforms in ASCII format needed for device under
test excitation and BF waveforms used as reference signals needed for the estimation
process. The files containing the IF waveforms are imported in Cadence Virtuoso
and played with a Piece Wise Linear File (PWLF) generator. Transient simulations
are used to extract output waveforms and the parameters estimation process is
carried out in the time domain. It is very important to simulate the “analog” section
with a sufficiently high accuracy to obtain the desired numerical precision. This is
achieved appropriately choosing different simulation settings:

IF waveform sampling frequency: The PWLF generator reads a two-column
file with time and amplitude values. The sampling frequency of the waveform
must be high enough to limit the distortions due to linear interpolation of the
source. In this study the value of 80 GS/s is adopted.

Transient simulation strobe: The output of the system under test is ideally
sampled by an ADC with a sampling frequency fS . Using the default variable
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Table 5.2. Values of f0 and Q of each biquadratic cell

BQ1 BQ2 BQ3 BQ4 BQ5

f0 30.8 39.8 23.3 37.5 25.5
Q 2.6 3.3 3.1 3.1 3.4

time step in the simulation, data at the sampling instants will be produced by
linear interpolation when the actual simulated time instants doesn’t coincide
with the wanted ones. The strobe option can be used specifying the strobeperiod,
25 ns in this study, to add all the ADC sampling instants to the time points
evaluated by the simulator and remove thus the interpolation error.

Simulator parameters: Since we are simulating the cascade of circuits with
moderate Q factors, the approximation errors due to Newton’s method worsen
because of oscillation phenomena of the resonant networks affecting the algo-
rithm convergence. For this reason it is important to set the Accuracy Defaults
to conservative and tighten the reltol (Newton’s method relative tolerance)
parameter. Controlling vabstol and iabstol we set the absolute values of voltage
and current tolerable errors. The adopted values for these three parameters
are respectively 10−8, 10−10 and 10−12.

The sampled simulation output is imported in MATLAB where it is used for
the Volterra kernels estimation and for the validation process with out-of-sample
waveforms. All the processing is done at baseband, using the same IQ extraction
blocks for symmetry both on the reference and output signal. The IQ extraction is
performed with a quadrature mixer followed by a 40-tap Butterworth low-pass filter.

5.4.1 Anti-Aliasing Filter design

The bandpass anti-aliasing filter is realized by the cascade of 5 biquadratic (BQ)
cells, obtaining a 10th-order transfer function. The central frequency of the filter is
30 MHz with a 3 dB bandwidth of 10 MHz and its gain is 16 dB. The values of f0
and Q for the biquads are reported in Table 5.2. Each biquad is implemented using
OTA-C fully-differential architecture depicted in Fig. 5.17.

1C

1C

2C

2C

1mG 2mG 3mG 4mGINv OUTv

Figure 5.17. BQ architecture
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For each BQ stage the values of f0, Q, and the gain K depend on the capacitors
C1,2 and on the transconductances Gmj (with j ∈ {1, . . . 4}) according to the relations
in 5.49:

f0 = 1
2π

√
Gm3Gm4
C1C2

Q =
√
Gm3Gm4
Gm2

√
C1
C2

K = Gm1
Gm2

(5.49)

The gain K of each BQ cell can be chosen in order to keep the peak magnitude
of the frequency response of each stage equal to the one at the output. We must
consider that at the C2 node the BQ shows a 2-pole low-pass frequency response
with a resonance peak near the cut-off frequency proportional to its Q factor. From
a linearity point of view it is important to keep also this peak value at the same level
of the bandpass output in order to let the OTA Gm4 work with the same input swing
as the other OTAs. The internal voltage scaling on a node nx by a factor γ is carried
out increasing the impedance seen at nx and multiplying all the transconductances
leaving that node by the same factor γ. In our case this means:

C ′2 = C2/γ and G′m4 = γGm4 (5.50)

The need for a linear transconductance impacts the OTA design. For this im-
plementation the topology in [7], represented in Fig.5.18, has been used. In this

2III2I

R

2I I2II

M1M1

INv INvOUTv OUTv

DDV

cnV

cpV

cnV

cpV

M2 M2 McnMcn

McpMcp

Figure 5.18. OTA architecture

transconductor a linear resistor R is used to perform the voltage-to-current conver-
sion. The input voltage buffer is realized creating low impedance nodes across the
resistor using local negative feedback. The current obtained from the resistor is
delivered to the output by source coupled pairs. The design parameters used for
the transconductor are shown in Table 5.3. The power consumption of the OTA is
225 µW.

In the filter design, the value Gm2 = Gm3 = 50 µA/V2 is adopted using R2 =
R3 = 20 kΩ. To obtain the desired values of gain K and low-pass node voltage
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Table 5.3. Design parameters for the OTA in Fig.5.18

Parameter Value Unit

VDD 1.5 V
I 25 µA
R 10 to 20 kΩ
M1 40/0.2 µm/µm
M2 10/0.1 µm/µm
Mcn 15/0.4 µm/µm
Mcp 50/0.5 µm/µm
Vcn 646 mV
Vcp 832 mV

scaling γ, lower values of R1 and R4 are needed. The value of R affects the local
loop gain of the voltage buffer and thus transconductor linearity: there is a trade-off
between the lowest resistance and the desired linearity. To overcome this limit at
the expense of power consumption, many OTAs in parallel are used to realize Gm1
and Gm4 transconductances with R1 = R4 = 10 kΩ.

The fully-differential topology of the OTAs requires the use of a CMFB circuit.
The adopted BQ architecture has only two independent high impedance nodes:
output ports of transconductors Gm1,Gm2 and Gm4 are connected together at the
bandpass output and the Gm3 alone at the low-pass output. So two CMFBs suffice
to control the common mode of the BQ circuit. The circuit implemented for the
CMFBs is shown in Fig.5.19.

The parameters adopted for the CMFB are reported in Table 5.4. The power
consumption of the CMFB is 120 µW.

Table 5.4. Design parameters for the CMFB in Fig.5.19

Parameter Value Unit

VDD 1.5 V
I(Mbn) 40 µA
M1 2.5/0.5 µm/µm
M2 2×25/0.25 µm/µm
M3 2×25/0.75 µm/µm
Mbn 2×7.5/0.75 µm/µm
VBn 470 mV
Vcp 832 mV

In Table 5.5 the capacitance values and the number of OTAs for each BQ are
reported. The total power consumption of the filter is 9.975 mW, less than 1 mW
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Figure 5.19. CMFB circuit

per pole.

Table 5.5. Capacitance values and number of OTAs used for the implementation of the
multistage anti-aliasing filter

BQ1 BQ2 BQ3 BQ4 BQ5

C1 1 pF 0.94 pF 1.78 pF 0.95 pF 1.72 pF
C2 0.52 pF 0.47 pF 0.57 pF 0.41 pF 0.63 pF

# OTAs 8 7 8 7 9
# CMFBs 2 2 2 2 2

The frequency response of the designed filter is shown in Fig. 5.20. The linear
frequency axis is used to emphasize the lower attenuation value on the third Nyquist
zone (40 to 60 MHz) with respect to the first. The output noise power is calculated
integrating the output noise spectral density in the filter bandwidth considering also
the spectrum intervals of higher Nyquist zones because of noise folding. We obtain
Pn = −64 dB on the 10 MHz bandwidth. The dynamic range is evaluated as the
ratio between the power of the useful signal when IMD reaches the noise floor and
the noise power:

DR =
PS
∣∣
IMD=Pn
Pn

(5.51)

Using a 2-tone signal the IMD reaches −64 dB with an output peak amplitude of
320 mV giving a dynamic range DR = 51.8 dB.
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Figure 5.20. Anti-Aliasing Filter AC response

5.4.2 Digital calibration results

The calibration technique described in Section 2.4 has been applied to the AAF using
both the classic RFVM and the proposed RFeVM, described in Section 5.2.3. The
input excitation waveforms used for parameter estimation are a batch of multisines:
ten 5-tone and eight 2-tone signals. The selection of the frequencies of the multisines
is linked to the DFT resolution with which we analyze the output spectrum. We
adopt NFFT = 128 to represent the complex spectrum between −20 to 20MHz. The
filter pass band ranges from −5 to 5MHz at baseband, so 33 discrete frequency bins
are available for input excitation design spaced by ∆f = 40

128 = 0.3125 MHz. An
iterative algorithm has been designed to choose a subset of ten 5-tuples among all
the 237336 combinations given by

(33
5
)
. This algorithm searches for combinations

of frequencies such that the union set of all their IMD products cover all distinct
FFT bins. The number of IMD products depends on the number of frequencies of
the multisine and on the system nonlinearity order. A set of 16 2-tone signals have
been selected spanning all the pass band: one half have been used for the estimation
phase and the other half for the out-of-sample validation.

Different values of model lags have been tested exploring trade-offs between
accuracy and complexity of the calibration technique. In the following simulations
the notation [L1 L3 L5 L7 L9] is adopted to specify the memory depth of each odd
kernel used. Analyzing the output spectrum of the AAF the presence of third and
fifth intermodulation and harmonic distortions is clear. The use of higher order
kernels can improve the nonlinear compensation correcting also the nonlinearities
produced by the cascade of the original system and the Volterra filter itself (e.g.
third order IMD products passing through a third order kernel).

The improved non-linear compensation capabilities of the proposed model are
shown in Fig. 5.21 using a [10 1 1 0 0] lag configuration, showing a wideband SFDR
improvement of more than 24 dB against the classic RFVM limited by in-band HD
aliasing. The plot is realized interleaving in-sample and out-of-sample 2-tone signals,
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showing the same trend on SFDR enhancement. The number of parameters of the
RFVM and the RFevM are 31 and 43 respectively.
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Figure 5.21. Comparison between the SFDR of the system without calibration and the
one obtained after calibrating with classic RF Volterra model (RFVM) and the proposed
RF extended Volterra model (RFeVM)

The better fitting capability of the RFeVM is also demonstrated comparing the
two models with different lag settings producing a comparable number of parameters.
In Fig 5.22 the RFeVM with a [10 1 0 0 0] lag configuration that produce a 27
parameter model is compared with the 31 parameter RFVM shown in the previous
figure. RFeVM performs 4 dB better with less parameters.
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Figure 5.22. Comparison between the SFDR of the system without calibration and the one
obtained after calibrating with a 31 parameters RFVM and a 27 parameters RFeVM.
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The multisine signals used in the estimation phase have a peak amplitude of
0.45 V and the worst output IMD reaches −52 dB, exceeding the noise floor by
12 dB. The calibration procedure pushes the distortions below the noise floor so the
improvement in dynamic range is given by the extension of the output swing and is
limited by noise. Passing from 0.32 Vp to 0.45 Vp represents a 3 dB improvement
in DR. The value of the new DR should be measured increasing the amplitude of
2-tone test signal until the post calibration IMD reaches the noise floor, so 3 dB is a
conservative value.

The validation procedure of the estimated calibration parameters is carried
out also using out-of-sample modulated waveforms and a combination of a weak
modulated signal and a sinusoidal interferer. First, the performance of the calibration
filter is assessed using a 10 MHz 16QAM waveform. The operations of filtering,
rotation and symbol timing recovery are implemented in MATLAB to demodulate
the signal. Fig. 5.23 shows the comparison between the demodulated constellations
of the 16QAM signal with a peak amplitude of 0.47 V without calibration, after 20
taps linear equalizer and using RFeVM with [10 1 0 0 0]. The EVM of the uncalibrated
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Figure 5.23. Constellation plot of a 10 MHz 16QAM waveform with 0.47 V peak amplitude,
without calibration, after a 20 taps linear equalizer and after 27 taps RFeVM filtering
using the estimated parameters. The EVM for the three constellations is respectively
−29 dB, −48 dB and −55 dB

output is −29 dB. The effect of compression on the constellation symbols due to
nonlinearities is very low for this amplitude value; there is indeed a low difference
between the EVM in the linear EQ case, −48 dB, and in the RFeVM case, −55 dB.
RFeVM outperforms the conventional RFVM by 5 dB in EVM (not shown).

Higher performance improvement in terms of EVM can be seen on a weak 5 MHz
16QAM signal received together with a strong 2-tone whose IMD products fall
into the modulated signal band. Fig. 5.24 shows the comparison between the
constellations in presence of an in-band interferer produced by intermodulation
distortions using linear equalization and RFeVM filtering. In this case the linear
equalizer is unable to compensate the nonlinear distortion, reaching a −39.2 dB EVM,
against the −55 dB value using RFeVM calibration. The “Lin EQ” constellation
shows the presence of the in-band sinusoidal interferer because the symbols are
spread on circles.

Computational complexity is the bottleneck of Volterra filters practical implemen-
tations due to the high number of parameters. When selecting the lags configuration
of a Volterra model we produce filters with a fixed number of coefficients with a
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Figure 5.24. Constellation plot of a 5 MHz 0.04 Vp 16QAM waveform in the presence of
in-band sinusoidal IMD3 product of a 0.45 Vp 2-tone, without calibration, after a 20
taps linear equalizer and after 27 taps RFeVM filtering using the estimated parameters.
The EVM for the three constellations is respectively −29 dB, −39.2 dB and −55 dB

growing difference in terms of parameters number between different configurations
when increasing lag values. Although we demonstrate that calibration with low
memory lags is possible even for multistage active circuits in moderate compression,
a lower number of parameters could be necessary to guarantee the same (or very
less lower) performance. Many pruned models are described in literature based on a
priori reduction of the model terms (losing of generality). A different approach is a
posteriori pruning, that discards single parameters using some information about
their weight on the estimated post-inverse model. Since the Volterra kernels are not
an orthonormal basis, discarding the smallest parameter obtained by a LS estimation
is not a good criterion to reduce the complexity. One method is the projection of
the Volterra kernels on an orthogonal basis [27, 52], e.g Wiener G-functionals [66],
Laguerre [17, 107] or Kautz [26] polynomials, removing the smallest parameters
from the new representation and then going back to a Volterra series with a reduced
parameter set. The adopted method is a backward pruning technique based on an
iterative algorithm that discards at each step the parameter that impacts linearity
the least. Fig. 5.25 shows the post calibration SFDR and the EVM of a 10 MHz
16QAM signal versus model complexity starting from a [10 1 0 0 0] lag configuration.
The quality criterion that drives the pruning algorithm is the post calibration SFDR.
The results show that almost the same performance of the full model can be reached
with 20 filter coefficients instead of 27. Using only 20 parameters (11 for linear
equalization) we obtain a 63.2 dB SFDR and an EVM equal to −54.7 dB. This
pruning search algorithm performs a number of iterations equal to:

NNL(NNL + 1)
2 (5.52)

where NNL is the number of parameters excluding the linear kernel. The number of
iterations grows rapidly with the increasing model order and maximum lag, but it is
an offline operation that does not weigh on real time processing.

The concept of “digitally enhanced analog circuits” can be assessed using some
Figure of Merit (FoM) and evaluating its enhancement after digital calibration.
Different FoMs are reported in literature to evaluate the performance of analog
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Figure 5.25. SFDR and EVM versus the number of parameters using an iterative pruning
technique that discards the parameter that impacts SFDR the least.

filters [100]:

FoM1 = Pd
8kBT · fc ·Np ·DR

(5.53)

FoM2 = Pd
fc ·Np · SFDR ·Q

(5.54)

FoM3 = Pd ·A
fc ·Np · SFDR · IIP3 (5.55)

Digital calibration impacts on linearity, power consumption, and occupied area of
the digital processing section. We can see that the first expression gets better if
the relative DR increase is greater than that of power consumption. The second
expression is more relaxed, with the constraint impacting the SFDR increase, always
greater than that of the DR. Using FoM3 the additional ratio between area and IIP3
must be considered. We can write:

∆FoM1 = ∆Pd
∆DR ∆FoM2 = ∆Pd

∆SFDR ∆FoM3 = ∆FoM2
∆A

∆IIP3 (5.56)

The values ∆Pd and ∆A depend on the implementation of the digital section.

5.5 Conclusions and future work
System-level calibration of entire processing chains enables the use of a single
correction model to correct the nonlinear effects arising in a sequence of different
blocks, such as a multistage active filter. This has the potential to greatly reduce
the digital overhead of the correction algorithms, if the resulting aggregate models
do not become too complex. A Volterra model is agnostic about the specific causes
of nonlinearities, except by postulating that they are continuous and - for numerical
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feasibility - relatively short-memory. The new RFeVM makes the baseband processing
for nonlinear compensation feasible even for critically sampled systems exploiting
sub-sampling. Significant performance improvement can be achieved by relatively
simple models using low-lag Volterra kernels. A 23 dB enhancement in SFDR has
been reached using a pruned 20 parameters model. The dynamic range of the
filter increases by 3 dB if we consider an output peak amplitude of 0.45 V. True
post calibration DR has a greater value and must be assessed increasing test signal
amplitude until the IMD reaches the noise floor.

Most of the processing power is required for linear equalization, which is always
present in receivers to reduce Inter-Symbol Interference (ISI), so the overhead is
likely to be small. In an experimental setup the noise on the measurements in the
estimation phase can be reduced using the mean of many acquisitions of the periodic
test signals.

A laboratory testbed addressed to RF receiver chains calibration is under deve-
lopment in the Thales Alenia Space Italy premises. FPGA firmware and Arbitrary
Waveform Generator control software for synchronous data generation and acqui-
sition have been developed. Different RF chains will be tested to assess model
complexity for different architectures.
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Chapter 6

RF Array Receiver Calibration

Exploiting the spatial domain of the satellite communication channels is a key
feature for next-generation payloads enhancing link robustness against interferers and
enabling a high time-frequency resources reusability. The most straightforward way
to implement these capabilities is to take advantage of the onboard spatial diversity
given by antenna arrays and digital beam forming network (DBFN) techniques. The
figures of merit of a receiving phased array satcom antenna such as directivity and
process gain are highly dependent on the receivers frequency-selective responses and
on frequency responses mismatch between different channels giving rise to linear
distortions. Moreover the presence of receiver nonlinearities, typically higher in low
power RF circuitry, will also impact the spatial resolution and the dynamic range of
the system. To compensate these errors due to RF chain non-idealities in satcom
DBFN many solutions have been proposed relying on digital signal processing
after A/D conversion. Classical amplitude and phase correction algorithms are
only suitable for narrowband linear systems and even more complex linear filtering
calibration techniques cover the wideband case, but are not able to compensate
non-linear distortions [18].

In this chapter the digital calibration technique based on baseband Volterra
model described in the previous one is extended to a multi-channel array receiver.
Using mixed behavioral and circuital simulations we demonstrate the non-linear
wideband equalization of the antenna receivers response, thus enhancing directivity,
process gain and spurious free dynamic range of the array. The proposed calibration
algorithm requires a least squares parameter estimation of the post-inverse Volterra
passband model that maximizes the linearity of the overall system response. This
method foresees the transmission of a set of known pilot references, such as multitone
or chirp signals, in order to estimate and fine tune the optimal calibration coefficients.
The RF chain response correction is carried out in the digital domain with a Volterra
non-linear expansion of the received signals followed by linear filtering (FIR). The
validity of the proposed calibration technique is discussed with the simulation results
from a RF receiving chain affected by non-linearities.
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6.1 Introduction

Next generation SatCom payloads envisage an ever growing digital domain section
that enables higher flexibility with respect to communication protocols and Digital
Signal Processing (DSP) functions thanks to hardware reconfiguration capabilities.
It is possible to extend these advantages even for the antenna section employing
Direct Radiating Antenna (DRA) arrays and DBFN processing capable to realize
programmable spotted coverage and adaptive interference robustness. These multi-
channel architectures require a calibration phase to homogenise each channel response
to a target response and to reach then the maximum performance achievable. On
the basis of the hardware implementation of the DBFN and the features of the
processed signal, different kinds of architectures could be required to implement the
calibration algorithm. Therefore, an interest is raising in flexible calibration stages
able to adapt to different operative scenarios.

In this study we focus on the calibration of a receiving phased array according to
the scheme in Fig. 6.1, therefore aiming to compensate the errors arising from both
the antenna elements and the receiver chains. The non-linear modelling by means of
the Volterra series makes the proposed techniques applicable even to a transmitting
phased array, in which the non-idealities of power amplifiers and antenna elements
can be corrected using pre-distortion. Volterra series based calibration techniques are
also applied to Sample and Hold Amplifier (SHA) stages [19] and to A/D converters
[20], even if in some cases more specific models are needed [21]. For the sake of
simplicity, a uniform linear array (ULA) is considered, without limiting the generality
of the proposed solution that is extensible to multi-dimensional array simply using
the proper array manifolds.

6.2 Wideband Volterra calibration architecture

Figure 6.1. DBFN wideband calibration architecture

The architecture of a wideband n-channel DBFN is depicted in Fig.6.1 that
includes a calibration stage made up of n Volterra filters implemented in the digital
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domain after the A/D converters. A phased array consists of n antenna elements,
each one with its own radiation pattern, distributed over one, two or three spatial
dimensions. Combining accordingly the signals on the n elements a steerable beam
pattern can be synthesized with gain and directivity dependent on the array geometry
and on the properties of each antenna.

Figure 6.2. Uniform Linear Array scheme

Consider the far-field transmitted passband signal xRF (t) = R
{
xBF (t)ejωRF t

}
impinging on the ULA on the direction θ depicted in Fig. 6.2. Each element of the
array receives the signal with a delay τn = nD sin θ

c , with θ the angle of arrival, D
the element’s spacing and c the speed of light. The signal on the n-th ideal antenna
is then:

ynRF = xRF (t−τn) = R
{
xBF (t− τn)ejωRF (t−τn)

}
= R

{
xBF (t− τn)ejωRF−τnejωRF t

}
(6.1)

In a narrowband scenario the BF component can be considered constant over a
time period equal to the maximum relative delay (N−1)D sin θ

c , so the delay between
elements can be represented simply by a phase shift of the baseband signal:

ynRFNB ≈ R
{
xBF (t)ejωRF (t−τn)

}
= R

{
xBF (t− τn)ejΦnejωRF t

}
(6.2)

The mathematical boundary between narrow and wide band can be derived from
the first order Taylor expansion of the BF signal:

xBF (t− τn) ≈ xBF (t)− τn · x′BF (t) = xBF (t) ·
[
1− τn

x′BF (t)
xBF (t)

]
(6.3)

The constraint rises from the derivative of the BF signal in which the highest frequency
component is multiplied by the frequency itself. The narrowband approximation
holds if τn · ωmax � 1 for the maximum value of τn, i.e. for n = N − 1.

Assuming to model a RF receiver as a linear time invariant (LTI) system, it
can be represented by means of its baseband frequency response HBF (ω). In the
narrowband case the receiver’s frequency response can be approximated with its
value at the carrier frequency, which is the DC value of the baseband equivalent
HBF (0) = A0e

(jφ0). The relation of the output signal with respect to the transmitted
signal becomes:

znBFNB (t) = An0xBF (t)ej(Φn+φn0 ) (6.4)
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Compensating the different values of An0 and φn0 among channels can be done with
APC (Amplitude and Phase Correction) algorithms in the narrowband case. When
the received signal is wideband the baseband output signal before the A/D conversion
can be written in the frequency domain as:

ZnBF (ω) = Hn
BF (ω) ·Xn

BF (ω)e−jωτnejΦn (6.5)

In this case the calibration and the beam forming algorithms must be based on FIR
filtering in the digital domain: the calibration algorithm needs to find the frequency
transfer function that equalizes the overall channel response and the digital beam
former must synthesize a fractional delay on the baseband component.

In a more realistic scenario, the RF extended Volterra model seen in the previous
Chapter can be adopted, including wideband electronic circuits behavior and their
memory effects. From a DSP point of view of each receiving chain, Volterra filtering
is similar to Multi Input Single Output (MISO) linear filtering in which all the
equivalent inputs are obtained multiplying delayed replica of the input signal.

6.3 System setup for parameters estimation

The global array calibration is obtained with the application of the calibration
procedure shown in the previous Section for each channel. Knowing the direction
of arrival of the reference signal gives to us the information about the expected
amount of delay of the received signal at the output of each channel (in the ideal
case). In this way we can apply the calibration algorithm using the reference signals
with different delays for different channels. It is equivalent to apply the inverse of a
steering vector to the reference, obtaining a local reference for each channel. This
procedure realizes both nonlinear compensation with Volterra kernels and group
delay equalization with the linear FIR filtering section among the channels.

6.3.1 DBFN simulation model

The DBFN testbench comprises both a circuit level model and a behavioural
simulation model. With the first component, it is extracted a truncated Volterra
series model of a L-band receiver implemented in 40nm STMicroelectronics CMOS
technology using Cadence Virtuoso simulation tool [2], composed by an LNA, a
Mixer, an Anti-aliasing passband filter and an IF-Amplifier. Then, the extracted
model is used in MATLAB simulation environment by adding gaussian variability
to the parameters with a standard deviation equal to 10% of the nominal parameter
value. The models obtained are used as the receiver responses for each of the 32
channels of a ULA. Each antenna element is modelled by a complex Fourier series of
5 terms of standard deviation equal to 5% of the nominal directivity. The model
adopted for DBFN simulation is shown in Fig. 6.3.

The directivity of the array is simulated using a chirp signal from a known
direction as input to each element, then the beamformer scans a discrete set of
directions and the synthesized sum sequence is correlated by means of a matched
filter on the chirp waveform.
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Figure 6.3. DBFN simulation model

6.4 Simulation Results

The calibration technique is based on the LS parameter estimation of the post-inverse
Volterra system of each array receiving channel. The selected Volterra model has
the first and the third order kernels with lags 10 and 1 respectively, producing a
17 parameters calibration filter. The key for obtaining a correct estimation of the
parameters is to choose input calibration signals that represent persistent excitations
for the system. Ten three-tone signals that produce output distortion spurs on
distinct frequency bins have been used for the estimation phase. The result of the
post calibration directivity obtained with a chirp signal impinging on the array on
the direction θ = −π/7 is represented in the comparison plot of Fig.6.4.

Figure 6.4. Pre and post calibration directivity comparison

The results show a gain of 1dB on the peak of the matched filter output and a
reduction of 7dB on the highest side lobe level. The directivity loss is mainly due
to linear distortions and bandwidth mismatches between channels, so even with a
linear FIR calibration this result can be obtained. The effects of calibration on the
processed signals can be seen comparing the transmitted and received waveforms
with the post-calibration one. In Fig. 6.5 the real part of the complex baseband
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chirp signals is shown, the effects of the linear equalization are noticeable.

Figure 6.5. Comparison between TX, RX and CAL chirp waveforms

The nonlinear behavior of the receivers contributes mainly to Spurious Free
Dynamic Range (SFDR) degradation and spectral regrowth. These effects are
mitigated thanks to the Volterra non-linear calibration. The comparison between
transmitted, received and post-calibration spectra of a three tone signal are shown
in Fig. 6.6. The SFDR of the system without calibration is 46dB, the dominant
distortions are generated by the Anti-Aliasing active filter implemented by a 5-stage
Biquad cascade. A 18dB improvement in SFDR is obtained after the calibration
filter.

To validate the proposed calibration technique on different kinds of out-of-sample
signals, a 5MHz bandwidth 16QAM waveform together with a high amplitude two-
tone signal whose IMD3 component falls into the modulated bandwidth has been
processed by the receiving chain and then filtered using the Volterra filter with the
estimated coefficients. The Error Vector Magnitude (EVM) has been computed at
the output of the Anti-Aliasing Filter without any correction, after linear equalization
and applying the proposed nonlinear calibration. The baseband Volterra model used
for the calibration has the linear kernel with lag 10, the third order kernel with lag
2, the fifth with lag 1 and the seventh with lag 0.

Fig. 6.7 shows the comparison between the three constellations: linear equaliza-
tion alone improves the EVM, but nonlinear calibration further improves linearity.
EVM was -30dB before equalization, lowered to -39dB with linear equalization, then
further lowered to -47dB with nonlinear equalization. The absence of a particular
symbol is only caused by the few symbols collected in the circuital transient simula-
tion, due to the low symbol rate and the high ratio between simulation time and
simulated time.
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Figure 6.6. Comparison between TX, RX and CAL 3-tone signal spectra

Figure 6.7. Received weak 5MHz 16QAM constellation processed together with a strong
2-tone signal using linear and nonlinear calibration.

6.5 Implementation complexity and parallelism

With Moore’s law no longer working for single-core CPUs, the trend in high perfor-
mance computing is to exploit parallel architectures which perform several (from a
couple to thousands) operations at the same time. To the extent that the underlying
algorithm can be parallelized, it performs many independent operations that do not
rely on the output of previous instructions, and possesses sufficient data locality
to exploit the bandwidth of wide (for instance, 64 to 512 bits) digital buses. In
the framework of flexible / reconfigurable payloads, DSP algorithms can exploit
parallelism of programmable space qualified platforms based on a mixed many-cores
CPU - FPGA architecture [62]. Next generation many-cores CPU, such as RC-64
[39], have many instances of cores (10-1000), which are simpler than the cores in
conventional CPUs and can scale parallelism up by more than an order of magnitude
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respect to them. FPGAs can be configured to perform parallel computations at the
hardware level, and are usually programmed in VHDL, though recently support for
OpenCL has been introduced, making FPGA development somewhat more similar
to that of CPUs and GPUs. The efficiency in the use of parallel architecture is
strongly dependent on the type of algorithm being performed: in FIR digital filters,
and FIR filter banks (including the DFT algorithm), efficiency is usually high. On
the other hand, for IIR and adaptive filters, which make use of feedback loops,
efficiency is much lower. Besides the computing power, other limitations arise from
bandwidth limitations in the bus connecting the device and its RAM, and the
acceleration board and the host computer. Finally, memory limitations may be an
issue, if for instance tens or hundreds of GB of data are to be stored in RAM. The
correction algorithms to compensate linear mismatches and nonlinear distortions in
the receiver array make use of FIR filters and Volterra kernels. Parameter estimation
is performed offline, during a calibration procedure, and the results are stored in
the correction hardware to post-process the receivers’ outputs and improve system
performance. Both multiplications and FIR-filters can be efficiently implemented
in most parallel hardware as there are few data dependencies and data locality is
high. Hardware which is optimized to perform multiply-and-accumulate (MAC)
operations is particularly suited for this purpose. Beam-forming can be seen as a
form of complex matrix multiplication, an algorithm which can be easily paralleli-
zed, as it consists in a sequence of multiply-and-accumulate elementary operations.
Computing the rotation matrix from angle data requires trigonometric functions,
which can be efficiently handled by some hardware which have specialized units
for transcendental functions. The Volterra kernels used to improve dynamic range
have a FIR architecture, as the output only depends on the input and not on its
previous values. This makes these kernels easier to parallelize, avoiding strong data
dependence. Volterra kernels can be expressed as a series of FIR filter, whose input
is a polynomial of the input signal. The polynomials always contain a term with
zero lag, and are called “primary function”. If we consider a second-order kernel
with L2 = 4 lag, there are 15 terms in the kernel, from x2

n to x(n − 4)2. Some of
these terms can be expressed as a delay on other terms: x(n − 4)2 is x2

n delayed
by four. The primary functions are the Volterra terms which cannot be obtained
as a delay from other terms. In a second-order kernel with a delay of 4, these are:
x2
n, xnx(n− 1), xnx(n− 2), xnx(n− 3) and xnx(n− 4), and there are 5, 4, 3, 2, 1

such terms (delayed) in the full kernel, respectively. A FIR filter with 5 taps can
take x2

n as input; another FIR filter with 4 taps can take xnx(n− 1) as input, and
so on. The output of the kernel is the sum of the outputs of the FIR filters. A
similar structure is also valid for higher order kernels. A third-order kernel of length
L3 will have (L3 + 1)(L3 + 2)(L3 + 3)/6 terms, and (L3 + 1)(L3 + 2)/2 primary
functions. Furthermore, the primary functions of the second-order kernel can be
used to compute those of the third-order kernel, and so on: xnx(n − 1)2 can be
for instance computed as xnx(n− 1)x(n− 1). There may be issues in the parallel
implementation of Volterra kernels on some parallel hardware, especially GPUs: for
instance, the FIR filters after the primary functions generator tend to be short, and
the algorithm’s nested summations are not independent. Alternative implementati-
ons may use the symmetric kernel approach, or frequency-domain algorithms based
on the overlap-add or overlap-save methods.



6.6 Conclusions 109

6.6 Conclusions
The digital calibration technique presented in the previous Chapter and applied
to an AAF (latest stage of a digital-IF receiver) has been extended to a receiving
DBFN and has been demonstrated with mixed circuital and behavioral simulations.
The joint linear and non-linear equalization capabilities of the proposed technique
achieve the enhancement of the array directivity and the overall system SFDR. An
overview of the parallel architectures that can implement efficient Volterra filters
has been carried out, and a future implementation will be realized on the many-
cores rad-hard processor RC-64 [39] using a parallel programming approach in C
language. The more critical activity of the DBFN calibration remains the test setup
for the synchronized generation and acquisition of the test waveforms. A possible
realization would require an anechoic chamber with a controlled source positioning
to characterize the spatial dependency of the array calibration coefficients.
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Chapter 7

Conclusions

The research activity reported in this thesis has been motivated by the technological
trend of the “dirty RF” paradigm. The methodology for applying digital calibration
algorithms to single and multi-channel systems has been developed, together with
the tools to analyze and identify nonlinearities in complex systems such as TI-ADCs
and sub-sampling receivers. The main contributions have regarded the identification
and compensation of dynamic nonlinearites using post distortions methods based
on Volterra models and the a posteriori complexity reduction of the models. The
achieved results are very promising in the perspective of a growing gap between analog
circuit performance and the progress of digital functions. Using a coarse estimate,
analog performance (ADC FoM) doubles in 5 years while digital performance (MIPS)
doubles every 1.5 years. This means an analog/digital gap near to 150 times in 15
years. These facts suggest that digital calibration will be ever more important and
necessary for future CMOS mixed-signal systems.

A number of considerations must be done about the new prospects opened up
by the research. Despite the advantage of the Volterra models to be intuitive and
general, they are very efficient only in the identification of short memory smooth
(low order) nonlinearities. New models can be synthesized that include short memory
polynomial functionals and particular discontinuous functions, determined by the
specific system under calibration. Different algorithms for the parameters estimation
shall be considered especially in high complexity models that produce ill-conditioned
sample matrices. The Orthogonal Matching Pursuit (OMP) could be used as a
forward pruning algorithm, for the identification of a sparse Volterra model.

Other receiver architectures shall be addressed to understand the behavior and
the potential of digtal post compensation. Due to the widespread use of Software
Defined Radios (SDR), both in medium and high speed applications, a deepen
research should be carried out to analyze the distortions arising from wideband
LNAs in the presence of blockers and interferers.

The experience acquired in digital calibration should be exploited in analog-
digital co-design. Starting from the anti-aliasing filter implemented in Chapter 5, an
improved design should be realized minimizing the filter’s noise figure and correct the
degraded nonlinear behavior in post processing. The optimum target is to match the
noise floor level with the highest post calibration spur, obtaining the best achievable
dynamic range.
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7.1 Summary of the research contributions

The problem of complexity reduction has been addressed implementing an iterative
backward pruning algorithm. This algorithm performs a selection of the Volterra
kernels discarding the ones that impact linearity the least. This performance driven
method produce a suboptimal solution due to the finite search through a subset of
all the possible kernel combinations and because the Volterra functionals are not
an orthogonal basis. Despite these limitations, the proposed method outstands the
pruning based on a priori selection of the kernels that limits the generality of the
Volterra model.

The analysis of the distortions in a sub-sampling receiver, mainly caused by
the active anti-aliasing filter, has been the starting point for the derivation of an
extended baseband equivalent Volterra model. This complex-valued model is able
to represent out-of-band harmonic distortions that fold in the pass-band due to
sub-sampling and the aliasing of the IMD components. This generalization enables
the use of baseband processing schemes independently from the ratio between fs
and the bandwidth of the system (in the limits of the Nyquist theorem) and the
order of nonlinearity.

The methodology developed for efficient time-series identification techniques
using transient simulations simplifies the analog/digital co-design: circuit level
simulations can be employed to assess the pre-calibration performance of the system;
then, using behavioral simulations, a database of Monte Carlo realizations of the
post layout system can be obtained and a statistical estimate of post-calibration
performance and yield can be carried out. In this way digital calibration can be
viewed as an integral part of the design process.

In the study of TI-ADCs, a methodology for solving the Papoulis equations in
the presence of time skews and gain errors has been presented. The closed form
of perfect reconstruction filters has been calculated and validated by numerical
simulation for a 4-channel architecture. The shape of such filters has suggested the
use of new base filters in the cyclo-stationary calibration architecture, obtaining
better performance in terms of accuracy and complexity with respect to the state of
the art.

7.2 Future works

Along with the aforementioned contributions, this thesis have leaved open issues
that will be faced in future research activities.

Regarding the post compensation of the digital-IF receiver, the proposed model
can be improved covering the cases of fIF 6= nfs4 and adding new terms for represen-
ting IQ mismatches in quadrature sampling receivers. These further enhancement
will make the model even more flexible and general with respect to the receiver
architectures and the analog impairments.

For what concerns the research on TI-ADC, two topics must be further inves-
tigated: the implementation of a practical adaptive estimation algorithm together
with the analysis of fixed-point performance in the Papoulis architecture starting
from the presented results and the analytical derivation of the closed form solution
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of the correction filter in the cyclo-stationary architecture.
The development of a testbed addressed to RF receivers calibration is in progress

in the Thales Alenia Space Italy laboratories. FPGA firmware and control software
for synchronous data generation / acquisition have been developed. Coherent
sampling between excitation design, generator output and acquisition front-end will
be guaranteed feeding all the devices with a common 10 MHz reference. Different RF
chains will be tested to assess model complexity for different architectures and carrier
frequencies. A multi-channel extension is foreseen addressed to array processing
in space environment, exploiting the architecture parallelism of a novel rad-hard
many-cores processor to implement efficient Volterra filters and beam forming.
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