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Preface 

In the last years there has been a growing interest in studying the functional 

relationship (in statistical sense) between the activity in different parts of the 

brain [1]–[5], as a tool to improve the understanding of which brain areas are 

mainly involved in the execution of tasks (e.g. motor, cognitive, visual, auditory, 

social) and how they communicate to create the circuits underlying a specific 

cerebral function. Several estimators with different peculiarities have been 

developed to assess the existence, the intensity and the direction of the functional 

connections linking two or more signals. Some of them  are characterized by a high 

versatility since they can be applied to signals acquired through different 

techniques, fMRI, EEG or MEG, on the basis of the specific applicative aims [6], [7]. 

EEG is one of the few techniques allowing to non-invasively study brain activity 

with a timing that matches the one of the processes under investigation. Lots of 

the available methods have been developed to estimate functional connectivity 

networks starting from this kind of signals recorded in the most varied contexts: 

during the execution of a cognitive or motor task, in clinical and operational 

contexts. The aim of this thesis was to employ such methodologies for 

investigating cognitive function like attention and memory in healthy subjects and 

in post stroke patients, in order to better understand the brain activity associated 

with such functions and with their recovery after an injury. Several studies 

investigated the properties of all the available methods providing different 

solutions for different application fields and highlighting the best approaches able 

to reproduce the brain circuits related to non-invasive EEG measurements. 

Among all the approaches used for connectivity estimation, worth of note is the 

class of estimators based on the theory of causality developed by developed by 

Wiener in 1965 and translated in a mathematical object by Granger in 1969 [8]–

[10]. Such estimators are able to determine the direction of the influence between 

any given pair of signals. Notwithstanding the advancements provided in this 

respect during the last twenty years, the main problem still unsolved regards the 

stability and reliability of the connectivity patterns obtained from Granger 
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causality-based approaches. Such issue still needs to be solved in order to provide 

an instrument really able to fulfil clinical and applicative purposes, where the 

reliability of the results and their consistence within classes of pathologies are 

mandatory. In the present thesis, the term “causal” will be referred always to the 

concept of dynamic influence based on a predictive model (in the Granger sense). 

More generally, the framework of connectivity estimators is a manifold scenario 

where the selection of the appropriate algorithm on the basis of the research 

objectives is often difficult. For this reason, several studies tried to compare the 

performances of already existing algorithms under different experimental 

conditions with the aim to provide some guidelines to help researchers in 

orienting themselves in such intricate world. Moreover, every time a new 

algorithm is defined and implemented, an initial testing phase where it is 

compared to already existing approaches is required. In both cases, the 

comparison is always made on the basis of data reproducing a well-known 

connectivity pattern, which can be used as test bench for the algorithms. 

Unfortunately, a realistic benchmark is not easily available so that is often 

necessary to resort to simulated data. As for the EEG case, simulated data should 

reproduce the spectral properties of signals really acquired on human scalp 

otherwise the test might provide results on algorithms performances which could 

be contradicted on real data. After an introductive Chapter 1 in which some 

preliminary notions will be briefly exposed, in Chapter 2 we introduce a new 

toolbox, SEED-G, that allow to generate realistic simulated data with the same 

spectral properties of EEG (or ECoG) signals and with the possibility to set a whole 

series of parameters which make the dataset as close as possible to the user’s 

necessities. In particular, the user can choose the features of the signals to be 

generated (number of samples, number of trials composing the dataset, signal to 

noise ratio, inclusion or not of non-ideality or artifacts) and the features of the 

imposed connectivity pattern (number of nodes, density of the pattern and 

behaviour along time) in order to obtain a ground-truth in so many different 

interesting and not yet investigated experimental conditions. 

One of the main issues related with the accuracy of the brain connectivity 

estimates regards the fact that all the MVAR based methodologies for the causal 
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connectivity require the hypothesis of stationary signals (in wide-sense), thus, 

they are not able to capture the variability in the dynamical statistical properties 

of the signals. To overcome this limitation, different algorithms for the estimation 

of MVAR with time dependent coefficients were recently developed [11]. In the 

work proposed in Chapter 3, we considered two of the most used time-varying 

algorithm: a method based on a General Linear Kalman Filter (GLKF) [10] and the 

Recursive Least Squares [8]. We propose on one side a simulation study that 

provides the performance of such different approaches and allows to select the 

best practice in different real context, on the other side an adaptation of the GLKF 

algorithm with a significant improvement of the estimation accuracy. Another 

important open issue related to the connectivity estimation in real context will be 

treated in Chapter 4 and regards the effect of volume conduction. The input 

coming from brain areas at different depths and the electrical properties of the 

tissues located between the cortex and the scalp have the effect to distort the 

electrical field generated by neural activity and therefore impede an attribution of 

scalp signals to the underlying brain sources. Thus, despite the large use of such 

approaches, it has been debated for a long time if the results obtained by applying 

causal connectivity estimates based on the scalp time series provided by EEG 

allows a clear interpretation in terms of interacting cerebral areas [12]. Although 

this is a well-known and described theme, it is still studied and discussed in the 

context of connectivity analysis because of the strong effect that the volume 

conduction has on the scalp measures and could lead to a misinterpretation of the 

results [13], as making inferences from the EEG signal is still not straightforward 

[12], [14]. In order to overcome or attenuate the volume conduction problem, 

several strategies and algorithms have been proposed to estimate source 

activities from multi-channel EEG recordings [15]. A combination of linear inverse 

approaches for extracting cortical and sub-cortical waveforms [16] and Granger-

based estimators for functional connectivity estimation [17] can be used to extract 

and investigate the human brain circuits. Here we will try to provide a complete 

evaluation of the volume conduction effect in different simulated and controlled 

experimental conditions for two different algorithms for the source 

reconstruction: the linearly constrained minimum variance (LCMV)  [18] and the 
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exact low-resolution tomography (eLORETA) [19]. This part of my thesis was 

developed in collaboration with the University of Ghent (Department of Data 

Analysis - Faculty of Psychological and Educational Sciences), where I spent a 

period of my PhD. After the described methodological part, the approaches 

emerged as the most performing were applied on real datasets with the aim to 

investigate the brain networks underlying fundamental human cognitive 

functions as attention and memory. In Chapter 5, the attention functions (alerting, 

orienting and executive control following the Posner’s theoretical model [20]) 

were analyzed on a group of healthy subjects in two main steps. The first part of 

the study was performed at source level with the aim to provide a neuro-

computation model including connectivity maps, spectral, spatial and causal 

information at the same time. After the description of the main properties of the 

information flows exchanged between brain areas we moved at sensors level in 

order to understand if some properties are preserved also in the EEG-scalp 

networks and if some of them vary at single subject level according to the 

behavioral performance of an attention task. The implications of synthetic 

neurophysiological indices could cover several aspects; they could be employed 

in future clinical applications to support the behavioral assessment or to evaluate 

the influence of specific attention deficits on Brain Computer Interface (BCI) 

performance and/or the effects of BCI training in cognitive rehabilitation. Chapter 

6 will report the last application, regarding a group of post-stroke patients and 

conducted in the framework of the EU FP7 Project CONTRAST (Cognitive 

Enhancement Training for Successful Rehabilitation After Stroke). Recent studies 

have shown that cognitive recovery is linked to neuronal plasticity phenomena, 

therefore research has focused on the study of changes in brain networks 

following rehabilitation interventions. In this context, we employed connectivity 

estimation algorithms combined with the extraction of EEG-based brain indices 

that can capture the main properties of brain networks to evaluate the 

effectiveness of a rehabilitation treatment. 

Finally, the last section reports the general conclusion of the Thesis and outlines 

the possible future research directions. 
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Chapter 1 

Preliminary Concepts 

1. Electrophysiology of the Central Nervous System (CNS) 

The nervous system is the coordination and control network that receives all the 

information coming both from the external and internal environment, processes 

them and responds in different and specific ways. It can be divided in two 

components called Central Nervous System (CNS) and Peripheral Nervous System 

(PNS) and including further subdivisions. The CNS consists of the brain and spinal 

cord (fig. 1.1).  

 
Figure 1.1- Schematic diagram showing the Central Nervous System (CNS) composed by 
the brain and the spinal cord and the Peripheral Nervous System (PNS) composed by 
cranial nerve, spinal nerves and ganglia outside the CNS.  

 



Chapter 1 

2 
 

Protected within the skull, the brain is composed of three parts closely related to 

each other: the cerebrum, cerebellum, and brainstem. In turn, as showed in fig 1.2, 

the cerebrum is divided into medulla oblongata, bridge, midbrain, diencephalon 

and telencephalon. The brain is responsible for the control and regulation of all 

the activities and functions of our body and is the center of the higher mental 

functions (such as memory, attention, language, executive functions). The stimuli 

(sensations and perceptions) come to the brain from the peripheral districts of 

the organism and its motor responses are transmitted to the skeletal musculature. 

The spinal cord, contained in the vertebral column, connects the CNS to the PNS. 

The PNS consists of the nerves and ganglia outside the brain and spinal cord, is 

responsible for transmission to the CNS of motor, sensory and proprioceptive 

activities. One of the main part of the PNS is the autonomic nervous system, whose 

task is to control and regulate vegetative functions, or functions that are 

independent of our will. 

 
Figure 1.2-CNS main parts. 

 Cerebral cortex 

The most developed and complex part of the human brain, that carry out high 

functions such as language, voluntary movements, learning and problem solving, 

is the telencephalon. The telencephalon is divided by a deep sulcus in two brain 

hemispheres (right and left) whose most external layer of neural tissue (grey 
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substance) takes the name of cerebral cortex. The cerebral cortex is greatly folded 

in order to contain a large surface area (half a square metre). Such irregular 

structure is the result of the particular evolution of primates, during which the 

volume of the brain increased faster than the volume of the skull, leading to the 

generation of a large number of grooves, called sulci, and convolutions, whose 

crests are called gyri. Gyri and sulci create the folded appearance of the brain in 

humans and other mammals but their shape and position varies from individual 

to individual. However, the presence of four sulci common to all individuals, two 

lateral and two central, allowed to divide the cerebral cortex of each hemisphere 

into four lobes: frontal, parietal, temporal and occipital (fig. 1.3). 

 
Figure 1.3-Macro-subdivision of the cerebral cortex (left hemisphere) into four lobes: 
frontal, parietal, temporal and occipital. 

 Brodmann areas 

Each lobe is responsible to localized functions that can be identified in specific 

parts of the brain surface, called cortical areas. When these areas are damaged, it 

is possible to observe the degradation or disappearance of the corresponding 

functions. The most common classification of these cortical areas is the 

Brodmann’s that divides the whole surface into 52 homogeneous areas on the 

basis of their histological structure. After a first identification of such areas, most 

of them have been associated with mental functions. For example, areas 1, 2 and 

3 of the parietal lobe are related to somatosensory processes, areas 41 and 42 of 

the temporal lobe are related to auditory functions, areas 17 and 18 of the 
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occipital lobe are related to the visual system and area 4 is the primary motor area. 

A representation of some of the Brodmann areas is shown in fig 1.4.  

 
Figure 1.4 - Some of the most famous Brodmann areas. 

Moreover, Dr. Wilder Penfield and his co-investigators Edwin Boldrey and 

Theodore Rasmussen introduced another important portrayal of the motor and 

cognitive functions associated to each cortex area: sensory and motor homunculi. 

In fact, they were the first to differentiate between sensory and motor function 

and to map the two across the brain separately, resulting in two different 

homunculi (see fig. 1.5). Their studies proved that areas of the nearby body are 

contiguous also on the cortex even if the various parts of the body are represented 

upside down vertically. The surface of the brain cortex attributable to the various 

parts of the body is not proportional to the size but rather to the possibilities of 

movement; for example hands, lips and tongue cover a much wider area of the 

thigh or trunk. When performing a voluntary movement, in a particular region of 

the cerebral cortex, a nervous impulse is generated which propagates through the 

CNS until it reaches the peripheral nerves responsible for the movement: the 

motor homunculus makes it possible to identify, for each movement, the cortical 

area in which the impulse was generated. About the sensory homunculus, recent 
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studies have improved the understanding of the somatosensory arrangement 

using techniques such as functional magnetic resonance imaging (fMRI). 

 

 
Figure 1.5 - 2D representation of the sensory (on the left) and motor (on the right) 
homunculi. 

2. Neurons 

 Anatomy of the neuron 

In the CNS there are two categories of cells: nerve cells called neurons and support 

cells or neuroglia usually called glial cells. The glial cells are supporting elements 

that provide shape and consistency to the nervous tissue. The neurons, on the 

other hand, are the primary components of the CNS. They are the basis of all the 

functional properties of the nervous system being excitable cells able to receive 

and transmit electrical impulses without attenuation and to process the received 

stimuli in specialized form. These signals between neurons occur via specialized 

connections called synapses. The neurons exist in a multitude of forms, all 

referable to a basic structure (fig. 1.6) consisting of a cellular body (soma), where 

the nucleus is located and from which the dendrites and axon depart. The 

dendrites are extensions, often short, numerous and ramified, responsible for 
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receiving the signal coming from other nerve endings. The axon, instead, is an 

isolated extension used for carrying the electrical signal that can be short or very 

long depending on the distance it has to reach. Several endings allow it to transmit 

the electrical impulse to more cells at the same time. All the characteristics of 

sensory experience and execution of movements, as well as thought processing, 

learning, language and any other mental activity, are possible thanks to the 

organization of neurons in complex networks.  

 
Figure 1.6 – Anatomy of a neuron. 

At the cerebral cortex level, the two most important types of neurons are 

pyramidal cells and non-pyramidal cells. The first ones presents a large pyramidal 

bodies and apical dendrites crossing different cortical layers. They are always 

oriented perpendicular to the surface of the cortex. The electric fields generated 

by pyramidal cells are "open" fields that, if synchronous, can be added together 

and recorded by means of electrodes placed on the scalp 

(electroencephalography, EEG). In a similar way, the magnetic fields generated by 

the different pyramidal neurons are summed up and can be recorded by means of 

magnetoencephalography (MEG). Non-pyramidal cells are small, star-shaped and 

are often arranged radially or with random orientations with respect to the cortex 
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surface. The "closed" fields generated by them cannot add up and, therefore, the 

intra- and extra-cellular currents do not produce electric and magnetic fields 

outside. The possible contributions of such kind of cells cannot be unequivocally 

recognized. 

 Electrophysiology of the neuron 

Every neuron is said to have “in small-scale, the integrative capacity of the entire 

nervous system”. In fact, neurons can transform information and transmit it to 

other neurons. In most, the dendrite-cell body unit is specialized as a receptor and 

integrator of synaptic input from other neurons, and the axon is specialized to 

convey coded information from the dendrite-cell body unit to the synaptic 

junctions, where transformation functions take place with other neurons or 

effectors (muscles and glands). To serve these tasks, the neuron is thus organized 

into a receptive segment (dendrites and cell body), a conductive segment (axon), 

and an effector segment (synapse) (fig. 1.7). Neurons are specialized to generate 

electrical signals, which are then used to encode and convey information: these 

signals are expressed by alterations in the resting membrane potential. Voltage 

changes that are restricted to the sites where neurons are stimulated – or that are 

close to them - are called graded potentials. These ones can lead to the production 

of action potentials (nerve impulses or spikes), which transmit information for 

substantial distances along an axon. Two forms of graded potential are generator 

(receptor potentials) and synaptic potentials. Generator potentials are evoked by 

sensory stimuli from the environment (both inside and outside the body). 

Information that passes from one neuron to another at synapses produces 

synaptic potentials in the postsynaptic neuron. The activity of either generator or 

synaptic potentials can elicit action potentials, which, in turn, produce synaptic 

potentials in the next neuron. Synaptic potentials elicited in effectors (skeletal 

muscle and glands) at synapses can result in the contraction of the muscle or 

emission of secretory product from a gland. 
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Figure 1.7 - On the surface of the dendrites and cell body are excitatory and inhibitory 
synapses, which, when stimulated, produce local, graded, non-propagating potentials. 
These are exhibited as an excitatory or depolarizing postsynaptic potential (EPSP) and as 
an inhibitory or hyperpolarizing postsynaptic potential (IPSP). These local potentials are 
summed at the axon hillock and, if adequate, could trigger an integrated potential at the 
initial segment and an “all-or-none” action potential, which is conducted along the axon 
to the motor end plate. 

Resting Potential of the Neuron 

The resting neuron is a charged cell that is not conducting a nerve impulse. The 

plasma membrane, which acts as a thin boundary between the extracellular 

(interstitial) fluid that is located outside the neuron and the intracellular fluid 

(neuroplasm) that is instead inside the neuron, is critical for maintaining this 

charged state or resting potential. The electric charge across the plasma 

membrane results form a thin film of positive and negative ions, unequally 

distributed across the membrane. These are sodium (Na+) and chloride (Cl–) ions 

(which are in higher concentration in the interstitial fluid), and potassium (K+) 

and protein (organic) ions that are in higher concentration in the neuroplasm. A 
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tendency exists for the Na+, K+, and Cl– ions to diffuse across the membrane from 

regions of high to low concentration (along concentration gradients), through 

Na+, K+, and Cl– channels, respectively. The passage of ions across the membrane 

is known as conductance. Thus, the semipermeable plasma membrane is 

selectively permeable through non-gated open channels to Na+, K+, and Cl– ions 

and impermeable to large protein ions. These channels, which are always open, 

are important in determining the resting potential. The ionic concentrations on 

either side of the membrane are produced and maintained by a system of 

membrane pumps called “the sodium–potassium pump”, which requires metabolic 

energy released by adenosine triphosphate (ATP). The sodium–potassium 

exchange pump is an integral membrane protein that utilizes ATP as an energy 

source for its role in active transport. This transport is an energy-dependent 

process in which the movement of Na+ and K+ ions is “uphill” against a 

concentration gradient. The activity of the pump results in the passage of three 

Na+ ions out of and two K+ ions into the neuron. This causes the restoration of a 

concentration of K+, 30 or more times higher within the neuroplasm than in the 

interstitial fluid, and in a concentration of Na+ that is 10 times and Cl– that is 14 

times higher in the interstitial fluid than in the neuroplasm. Most neurons do not 

have a Cl– pump; hence, Cl– ions diffuse passively across the membrane. These are 

the ionic concentrations responsible for establishing an electric potential across 

the membrane. The transmembrane potential, known as the resting potential, is 

about –70 to –80 (mV) (millivolts) inside the neuron. The resting potential is in a 

steady state (dynamic equilibrium) requiring metabolic energy to maintain the 

ionic gradients across the membrane. When the neuron is “at rest,” its membrane 

potential is the result of a balance (involving Na+ and K+ ions) between the active 

fluxes (movements) of ions metabolically driven by pumps and the passive fluxes 

caused by diffusion. The active fluxes result from the pump extruding three Na+ 

ions for every two K+ ions it brings into the neuron. The passive fluxes of ions take 

place through non-gated channels. The outward flux of positive charges by the 

pump tends to hyperpolarize the membrane. The greater the hyperpolarization, 

the greater the inward electrochemical force driving Na+ into the neuron, and the 

smaller the force driving K+ out. The steady state for the neuron is attained when 
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the resting potential is reached at the point when the net passive inward current 

(movement of electrical charge) through the ion channels exactly counterbalances 

the active outward current driven by the pump. The steady state is not basically 

the result of passive diffusion, which is the diffusion of a solute down a 

concentration gradient without the expenditure of energy. 

Excitability of the Neuron 

Excitability is a property that enables a neuron to respond to a stimulus and to 

transmit information in the form of electrical signals. The flow of information 

within a neuron and between neurons is conveyed by both electrical and chemical 

signals. The electrical signals, called graded potentials and action potentials, are all 

produced by temporary changes in the current flow into and out of the neuron - 

changes that are actually deviations from the normal value of the resting 

membrane potential. Ion channels within the plasma membrane control instaed 

the inward and outward current flow. The channels have three features: (1) they 

conduct ions across the plasma membrane at rapid rates up to 100,000,000 ions 

per second; (2) they can can recognize specific ions and be selective as to which 

can pass through; (3) they can selectively open and close, in response to specific 

electrical, chemical, and mechanical stimuli. Each neuron is presumed to have 

over 20 different types of channel with thousands of copies of each channel. The 

flux (movement of ions) through the ion channels is passive, requiring no 

expenditure of metabolic energy. The flux direction is determined by the 

electrochemical driving force across the plasma membrane, and the primary role 

of the ion channels in the neurons is to mediate rapid signalling. These channels, 

called gated channels, have a molecular “cap” or gate, which briefly opens to 

permit anion species to pass. Gated channels open when a neurotransmitter binds 

to them; voltage-gated channels open and close in response to changes in 

membrane potential; modality-gated channels are activated by specific modalities 

(e.g., touch, pressure, or stretch). Gating is the process by which a channel is 

opened or closed during activity. Each channel consists of several plasma 

membrane-spanning polypeptide subunits (proteins) arranged around a central 

pore. Each of these classes of channel belongs to a different gene family. Each 

member of a family shares common structural and biochemical features, which 
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presumably have evolved from a common ancestral gene of that family. The 

channels of the voltage-gated gene family are selective for Na+, K+, and Ca2+ ions. 

The channels for the transmitter-gated channels respond to acetylcholine, gamma 

amino butyric acid (GABA), and glycine. Most gated-channels are closed with the 

membrane at rest: they open when activated, following the binding of a ligand 

(ligand gating), a change in the membrane potential (voltage gating), or the stretch 

of the membrane (modality gating). In the transmitter-gated channel, the 

transmitter binds to a specific site on the external face of a channel that activates 

it to open briefly. The energy to open the channels is derived from three sources: 

(1) from the binding of the transmitter to the receptor protein in the ligand-gated 

channels; (2) from the changes in the membrane voltage within the voltage-gated 

channels; (3) presumably, from the mechanical forces resulting from cytoskeletal 

interaction at the modality-gated channels. There are two types of membranes 

response: (1) hyperpolarization or (2) depolarization. During the first phase, the 

membrane becomes more negative on the inside with respect to its outside (i.e., 

could go from –70 (mV) to –80 (mV)). During depolarization, the membrane 

becomes less negative inside with respect to its outside and it might even reverse 

polarity with its inside - becoming positive with respect to the outside. This is still 

called depolarization because the membrane potential becomes less negative than 

the resting potential (e.g., from –70 (mV) to 0 to +40 (mV). 

3. Electroencephalography (EEG) 

 EEG generation and recording  

The electroencephalogram (EEG) comes from the summation of synchronously 

postsynaptic potentials. The contribution to the electric field of neurons acting 

synchronously is approximately proportional to their number, and, for those 

firing non-synchronously, as a square root of their number (Blinowska and Durka, 

2006). The problem of the origins of EEG rhythmical activity has been approached 

by electrophysiological studies on brain nerve cells and by the modeling of 

electrical activity of the neural populations (Lopez da Silva, 1996; Freeman, 1991). 
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The question emerges whether the rhythms are caused by single cells with 

pacemaker properties or by the oscillating neural networks. It has been shown 

that some thalamic neurons display oscillatory behaviour, even in the absence of 

synaptic input (Jahnsen and Linas, 1984). Evidence exists that the intrinsic 

oscillatory properties of some neurons contribute to the shaping of the rhythmic 

behaviour of networks to which they belong. However, these properties may not 

be sufficient to account for the network rhythmic behaviour. It is generally 

accepted that cooperative properties of networks consisting of excitatory and 

inhibitory neurons connected by feedback loops play the crucial role in 

establishing EEG rhythms. The frequency of oscillation depends on the intrinsic 

membrane properties, on the membrane potential of the individual neurons, and 

on the strength of the synaptic interactions. Bursts of oscillatory activity may 

constitute a mechanism by which the brain can regulate changes of state in 

selected neuronal networks and change the route of information (Lopez da Silva, 

1996). EEG is usually registered by means of electrodes placed on the brain scalp. 

They can be secured by an adhesive (like collodion) or embedded in a special snug 

cap. The resistance of the connection should be less than 10 (kΩ), so the recording 

site is first cleaned with diluted alcohol, and conductive electrode paste applied to 

the electrode cup. Knowledge of exact positions of electrodes is very important for 

both interpretation of a single recording as well as comparison of results, hence 

the need for standardization. The traditional 10–20 electrode system (EEG 

montage showed in fig. 1.8) states positions of 19 EEG electrodes (and two 

electrodes placed on earlobes A1/A2) related to specific anatomic landmarks, 

such that 10 – 20% of the distance between them is used as the electrode interval.  

The first part of derivation’s name indexes the array’s row—from the front of 

head: Fp (Fronto-parietal), F (Frontal), C (Central), P (Parietal), and O (Occipital). 

The second part is formed from numbers even on the left and odd on the right 

side, and from “z” in the centre. Progress in topographic representation of EEG 

recordings brought demand for a larger amount of derivations. Electrode sites 

halfway between those defined by the standard 10 – 20 system were introduced 

in the extended 10 – 20 system [21]. EEG is a measure of potential difference; in 
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the referential (or unipolar) setup, it is measured relative to the same electrode 

for all derivations. This reference electrode is usually placed on the earlobe, nose, 

 

Figure 1.8 - 10–20 electrode system. 

The first part of derivation’s name indexes the array’s row—from the front of 

head: Fp (Fronto-parietal), F (Frontal), C (Central), P (Parietal), and O (Occipital). 

The second part is formed from numbers even on the left and odd on the right 

side, and from “z” in the centre. Progress in topographic representation of EEG 

recordings brought demand for a larger amount of derivations. Electrode sites 

halfway between those defined by the standard 10 – 20 system were introduced 

in the extended 10 – 20 system[21]. EEG is a measure of potential difference; in 

the referential (or unipolar) setup, it is measured relative to the same electrode 

for all derivations. This reference electrode is usually placed on the earlobe, nose, 

mastoid, chin, neck, or scalp centre. No universal consent exists regarding the best 

position of the reference electrode, because currents coming from bioelectric 

activity of muscles, heart, or brain propagate all over the human body. In the 

bipolar setup (montage), each channel registers the potential difference between 

two particular scalp electrodes. Data recorded in a referential setup can be 

transformed into any bipolar montage. The common ‘‘average reference’’ montage 

can be obtained by subtracting from each channel the average activity from all the 

remaining derivations. The Hjorth transform references each electrode to the four 

closest neighbours, which is an approximation of the Laplace transform (LT). LT 
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is calculated as a second spatial derivative of a signal, offering information about 

vertical current density. For best performance, it needs an adequate spatial 

sampling-inter electrode distance around 20 (mm) (e.g., 128 electrodes on the 

scalp). The estimates obtained by means of LT for the electrodes lying at the scalp 

periphery are biased and have to be excluded. Therefore, the study of the cortical 

activity through the analysis of EEG potentials presents the limit to depend from 

the quality of the recorded data, from the selected electrodes montage and from 

the reference used. Any variations in the electrical potential adopted as reference 

for the recording of potentials on the scalp, in fact, can attenuate or obscure some 

cortical generators, acting, therefore, as a factor of spatial-temporal disturbance. 

Moreover, the potentials recorded on the scalp are not only attenuated, but also 

distorted and diffused due to the different electrical conductivity that tissues 

(liquors, meninges, skull and scalp) present when currents pass through. As result 

of the phenomena of spatial distortion induced by the anatomical structures of the 

head, the distribution of potential on the scalp presents a low spatial resolution, 

which does not allow a reliable localization of cortical generators of potentials. 

Such problem, well-known as “volume conduction effect”, the EEG signal is 

generally a potential that results from the sum of signals from different cortical 

and subcortical regions. The potential recorded by a certain electrode site, 

therefore, is not generated only by the underlying cortical source. It has been 

quantified, by simulations, that sources distributed in a radius of 3 cm below the 

electrode position contribute only 50% to the power measured by the electrode 

itself, while 90% can be reached by considering sources up to 6 cm distant. The 

explained distortion phenomena produces an increase in the low spatial 

frequencies of the potentials measured on the scalp (spatial blurring). For all the 

reasons, conventional analysis of spontaneous EEG activity or potential event-

related events, performed by means of recordings from 20÷30 sensors, generally 

offers a spatial resolution in the order of 6÷7 cm, which is at least of an order of 

magnitude worse than the spatial resolution of other commonly available 

techniques, such as PET or fMRI. Increased spatial resolution in the study of EEG 

potentials cannot be achieved by simply increasing the number of sensors on the 

scalp. In fact, adequate electrode sampling of the potential on the scalp solve the 
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problem of the spatial aliasing phenomena during data acquisition but does not 

solve the problem of distortion and attenuation of potential distributions caused 

by low conductivity anatomical structures. A significant increase in spatial 

resolution of the EEG potentials recorded on the scalp can be obtained by using 

the technology indicated by the name of high density electroencephalography 

(hd-EEG) that include from 64 to 128 sensors placed on the scalp (see fig. 1.9). The 

recorded data are then processed by specific algorithms able to reduce the 

attenuation effects induced by low conductivity structures on the head. This last 

processing step, called spatial deblurring or source reconstruction, greatly 

improves performance when realistic head volume models obtained from the 

processing of magnetic resonance imaging (including scalp, skull, dura-mother 

and cerebral cortex models) are employed. This theme will be treated in a more 

exhaustive way in Chapter 4. 

 
Figure 1.9 – 60-channels EEG montage 
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 EEG artifacts 

Artifacts are recorded signals that are non-cerebral in origin. Contrary to the open 

question of the reference, the necessity of artifact rejections is universally 

acknowledged. They may be divided into one of two categories depending on their 

origin: physiological artifacts or non-physiological artifacts. Physiological artifacts 

can stem from muscle or heart activity (EMG, ECG), eye movement (EOG), external 

electromagnetic field, poor electrode contact, subject’s movement. Corresponding 

signals (EMG, EOG, ECG, and body movements) registered simultaneously with 

EEG could be helpful in the visual rejection of artifact-contaminated epochs. Non-

physiological artifacts arise from two main sources: external electrical 

interference (power lines or electrical equipment), and internal electrical 

malfunctioning of the recording system (electrodes, cables, amplifier). The most 

problematic artifact for the EEG analysis is certainly the EOG. The EOG measures 

the electrical activity produced by eye movement, whose amplitude is usually high 

enough to be detected with EEG. The intensity of the signal recorded by EEG 

electrodes depends directly on the distance between the eyes and the electrodes. 

For that reason, movements are primarily picked up by the frontal electrodes, 

although they also extend further. The strength of the interference depends also 

on the direction in which the eye is moving. The eye movements, called saccades 

have a particular waveform which can be easily recognized even by visual 

inspection. Blinking also contaminates the EEG recording, usually with a change 

more rapid than that produced by eye movement, which is associated with higher 

frequency interference. Moreover, the amplitude of the blinking artifact is 

generally much larger than that of the background EEG activity [22]. The first 

techniques which artifacts were eliminate with, were for sure the regression 

algorithms, which were adopted up to the mid-1990s, especially for ocular 

interferences, thanks to their simplicity and reduced computational demands. 

Artifacts may be corrected by subtracting a regressed portion of each 

“interference” channel from the contaminated EEG. Regression may be done 

either in the time or frequency domain, by estimating the influence of the 

reference waveforms on the signal of interest. One hypothesis required by linear 

regression is that each EEG channel is the sum of the non-noisy source signal and 
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a fraction of the source artifact that is available through a reference channel. At 

this point, the regression tries to estimate the fraction of how much each EEG 

channel is contaminated by the reference channel, that is like a propagation 

fraction. Correction is then performed by subtracting the regressed portion(s) of 

the EOG reference waveform(s) from each EEG channel, resulting in an estimation 

of artifact-free measurements in the scalp. The problem is that many techniques 

which are based on the linear regression doesn’t take into account the 

bidirectional interference between EEG signal and EOG signal. Therefore, when 

correction is performed, a useful part of the signal could be removed. In order to 

overcome this issue authors referred that a possible solution could be to low pass 

the EOG. This is supported by some studies that argue that most high frequency 

content in the EOG is of neural origin [23]. However, others argue that in fact all 

frequency bands (alpha, beta, delta and theta) are contaminated. Regression 

methods have been replaced by more sophisticated algorithms primarily because 

the former need one or more reference channels. Since other potentially more 

efficient algorithms (e.g. those based on blind source separation) emerged, like 

Principal Components Analysis (PCA) and Independent Component Analysis (ICA) 

that have become commonplace in most recent publications, regression has no 

longer been the default choice for EOG or ECG removal of artifacts from an EEG. 

Blind source separation (BSS) estimates the sources from the recorded EEG signal 

without the need for a reference waveform for either the desired signal or the 

unwanted artifacts, using only the information contained in all the electrodes. The 

effectiveness of BSS techniques is subjected to various assumptions, thus there 

are some hypothesis to be respected: uncorrelatedness, independence, non-

Gaussianity, instantaneous propagation, linearity, etc. One of the most widely used 

BSS algorithm is the so called independent component analysis (ICA). 

Independent component analysis comprises several related methods for un-

mixing linearly mixed signals using only recorded time information, by imposing 

statistical independence of the sources. The frequently used ICA algorithms are 

based on exploiting high order statistics (HOS). HOS-ICA approaches find a linear 

transformation for the estimated sources to be as independent as possible. ICA 
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accuracy critically depends both on source independence and on the amount of 

available data. 

 EEG frequency rhythms 

In the EEG, the following frequency rhythms are considered characteristic for its 

analysis (see their topology in fig. 1.10): delta (0.5 – 4 (Hz)), theta (4 – 8 (Hz)), 

alpha (8 – 12 (Hz)), beta (12 – 30 (Hz)), and gamma (above 30 (Hz)).  

 
Figure 1.10 - Characteristic EEG rhythms, from the top: δ (0.5 – 4 (Hz)), θ (4 – 8 (Hz)), α 
(8 – 12 (Hz)), β (12 –30 (Hz)). The gamma band could reach 100 (Hz). 

Delta activity is characterized by high amplitude and low frequency. It is usually 

associated with the slow-wave in psychophysiology of sleep. It is suggested that it 

represents the onset of deep sleep phases in healthy adults. Theta rhythm is 

generally linked to the hippocampus activity as well as neocortex [24], [25]. It is 

thought to be linked to deep relaxation or meditation [26], and it has been 

observed during the transition between wake and sleep [27]. Moreover, theta 

rhythms are suggested to be important for learning and memory functions which 

involve high concentration [27], [28]. It has also been suggested that theta 
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oscillations are associated with the attentional control mechanism in the anterior 

cingulated cortex [26], [29], and it is often shown to increase with a higher 

cognitive task demand [30]. Alpha activity has found in the visual cortex (occipital 

lobe) during periods of relaxation or idling (eyes closed but awake). In the 

continuous EEG, alpha band is characterized by high amplitude and regular 

oscillations, in particular over parietal and occipital areas. High alpha power has 

been assumed to reflect a state of relaxation or cortical idling; however, when the 

operator assigns more effort to the task, different regions of the cortex may be 

recruited in the transient function network leading to passive oscillation of the 

local alpha generators, in synchrony with a reduction in alpha power [29]. Recent 

results have suggested that alpha is involved in auditory attention processes and 

the inhibition of task irrelevant areas to enhance signal-to-noise ratio [31], [32]. 

Additionally, alpha activity may be further divided into sub-bands by means of the 

frequency corresponding to the alpha peak of the user, called Individual Alpha 

Frequency (IAF) [33]. For instance, alpha 3 (IAF÷IAF+2 (Hz)) reflects semantic 

memory performance, while alpha 1 and alpha 2 (respectively, IAF-4÷IAF-2 and 

IAF-2÷IAF (Hz)) reflect general task demands and attentional processes. Beta 

activity is predominant in wakefulness state, especially in frontal and central 

areas of the brain. High power in beta band is associated with the increased 

mental arousal and activity. Dooley, in 2009 pointed out that beta wave represents 

cognitive consciousness and active, busy, or anxious thinking. Furthermore, it has 

been revealed to reflect visual concentration and the orienting of attention [34]. 

This band can be further divided into low beta wave (12.5-15 (Hz)), middle beta 

wave (15-18 (Hz)), high beta wave (> 18 Hz). Low waves seems to be associated 

with inhibition of phasic movements during sleep, and high waves with 

dopaminergic system (Hagemann, 2008). Finally, Gamma is the fastest activity in 

EEG and it is thought to be infrequent during waking states of consciousness [34]. 

Recent studies reveal that it is linked with many cognitive functions, such as 

attention, learning, and memory [35]. Gamma components are difficult to record 

by scalp electrodes, because of their low amplitude, but with Electrocorticography 

(ECoG) components up to 100 (Hz), or even higher, may be registered. The 

contribution of different rhythms to the EEG depends on the age, psyco-cognitive 
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state of the subject, and level of alertness. Considerable inter - subject differences 

in EEG characteristics also exist, since EEG pattern is influenced by 

neuropathological conditions, metabolic disorders, and drug action. As showed in 

fig. 1.11, alpha and beta pics are really easy to identify in a typical EEG trace.  

 

 
Figure 1.11-  EEG power spectrum  

 Event-Related Potential (ERP) 

Accepted that there is a basic brain activity and that variations in some 

parameters such as amplitude and fundamental frequency can be correlated with 

different mental states, it is possible to study EEG responses related to external 

(e.g. sensory stimuli) or internal (e.g. execution of movements) events. Such 

events can be detected because they induce two types of variations: 

• a realignment of the phase (re-phase) of the signal with respect to the 

event. 

• variations in signal amplitude at different frequencies.  

As mentioned above, the EEG variations are dynamic and have a limited duration. 

The two processes can therefore take place simultaneously and represent only 

two aspects of the same physiological phenomenon, or they can take place in 

different moments. The Evoked Potential (EP) or more properly the Event-Related 

Potential (ERP) consists of a specific change in EEG resulting from stimulation of 

a sensory pathway or motor event. One of the main characteristics of ERPs is 

certainly the close temporal relationship between stimulation and response to the 
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stimulus itself. The variations produced by the external event (whether a visual, 

acoustic or movement stimulus) always occur at a fixed distance in time (latency) 

with respect to the event of interest. The temporal relationship between stimulus 

(or movement) and oscillatory activity is very stable and extremely repeatable if 

multiple stimulations are performed. Both processes (re-phasing and power 

increase) can affect only a few frequency bands, but generally, in ERPs, the entire 

spectrum from 4-6 Hz to 60-70 Hz is affected. Generally, the fastest oscillations 

(higher frequencies) occur in the instant just after the stimulus, and the ERP signal 

slows down and returns to background levels further away from the event. 

Several ERP components are showed in fig. 1.12. 

 
Figure 1.12 – Representation of several ERP components, including the most famous 
N100 and P300. 
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Chapter 2 

Generation of simulated EEG data  

1. Introduction 

In the last years, the interest in connectivity estimation has been growing, 

especially in the world of neuroscience [1]–[5]. Its potentiality is given by the 

opportunity to understand which brain areas are mainly involved in the execution 

of motor or cognitive tasks and, mostly, how they communicate to create the 

networks underlying a specific cerebral function. Several connectivity estimators 

with different peculiarities have been developed to assess the existence, the 

intensity and the direction of the statistical connections linking two or more time 

series. Some of them are characterized by a high versatility since they can be 

applied to signals acquired through different techniques, fMRI, EEG or MEG, on the 

basis of the specific applicative aims [6], [7]. Among all the approaches used for 

connectivity estimation, worth of note is the class of estimators based on the 

theory of causality developed by Wiener in 1965 and translated in a mathematical 

object by Granger in 1969, according to which an observed time series x(n) cause, 

with a statistical meaning, another series y(n) if the knowledge of x(n)’s past 

significantly improves prediction of y(n) [8]. This kind of relationship could be 

biunivocal but not reciprocal (i.e., x(n) may cause y(n) without y(n) causing x(n)); 

for this reason, such estimators are able to determine the direction of the 

influence between any given pair of signals. The framework of connectivity 

estimators is a manifold scenario where the selection of the appropriate algorithm 

on the basis of the research objectives is often a really hard job. For this reason, 

several studies tried to compare the performances of already existing algorithms 

under different experimental conditions with the aim to provide some guidelines 

to help researchers in orienting themselves in such intricate world. Moreover, 

every time a new algorithm is defined and implemented, an initial testing phase 

where it is compared to already existing approaches is required. In both cases, the 
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comparison is always made on the basis of simulated data reproducing a pre-

defined connectivity pattern, which can be used as test bench for the algorithms. 

The generation of such simulated data represents the weak point of such testing 

approach since the results of the comparisons between algorithms could be 

strongly influenced by the data used as reference. In particular, critical aspects of 

data generation concerned i) the way in which the ground-truth network is 

defined since a lot of parameters have to be chosen (number of nodes, network 

density, structural properties, presence of clusters) and ii) the approach used for 

reconstructing signals since it has to provide data reproducing the main 

properties of real ones. As for the EEG case, simulated data should reproduce the 

spectral and topological properties of signals really acquired on the scalp 

otherwise the test might provide results on algorithms performances which could 

be contradicted on real data.  

The simulated EEG data generation is an issue which recently is gaining more and 

more importance since it really might impact on the quality of connectivity 

estimates made on real data. The first attempts in such field referred to the 

employment of time series i) generated from known linear toy models whose 

equations are designed so that the first signal behaves as an oscillator driving the 

other structures [17], [36] or ii) obtained by means of MVAR generator filters 

where white noise is given as input and the coefficients are manually imposed 

[37], [38]. The signals generated through these two approaches do not present 

any properties of realistic data. In order to generate more realistic time series, a 

cascade approach has been proposed where a real EEG signal is selected as source 

and all the other signals are iteratively obtained from it according to a ground-

truth connectivity scheme also imposing a predefined signal-to-noise ratio [2], [5]. 

Such approach, even if reproducing the spectral properties of EEG signals, cannot 

be employ to generate datasets with high number of signals since the cascade, if 

repeated many times, let to an incontrollable increase of the signals amplitude. 

More recently, the advancements in the field led to the development of ready-to-

use and free toolboxes devoted to the connectivity estimation that also provide 

functions for the simulated data generation for the validation phase. This is the 

case of Barnett and Seth who developed in 2014 a toolbox, called Multi Variate 
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Granger Causality (MVGC) toolbox, returning simulated multi-trial data from 

normally distributed residuals, for given VAR parameters, as test dataset for the 

proposed causal connectivity estimators [39]. Moreover, few months ago Haufe 

and Ewald proposed a toolbox for the generation of pseudo-EEG data (with an 

imposed directed interaction) in which the time courses of two distinct sources at 

cortical level are modeled using bivariate linear autoregressive models [40]. Both 

toolboxes, even if promising, present, as already stated by the proposers in the 

discussion of the related papers, some limitations. The MVGC toolbox is easy-to-

use and allows to generate datasets potentially including high number of signals 

but the simulated signals have not the spectral properties of EEG signals. 

Moreover, it is not possible to modulate the SNR of the simulated data. The Haufe 

and Ewald’s toolbox allows to simulate pseudo-EEG data including EEG-like 

spectral properties and spurious effects due to volume conduction, but the model 

is too simple since it includes only two signals. The relationship between the two 

signals is not bidirectional and no ground-truth network is available for data at 

scalp level. The reason for which we would like to give a contribution in this field 

is that currently the possibility to generate simulated data reproducing more 

realistic experimental conditions is still lacking. In particular, simulated data 

should reproduce datasets derived from high density EEG recordings 

characterized by at least 60 channels, all having the same spectral properties of 

real EEG signals. Data should be organized as a long single-trial recording or a 

multi-trial recording, main artifacts such as eye-blinks should be included. 

Moreover, the ground-truth applied should have a dependence on time since 

connectivity patterns are not static events to be investigate as a single frame.  

In this work we introduce a new toolbox, SEED-G, that allows to generate realistic 

simulated data with the same spectral properties of EEG (or ECoG) signals and 

with the possibility to set a whole series of parameters which make the dataset as 

close as possible to the user’s necessities. In particular, the user can choose the 

features of the signals to be generated such as the number of samples, the number 

of trials composing the dataset, the signal to noise ratio, the inclusion or not of 

non-idealities (inter-trials variability) or artifacts (ocular blink). Moreover, the 

toolbox allows to set the features of the imposed connectivity pattern (number of 
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nodes, density of the pattern and behavior along time) in order to obtain a ground-

truth in so many different interesting and not yet investigated experimental 

conditions. The SEED-G toolbox was developed in MATLAB environment. All 

codes and materials necessary for the pseudo-EEG data generation will be made 

available to the community. 

2. Methods 

 Multivariate Autoregressive Modeling (MVAR) 

MVAR models are linear, discrete-time and time-invariant mathematical models 

able to predict the future instant of N inputs, with N>2 (multivariate, MV), using a 

linear regression (autoregressive, AR). Let 𝑦 be a set of m time series with N 

samples and 

𝒚(𝑛) = [𝑦1(𝑛), 𝑦2(𝑛), … , 𝑦𝑚(𝑛)]𝑇  (2.1) 

is the vector containing the n-th sample of the m signals belonging to the dataset. 

The MVAR model with order p is defined as: 

𝒚(𝑛) =  − ∑ 𝑨(𝑘)𝒚(𝑛 − 𝑘) + 𝒖(𝑛)

𝑝

𝑘=1

 (2.2) 

Where 𝑨(𝑘) is the coefficient matrix at delay 𝑘, and p is the number of temporal 

instants preceding the sample n, involved in the prediction, what is called optimal 

MVAR order. The order of the model is usually chosen by means of the Akaike 

Information Criteria (AIC) for MVAR processes. 𝒖(𝑛) is a vector of multivariate 

zero-mean uncorrelated white noise processes; it is very important because if 

𝒖(𝑛) was zero all the time, then the MVAR process 𝒚(𝑛) would also be zero. For 

this reason, 𝒖(𝑛) is also called the innovation process. MVAR models describe 

(estimate) the value of each temporal series at instant n as linear combination of 

the p preceding values of all the others inputs with weights given by the model 



Chapter 2 

 

27 
 

coefficients 𝒂𝑖𝑗 . Equation 2.2 can be transformed to the frequency domain in the 

following matrix form:  

𝐴(𝑓)𝑌(𝑓) = 𝑈(𝑓) (2.3) 

where 𝑨(𝑓) represents the frequency transform of the vector of parameters 𝐴(𝑘) 

along the considered p lags, and the element 𝐴𝑖𝑗   is the transfer function between 

the i-th input and the j-th output of the MVAR linear predictor defined as: 

𝐴𝑖𝑗(𝑓) = ∑ 𝒂𝑖𝑗(𝑘)𝑒−𝑗2𝜋𝑓𝑇𝑘

𝑝

𝑘=0

 (2.4) 

Equation 2.3 can be even written as:  

 𝑌(𝑓) = 𝐴−1(𝑓)𝑈(𝑓) = 𝐻(𝑓)𝑈(𝑓) (2.5) 

The new obtained equation can be seen as a model of how the observed values 

𝒀(𝑓) have been generated. 𝐻(𝑓) is the transfer matrix of the MVAR generator 

filter. 

 Partial Directed Coherence (PDC) 

Partial Directed Coherence (PDC) [41] is a spectral measure to assess the 

dynamical influence between signals within a multivariate dataset. It is basically 

a frequency version of the concept of Granger causality [42]. PDC is defined 

squared and normalized as follows: 

π𝑖𝑗(𝑓) =
|𝑨(𝑓)𝒊𝒋|

2

∑ |𝑨𝑖𝑘(𝑓)|𝑁
𝑘=1

 (2.6) 

PDC values fall in the range [0, 1], where πij(f)=0 stands for the absence of a direct 

influence from xi to xj at the considered frequency f. PDC only estimates the direct 

influence between two signals, thus discounting for indirect effects of other 

channels in a similar way as pairwise-conditional GC. The definition has been 
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subsequently refined with the introduction first of aa row-wise normalization 

[43]: 

𝜋𝑖𝑗
𝑟𝑜𝑤(𝑓) =

𝑨𝒊𝒋

√∑ 𝑨𝑖𝑘(𝑓)𝑨𝑖𝑘
∗ (𝑓)𝑁

𝑘=1

, (2.7) 

then of a quadratic version, so that the new squared and normalized PDC can be 

interpreted as the portion of the ith signal power density due to the jth one: 

𝑠𝑃𝐷𝐶𝑖𝑗
𝑟𝑜𝑤(𝑓) =

|𝑨𝑖𝑗(𝑓)|
2

∑ |𝑨𝑖𝑘(𝑓)|2𝑁
𝑘=1

. (2.8) 

 Simulated EEG Data Generation 

In SEED-G toolbox, the generation of pseudo-EEG data with a well-known ground-

truth network is performed using MVAR models as generator filters providing a 

benchmark for testing new and existing connectivity methodologies. Figure 2.1 

reports a block diagram that synthesizes the simulated EEG data generation 

process, including the following steps: 

1. Ground-truth model generation. If not provided by the user, the toolbox 

firstly generates weighted directed connectivity matrices to be used as 

ground-truth for simulated data. In particular, such matrices are built by 

assigning values randomly selected within an imposed range to some 

specific connections. All the other links are set to zero. In order to obtain 

simulated signals with the same spectral properties of EEG data, real 

sources are included in the model. In particular, on the basis of users’ 

preferences, the toolbox randomly includes in the main diagonal of the 

model some AR components randomly extracted from real signals (scalp 

or cortical level) acquired during resting condition in healthy subjects. In 

this first phase, the parameters to be set are: the number of signals to be 

generated (NODES), the amount of connections imposed in the ground-

truth network (DENSITY), the number and type (scalp or cortex signals) 
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of real sources included in the model (EEG-SOURCES). Moreover, the user 

can choose to introduce an additive real source in correspondence of 

isolated nodes in the network. 

2. Time series generation. After ground-truth network generation, the 

toolbox employs the MVAR as generator filter to provide the 

corresponding simulated dataset. As input, the MVAR receives 

uncorrelated, zero mean innovation noise simulated through number 

series extracted from the normally distributed pseudorandom generator. 

The covariance of the innovation process is set equal to the identity 

matrix. In order to obtain signals as realistic as possible, the toolbox allows 

then to sum an additive noise whose amplitude is set so that the ratio 

between squared amplitudes of signal and noise processes satisfied a 

desired SNR value, and the ocular component (EOG signal) simulating the 

blink effect. In this second phase, the user can set the following 

parameters: number of data samples for each realization (SAMP), number 

of realizations to be generated (TRIALS) and SNR values (SNR). For each 

generated realization, an amplitude check is performed taking into 

account that EEG signals are usually lower than 80 (µV). Every time the 

amplitude of generated signals overcomes such threshold, the realization 

is deleted and its generation repeated. After an imposed number of 

unsuccessful attempts, the starting model is replaced. 
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Figure 2.1: Block diagram describing the main methodological structure at the basis of 
the SEED-G generator 

 Features of the simulated data and the connectivity patterns 

Inter-trial variability. If the user decides to generate a multi-trial dataset, he/she 

can decide to add an inter-trial variability to the ground-truth model in order to 

include an important realistic feature to the dataset. In fact, in every experiment 

including several realizations of a task, the networks involved are never perfectly 

the same at each realization. In the SEED-G toolbox, we modeled two kinds of 

alterations along trials to be applied to a specific model: i) inter-trial variability in 
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the value of an existing connection, and ii) variation of model density along trials. 

In the first approach, the parameters to be set are the percentage of altered trials, 

the number of connections to be modified, the entity and the direction of the 

variation (how much the connections value increase or decrease with respect to 

the initial value). In the second one, the user has to choose the number of altered 

trials and the number of spurious links to add to the original model. 

Ocular component. Real EEG data always show ocular blinks, especially at the 

level of frontal electrodes. The developed toolbox allows to simulate such artifact 

adding a real ocular component on the generated signals with a specific amplitude 

depending on the position of the electrodes. Such component was extracted from 

a real ocular signal in which everything but blinks is set to zero. Amplitude 

distribution was calculated from a correlation mask obtained on a common 60-

channel montage. Such correlation mask and a schematization of the sum between 

an EEG and an EOG signals are represented in fig. 2.2. The user can simulate 

different experimental conditions choosing the total number of blink to be add. 

 
Figure 2.2 – Correlation mask (down-left) obtained from real EEG and EOG data in order 
to perform a weighted sum between simulated signals. 
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Time-varying networks. SEED-G toolbox allows to impose stationary or time-

varying connectivity patterns. The generation process is the same but in the time-

varying case, a specific model is applied for each sample of the innovation process. 

It is possible to set the following parameters: percentage of time-varying 

connections, instant in which the transition starts, magnitude and kind of 

variation: currently the user can choose between a step change and a variation 

following a ramp function.  

Signal generation at source level. Depending on the type of real sources used for 

the signal generation the toolbox can provide simulated data with the same 

characteristics of the real ones at scalp or cortical level. Default, toolbox take the 

necessary real sources from ECoG (electrocorticography) data available at 

http://math.bu.edu/people/kolaczyk/datasets.html. In order to take into account the 

effect of the volume conduction can be interesting to generate data with an 

imposed pattern at source level and to project them at scalp level. SEED-G toolbox 

allows mapping the activity to EEG sensors using a realistic model of electrical 

current propagation in the head. In particular, the user can choose between the 

most commonly used individual head model Colin27 [44] and the Average Brain 

Stereotaxic Registration Model (average of 152 T1-weighted MRI scans, called 

AVG-21) made available from the Montreal Neurological Institute. The Least-

Squares criterion was implemented for solving the direct and inverse problem 

[45] using a lead-field matrix with 4097 dipoles. If interested in considering the 

effect of volume conduction, the user can choose the following parameters:  

- Brodmann areas in which generate the cortical signals (52 areas);  

- the head model (Colin27 or AVG-21); 

- the type of current distribution on the source: all the dipoles of the 

selected areas have the maximum value of the generated signal, only the 

centroid, the centroid has the maximum value and all the others have an 

amplitude that decrease with the distance. 

Since the Least-Squares criterion only allows to reconstruct the activity on the 

cortical sources (not in the 3D space), a future update of the toolbox should give 

the possibility to choose a method able to consider deeper brain areas.      

http://math.bu.edu/people/kolaczyk/datasets.html
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3. Toolbox Testing 

In this section we report the results of a simulation study with the double aim to 

demonstrate the potentiality and versatility of SEED-G toolbox in generating 

simulated EEG-like datasets according to the users’ preferences, and to provide 

guidelines for the practical use of the toolbox SEED-G in different conditions. The 

study involves two main steps: i) use of the toolbox for the generation of simulated 

datasets for different values of model dimension, network density and number of 

real EEG signals to be included as sources in the process; ii) testing of toolbox 

performances in the different situations. The results reported here refer to 

simulated datasets obtained imposing real sources in the model for each isolated 

node, under ideal conditions in terms of stationarity in time and no variability 

along trials. 

 Simulated data generation  

To cover a wide set of cases reproducing typical EEG datasets encountered in real 

experiments, we repeated the generation process for the following parameters: 

- Model size: 5 – 10 – 19 – 32 – 60 nodes (in order to simulate the most 

typical EEG montages); 

- Network density: 5 – 10 – 20 – 30 % with respect to all possible 

connections (higher densities were not applicable for all the selected 

model sizes); 

- Number of real brain signals included as sources in the model (% Real 

Sources):  20 – 30 – 50 % of the total number of signals to be generated. 

 Performance parameters 

The time required for generating a complete dataset with the desired 

characteristics, the number of necessary iterations and the spectral properties of 

the signals were evaluated by means of the following performance parameters:   

- Extra Required Iterations (𝑬𝑹𝑰𝒕): number of iterations carried out to 

achieve the number of trials required by the user. Recalling the concept 
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for which every time the amplitude of simulated signals exceeds the 80 µV 

threshold, the generated ground-truth is discarded and a new iteration is 

required, 𝐸𝑅𝐼𝑡 can be defined as follows: 

𝐸𝑅𝐼𝑡 =
𝑛°𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠  

𝑛°𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑀𝑎𝑥
 (2.9) 

A null value of the parameter means that the dataset was generated 

without extra iterations; on the contrary ERIt = 1 means that the dataset 

cannot be generated with the imposed maximum number of iterations 

which is set to 1000 (𝑛°𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑀𝑎𝑥) 

- Computational Time: seconds required for the generation of a complete 

dataset (Intel Core i5 3.2GHz CPU, 16GB RAM). 

- EEG-like Signals (EEGl_S%): percentage of simulated signals showing 

EEG-like spectral properties. Real sources were excluded from the 

computation of this index. The similarity with EEG signals was quantified 

by performing a Pearson’s correlation between the Power Spectral 

Density (PSD) of each simulated data and the PSD of a real EEG data used 

for the generation. The signal was considered an “EEG-like signal” if such 

correlation is higher than 0.6. The investigated parameter is defined as 

follows: 

𝐸𝐸𝐺𝑙_𝑆% =
𝑛𝑋 − 𝑛𝐴𝑅

𝑁 − 𝑛𝐴𝑅
∗ 100 (2.10) 

where 𝑛𝑋 is the number of EEG-like signals, 𝑛𝐴𝑅  is the number of the MVAR 

real sources (with an AR component different from zero), and 𝑁 is total 

number of generated signals. 

To increase the robustness of the subsequent results, the entire procedure of data 

generation and performances evaluation was repeated 300 times. 
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 Results 

We report below the results showing the mean value of the three performance 

parameters computed over the 300 iterations. Figure 2.3 reports results relative 

to ERIt parameter (panel a) and computational time (panel b) when the number 

of pure real sources included in the model is set to 30%. Reported diagrams 

showed how, when the density of the desired network is 5% or 10%, the toolbox 

is able to generate simulated EEG dataset with up to 60 nodes, without extra 

iterations, in less than 5 seconds. Furthermore, it is possible to generate 32 time 

series fitting an MVAR model with a density equal to 30% even if the 25% of extra 

iterations is required. The most complicated case is represented by EEG dataset 

with 60 signals and density higher than or equal to 20% that cannot be currently 

generate. Similar results were obtained even when the percentage of real source 

in the model is equal to 20% or 50%. 
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Figure 2.3. Plot of means of Extra Required Iterations, ERIt (panel a) and Computational 
Time (panel b) relative to the generation of a single simulated EEG dataset. The diagrams 
show the mean value over 300 iterations of the two indices for different values of Model 
Size and Network Density. Standard deviation is reported but in most cases it is lower than 
10−1, therefore not appreciable in the figure. The value of the factor % Real Source is fixed 
to 30%. 

In figure 2.4 a bar diagram shows the values of the parameter EEGl-S% for 

different model size and percentages of real sources. Results refers to a network 

density fixed to 10% in order to include all the levels of the factor Model Size. In 

fact, in the case of 60 nodes densities of 20 and 30% cannot be applied, as seen in 

figure 2.2. The bar diagram demonstrates that, independently from the number of 

real sources included in the model, more than 85% of the simulated signals shows 
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real EEG spectral properties. As expected such parameter is higher when the 

percentage of real sources included in the model increase. 

 

Figure 2.4. Plot of means of the parameter %EEG-like Signals relative to the generation 
of a single simulated EEG dataset under different conditions. The diagram shows the mean 
value of the index over 300 iterations for different levels of the factors % Real Sources and 
Model Size. The network density is fixed to 10%. 

4. An example of application of the toolbox: investigating the effect 

of inter-trial variability on connectivity estimates 

Neuro-electrical brain circuits elicited during several repetitions of a cognitive or 

motor task are often characterized by a high variability across the different task 

realizations because of many possible reasons, some related to methodological 

issues (degradation of the signal quality) and some others to subjects’ 

contribution (subjects’ fatigue, loss of concentration, oscillations in the task 

performance). Multivariate connectivity estimators, if applied to multi-trials data, 

do not provide a connectivity pattern for each realization but an average 

connectivity pattern including all the aspects in common to the different trials. 

This happens since for accurately applying a multivariate approach to multi-trial 

datasets all the data samples belonging to the different realizations are used for 

producing the connectivity estimates. How much the network inter-trial 
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variability affects the connectivity estimate is still unknown. What impedes its 

study is the availability of multi-trial simulated datasets fitting a ground-truth 

network slightly varying across the different process realizations. SEED-G toolbox 

was born with the main aim to provide an instrument that enables to test 

methodologies in the field of brain connectivity estimation under non-ideal 

experimental conditions, not rigorously tested until now, such as this one related 

to the inter-trial variability of brain networks. For this reason, the use case 

application proposed here aims to demonstrate the benefits earned from the 

employment of SEED-G toolbox in the study of the effect of inter-trial variability 

on the stability and accuracy of connectivity estimate. Among the available 

connectivity estimators, in this application we focused on PDC just to give an 

example of the potentialities of the toolbox. A first study in this direction was 

proposed relatively to 10 node models [46] but many more experimental 

conditions can be simulated and investigated with the developed toolbox SEED-G. 

Figure 2.5 reports a block diagram describing the principal steps of the simulation 

framework. In brief, the toolbox was employed for simulating several non-ideal 

multi-trial EEG datasets including signals related according to pre-defined 

ground-truth network characterized by an inter-trial variability. Such variability 

was imposed in two-way, as allowed by the toolbox: i) increasing/decreasing the 

value of some existing connections in the ground-truth network (study 1); ii) 

increasing ground-truth network density through the addition of some spurious 

connections to the existing ones (study 2). The simulated datasets were then 

subjected to a process combining connectivity estimation through PDC and the 

consequent statistical validation through the asymptotic statistic algorithm [47], 

[48],[49]. The obtained connectivity pattern was then compared with the one 

used for fitting the data in terms of false positives, false negatives and relative 

error.  
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  Figure 2.5: Block diagram describing the simulation framework. 

Analysis of variance (ANOVA) was carried out to evaluate the performances 

showed by the estimator in the different simulated conditions. Since we modeled 

the inter-trial variability with a modified density or variability in the values of 

existing connections, we can divide the analysis in the study of the two distinct 

effects on the PDC accuracy and stability. In both of them the correction of 

Greenhouse-Geisser for the violation of the spherical hypothesis was used in all 

the analyses. Tukey’s post-hoc test was used for testing differences between 

sublevels of ANOVA’s factors and Bonferroni-Holm correction was applied for 

multiple ANOVAs. In order to increase the robustness of the subsequent statistical 

analysis, the entire procedure was executed 100 times with a different ground 

truth at each repetition of the simulation process. 

 Study 1: effects on connectivity estimate of alterations in connections 

value 

Simulated EEG data 

Several pseudo-EEG datasets were generated by means of the SEED-G toolbox. Set 

parameters are the following: 

- Model size: 5 – 10 – 20 nodes 

- Network Density: 20% of the possible connections 

- Connections weights: selected in the range [-0.5÷ 0.5]. 

- Percentage of modified trials: 1 – 10 – 30 – 50 % of the total number of 

trials generated 

- Percentage of modified links: 10 – 20 – 50 % of existing connections 
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- Amplitude of the variation: 20 – 50 – 70 % of the original value of the 

connection 

- Type of variation: positive (increase) /negative (decrease) 

Performance parameter 

The quality of the estimation was assessed computing the Relative Error. It is 

defined as the Frobenius norm of the prediction error (difference between the 

estimate averaged across frequencies and the imposed connection value) 

evaluated for each existing arc and normalized for the value of the same link 

contained in the model: 

𝑅_𝐸𝑟𝑟 = ∑ |
𝑃𝐷𝐶𝑖 − |𝑀𝑜𝑑𝑒𝑙𝑖|

|𝑀𝑜𝑑𝑒𝑙𝑖|
|

𝑁𝑐

𝑖=1

 (2.11) 

Statistical Analysis 

In order to quantify the effect of alterations in connections value on the estimation 

a four-way ANOVA was performed. The main within factors were the percentage 

of modified connections (%MOD_CON), the entity of variation (%VAR), the 

direction of the variation (VAR_DIR) and the percentage of modified trials 

(%TRIALS). The dependent variable was the Relative Error.  

Results 

The results of the four-way ANOVA for the Relative Error parameter are reported 

in table 2.1 for three different model size: 5, 10 and 20 nodes. We found a 

significant effect of the main factors VAR_DIR, %VAR, %MOD_CON, %TRIALS and 

of the interaction factors on the investigated dependent variable for all the model 

size levels. 
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Table 2.1 - Results of four-way repeated measures ANOVA on Relative Error. In the second 
column we reported the Degrees Of Freedom (DOF) followed by the values of the 
coefficient F and of the p-value of the test obtained for 5, 10 and 20 nodes. 

 

In figure 2.6 we reported the plot of the means for the four-way interaction factor 

(%MOD_CON x %VAR x %TRIALS x VAR_DIR) for the Relative Error in the case of 

10 nodes model size. As expected, such parameter is significantly higher when 

increase the number of modified trials and the amount of modified connections in 

both positive (panel a) and negative (panel b) magnitude variations. However, the 

error remains below 10% in all the cases except for percentage of modified 

connections above 50%, variations in connections weight above 50% in half of the 

repetition or above 70% in more than 30% of the trials. In the worst case, error 

reached values around 20%.  
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Figure 2.6. Plot of means associated to the four-way ANOVA performed on the Relative 
Error with respect to the interaction factor %MOD_CON (number of connections on which 
to apply a value variation) x %VAR (percentage of variation in the value of existing 
connections) x %TRIALS (percentage of modified trials) x VAR_DIR (direction of the 
variation). In particular the mean values obtained for positives (panel a) and negatives 
(panel b) variations are represented. The bars represent 95% confidence interval. 
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 Study 2: effect on connectivity estimation of variable density 

Simulated EEG data 

Pseudo-EEG datasets were generated setting the following parameters: 

- Model size: 5 – 10 – 20 nodes 

- Network Density: 20% of the possible connections 

- Connections weights: selected in the range [-0.5÷ 0.5]. 

- Percentage of modified trials: 1 – 10 – 30 – 50 % of the total number of 

trials generated 

- Percentage of added spurious links: 10 – 20 – 30 % of all existing 

connections. 

Performance parameter 

Connectivity estimation assessment was carried out by means of the following 

dependent variables: 

- False Positive Rate (FPR). The percentage of false positives was obtained 

by comparing the connectivity estimation after the statistical validation 

and the average across frequencies (1-45Hz) with the imposed ground-

truth. In other words, FPR was defined from the connections resulted as 

significant in the PDC estimation but their value in the model was set to 

zero. The amount of these links was than normalized on the number of all 

the possible false positive. We computed the FPR as follow: 

𝐹𝑃𝑅 =  
1

𝑛𝑛𝑢𝑙𝑙
∑ 𝐾+[𝑛]

𝑛∈𝑁𝑛𝑢𝑙𝑙

 (2.12) 

Where 𝑁𝑛𝑢𝑙𝑙  is the set of null arcs, 𝑛𝑛𝑢𝑙𝑙  is the total number of null 

connections and 𝐾+[𝑛] is 1 only if PDC value is above threshold, thus 

significant, for null arcs and 0 otherwise.   

- False Negative Rate (FNR). The percentage of false negatives was obtained 

by comparing the connectivity estimation, after the statistical validation 
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and the average across frequencies (1-45Hz), with the imposed ground-

truth. FNR was defined from the connections resulted as not significant in 

the PDC estimation while their value in the model was different from zero. 

The amount of these links was than normalized on the number of all the 

possible false negatives, thus on all the existing links. We computed the 

FNR as follow: 

𝐹𝑁𝑅 =  
1

𝑛𝑛𝑜𝑛−𝑛𝑢𝑙𝑙
∑ 𝐾−[𝑛]

𝑛∈𝑁𝑛𝑜𝑛−𝑛𝑢𝑙𝑙

 (2.13) 

Where 𝑁𝑛𝑜𝑛−𝑛𝑢𝑙𝑙  is the set of non-null arcs, 𝑛𝑛𝑜𝑛−𝑛𝑢𝑙𝑙  is the total number 

of existing connections and 𝐾−[𝑛] is 1 only when the PDC value is below 

threshold for non-null arcs and 0 otherwise.   

Statistical Analysis 

For studying the effect of altered connections values, we performed a three-way 

ANOVA. The main within factors were the percentage of added connections 

(%SPURIOUS) and the percentage of modified trials (%TRIALS). The model size 

(MOD_SIZE) was the between factor. FPR and FNR were the independent 

variables. 

Results 

The results of the three-way ANOVA computed on FPR and FNR are reported in 

Table 2. We found a significant effect of the main factors %SPURIOUS, %TRIALS, 

of the between factor MOD_SIZE and of all the interaction factors on the 

investigated dependent variables.  
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Table 2.2 - Results of the two-way repeated measures ANOVA on False Positive Rate (FPR) 
and False Negative Rate (FNR). In the second column are reported the Degrees Of Freedom 
(DOF) followed by the values of the coefficient F and of the p-value of the test obtained for 
the FPR and FNR parameters.  

In figure 2.7 we reported the plot of means for the three-way interaction factor 

(%SPURIOUS x %TRIALS x MOD_SIZE) of FPR (panel a) and FNR (panel b). In the 

investigated ranges of the factors, FPR remains below 10% and FNR below 1% for 

5 and 10 nodes models. In the case of models with 20 signals, both FPR and FNR 

show a significant increase and the percentage of spurious links and modified 

trials significantly influence the performance parameters. FPR is less than 10% if 

there is the 10% of spurious connections, just over 15% for the 20% of spurious 

connections and over 20% if 20% of spurious links is added. The percentage of 

false negatives is less than 1 for 10% of spurious links, just over 2% for 20% of 

spurious connections and less than 5% for 30% of added links. About the influence 

of the number of modified trials, it is more evident in terms of FNR that is 

significantly higher when the factor %TRIAL increases. The same trend is showed 

by the FPR. 



Chapter 2 

46 
 

 

Figure 2.7 –Plot of means associated to the three-way ANOVA performed on False 
Positives Rate (panel a) and False Negatives Rate (panel b) with respect to the interaction 
factor %SPURIOUS (percentage of added links) x %TRIALS (percentage of modified trials) 
x MOD_SIZE (number of nodes composing the dataset). The bars represent 95% confidence 
interval. 
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5. Discussion 

 SEED-G toolbox capability 

The potential of brain connectivity in neuroscience studies and clinical 

applications is more and more recognized thanks to the numerous developments 

in this research area. Several connectivity estimators were defined in order to 

meet the wide range of case studies and possible employments. A recently 

emerged aspect regards the importance to test connectivity estimation algorithms 

before their application in a real context. Starting from the necessity to validate 

such algorithms with a stable and reliable process, we developed our toolbox, 

SEED-G. Results presented in the current study demonstrated the possibility to 

employ the toolbox for generating a “personalized” simulated EEG dataset, with a 

well-known connectivity pattern, as benchmark for testing different connectivity 

procedures under different conditions. In other words, the strength of this 

instrument resides in the freedom of choice the properties of the pseudo-EEG 

signals and of the connectivity pattern by the user, on the basis of the estimator 

performance that he/she want to investigate. The user can choose to reproduce 

scalp or cortical signals on the basis of his research interests. In order to perform 

a reliable testing procedure whose conclusions can be effectively extended to real 

cases, SEED-G toolbox simulates data with the spectral and topological properties 

of signals really acquired. With the same objective to simulate dataset as similar 

as possible to real signals, some non-idealities, as the connectivity pattern 

variability across the different realizations, can be taken into account during the 

generation and testing procedures. In this chapter, for example, we use the 

toolbox to investigate the effect of the inter-trial variability on the accuracy of the 

connectivity estimation under experimental conditions that we were not able to 

generate up to now. Also the SNR of the simulated data can be modulated 

extending the opportunity to analyze and quantify its influence on estimators 

performances. Similar studies have already been proposed on small models (<10) 

but their findings [50], [5], [36] could now be extended to datasets reproducing 

high-density EEG recordings. In fact, our simulation study, conducted on a multi-

trial simulated dataset with stationary connectivity, showed that we are able to 
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generate up to 60 pseudo-EEG signals in few seconds. Besides all the MVAR based 

methodologies for the estimation of brain connectivity under stationary 

hypothesis, we were interested in their adaptation for time-varying estimates that 

allow to recover the physiological temporal dynamic of the influences between 

cerebral areas. For this reason, we included in the toolbox the possibility to select 

the generation of pseudo-EEG data with time-varying connectivity patterns. The 

imposed ground-truth in this case is not static but the user can choose its 

dependence on time setting different parameters. Such toolbox functionality 

could open the way for testing and comparing time-varying algorithms currently 

used for connectivity estimation and could have an important impact in their 

optimization. Another open issue in the field of brain connectivity regards the 

effect of specific signals pre-processing phases on the following estimate. SEED-G 

could allow to produce advancements in this direction filling the existing gap 

between the use of algorithms for the signals elaboration (fundamental for EEG 

data) and the possible artifacts introduced in the evaluation of causal 

relationships between the same signals. An important and interesting application 

could be the study of the effect of algorithms for ocular artifact removal, as the 

Independent Component Analysis (ICA), , thanks to the ability of the toolbox to 

generate pseudo-EEG signals with ocular artifacts (blink). Another important 

point is that the employment of the toolbox could give a contribution in the study 

of the volume conduction effect thanks to the possibility to generate pseudo-EEG 

data as projections of simulated cortical signals. Among the limitation of the 

developed toolbox there is the possibility to generate (or reconstruct) brain 

signals only at scalp or cortical level and not in all the brain sources. An 

advancement in such direction is desirable in order to add another real 

characteristic to the generated dataset and to increase the knowledge about the 

effect of the signals propagation in the brain on the connectivity estimates [51] 

[52]. Another weakness of the toolbox is represented by the limited possibility to 

increase the network density values in large models because of the too high 

amplification of the signals occurring during the generation process. In fact, in 

several instances the model generates time series of too large amplitude which 

need to be discarded. This is very likely a consequence of the fact that the diagonal 
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elements of the MVAR matrices are assigned through individual AR estimation 

and the off-diagonal elements are then randomly set to simulate connectivity. This 

may lead to unstable MVAR models, which are not realistic to be set even if a single 

realization does not diverge. A test for MVAR stability (all the poles of the transfer 

functions must lie inside the unit circle) could be introduced in the toolbox, or at 

least suggested as a future development acknowledging the limitation of the 

current formulation. A potential extension of the toolbox could also include the 

possibility to impose non-linear relationship between the signals composing the 

simulated dataset.  

 Application on PDC stability evaluation 

The simulation studies were presented with the aim to provide an example of how 

to use the toolbox SEED-G. Thanks to the advancements proposed in the toolbox, 

we were able to investigate the effect of a very important factor like the inter-trial 

variability on the connectivity estimates in a wide range of possible real cases. It 

allow to define more specific range of applicability of the estimator PDC, 

overcoming the limitations of the previous study on the topic [46]. Results 

obtained through the generation of a realistic dataset (patterns with inter-trial 

variability) and PDC estimation with asymptotic statistic demonstrated that the 

estimator can be consider stable in terms of accuracy, but always we need to take 

into account a certain number of false positive and false negative, and a certain 

relative error. Such errors in the estimates due to inter-trial variability are 

actually due to variations imposed in the generative model rather than true errors 

arising from the estimator or from factors like the data length. When the ground-

truth network size is not too high, both investigated effects (variable connections 

value and variable network density) showed a restrained effect on the estimates 

that are reliable and repeatable. On the other side, the number of altered trials 

provided an important effect on PDC performances, especially when the model 

includes more than 20 nodes. For a high number of altered trials, the performance 

parameters reached not negligible percentage. Similar results can be extended to 

all the PDC normalization because of the statistical equivalence of asymptotic 

statistics for all different PDC formulations, demonstrated in [53] and confirmed 
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in [49]. These results indicate the importance of the stationarity of the data along 

trials, showing that when half of the trials contains artifacts and incorrect links, 

the real network is not clear and not easily identifiable. At the same time, they 

show that PDC validated by asymptotic statistic is robust with respect to a certain 

degree of non-ideality in this respect. 

6. Conclusion 

SEED-G toolbox was developed with the aim to provide a useful validation 

instrument addressed to researchers that conduct their activity in the field of 

connectivity estimation. We can finally test the ability of different estimators in 

increasingly less ideal conditions: low number of available samples and trials, high 

inter-trial variability (a condition that can be easily met when dealing with 

patients’ data) or, again, time varying connectivity patterns to be estimated 

(where stationary hypothesis failed). The simulation study proposed as 

application of the toolbox regards the analysis of the performance of PDC when 

connectivity estimation involve EEG data with different levels of inter trial 

variability. Obtained results demonstrate the robustness and the accuracy of the 

PDC under a large range of conditions usually encountered in practice. Many other 

experimental conditions may be simulated by means of the toolbox SEED-G thus, 

with the hope to give a contribution to neuroscience research, all the MATLAB 

codes will be released and available for download. 
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Chapter 3 

Investigating performances of time-varying 
connectivity algorithms  

Recent advancements in functional connectivity field allowed finding a solution to 

two important open issues limiting the application of the existent procedures to 

high density EEG non-stationary signals. In particular, the existent methodologies 

for time varying connectivity are based on two different approaches. The first one 

employs the classical algorithms for connectivity estimation in short windows 

where the hypothesis of stationarity is verified [54]. Alternatively, it is possible to 

employ a recursive approach with forgetting factor weighting the influence of the 

past estimation [55], [56]. The two approaches do not allow at the same time to i) 

follow with high accuracy the temporal evolutions of connectivity patterns and ii) 

include the highest number of cerebral sources in the estimation process due to 

limitations in model’s dimension. In 2010, a new approach for time-varying 

connectivity estimation based on Kalman filter was proposed as solution to the 

limitations of the existent procedures [57]. In this study we i) presented a 

characterization of the two most promising algorithms, Recursive Least Squares 

(RLS) and General Linear Kalman Filter (GLKF) under different conditions of data 

quality providing some guidelines for their use and ii) compared the performance 

of a new adaptation of the GLKF developed during the PhD course. The adaptation 

regards the setting of KF initial conditions in the first phase of the estimation 

where the algorithm has to move from a null starting point to the real value of the 

connection to be estimated. We proposed an approach that allows starting from a 

value close to the connection strength in the initial part of observed temporal 

window obtained by a preliminary stationary PDC estimation. The introduced 

adaptation of the algorithm led to a strong improvement of the performances in 

terms of accuracy of the estimates and initial adaptation time. The results 

achieved in both the simulation studies revealed high performances of the GLKF 

approach in time-varying connectivity estimates, opening the way of its 

application in different neuroscientific fields. 
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1. Introduction 

All the Granger causality based connectivity estimators are able to accurately 

detect connectivity patterns by including all the relevant sources of the problem 

in the multivariate autoregressive model (MVAR) used for the estimation [1-3]. 

The existence of hidden sources, can cause the occurrence of false positives during 

the estimation process and, thus, misleading results (“hidden source dilemma”). 

Such spurious links are due to a common effect on two sources of a third one not 

included in the estimate. According to these considerations, not only a 

multivariate approach is preferable, in terms of accuracy of the pattern 

reconstruction, to a pairwise one, as demonstrated in [58], but it is also crucial to 

insert all relevant sources in the multivariate modeling. The issue of the model 

dimension becomes then essential to reach a full description of brain networks. 

Moreover, all the MVAR based methodologies for the causal connectivity 

estimation require the hypothesis of stationary in wide sense for the signals 

included in the estimate. Thus, the temporal dynamics of the influences between 

cerebral areas are completely lost. To overcome this limitation, different 

algorithms for the estimation of MVAR with time dependent coefficients were 

recently developed [11]. In particular, these methodologies are based on short-

time window approaches, assuming the stationary of signals in short time 

intervals [54] or on an adaptive estimation of the MVAR model by means of a 

recursive algorithm involving a weighted influence of the past of the signal, as in 

the multi-trial Recursive Least Squares (RLS) method with Forgetting Factor [59], 

[60]. However, even if the RLS overcomes the problem of non-stationary data, it 

presents a limitation, due to computational complexity, in the number of signals 

to be considered at the same time in the estimation [57], [61]. The problem of the 

model dimension can be solved by reducing the number of electrodes time series 

to be included in the model [61]–[63] or by using cortical waveforms of some 

regions of interest derived through linear inverse procedures from high 

resolution EEG data [60]. However, the need to reduce the model dimension 

introduces a significant error due to the “hidden source dilemma”. Since each time 

a relevant source of information of the problem is removed from the 

autoregressive modeling this introduces spurious connectivity links and degrades 
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the reconstruction of the connectivity network. In 2010, a new method based on 

a General Linear Kalman Filter (GLKF), was provided as a solution to the limitation 

in the number of signals to be considered simultaneously in estimation process 

[57]. Even if the RLS method for time varying functional connectivity estimation 

has been proposed in literature from 2001, its performances under different 

conditions of available amount of data (different number of trials) and imposed  

adaptation constant were studied only on datasets composed by a small number 

of signals [60]. The GLKF method has been introduced and compared with the RLS 

by means of a simulated time varying MVAR of dimension 20 [62]. A rigorous 

demonstration of RLS limitation in the number of signals to be considered 

simultaneously in the estimation hasn’t still been performed. Moreover, a 

comparison between the two methods in terms of accuracy and adaptation speed 

of estimates under different condition of number of trials and signals included in 

the estimation process it is necessary to understand in which cases one method 

show better performances than the other. An important aspect to be taken in 

consideration in the algorithms for time varying connectivity consists in the 

definition of initial conditions to be employed for the estimate. Being based on 

iterative approaches, the performances of the two algorithms, especially for the 

GLKF, are strongly influenced by such initial conditions. Thus, an exhaustive 

comparison of the performances between the two algorithms cannot be 

performed without including also this aspect.  

In the present work, we proposed a simulation study performed for comparing 

the two approaches in terms of accuracy in the estimation process and of speed in 

the adaptation to the temporal evolution of the estimated patterns, under 

different conditions of number of nodes included in the network (factor 

SIG_NUM), amount of trials to be used in the analysis (factor TRIAL) and 

adaptations constants set for applying the methods (factor CONST). In the second 

part of the study we tested our adaptation of the algorithm in which we use the 

stationary Partial Directed Coherence to provide non-null initial conditions and 

improve the performance of the algorithm also in the initial phase of the 

estimation. This adaptation of the algorithm could be used in the future to employ 

the GLKF also in lots of real applications in which a long initial time for the 
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adaptation before the part of interest of the trial is not available. In particular, the 

simulation study allowed addressing the following specific questions: 

• Does the RLS procedure show a real limitation in estimating time-varying 

information flows in networks characterized by a high number of nodes 

(N=60)? 

• Can the GLKF approach substitute it in the estimation of temporal evolution 

of connectivity patterns characterized by a high number of nodes? 

• What is the influence of the adaptation constants (c for the RLS algorithm; c1 

and c2 for the GLKF approach) on the performances of the two algorithms, 

and which can be a criterion for the choice of their optimum values? 

• How are the performances of the two methods influenced by different factors 

affecting the recordings, like the amount of trials at disposal for the analysis 

(factor TRIAL)? 

• Are the performances of the two algorithms significantly improved by the 

settings of specific initial conditions derived by stationary PDC applied in a 

window preceding the one of interest? 

In order to perform such simulation study and to answer these questions, several 

datasets with imposed and controlled connectivity pattern were generated for 

each investigated experimental condition by means of the SEED-G toolbox 

described in Chapter 2. Time-varying causal connectivity were estimated and the 

results compared with the imposed models in order to extract some performance 

parameters related with the accuracy of the estimate and the adaptation time. 

Analysis of variance (ANOVA) and Tukey’s pairwise comparisons were applied in 

order to compare the two methods and evaluate the effect of the different 

considered factors and the settings of initial conditions.  

  



Chapter 3 

55 
 

2. Methods 

2.1 Time-varying MVAR and PDC  

MVAR models are widely explained in paragraph 2.1 of the Chapter 2. Supposing 

that the following multivariate autoregressive (MVAR) model is an adequate 

description of the dataset Y: 

𝒚(𝑛) =  − ∑ 𝑨(𝑘)𝒚(𝑛 − 𝑘) + 𝒖(𝑛)

𝑝

𝑘=1

 (3.1) 

where y(n) is the data vector in time, u(n) is a vector of multivariate zero-mean 

uncorrelated white noise processes, A(k) is the matrix of model coefficients at lag 

k and p is the model order [64]. In order to investigate the spectral properties of 

the examined process, eq. 3.1 is transformed to the frequency domain: 

𝐴(𝑓)𝑌(𝑓) = 𝑈(𝑓),   𝐴𝑖𝑗(𝑓) = ∑ 𝒂𝑖𝑗(𝑘)𝑒−𝑗2𝜋𝑓𝑇𝑘𝑝
𝑘=0       (3.2) 

where T is the temporal interval between two samples. In the present study an 

adaptive formulation for MVAR model (AMVAR) will be employed [65]; where the 

time dependent parameter matrices were estimated by means of RLS and GLKF 

methods, both described in detail in the following paragraphs.  

Once estimated the coefficients of the time-varying auto-regressive model, it is 

possible to define also a time-varying version of the PDC estimator. The estimated 

parameters will be function of the time: 

π𝑖𝑗(𝑓, 𝑛) =
|𝑨𝒊𝒋(𝑓, 𝑛)|

2

∑ |𝑨𝑖𝑘(𝑓, 𝑛)|𝑁
𝑘=1

 

𝐴𝑖𝑗(𝑓, 𝑛) =  ∑ 𝑎𝑖𝑗(𝑟, 𝑛) 𝑒−𝑗2𝛱𝑓𝑇

𝑝

𝑟=0

   

(3.3) 
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2.2 The Recursive Least Squares (RLS) 

The Recursive Least Squares with forgetting factor is a method based on the 

minimization of the squared prediction error, introduced for the analysis of event 

related EEG data. An extended version to the multi-trials case was provided by 

[59]. A set of EEG trials, recorded according to a certain stimulus, can be seen as 

several realizations of the same stochastic process. Consider a stochastic process 

Y composed by T repetitions (trials) of M trajectories (signals). At the time point 

n, the process observation can be defined as follows 
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where )()( ny t

m is the t-th component (t=1,…, T) of the m-th trajectory (m=1,…, M) 

at time n (n=1,…,N). The trajectories Yn will be fitted by the MVAR model, defined 

in eq. 3.1. In order to infer the adaptive estimation n
~

 of parameters n , the 

instantaneous prediction error should be minimized: 
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where  

T

nnnn WYZ 1

~
  (3.6) 

Zn is the instantaneous prediction error and describes the difference between the 

desired response Yn and the estimation 
T

nnW 1

~
 , the matrix ),,( 1 pnnn YYW    

includes the last p observations of the time series. The introduction of the 

exponential 
inc  )1( , with 10  c , allows to forget the distant past of the 
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signals in order to follow their non-stationary environment [65]. The constant c 

controls the compromise between adaptation speed and the estimation accuracy. 

In fact, values of c close to zero led to slower adaptation but higher stability in the 

estimation and vice versa. The details about the algorithm can be found in [59]. 

2.3 The General Linear Kalman Filter 

In the GLKF an adaptation of the Kalman Filter to the case of multi-trial time series 

is provided. In particular:  

nnnn
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(3.7) 

where On represents the observation, Qn is the state process, Hn and Gn are the 

transition matrices and Vn and Wn are the additive noises. To obtain the 

connection with the time-varying MVAR it is necessary to make the following 

associations:  
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where T denotes the number of trials, whereas M is the dimension of the measured 

process. The details of the algorithm are provided in [62]. The quality of 

estimation is related to the definition of two parameters, c1 and c2, which regulate 

the compromise between the quality of estimation and the speed of adaptation to 

transitions. 

3. Simulation Study 1 

A first simulation study was designed in order to compare the accuracy of the two 

methods and their adaptation speed in the information flows transitions, under 
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different conditions of number of signals included in the model and amount of 

trials at disposal for the estimation. The simulation study involved the following 

steps: 

1) Generation of different simulated datasets fitting a predefined time-

varying connectivity model using the SEED-G toolbox introduced in the 

Chapter 2. The optimal order chosen for the MVAR model used as generator 

filter is equal to 16. We simulated 50 datasets for each condition of interest. 

More in detail, we generated datasets with 5, 10, 20, 30, 60 nodes (factor 

SIG_NUM) imposing different levels of trials number (factor TRIAL: 30, 50, 

100, each of 516 samples). The levels chosen for both SIG_NUM and TRIAL 

factors cover the typical ranges encountered in EEG recordings. The 

number of nodes included in the study was the one typical of standard EEG 

montages. 

2) Evaluation, for each dataset, of AMVAR coefficients by means of RLS and 

GLKF methods and estimation of related time varying PDC. The AMVAR 

coefficients estimation was repeated for different values of adaptation 

constants c for RLS and c1 and c2 for GLKF, required for the application of 

the two methods. In both cases we selected c=c1=c2= [0.01, 0.03, 0.05]. The 

levels for the factor CONST were chosen on the basis of previous studies 

aiming at describing the properties of both time varying estimation 

methods. In particular, Astolfi et al. identified an interval of values from 

0.02 to 0.05 as a valid range for high quality time varying functional 

connectivity estimates by means of RLS algorithm for different values of 

SNR and number of trials used in the estimation process [60]. On the other 

side, Milde et al. suggested to set, for the GLKF method, the two adaptation 

constants with the same value and around 0.03 [62]. 

3) Evaluation of performance indices, which allowed comparing the two 

methods in terms of estimation accuracy and speed of adaptation to 

transitions. In particular we evaluated the error in the estimated value in 

the samples before and after the transition, and the time needed for the 

algorithm to stably reach the true value of the connection.  
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All the procedures in steps 1-3 were repeated 50 times, each one under different 

conditions of signals number (SIG_NUM = 5, 10, 20, 30, 60) and trial number 

(TRIAL = [30; 50; 100]) with the aim to enforce the following statistical analysis. 

In particular, Analysis Of Variance (ANOVA) for repeated measures of the 

performance indexes, in order to evaluate the effects of the factors TRIAL, 

SIG_NUM and CONST on the performances of the analysed methods.  

3.1 Datasets Generation 

The first step of datasets generation consisted in the creation of a predefined time 

varying model. Due to the necessity to test the performances of the two methods 

in the estimation of time varying connectivity on datasets composed by different 

number of signals, the process of model generation was completely automated. 

SEEG-G toolbox employed for generating all the pseudo-EEG signals allowed to set 

the following parameters:  

• The percentage of time-varying connections was fixed to 50%; 

• The instant in which the transition starts was imposed at the sample 266 

(at half of the trial) corresponding to 1.3 seconds; 

• The magnitude and kind of variation. For this study we imposed step 

change with amplitude such that the final value of the connection is double 

or half with respect to the initial value unless the addition of a random 

value included in the range [-0.1;0.1]. 

3.2 Evaluation of performances 

In order to compare from different point of views the two methods used for the 

estimation of time-varying connectivity patterns, we identified four parameters 

able to consider the accuracy achieved in the estimation process and the speed of 

adaptation to the transitions imposed in the time evolution of the investigated 

networks. The following figure (fig. 3.1) will help us in the definition of such 

parameters.  
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Figure 3.1 – Plot containing the over imposition of the imposed (solid line) and estimated 
(dotted line) trends for one generic connection ij. The imposed connection after 250 
samples has a transition in the value moving from V1 value to V2. In the representation 
the first 16 samples are not reported, since 16 is the order of the MVAR model and the 
estimate is performed starting from sample 17th.  

 

For the evaluation of the accuracy achieved during the estimation process, we 

defined two errors whose formulation is reported in the follows: 

1) Error_PRE: error committed in the estimation of the imposed values, 

before the transition (computed for all the connections different from 

zero). Consider Eij_f  the difference between the estimated value (PDCij_f) of 

a connection and the imposed one (Modelij_f = V1 in the figure) for each 

sample and each frequency (f): 

ijfijfij ModelPDCE  __  
(3.10) 

Error_PRE defined for one connection is: 
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where fend is the last frequency considered in the range in which the PDC 

estimator was computed and t1 is the sample in which the model was 

subjected to the transition as reported in fig.3.1. In other words, this 
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parameter is the mean value of Eij_f  on the interval from the optimal order 

of the model (popt) to the beginning of the transition and on all the 

frequencies considered in the estimate. In order to obtain the final 

Error_PRE we averaged the errors obtained for all the non-null 

connections: 
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 where Nno_null is the number of connections different from zero.  

2) Error_POST: error committed in the estimation of the specific imposed 

values, after the transition (only computed for the connections who 

showed a transition). It is mathematically defined in the same way of the 

Error_PRE. Given Eij_f according to eq. 3.10, we can define the Error_POST 

for one connection as follows: 

 
 


2

1 1 _

_

12

1

)()(

1
_

t

tt

fend

f fij

fij

end

ij
Model

E

ftt
POSTError


 (3.13) 

where fend is the last frequency considered in the range in which the PDC 

estimation was computed, t2 is the last sample of the trial and  the 

samples at settling.  Error_POSTij is the average on all the samples after the 

transition and after the stabilization of the algorithm and on all the 

frequencies considered in the estimate. The global Error_POST was 

obtained mediating all the values computed for the considered 

connections: 
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where NT is the number of connections whose value undergoes the 

transition. 

3) In order to evaluate the speed in adaptation to transitions we defined the 

samples at settling parameter (ST) as the first instant τ (following the 

transition) after which the error keeps definitely below the 20% of the 

transition amplitude. In particular, the condition for each connection was: 

100/)( 12_ VVE fij    (3.15) 

where Eij_f is defined as in eq. 3.10 and is the difference between the 

imposed connection ij and its estimated value at time t and frequency f, ε 

was set to 20 and V1 and V2 are the values of PDC related to the arc directed 

from j to i before and after the transition applied at time t1 (see fig. 3.1). 

Once calculated τ for each node in which the transition was applied and 

for each frequency sample, it is possible to define the samples at settling 

parameter as follows: 
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(3.16) 

where NT is the number of nodes in which at time t1 a transition was 

applied, fend is the last frequency considered in the range used for PDC 

estimation and τij(f) is the settling time for the specific connection directed 

from j to i at frequency f.  

4) A similar parameter was defined in order to evaluate the speed of the 

algorithm to move from the initial conditions (set to zero) to the value of 

the connection independently of the transition. It was computed for all the 

links different from zero in all the samples before the possible transition 

(first 266 samples). We evaluated the first instant τ’ after which the error 

keeps definitely below the 20% of the amplitude V1. In particular, the 

condition for each connection was: 



Chapter 3 

63 
 

100/1_ VE fij    (3.17) 

where Eij_f is defined as in eq. 3.10 and is the difference between the 

imposed connection ij and its estimated value at time t and frequency f, ε 

was set to 20 and V1 is the values of PDC related to the arc directed from j 

to i before the transition (see fig.3.1). Once calculated τ’ for each 

connection different from zero and for each frequency sample, it is 

possible to define the initial adaptation parameter as follows: 
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where N is the number of non-null links, fend is the last frequency 

considered in the range used for PDC estimation and τij(f) is the settling 

time for the specific connection directed from j to i at frequency f.  

3.3 Statistical Analysis  

The parameters defined for comparing the two methodologies in terms of 

accuracy in the estimation process and of the speed of adaptation were subjected 

to separate ANOVAs. We performed a repeated measures three-way ANOVA 

aiming at studying the effect of different adaptation parameters (CONST) set 

during the estimation process on the performance indices defined above, taking 

into account several factors such as the number of trials (TRIAL) available for the 

analysis and the connectivity model size (SIG_NUM). This analysis was executed 

separately for RLS and GLKF algorithms. The within main factors of the ANOVA 

were: 

• CONST with three levels: C=0.01, C=0.03, C=0.05, where C=c=c1=c2; 

• TRIALS with three levels: 30, 50, 100.  

The between factor of the ANOVA is the number of signals included in the estimate 

(SIG_NUM) and has five levels: 5, 10, 20, 30, 60. The dependent variables were the 

samples at settling (ST), the initial adaptation time of the algorithm (TAU) and the 
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errors before and after the transition (Error_PRE and Error_POST respectively). 

The correction of Greenhouse-Gasser for the violation of the spherical hypothesis 

was used. Tukey’s pairwise comparisons were then performed in order to better 

understand the significance between different levels of the same factor or 

between the same levels of different factors.  

4. Simulation Study 2 

The main limitation we found in the algorithm based on the Kalman filter was the 

long time required to reach the true value of the connection starting from null 

conditions. This is true and amplified especially in the experimental case in which 

the constants (c1, c2) are equal to 0.01 even if all the other performance 

parameters related with the transition phase are set on their best values. The idea 

proposed in this study is to employ the first samples of the trials to compute a 

stationary estimation of the causal connectivity and to use the obtained values as 

initial conditions for the time-varying algorithm. The hypothesis was that such 

mathematical alteration could significantly improve the performance of the GLKF 

algorithm in term of adaptation time and error committed before the transition. 

In order to demonstrate our hypothesis, we performed a second simple simulation 

study involving the following steps: 

1) Evaluation, for each dataset generated for the first simulation study, of 

AMVAR coefficients by means of GLKF method with constants c1 and c2 

equal to 0.01 and estimation of related time varying PDC.  The estimation 

was performed two times for each dataset changing the initial conditions 

from null to non-null, defining the factor IC_TYPE.  

2) Evaluation of the performance parameters that allowed to compare the 

two version of the algorithm in terms of estimation accuracy and speed of 

initial adaptation.  
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The steps 1-2 were repeated 50 times in order to enforce the following statistical 

analysis. In particular, ANOVA for repeated measures of the performance indices, 

in order to evaluate the effects of the factors TRIAL, SIG_NUM and IC_TYPE.  

4.1 Evaluation of performances 

In order to evaluate the performance of the GLKF in two different conditions of 

initial condition we evaluated the error before the transition and the time needed 

for the algorithm to stably reach the true value of the connection to be estimate. 

The performance parameters TAU and Error_PRE have been already 

mathematically described in the previous paragraph (eq. 28 and eq. 24 

respectively). 

4.2 Statistical Analysis  

The parameters defined in the time interval before the transition to demonstrate 

the improvement of the performances of the GLKF algorithm in the case of non-

null initial conditions were subjected to ANOVA test. A repeated measures three-

way ANOVA was performed in order to study the effect this factor (IC_TYPE) 

taking into account also the number of trials (TRIALS) available for the analysis 

and the connectivity model size (SIG_NUM). The within main factors of the ANOVA 

were: 

• IC_TYPE with two levels: Null, Non-Null; 

• TRIALS with three levels: 30, 50, 100.  

The between factor of the ANOVA is the number of signals included in the estimate 

(SIG_NUM) and has five levels: 5, 10, 20, 30, 60. The dependent variables were the 

initial adaptation time of the algorithm (TAU) and the errors before the transition 

(Error_PRE). Tukey’s pairwise comparisons were then performed in order to 

better understand the significance between different levels of the same factor or 

between the same levels of different factors. The analysis was conducted only for 

GLKF algorithm. 
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5. Results 

5.1 Simulation Study 1: RLS vs GLKF 

Results presented in figures 3.2-3.5 refer to the three-way ANOVA applied to the 

performance indices defined in previous section and computed separately for 

GLKF and RLS algorithms. In particular, the within main factors were the 

adaptation parameters set in the estimation process (CONST) and the number of 

trials (TRIALS) available for the analysis. The between factor was the number of 

signals composing the model (SIG_NUM). In Table 3.1 and Table 3.2 we reported 

the results of the ANOVA performed for the four dependent variables: ST, TAU, 

Error_PRE and Error_POST. They revealed that most of the considered factors 

have a significant influence on the performances of the two algorithms. The 

interaction factors SIG_NUM x TRIALS and SIG_NUM x CONST x TRIALS do not 

show a significant influence on the variable ST when the RSL algorithm is 

employed. In the same kind of estimation, the interaction factor CONST x TRIALS 

does not show a significant influence on the variable TAU. 
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Table 3.1 - Results of the repeated measures three-way ANOVA (F values) computed 
considering as dependent variables Error_POST and Error_PRE.; the amount of trials 
(TRIALS) and adaptation constants (CONST) are the main within factors; the number of 
signals included in the estimates is the between factor (SIG_NUM). In the column “Factors” 
are also reported the degree of freedom. 
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Table 3.2 - Results of the repeated measures three-way ANOVA (F values) computed 
considering as dependent variables TAU and ST; the amount of trials (TRIALS) and 
adaptation constants (CONST) are the main within factors; the number of signals included 
in the estimates is the between factor (SIG_NUM). In the column “Factors” are also 
reported the degree of freedom.  

Diagrams reported in the figures 3.2 and 3.3 allow to demonstrate how the two 

different time-varying connectivity estimators are differently sensitive, in terms 

of adaptation time and accuracy in following the transition (Error_POST), to the 

number of trials and signals composing the dataset and to the adaptation 

parameters c, c1 and c2. 
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Figure 3.2 - Plot of means associated to the three-way interaction factor (SIG_NUM x 
TRIALS x CONST) of the ANOVA performed on the Samples at Settling (ST) parameter. 
Each panel is related with a specific algorithm for the AMVAR coefficients estimation: 
GLKF (panel a) and RLS (panel b). For each panel, we reported three graphs associated to 
the different available amount of trials: 30, 50 and 100 from left to right. X-axes always 
report the levels of the factor CONST and the colours code for different model size. The 
bars represent their relative 95% confidence interval. 



Chapter 3 

70 
 

 
Figure 3.3 - Plot of means associated to the three-way interaction factor (SIG_NUM x 
TRIALS x CONST) of the ANOVA performed on the Error_POST computed in the time 
interval after the transition. Each panel is related with a specific algorithm for the AMVAR 
coefficients estimation: GLKF (panel a) and RLS (panel b). For each panel, we reported 
three graphs associated to the different available amount of trials: 30, 50 and 100 from 
left to right. X-axes always report the levels of the factor CONST and the colours code for 
different model size. The bars represent their relative 95% confidence interval. 
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Trials number: As expected, results showed a significant decrease of the samples 

at settling and of the Error_POST when the amount of trials increase for both the 

algorithms. It is true regardless of the adaptation constants and of the model size. 

For high number of signals involved in the estimate such phenomenon applied to 

the Error_POST results amplified. 

Adaptation constants: The influence of such factor on the time-varying 

connectivity estimates is different for the GLKF and the RLS algorithm because of 

the different meaning that C assumes in the mathematical implementation of the 

two methods. Results related with the Kalman’s filter based approach highlighted 

that it is possible to obtain the best performances when the adaptation 

parameters are both equal to 0.01. In such condition, the samples at settling are 

less than 80 when 100 trials are available and less than 130 for the lowest TRIALS 

level. Also in term of Error_POST we found good performance. In fact, the value of 

this parameter moves from a minimum of 7% to a maximum of 12% (fig. 3.3a) 

dependently of the amount of trials and signals. More in general we found a 

performance degradation of the GLKF algorithm when the adaptation parameter 

increases from 0.01 to 0.05. Regarding the RLS approach, the best adaptation 

constant emerged from the showed diagrams is 0.03, so that the trend of the 

performance parameters on the CONST levels has a “V” shape. There are some 

exceptions, like the ST when the amount of trials is 100. In this case the value of 

the index decreases for c equal to 0.05 but the difference is not consistent (only 

few samples). When c is equal to 0.03 the samples at settling are less than 120 

when 100 trials are available (80 for small models) and less than 130 for the 

lowest TRIALS level. As showed in fig. 3.3b, the Error_POST value moves from a 

minimum of 5% (100 trials and small models) to a maximum of 15% (30 trials 

and large models).  

Model size: The results obtained for the ST index and Error_POST revealed, on 

mean, a degradation of the performances when the number of signals included in 

the connectivity estimate increases. The time-varying algorithm based on the RLS 

has a clear growing trend for both the performance parameters (fig. 3.2b and fig. 

3.3b). For the Kalman based algorithm such behaviour is mitigated. In terms of 

samples at settling (fig. 3.2a), only the level 60 of the factor SIG_NUM is 
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significantly different from all the others in all the trials number and constants 

value conditions. Moreover, the Error_POST diagram (fig. 3.3a) highlights an 

opposite trend in the relation between the parameter and the model size, 

particularly clear in the subplots related with the levels 50 and 100 of the factor 

TRIALS. What we found was a slightly improvement of the estimates accuracy for 

larger models. Such result is probably an effect of the number of signals on the 

adaptation constants of the GLKF algorithm. In figure 3.4, we reported the same 

transition estimated with the GLKF, with c1 and c2 equal to 0.01 and 30 trials. The 

only difference between the two panels is the size of the model to whom the 

connection comes from. It is evident how in the case of 60 nodes (panel b) the 

typical oscillations of the estimated value are smoother than in the case of 5 nodes 

(panel a) as if the adaptation constant were lower. Because the Error_POST is only 

computer after the adaptation phase, it is clear that in the second case the 

deviations from the true connection value are lower.                 

 
Figure 3.4 – Plot of one of the imposed connection that after 250 samples has a transition 
in the value. The connection represented in panel a) comes from a 5-nodes model. The 
connection in panel b) comes from a 60-channels model. In both cases the red line is the 
value of the connection imposed in the model, the blue line is the estimate sample by 
sample by GLKF algorithm with adaptation constants equal to 0.01 and 30 trials. 

In summary, the performance of the two algorithms used with the correct 

adaptation constants (0.01 for GLKF and 0.03 for RLS) are comparable but, as 

expected, RLS related Error_POST is more sensitive to the factor SIG_NUM. When 

a number of trials lower than 100 is available, the Kalman filter has better and 
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more stable performance. In the field of neuro-physiological studies, it is really 

common to analyse datasets recorded by 60 channels and, at the same time the 

quality of such data could be not too high. If patients are included in the 

experiment could be difficult to collect a high number of trials (with low inter-trial 

variability). Thus, for the real application, the GLKF algorithm represents the best 

choice in terms of accuracy of the estimate and rapidity in following the link 

transitions.  

In the next figures, we reported the ANOVA results for the others two performance 

indices: the initial adaptation time of the algorithms (TAU, fig. 3.5) and the 

Error_PRE committed independently of the presence of the transition (fig. 3.6). 

We investigated these variables in order to clarify the behaviour of the two 

methods in the time interval in which the algorithm move from the null initial 

conditions to the link strength value.  
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Figure 3.5 - Plot of means associated to the three-way interaction factor (SIG_NUM x 
TRIALS x CONST) of the ANOVA performed on the initial adaptation time of the estimator 
(TAU). Each panel is related with a specific algorithm for the AMVAR coefficients 
estimation: GLKF (panel a) and RLS (panel b). For each panel, we reported three graphs 
associated to the different available amount of trials: 30, 50 and 100 from left to right. X-
axes always report the levels of the factor CONST and the colours code for different model 
size. The bars represent their relative 95% confidence interval. 
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Figure 3.6 - Plot of means associated to the three-way interaction factor (SIG_NUM x 
TRIALS x CONST) of the ANOVA performed on the Error_PRE computed in the time interval 
before the eventual transition. Each panel is related with a specific algorithm for the 
AMVAR coefficients estimation: GLKF (panel a) and RLS (panel b). For each panel, we 
reported three graphs associated to the different available amount of trials: 30, 50 and 
100 from left to right. X-axes always report the levels of the factor CONST and the colours 
code for different model size. The bars represent their relative 95% confidence interval. 
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The first evident result is that the algorithm based on the RLS showed better 

performance both in terms of accuracy of the estimation and initial adaptation 

time. TAU index is significantly lower in RLS with respect to the GLKF regardless 

of all the other parameters and conditions. In particular, figure 3.4b highlighted 

how the RLS algorithm take always less than 20 samples to reach stably the true 

value of the connection. On the contrary, the Kalman filter based method showed 

some limitation in this initial phase. TAU significantly increases when the 

adaptation constant decreases so that if we select c1 and c2 equal to 0.01, as 

concluded according to the results in fig. 3.2 and fig. 3.3 (low ST and Error_POST), 

TAU assumes very high values (fig. 3.4a). For this level of the adaptation constants, 

30 trials condition and 60 nodes models the algorithm fails because it is not able 

to conclude the adaptation phase. Consequently, similar observation can be done 

for the parameter Error_PRE. On the other side, when the RLS algorithm is 

employed, Error_PRE maintains a value lower than 30% independently of the 

adaptation constant, the amount of available trials and the model size (fig. 3.6b). 

For the condition in which the adaptation constant is equal to 0.03 (that we 

identify as the best compromise in the results regarding the transition phase) and 

TRIALS is equal to 100, Error_PRE never overcome 10%. The GLKF algorithm 

showed higher value of this index and a significant increase whit the number of 

signals included in the estimation. Such effect appears amplified for adaptation 

constants equal to 0.01, when it moves from the 20% for 5-nodes models to 55% 

for 60-nodes models. In summary: i) RLS algorithm showed the best performance 

for c equal to 0.03 both, in the initial and transition phases; ii) GLKF results 

highlighted an important issue due to the difference in terms of accuracy and 

adaptation time between the two phases. In order to use the method in its best 

condition for catching the transition (c1=c2=0.01 as shown in previous figures) it 

is necessary to improve its performances in the initial phase of the estimation 

acting, for example, on the initial conditions. Results related with the initial phase 

of the GLKF estimates are reported in the following paragraph. 
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5.2 Simulation Study 2: Initial conditions in GLKF 

Results presented in figures 3.7 and 3.8 are related with the three-way ANOVA 

applied separately to the performance indices defined to evaluate the accuracy 

and the adaptation time in the phase preceding the transition: Error_PRE and TAU, 

respectively.  Such indices were evaluated on the connectivity patterns estimated 

by means of GLKF for adaptation constants equal to 0.01 and different levels of 

the within factors TRIALS and IC_TYPE and the between factor SIG_NUM. The 

IC_TYPE factor, as better explained in the previous paragraphs, is related with the 

initial conditions imposed in the algorithm that can assume null values (classical 

implementation) or values obtained by a stationary estimation of the PDC in the 

first popt x 2 samples. In Table 3.2 we reported the results of the ANOVA. All the 

considered factors have a significant influence on the performance of the two 

algorithms. 

 
Table 3.2 - Results of the repeated measures three-way ANOVA (F values) computed 
considering as dependent variables Error_PRE and TAU, as within main factors the type 
of initial imposed conditions (IC_TYPE) and the amount of trials (TRIALS) and as between 
factor the number of signals included in the estimate (SIG_NUM). The adaptation 
constants are fixed and equal to 0.01. In the column “Factors” are also reported the degree 
of freedom. 

In the following figures, we reported the box-plots of the three-way interaction 

factor (IC_TYPE x TRIALS x SIG_NUM) obtained for TAU (fig. 3.7) and Error_PRE 

(fig. 3.8) parameters, respectively. Diagrams in fig. 3.7 and fig. 3.8, immediately 

allow noticing the improvement in the considered performance indices when no-

null initial conditions (panels b) are computed and imposed in the GLKF 

algorithm.   
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Figure 3.7 – Box-plot associated to the three-way interaction factor (SIG_NUM x TRIALS 
x IC_TYPE) of the ANOVA performed on the Samples at Settling (ST) parameter computed 
for the GLKF algorithm. Panel a) is related with the classical method in which the initial 
conditions are equal to zero. Panel b) refers to the proposed adaptation of the algorithm 
(Non-Null initial condition). 

In both cases, with null and non-null initial conditions, TAU maintains the same 

trend with respect to the factors TRIALS and SIG_NUM. In particular, results 

revealed a significant increase with the increase of the number of signals when 

the number of trials is low. The most important results regard the difference 

between the two levels of the factor IC_TYPE. Comparing panels a) and b) emerges 

a significant and relevant decrease of the initial adaptation time. When the 

stationary PDC is used as starting point for the algorithm, the number of samples 

needed to stably reach the true value of the connection to be estimated is always 

lower than 20 (lower than 10 if the number of trials is 100).    

Also the results related with the Error_PRE confirm the improvement in the 

performance when non-null initial conditions are employed. In panel b) the box 

plots revealed a significantly higher accuracy considering an error lower than 

15% independently of the other factors. An inversion of the trend with respect of 

the SIG_NUM factor (Error_PRE slightly decrease for big models) can be explained 

by means of the effect that the amount of data have on the adaptation constants 

after the adaptation phase (see fig. 3.4). In conclusion, the limitations highlighted 

in the first simulation study for the GLKF algorithm can be overcome using non-
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null initial condition exploiting all the advantages of the Kalman filter in the 

following transition phase. 

 
Figure 3.8 – Box-plot associated to the three-way interaction factor (SIG_NUM x TRIALS 
x IC_TYPE) of the ANOVA performed on the Error_PRE computed for the GLKF algorithm 
in the time interval before the eventual transition with the adaptation constants equal to 
0,01. Panel a) is related with the classical method in which the initial conditions are equal 
to zero. Panel b) refers to the proposed adaptation of the algorithm (Non-Null initial 
condition). 

6. Conclusion and Discussion 

The simulation studies described above were conducted with the aims to:  

• characterize two of the most used techniques for estimating time-varying 

causal connectivity patterns: GLKF and RLS;  

• describe their performances in relation to the adaptation constants to be 

set during their application in different conditions of amount of data and 

model size;  

• identify their main limitations and try to overcome them.  

In order to reach such aims we performed statistical analysis (ANOVAs and 

Tukey’s pairwise comparisons) on many simulated datasets with imposed 

connectivity models composed by different number of nodes (from 5 to 60), under 

different conditions of number of trials included in the estimate whose variability 
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range is similar to those found during real EEG recordings (30, 50, 100). In 

particular, we evaluated the performances of these two methods in terms of 

accuracy in the estimation process and in terms of speed of adaptation to 

transitions applied on the temporal evolution of connectivity patterns, also 

putting them in relation to the model dimension. Thus, the performance 

parameters were evaluated for the two time-varying approaches in relation to the 

amount of trials included in the estimate, to the adaptation constants set during 

the estimation process and to the number of nodes characterizing the investigated 

networks. The performed simulations provided the following answers: 

• According to the previous literature we found that the best adaptation 

constants are 0.03 for the RLS algorithm and (c1=c2) 0.01 for the GLKF 

based estimator [57]. 

• Both the algorithms showed a slight but significant performance 

improvement when the amount of trial is higher. For datasets with 100 

trials we found an increase from 5% to 10% in RLS estimate and from 7% 

to 9% for Kalman filter based algorithm.   

• The most sensitive algorithm to the number of signals included in the 

estimate is the RSL. Its performance revealed a consistent degradation for 

big connectivity models. The GLKF, on the other side, once selected the 

good adaptation constants, showed more stable estimates independently 

of the quality and the amount of data. In the case of real datasets, especially 

for the application whom this thesis point at, could be important to record 

high density EEG (60 channels). At the same time, could be difficult to 

collect a high number of trials (with low inter-trial variability). Thus, for 

the real application, the GLKF algorithm represent the best choice in terms 

of accuracy of the estimate and rapidity in following the link transitions. 

• The results obtained for the ST parameter lead to a preference for the 

GLKF method too. In fact, the comparison between the two algorithms 

performed in this study demonstrated that GLKF method can substitute 

the RLS approach in the time-varying estimation of connectivity patterns 

due to its higher performances in following the temporal dynamics of 

investigated networks. Time required for settling was below 550 ms for 
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all the numbers of trials and nodes considered in the study. Such time 

drastically reduced (around 350 ms) if the trials included in the estimate 

were 100. 

In conclusion, the ANOVA results (integrated with the Tukey’s test performed at 

p<0.05) confirmed what has been qualitatively introduced in previous studies 

about the issues of time-varying connectivity and its limitation in the dimension 

of connectivity patterns. The results are in agreement with previous simulation 

studies performed on the effect of factors such as SNR level and number of trials 

on the samples at settling and accuracy parameters [60]. The showed simulations 

allowed to study of the algorithms behaviour only for step changes in the model 

parameters. In the next steps however, could be interesting to characterize their 

performances also for slowly varying parameters. 

After the discussion of these first results, we tried to understand if the accuracy 

and the good adaptation times found in the transition phase showed the same 

range of values also in the initial phase when the algorithms have to start from 

null conditions. What we discovered was that the GLKF has strong limitations in 

this time interval. Even for the optimal choice in terms of adaptation constants, 

the error in the estimation is high (around 20% in the best conditions of number 

of trials and small model, more than 50% for big models). When the number of 

signals included in the model is 60, in most cases it is impossible to reach stably 

the true value of the connection in 1 second. The idea to overcome such limitation 

was to act on the initial conditions to be set in the algorithm. We modified the 

algorithm including a preliminary stationary estimation performed on few initial 

samples of the trials (the first popt x 2, where popt is the optimal order of the 

model). The estimated connections values where then used as initial condition 

from the time-varying algorithm. The improvement in the GLKF performances 

were significant and consistent. In less than 20 ms we are now able to stably reach 

the value of the link to be estimate and the mean error committed in this phase is 

always lower than 15%. In conclusion, the new adaptation of the GLKF algorithm 

for the estimation of time-varying connectivity is a valid tool able to overcome the 

limits of existent procedures. In fact, the method is able to provide good time-

varying estimates characterized by a high accuracy and elevate speed of 
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adaptation both in the initial and transition phase, also for networks composed by 

a high number of nodes.  

 



 

1The study presented in this chapter was conducted in collaboration with the research group of the 
prof. Daniele Marinazzo at the University of Ghent (Department of Data Analysis, Faculty of 
Psychological and Educational Sciences) and has been submitted as journal paper. 

Chapter 4 

Effect of head volume conduction on directed 
connectivity estimated between reconstructed EEG 

sources 

Electrical activity recorded on the scalp using electroencephalography (EEG) 

results from the mixing of signals originating from different regions of the brain 

as well as from artefactual sources.  In order to investigate the role of distinct 

brain areas in a given experiment, the signal recorded on the sensors is typically 

projected back into the brain (source reconstruction) using algorithms that 

address the so-called EEG “inverse problem”. Once that the activity of sources 

located inside of the brain has been reconstructed, it is often desirable to study 

the statistical dependencies among them, in particular to quantify directional 

dynamical interactions between brain areas. Unfortunately, even when 

performing source reconstruction, the superposition of signals that is due to the 

propagation of activity from sources to sensors cannot be completely undone, 

resulting in potentially biased estimates of directional functional connectivity.  

Here we perform a set of simulations involving interacting sources, and quantify 

source connectivity estimation performance as a function of the location of the 

sources, their distance to each other, the noise level, the source reconstruction 

algorithm, and the connectivity estimator. The generated source activity was 

projected onto the scalp and projected back to the cortical level using two source 

reconstruction algorithms, Linearly Constrained Minimum Variance (LCMV) 

beamforming and ‘Exact’ Low-resolution Tomography (eLORETA). In source 

space, directed connectivity was estimated using Multi-Variate Granger Causality 

(MVGC), Time-Reversed Granger Causality (TRGC) and Partial Directed 

Coherence (PDC), and the estimated connectivity was compared with the imposed 

ground truth. Our results demonstrate that all considered factors significantly 

affect the connectivity estimation performance. 
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1. Introduction 

Understanding how the joint dynamics of separate brain regions gives rise to 

function is a fascinating and challenging issue. Several techniques are constantly 

being developed to investigate these dynamics. EEG signals, due to their high 

temporal resolution and non-invasiveness, are often employed to investigate how 

brain activity is modulated in different tasks or conditions [16], [50], [66]–[68]. 

One of the main issues associated with the EEG signals is the low spatial resolution 

due to the head volume conduction [13], [69]. It is well known that the electrical 

activity measured at sensors level is a mixture of the source activity coming from 

all the sources in the brain (in addition to contributions coming from outside of 

it). In other words, the spherical geometry of the head and the presence of several 

tissues with different electrical properties between the cortex and the scalp 

distort the electric field generated by active neurons so that it is not possible to 

associate a single brain area to each electrode. The high correlation between 

signals recorded from neighbouring electrodes at scalp level leads connectivity 

algorithms to estimate inaccurate patterns including spurious links and to taint 

results with poor interpretability. Making inferences on connectivity from the EEG 

signal is still not straightforward [70], [14]. In order to overcome or attenuate the 

volume conduction problem, several strategies and algorithms have been 

proposed to estimate source activities from multi-channel EEG recordings [15]. 

For example, simple spatial filters as the Laplacian can reduce the correlations 

among scalp-recorded channels induced by the source mixing [69]. Another 

possibility is given by the Blind Source Separation (BSS) techniques that allow to 

separate the data into underlying components representing the activity 

potentially extended networks at the source level. Two algorithms specifically 

developed for Granger-causal interactions assume that these components follow 

a multivariate autoregressive (MVAR) model with independent innovation noise 

[71], [72]. While such approaches allow one to reduce the volume conduction 

effect, the problem of the interpretability of the results is not completely 

addressed since directed dynamical influences are estimated between 

components and not on the cortical brain activity.  
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Another important choice concerns the connectivity estimator. There are 

different kind of algorithms and some of them were developed specifically to be 

less sensitive to artifacts of head volume conduction. Promising results have been 

obtained using the Phase-Slope Index (PSI) [73] and the Imaginary Coherence 

(ICoh) [74] but these methods, despite being less sensitive to volume conduction, 

do not solve the inverse problem and don’t allow precise localisation. 

Furthermore, their bivariate nature leads in some conditions, to spurious links 

due to hidden sources. In fact, it is well known how pairwise approaches can lead 

to false positive detections of connections due to their inability to distinguish a 

direct interaction between two signals from the influence of a common driver 

acting on both signals. [75]. Among the directed connectivity estimators, worth of 

note is the class of multivariate estimators based on the concept of the Wiener-

Granger Causality (GC) [76]. These data-driven approaches are computationally 

simple and require no a priori assumption on the presence or absence of 

interactions between specific pairs of variables. For this reason we decided to 

focus on three of them: the classical time-domain measure Multi-Variate Granger 

Causality (MVGC) [39], its adaptation called Time-Reversed Granger Causality 

(TRGC) that uses time-reversed data as surrogates for statistical testing [14], [77], 

and the frequency-domain measure Partial Directed Coherence (PDC) [78]. To 

achieve interpretable results, the reconstruction of brain sources prior to 

conducting connectivity estimation is required.  To solve the ill-posed (as the 

number of sources higher than the number of sensors) EEG inverse problem, 

several algorithms are available. Two of the most commonly used algorithms are 

the ‘exact’ Low Resolution Tomography (eLORETA) [19], and the Linearly 

Constrained Minimum Variance (LCMV) Beamformer [18]. Previous studies on 

real EEG data have already highlighted differences associated with these inverse 

solutions [79] but additional simulations studies are necessary in order to provide 

reliable and more specific findings. In other words, different algorithms for the 

inverse problem solution and for the connectivity estimation could be more or less 

sensitive to the volume conduction problem, but the evaluation of their 

performances on real datasets is not possible since an objective ground truth is 

typically not available. Inverse approaches for extracting cortical waveforms and 



Chapter 4 

86 
 

Granger-based estimators for connectivity measures can be combined to extract 

and investigate the human brain circuits but a complete evaluation of the volume 

conduction effect, in terms of demixing quality, in different experimental 

conditions is still necessary. It is also important to consider the presence of a 

localization error associated to the forward model used to describe the 

relationship between activations in the brain and scalp potentials. A suitable  

forward model for such validations is the ‘New York Head’, which is a highly 

accurate finite element model (FEM) of the electrical current flow of the average 

adult human head that is based on the segmentation of a highly detailed magnetic 

resonance image (MRI) into six different tissue types [80]. The goal of the present 

study is to identify data analysis pipelines combining source localization 

approaches and methods for brain connectivity estimation that are able to provide 

accurate and reliable estimates insensitive to the spurious effects induced by the 

volume conduction, and thereby allow one to interpret the obtained results in 

neurophysiological terms. In particular, the present study: 

● Demonstrates the possibility to significantly reduce the effect of the 

volume conduction on the connectivity estimates employing appropriate 

algorithms as the TRGC; 

● Provides guidelines for the employment of the best methods with different 

spatial distributions of the sources (different depth and relative position); 

● Evaluates, which source reconstruction approach, among eLORETA and 

LCMV, leads to a better performance in this context. 

In order to reach these aims, a simulation study was performed starting from the 

generation of simulated data, which mimic brain source signals with an imposed 

connectivity pattern. The influence of volume conduction on connectivity 

estimates was investigated by assigning simulated source signals to different 

anatomical location in the brain. The results of these simulations allow us to 

identify the best-performing combination of algorithms for the estimation of the 

brain activity and connectivity in several realistic conditions.  
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2. Methods 

Over the past few decades, different techniques of source localization applied to 

EEG data were developed to provide a non-invasive estimate of brain activity [81]. 

Such techniques employ voltage measurements at various locations on the scalp 

to estimate the current sources inside the brain which best fit these data. Source 

localization techniques are based on the follow generative model of EEG data: 

𝛷(𝑡) = 𝑳𝐽(𝑡) + 𝜀(𝑡) (4.1) 

where 𝛷(𝑡) ∈ 𝑅𝑀 is the EEG signal measured from M scalp locations at time t, 

𝐽(𝑡) ∈ 𝑅3𝑁 is the activity of N sources with a 3D orientation in the space, 𝑳 ∈

𝑅𝑀𝑥3𝑁 is the leadfield matrix summarizing the propagation of the N electrical 

sources j to the EEG sensors and 𝜀(𝑡) ∈ 𝑅𝑀 is the noise associated to the measures. 

The lead-field matrix L contains information about the geometry and the 

conductivity of all the tissues in the head (between the sensors and the sources) 

and its computation is well-known as forward modeling. The estimation of the 

sources 𝑗(𝑡) from the measures 𝛷(𝑡) contributes to the source reconstruction 

purpose and it is well-known as inverse modeling. The two modeling approaches 

will be described in detail below. 

2.1 Forward Problem 

The forward problem is solved starting from the electrical activity at source level 

and calculating the potentials at the sensors (electrodes) level. The result is the 

scalp activity as a function of the current density (produced by neuronal 

generators) and describes how the electrical field spreads through the different 

layers of the head. It depends on the geometry and on the electrical properties of 

the tissues. The New York Head is an accurate finite element electrical model of 

the average adult human head [80]. It is based on a highly detailed nonlinear 

average of T1-weighted structural MR image of 152 adults provided by the 

International Consortium for Brain Mapping (ICBM) [82]. A detailed segmentation 

of this average image into six tissue types (scalp, skull, CSF, grey matter, white 

matter, air cavities) was performed at the native MRI resolution of 0.5 mm3. The 

suitability of this volume conductor model to serve as an approximation for 
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individual heads was tested by comparison with additional BEMs and FEMs 

constructed for four subjects.  

2.2 Inverse Problem 

The inverse problem concerns the reconstruction of the brain sources that 

underlie the measured potentials in electrode space. Because of the difference 

between the number of sensors and the much higher number of active dipoles in 

the cortex, the inverse problem solution is not unique. Furthermore, it is very 

sensitive to small changes in the noisy data and also depends on the choice of the 

reference electrode. The accuracy of the source reconstruction is affected by a 

high number of factors including the head model errors, the source-modelling 

errors and EEG noise (instrumental or biological) [83]. Several algorithms were 

developed to solve the inverse problem. In the present study, we focused on two 

methods: i) the Linearly Constrained Minimum Variance Beamformer (LCMV) and 

ii) the ‘Exact’ Low Resolution Tomography (eLORETA). 

Linearly Constrained Minimum Variance (LCMV) 

Linearly constrained minimum variance filtering (LCMV) [83] is a spatial filtering 

method that lets brain activity coming from a specific location pass, while 

attenuating activity originating at other locations. The output of the filter is an 

estimate of the power of the electrical field generated by the neurons within a 

restricted area of the brain. The spatial pass-band of the filter depends on the 

dimension of that area, thus the higher the desired resolution the smaller required 

pass-band. A map of neural power as a function of location is obtained by 

designing multiple spatial filters, each with a different pass-band, and depicting 

output power as a function of pass-band location. This spatial filtering approach 

falls within the general category of beamforming. It is known that the signal at 

each location in the brain consists of the three dipole moments, so that three 

spatial filters for each location are required. The N x 3 matrix W(q0) represents 

the transfer function of the filter for the narrowband volume element Q0 centered 

in q0. The output of the filter, J, is the inner product between W(q0) and 𝛷.  

𝐽 = 𝑾𝑇(𝑞0)𝛷 (4.2) 
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Under ideal conditions, the transfer function of the filter has to satisfy two 

conditions: 

𝑾𝑇(𝑞0)𝑳(𝑞0) = 𝐼 (4.3) 

𝑾𝑇(𝑞0)𝑳(𝑞𝑠) = 0 (4.4) 

 As this cannot be achieved under general conditions, eq. 4.4 is replaced by the 

condition that the variance of the filter output (eq. 4.5) is minimal. 

𝑣𝑎𝑟̂(𝑞0) = 𝑡𝑟 {[𝑾𝑇(𝑞0)𝑪−1(𝑥)𝑾(𝑞0)]} (4.5) 

The optimal filter is given by: 

𝑾(𝑞0) =  [𝑳𝑇(𝑞0)𝑪𝛷
−1𝑳(𝑞0)]−1 𝑳𝑇(𝑞0)𝑪−1(𝑥) (4.6) 

The variance of the filter output can then be simplified as 

𝑣𝑎𝑟̂(𝑞0) = 𝑡𝑟 {[𝑳𝑇(𝑞0)𝑪𝛷
−1(𝑥)𝑳(𝑞0)]−1 } (4.7) 

where the sensor-space covariance is: 

𝑪𝛷 = 𝐸[𝛷𝛷𝑇]. (4.8) 

The optimal filter 𝑊(𝑞𝑠) has a large output in qs only if there is a significant energy 

originating from there.  To localize the electrical activity of the brain sources, the 

variance of the LCMV filter output is evaluated as a function of location within the 

volume of the brain, normalized by the LCMV filter output on a reference (noise) 

data segment. Regions of large relative variance are presumably active, while 

regions with small relative variance can be considered inactive. Nevertheless, in 

the present study, the goodness in terms of localization is not it is not of main 

interest. We only considered the estimated source time series (filter output) to 

assess connectivity patterns between them. Factors that may influence the 

accuracy of the LCMV are: 

● The pass-band of the filter, indicating the spatial resolution. The spatial 

extent of the pass-band depends on the transfer matrices L(q), which in 

turn depend on the number of electrodes, their distribution, and source 

location. 
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● The SNR, because of the variance minimization procedure used to 

determine the spatial filters.  In this context SNR has to be thought of not 

as ratio of the signal power to the noise power, but rather as the variance 

of the source divided by the variance of the noise. 

‘Exact’ Low Resolution Tomography (eLORETA) 

‘Exact’ Low Resolution Electromagnetic Tomography (eLORETA) [84] is a linear 

inverse method characterized by spatially smooth current density. In the most 

general case, linear solutions to the EEG inverse problem are of the following 

form: 

𝐽(𝜆) = ‖𝑳𝐽 − 𝛷‖2 + 𝜆𝑱𝑇𝑾𝐽 (4.9) 

 

where λ represents the Tikhonov regularization parameter which can be 

estimated through the general cross validation approach [85], and where W is a 

symmetric positive definite weight matrix. The idea of eLORETA is to find an 

appropriate W matrix in eq. 4.9 such that the solution has zero localization error 

for all single point sources in the brain [84]. These weights are obtained from the 

following expression: 

𝑤𝑖 = [𝑳𝑖
𝑇(𝑳𝑾−1𝑳𝑇 + 𝜆𝑰𝑀)+𝑳𝑖]1/2 , (4.10) 

where 𝑤𝑖  for 𝑖 = 1, … , 𝑁 (number of voxels) are the diagonal elements of the 

weight matrix W, 𝐿𝑖 ∈ 𝑅𝑀𝑥1 represents the i-th column of lead field matrix L and 

the symbol + refers to Moore-Penrose pseudoinverse. The solution to (eq. 4.10) 

can be found by iterating four steps. First, we have to initialize the diagonal matrix 

W with 𝑤𝑖 = 1, for 𝑖 = 1, … , 𝑁 and then compute: 

𝐶 = (𝐿𝑾−1𝐿𝑇 + 𝜆𝑰𝑀)+ . (4.11) 

Holding C fixed, we compute new weights for all the dipoles 𝑖 = 1, … , 𝑁: 

𝑤𝑖 = [𝑳𝑖
𝑇𝑪𝑳𝑖]1/2 (4.12) 
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and then we return to eq. 4.11 until convergence. Once the 𝑤𝑖  have been estimated, 

the eLORETA solution is given by the following expression: 

[𝑱]𝑖 = 𝑤𝑖
−1𝐿𝑖

𝑇(𝐿𝑾−1𝑳𝑇 + 𝜆𝑰𝑀)+𝛷 . (4.13) 

It has been suggested that eLORETA solution achieves exact localization to single 

test point sources under ideal (no-noise) conditions, outperforming all other 

linear solutions on both simulated and real EEG data in this respect [86]. 

However, in the presence of two or more sources (thus, in any setting involving 

source interaction), this property does not hold anymore. 

2.3 Multivariate Directed Connectivity Estimation 

Multivariate Granger Causality (MVGC) 

The concept of Granger causality [76], [87] is based on the predictability of time 

series. Namely, if a time series X2(t) contains information that improves the 

predictability of future values of another time series X1(t) above and beyond what 

can be predicted on the basis of X1(t) alone, then X2(t) is said to Granger-cause 

X1(t). In other words, if the prediction error decreases by adding the past values 

of X2(t) to a regression model for predicting X1(t), we can assume that X2(t) 

Granger-causes X1(t). In the BIVAR (bi-variate vector-autoregressive) 

formulation, this notion is described as follows: 

(
𝑥1(𝑛)
𝑥2(𝑛)

) =  ∑ ( 
𝐴11,𝑘 𝐴12,𝑘

𝐴21,𝑘 𝐴22,𝑘
) (

𝑥1,𝑛−𝑘

𝑥2,𝑛−𝑘
) +   (

𝑒1,𝑛

𝑒2,𝑛
)

𝑝

𝑘=1

 
                          

(4.14) 

𝜮 ≡ 𝑐𝑜𝑣 (
𝑒1,𝑛

𝑒2,𝑛
) =  (

𝛴11 𝛴12

𝛴21 𝛴22
)  

 

 (4.15) 

At this point, one can perform a full regression (eq. 4.16), using both time series, 

and a reduced regression (eq. 4.17), using only the target time series: 

𝑥1(𝑛) =  ∑ 𝑨11,𝑘𝑥1,𝑛−𝑘

𝑝

𝑘=1

+  ∑ 𝑨12,𝑘𝑥2,𝑛−𝑘

𝑝

𝑘=1

+  𝑒1,𝑛 (4.16) 
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𝑥1(𝑛) =  ∑ 𝑨′11,𝑘𝑥1,𝑛−𝑘

𝑝

𝑘=1

+  𝑒′1,𝑛  (4.17) 

In the full regression, the dependence of X1 on the past of X2, in addition to its own 

past, is encapsulated in the coefficients A12,k. There is no dependence between X1 

and X2 if the coefficients are null for all lags k, A12,1  = A12,2  = … = A12,p = 0. Prediction 

error estimation is based on full and reduced regression residuals. In particular 

Σ’11 ≡ var(e’1,n) is the residual variance in the case of reduced regression and Σ11 ≡ 

var(e1,n) is the residual variance in the case of full regression.  Pairwise time-

domain Granger causality is defined as 

𝑓𝑋2⟶𝑋1 = 𝑙𝑜𝑔
|𝜮′11|

|𝜮11|
 (4.18) 

The value of 𝑓𝑋2⟶𝑋1 is equal to 0 if there is no GC between the time series and 

their variance ratio is 1. If a dynamical influence from X2 to  X1 exist, the value of 

𝑓𝑋2⟶𝑋1 is greater than zero. Let us suppose to have joint dependencies between 

X1 and X2 and a third set of variables, e.g. X3, then spurious influences may be 

reported. Spurious connections can be detected even when there is no direct 

influence X2 → X1 but there are (possibly lagged) dependencies of X1 and X2 on X3. 

To overcome this problem, Barnett and Seth propose a different way to compute 

GC, introducing the so called Pairwise Conditional Granger Causality (PWCGC), 

which conditions out common dependencies between variables before estimating 

pairwise GC scores, provided such dependencies are present in the data [88]. The 

MVAR model is again expressed in the form of full regression (eq. 4.19) and in the 

form of reduced regression (eq. 4.20), as: 

𝑥1(𝑛) =  ∑ 𝑨11,𝑘𝑥1,𝑛−𝑘

𝑝

𝑘=1

+  ∑ 𝑨12,𝑘𝑥2,𝑛−𝑘

𝑝

𝑘=1

+ ∑ 𝑨13,𝑘𝑥3,𝑛−𝑘

𝑝

𝑘=1

 + 𝑒1,𝑛 (4.19) 

𝑥1(𝑛) =  ∑ 𝑨′11,𝑘𝑥1,𝑛−𝑘

𝑝

𝑘=1

 + ∑ 𝑨′13,𝑘𝑥3,𝑛−𝑘

𝑝

𝑘=1

 + 𝑒′1,𝑛 

 

(4.20) 

𝑓𝑋2⟶𝑋1|𝑋3 = 𝑙𝑜𝑔
|𝜮′11|

|𝜮11|
 (4.21) 



Chapter 4 

 

93 
 

Here, FX2→X1|X3 may be read as “the degree to which the past of X2 helps to predict 

X1, over and above the degree to which X1 is already predicted by its own past and 

the past of X3”. In our simulation study, we are going to use this approach. 

Additionally it is worth noting that we use the state-space formulation of Granger 

causality, which eliminates the bias due to the fact that the reduced model is 

VARMA (Vector Auto Regressive Moving Average) and not VAR [89]. 

Time reversed Granger causality 

Granger-causal estimators are prone to detect spurious influences not only in the 

presence of hidden common drivers but also in the presence of additive correlated 

noise [14], [73], [77], [90], [91]. Correlated noise is a ubiquitous property of EEG 

data, which are by their very nature linear mixtures of contributions from 

different sources. Since this mixing process cannot be fully undone using source 

imaging techniques, it poses a serious problem for EEG-based brain connectivity 

analysis using GC. To overcome the problem of spurious connectivity for mixed 

data, Haufe et al. proposed time-reversal [14], [34]. The intuitive idea behind this 

approach is that, if connectivity is defined based on temporal delays, directed 

influence should be reduced (if not reversed) if the temporal order is reversed. 

This is in contrast to the observation that two signals that are correlated but Non-

Interacting often appear spuriously connected no matter whether GC is applied 

on the original or time-reversed data. If, however, GC estimates obtained on 

original and time-reversed data are contrasted with each other, the instantaneous 

influence of volume conduction can be removed, and the false detection of 

connectivity can be avoided. GC is defined based on the Granger-scores defined in 

eq. 4.18, where Fx1⟶ x2 is the direct influence from x1 to x2, and it requires that the 

residual variance of the restricted model should be smaller than the one in the 

case of full model [73]. When time-reversing the data, we denote the residual 

covariance matrix of the time-reversed process (full model) by: 

𝛴̃ =  [
𝜮̃11 𝜮̃12

𝜮̃21 𝜮̃22

] (4.22) 

As for the original GC, we define the dynamical influence as 
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𝐹𝑥2̃⟶𝑥1̃ = 𝑙𝑜𝑔 (
 𝜮̃′11

 𝜮̃11

) (4.23) 

Finally, Time-reversed GC is given by the difference between the net GC scores 

obtained on the original and time-reversed GC: 

𝐷̃𝑥1̃⟶𝑥2̃ = 𝐹𝑥1̃⟶𝑥2̃ − 𝐹̃𝑥1̃⟶𝑥2̃ (4.24) 

Using the above definitions, the validation of a Granger causal influence that 

cannot be explained by a mixture of independent sources can be performed 

according to the following criterion, named Conjunction-based time-reversed GC: 

● the directionality of GC is required to flip for time-reversed signals. The 

connection is regarded as significant if both GC values (with original and 

reversed data), are significant: 𝐹𝑥1̃⟶𝑥2̃ > 0 ∧  𝐹̃𝑥1̃⟶𝑥2̃ < 0. This is the 

definition adopted in the present paper. 

Other criteria, less stringent than this one,  are discussed in [77]. Simulations have 

shown that TRGC leads to a reduced number of false connections, compared to 

original GC and its variants  [14], [77], [90]–[92].  

Theoretical work presented in [77] has moreover shown that : 

● The application of time reversal to any connectivity measures that is based 

on second order statistics - which, besides GC and pairwise-conditional GC 

also includes its direct extension to frequency domain (spectral GC) and 

the popular frequency-domain measures partial directed coherence (PDC) 

and directed transfer function (DTF), among others - prevents the 

spurious detection of connectivity on mixtures of independent sources 

that would otherwise be highly likely. 

● The application of time reversal to Granger causality (that is, the use of 

TRGC) is guaranteed to always yield the correct direction of interaction 

for systems that do not contain causal loops, and are noise-free. 

Partial directed coherence (PDC) 

Partial Directed Coherence (PDC) [41] is a spectral measure to assess the 

dynamical influence between signals within a multivariate dataset. It is basically 
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a frequency version of the concept of Granger causality [42]. Its mathematical 

definition has been introduced in the Methods section of the Chapter 2.  

2.4 Statistical assessment of significant connections 

The standard way to assess the statistical significance of Granger scores is a 

likelihood ratio test, which can be derived from large-sample theory [93]. If 

dim(X1) = nx1, dim(X2) = nx2 and dim(X3) = nx3 (with nx1 + nx2 + nx3 = n) then the 

difference in the number of parameters between the full model and the nested 

reduced model (see eq. 4.20) is just d ≡ p nx1 nx2. Thus, under the null hypothesis 

of zero Granger-causal influence, the GC estimator scaled by sample size, (m − p) 

FX2→X1|X3(u), has an asymptotic χ2 distribution. Under the alternative hypothesis, 

the scaled estimator has an asymptotic noncentral - χ2 (d; ν) distribution, with 

non-centrality parameter ν = (m − p) FX2→X1|X3(u) equal to the scaled actual 

influence (which may, for the purpose of constructing confidence intervals, be 

replaced by its estimator). Similarly, it was demonstrated that the squared PDC 

estimator tends to a Gaussian distribution in the non-null case and to a χ2 

distribution in the null case. This assumption led to the development of a new 

approach, the asymptotic statistic, which allowed the derivation of the probability 

distribution of the null-case squared PDC estimator (the χ2 distribution), by 

knowing its asymptotic variance [47], [49]. Note that these standard statistical 

tests are only capable to distinguish actually present GC/PDC effects from results 

obtained due to random signal fluctuations in the absence of GC/PDC. They are 

not capable of distinguishing actual GC/PDF effects that are due to genuine time 

delayed interaction from actual GC/PDC effects that are solely due to additive 

mixed noise in the absence of genuine time-delayed interaction. To test for the 

latter, the statistical significance of TRGC (or, time-reversed PDC) needs to be 

established. For difference-based TRGC, this can be achieved by testing whether 

(eq. 4.28) is significantly different from zero using non-parametric approaches 

like the bootstrap. In this work, we focus on conjunction-based TRGC and we used 

an alpha of 0.05, FDR corrected.  

2.5  Simulation Framework 
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The simulation study developed for investigating the effects of the volume 

conduction on connectivity estimation accuracy and reliability is composed by the 

following main steps: 

- Generation of brain signals with an imposed connectivity pattern 

- Forward problem solution 

- Inverse problem solution 

- Connectivity estimation 

- Performance evaluation 

 

An overview of the simulation framework, with all the considered factors, is 

shown in fig.4.1.  

 

Figure 4.1 – Block diagram reporting the main steps of the simulation framework. 
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2.6 Simulated time series generation 

Brain signals were generated using a multivariate autoregressive (MVAR) model 

with order 2 as generator filter. We simulated three time series and only one 

connection. Both, the autoregressive components and the off-diagonal elements 

of the coefficients matrix were randomly chosen within the range [0.3 1]. The 

three different time series will be called Sender, Receiver and Non-Interacting 

dipole, to indicate, respectively, the driving dipole, the receiving dipole, and the 

independent dipole. Each of them represents an active source contributing to the 

simulated EEG scalp potentials. In order to simulate an experimental condition as 

realistic as possible, we also generated 500 pink noise signals representing the 

background brain activity.  

2.7 Simulated time series location 

Brain activity was modelled with 1006 electric equivalent dipoles, equally 

distributed within the brain. Using the New York Head model, we obtained the 

dipole positions by subsampling the 75000 MNI coordinates available in the 

ICBM152 model. In the panel a of fig. 4.2 we showed all the 1006 possible dipole 

locations.  
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Figure 4.2 -  Panel a) shows the 1006 locations in which activity was modelled. Red circle 
represents an example of the 500 locations associated with the brain noise activity. Panel 
b) presents the four conditions for the two fixed active dipoles, which are the red (Sender) 
and the purple (Receiver) one. The black circle represents the Non-Interacting dipole 
(noise). 

For each simulation, we fixed the position of two active dipoles on four possible 

conditions (represented in fig.4.2b) defined from the combination of the following 

factors: 

● Depth of the dipoles: “superficial” (distance from the origin >6.5 cm) or 

“deep” (distance from the origin <6cm);  

● Distance between the dipoles: “far” (relative distance >8cm) or “close” 

(relative distance <5cm). 

The third dipole (moving dipole) instead, change its location on the 1004 possible 

remaining positions. Two different cases were analysed by changing the moving 

dipole. In the first case, it is the Non-Interacting dipole, thus the connection is 

fixed. In the second case, the moving dipole is the Receiver; thus, the relative 
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locations of Sender and Receiver varies across repetitions. The 500 additional 

noisy elements were randomly distributed within the brain. 

2.8 Pseudo-EEG signal generation.  

After the signals generation, the time series representing both the source activity 

and the noise, were projected onto 108 EEG electrodes defined by the New York 

Head model, and summed according to following equation: 

𝑥𝑏𝑟𝑎𝑖𝑛(𝑡) = 𝛼 ∗
𝑥𝑎𝑐𝑡_𝑠(𝑡)

||𝑥𝑎𝑐𝑡_𝑠(𝑡)||𝐹
+ (𝛼 − 1) ∗

𝑥𝑛𝑜𝑖𝑠𝑒_𝑠(𝑡)

||𝑥𝑛𝑜𝑖𝑠𝑒_𝑠(𝑡)||𝐹
 ,  (4.25) 

where 𝑥𝑎𝑐𝑡_𝑠 and 𝑥𝑛𝑜𝑖𝑠𝑒_𝑠 are the projections of the active sources signals and of 

the brain noise sources activity respectively, and where ||𝑥(𝑡)||𝐹  is the Frobenius 

norm of the multivariate time series x(t) (the square-root of the sum of the 

squared activity across time and space). The parameter 𝛼 thereby defines the 

signal-to-noise ratio. Given 𝛼, the corresponding SNR in decibels (𝑑𝑏𝑠) is: 

𝑑𝑏𝑠 = 20 ∗ 𝑙𝑜𝑔10 (
𝛼

1−𝛼
) . (4.26) 

Finally, in order to simulate the measurement noise, spatially and temporally 

uncorrelated signals are added to 𝑥𝑏𝑟𝑎𝑖𝑛(𝑡) with an imposed α equal to 0.9. The 

overall pseudo-EEG data is defined from the following equation: 

𝑥(𝑡) = 0.9 ∗
𝑥𝑏𝑟𝑎𝑖𝑛(𝑡)

||𝑥𝑏𝑟𝑎𝑖𝑛(𝑡)||𝐹
+ 0.1 ∗

𝑥𝑛𝑜𝑖𝑠𝑒(𝑡)

||𝑥𝑛𝑜𝑖𝑠𝑒(𝑡)||𝐹
 , (4.27) 

where 𝑥𝑛𝑜𝑖𝑠𝑒  is the white uncorrelated noise.  

2.9 Source reconstruction and directed connectivity estimation 

The simulated pseudo-EEG signal was projected onto the cortical surface using 

two different inverse problem solutions: LCMV and eLORETA. The regularization 

parameter to be set in the eLORETA algorithm was chosen by means of a cross-

validation approach. In cortical source space, directed connectivity according to 

MVGC, TRGC and PDC was estimated at the locations of the three simulated active 

dipoles, and the statistical significance of the estimated connections was assessed.  
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2.10 Performance parameters 

The quantitative evaluation of the accuracy in signals reconstruction and 

connectivity estimation was performed by means of three parameters: the False 

Positive Rate (FPR), the False Negative Rate (FNR) and the Area Under ROC Curve 

(AUC). Such parameters were computed by comparing the estimated connectivity 

pattern with the imposed ground-truth. A false positive (FP) is an estimated 

(statistically significant) connection that is not present in the simulated data, 

while a true negative (TN) is an absent simulated connection that is correctly 

estimated as being absent. The FPR (see eq. 4.31) is the number of false positives 

normalized by the number of absent connections. The FPR is thus defined as in 

the follows: 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
 .    (4.28)                                                                                   

The FNR quantifies the percentage of missed (not statistically significant) 

connections (referred to as false negatives, FN) that are actually present in the 

simulated data relative to the total number of actually present simulated 

connections. The latter number is given as the sum of false negatives and true 

positives (TP, referring to actually present connections that are also estimated to 

be present). The FNR is thus defined as follows: 

𝐹𝑁𝑅 =  
𝐹𝑁

𝐹𝑁+𝑇𝑃
 . (4.29) 

In this study, the total number of possible connections is six (2 possible directions 

for three distinct pairs of variables). As only one interaction was modelled, FN+TP 

equals one, while the number of absent connections (FP + TN) is equal to five. 

The AUC is a measure of binary classification accuracy, which is applied here to 

the problem of distinguishing between interacting and Non-Interacting signals. It 

takes into account both the FPR and FNR across the entire range of all possible 

thresholds for the connectivity measure; therefore, it is independent of a specific 

significance level. The AUC is bounded between 0.5 (chance-level class 

separation) and 1 (perfect class separation) and was derived from the Wilcoxon-

Mann-Whitney test [94]. 

https://de.wikipedia.org/wiki/Wilcoxon-Mann-Whitney-Test
https://de.wikipedia.org/wiki/Wilcoxon-Mann-Whitney-Test
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2.11 Statistical Analysis 

In order to statistically evaluate the accuracy of the employed algorithms in 

reconstructing the sources activity and estimating brain networks, a four-way 

ANalysis Of VAriance (ANOVA) was computed. The main within factors were: 

● the fixed dipoles position (DIP_POS) with 4 levels: Close Deep, Close 

Superficial, Far Deep, Far Superficial; 

● the adopted inverse methods (L_INV_METH) with 2 levels: eLORETA, 

LCMV; 

● the connectivity estimator (EST_TYPE) with 3 levels: MVGC, PDC, TR_GC; 

● the signal-to-noise ratio (SNR) defined by 3 levels of α: 0.5, 0.7, 0.9 

(corresponding to SNR equal to 0, 7 and 19 dB respectively) that in the 

next will be identified as “low”, “medium” and “high” value of SNR. 

The dependent variables were the three introduced performance parameters 

(FPR, FNR and AUC) averaged on the 1004 possible location of the moving dipole. 

The simulation was repeated 100 times for each experimental condition. 

Additionally, a post hoc analysis was performed in order to highlight the 

significant comparisons between the various level of the included factors and 

their interaction, using Tukey's range test. 
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2.12 Topographical visualization of the results 

As described in the previous paragraph, the ANOVA investigates the performance 

parameters averaged for more than one thousand possible locations of the moving 

dipole.  In order to obtain a detailed overview on the variations of the estimate 

accuracy as function of the position of the moving dipole, we averaged the 

parameters on the 100 iterations and reported the obtained results in 3D brain 

maps. The color of each one of the 1004 dipoles codes for the value of the FPR. We 

do not report the maps obtained for the false negatives because their amount is 

always very low (less than 5%). With the aim to summarize the complex 

information contained in the brain maps, we also calculated the FPR as function 

of the distance between Sender and Receiver as well as between Sender and Non-

Interacting dipole for each SNR level, inverse approach, and connectivity 

estimator. The position of the fixed dipole (either Receiver or Non-Interacting 

dipole) in these analyses was far and superficial. 

3. Results 

3.1 Statistical analysis 

The results of the four-way ANOVA computed separately for the three 

performance parameters are reported in Table 4.1. A four-way ANOVA consists of 

fifteen separate multiple tests (four main effects, six two-way interactions, four 

three-way interactions, and one four-way interaction). Therefore, a correction for 

multiple comparisons (Bonferroni-Holm for example) was performed. 
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Table 4.1 - Results of the four-way ANOVA (F values) computed considering as dependent 
variables FPR, FNR and AUC and as within main factors the type of inverse algorithm 
(L_INV METH), the connectivity estimator (EST_TYPE), the SNR and the position of the 
fixed dipoles (DIP_POS). In the column “Factors”, the degrees of freedom are also reported.  

All factors and all interactions between factors have a significant effect on the FPR, 

FNR and AUC. In the following, we show a graphical depiction of the means of the 

four-way interaction factor (L_INV METH x EST_TYPE x SNR x DIP_POS) for each 

investigated performance measure. 

False Positives Rate 

Figure 4.3 shows means obtained for the FPR for different levels of SNR (α) and 

dipole positions when specific algorithms for the inverse solution and 

connectivity estimation are employed.   
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Figure 4.3 - Means associated with the four-way interaction factor (L_INV METH x 
EST_TYPE x SNR x DIP_POS) of the ANOVA performed on the FPR. Each panel corresponds 

to a specific value of the SNR parameter α: 0.5 (panel a), 0.7 (panel b), 0.9 (panel c). For 
each panel, there are two graphs associated with the two different inverse solutions: 
eLORETA on the left and LCMV on the right. X-axes report the levels of the factor DIP_POS 
and the colours code for the three connectivity estimators. Whiskers represent 95% 
confidence intervals. Each panel depicts results obtained for one SNR level. 
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These graphs show how the two different inverse methods and the location of the 

fixed dipoles influence the amount of false positive connections when the 

estimation is performed with the three different connectivity estimation 

algorithms for different levels of SNR. 

Connectivity Estimator: As expected, we found that the amount of false positive 

decreases when the connectivity pattern is extracted by means of TRGC. FPR 

associated with the TRGC is significantly lower (Tukey test) with respect to the 

other two methods independently of the dipoles position, the SNR level and to the 

inverse algorithm (see all the subplots). MVGC and PDC do not show significantly 

different results for each condition, and the number of estimated spurious 

connections is not significantly different.  

Inverse Algorithm: For each panel, we can compare the performance associated 

with the different inverse solutions comparing the two subplots. Regardless of the 

SNR, the LCMV algorithm (on the right) for source reconstruction has globally 

better performance than eLORETA (on the left) for all the three SNR values. The 

post hoc analysis reveals a significant increase of the FPR for eLORETA, compared 

to LCMV, in all the considered conditions of SNR, dipoles position, and 

connectivity estimator. Only in the most advantageous configuration, when α 

equals 0.9, indicating high SNR, and the linked dipoles are in the Far/Superficial 

configuration, such difference is not significant. In the worst case, corresponding 

to the Close/Deep configuration, the FPR is considerably high, especially for the 

eLORETA reconstruction, where it exceeds 70%, and the difference between the 

performances of the two inverse methods appears to be emphasized.  

Fixed dipoles position: It is worth to note how performance critically depends 

on the position of the fixed dipoles. Independently of the employed inverse 

algorithm and connectivity estimator, the ANOVA suggested that when they are 

located deep in the brain the amount of false positives significantly increases. 

When the fixed dipoles are superficial and α is equal 0.7, the relative distance 

(close/far) does not have a significant influence on the FPR. For the higher SNR 

levels, the ANOVA highlighted a significant increase of the FPR from 10% to 20%, 

suggesting that the optimal condition for the source reconstruction is given by far 

and superficial dipoles. For the very low SNR value of 0.5, for all the L_INV METH 
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and EST_TYPE levels, the statistical test revealed a significant decrease of FPR in 

the Close/Superficial case relative to the Far/Superficial case. 

SNR: In all considered conditions, the test indicates a significant improvement of 

performance when the simulated SNR is higher. More in detail, when the SNR level 

is 0.9, the amount of false positives is less than 30% in all the cases except for the 

Deep/Close condition. The analysis of FPR suggests that the best combination of 

factors is given, for all the considered SNR levels, by: i) dipoles located superficial 

in the brain and not too close; ii) LCMV as algorithm for the inverse problem 

solution and iii) TRGC as connectivity estimator.  Only in this case the percentage 

of false positives reached low values (around 10% for SNR equal to 0.9). 

False Negative Rate 

The graphs in fig. 4.4 depict the means of the four-way interaction factor (L_INV 

METH x EST_TYPE x SNR x DIP_POS) obtained for the FNR index. The percentage 

of false negatives is less than 5% in all simulated cases, except for the lowest SNR 

level (α equal to 0.5) when LCMV is employed. In the easier condition with a higher 

signal to noise ratio and interacting dipoles that are not deep and close at the same 

time, the FNR is around 1% regardless of the chosen connectivity estimator.  

Connectivity Estimator: The factor EST_TYPE does not have a significant effect 

on the FNR index independently of all the other factors (SNR value, type of 

algorithm chosen for the source reconstruction and connectivity estimation): its 

variations never exceed 1%. Also, the slight increase of false positives associated 

with the time reversed adaptation of GC is not statistically significant in this case. 

Inverse Algorithm: The percentage of FN obtained with the two inverse methods 

is strictly linked to the dipoles’ position. Results reported in panel a) show that for 

SNR equal to 0db, FNR significantly increases for LCMV only when the dipoles are 

located deep in the brain (accounting for an increase of 20% in the Close/Deep 

condition). Panel b) shows a similar but attenuated trend for α equal to 0.7 

(increase of less than 5% in the Close/Deep condition). As shown in panel c), there 

are no significant differences between LCMV and eLORETA for the highest SNR 

value.  
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Figure 4.4 - Means associated with the four-way interaction factor (L_INV METH x 
EST_TYPE x SNR x DIP_POS) of the ANOVA performed on the FNR. Each panel corresponds 
to a specific α level: 0.5 (panel a), 0.7 (panel b), 0.9 (panel c). For each panel, there are two 
graphs associated with the two different inverse solutions: eLORETA on the left and LCMV 
on the right. X-axes always show the levels of the factor DIP_POS and the colours code for 
the three connectivity estimators. Whiskers represent 95% confidence intervals. Each 
panel depicts results obtained for one SNR level. 
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Fixed dipoles position: The factor DIP_POS is significant for low and medium 

SNR values and L_INV METH corresponding to LCMV. In such conditions, for deep 

dipoles, the FNR is significantly higher, regardless the connectivity estimator. 

Moreover, focusing on the deep locations, there is a significant increase of the false 

negatives when the dipoles are close compared to when they are further away.  

SNR: the signal-to-noise ratio associated to the three levels of the factor SNR 

significantly influences the presence of false negatives only when the inverse 

problem is solved by the LCMV algorithm. This is particularly the case for the 

condition Close/Deep, in which the FNR decreases from 20% when α is equal to 

0.5 (panel a) to 4% when α is equal to 0.7 (panel b), and to 1% for the highest SNR 

level (panel c). This suggests that the amount of false negatives is independent of 

the algorithm employed for solving the inverse problem and for the connectivity 

estimation. In case of poor signal quality (low SNR), the FNR is considerable when 

the sources to be reconstructed are located deep in the brain. Algorithms that are 

more prone to missing connections are LCMV for source reconstruction and TRGC 

as connectivity estimation. 

AUC 

The graphs in fig. 4.5 depict the means of the four-way interaction factor (L_INV 

METH x EST_TYPE x SNR x DIP_POS) obtained for the AUC parameter. The AUC 

index hereby summarizes the effect of the four considered factors on the accuracy 

of the estimation in term of false positives and false negatives, providing a unifying 

measure of the discriminability of actually present and non-existent connections. 

Connectivity Estimator: As expected from the previous results concerning the 

FPR trend, the accuracy of the estimation considerably increases when performed 

by means of TRGC. The increase of the performances associated with TRGC is 

statistically significant and amounts to about 10%. Confirming what has already 

been demonstrated for FPR and FNR, the accuracy of MVGC and PDC is not 

significantly different in any condition.  

Inverse Algorithm: On average, the difference between LCMV and eLORETA is 

not significant, but there are combinations of the factors for which either of the 

two performed better. The main discrimination is given by the linked dipoles 

position. When the sources are located deep in the brain (especially if they are 
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also close), the accuracy of the connectivity estimation appears significantly 

higher when LCMV is employed to reconstruct the brain activity. Once again, the 

only exception is the low SNR setting, in which this relationship is reversed 

because LCMV is more sensitive to the SNR level compared to the eLORETA 

algorithm, which shows more stable performance.   

Fixed dipoles position: Independent of the employed inverse algorithm and 

connectivity estimator, the accuracy of the estimation significantly decreases 

when the linked dipoles are located deep in the brain. For higher SNR levels, the 

ANOVA highlights a performance degradation in terms of the AUC dropping from 

90% (Far/Superficial) to 70% (Close/Deep).  

SNR: As expected, the performance significantly improves in all considered 

conditions when the simulated SNR is high. More specifically, when the SNR level  

is 0.9, the accuracy is higher than 85% for eLORETA and higher than 90% for 

LCMV in all the cases except for the Deep/Close condition.  

The analysis of the AUC index suggests that the optimal combination of factors is 

given by: i) dipoles located superficial in the brain and not too close; ii) LCMV 

algorithm when the SNR is not too low, otherwise eLORETA; iii) TRGC as 

connectivity estimator. 
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Figure 4.5 - Means associated with the four-way interaction factor (L_INV METH x 
EST_TYPE x SNR x DIP_POS) of the ANOVA performed on the FNR. Each panel corresponds 
to a specific α level: 0.5 (panel a), 0.7 (panel b), 0.9 (panel c). In each panel, there are two 
graphs associated with the two different inverse solution: LCMV on the left and eLORETA 
on the right. X-axes report the levels of the factor DIP_POS and colours code for the three 
connectivity estimators. Whiskers represent 95% confidence intervals. Each panel depicts 
results obtained for one SNR level. 



Chapter 4 

 

111 
 

3.2 Brain maps 

Non-Interacting dipole position 

As mentioned before, in each simulated condition, the moving dipole changes its 

position over 1004 locations equally distributed in the brain. In order to map the 

performance of the three connectivity estimators for each investigated source 

reconstruction algorithm and each position of the fixed dipoles, MVGC, PDC and 

TRGC were computed considering all the 1004 possible configurations of the 

network. Since each simulation was iterated 100 times, we were able to obtain an 

average performance value. Only the maps depicting the FPR are reported 

because of the greater sensitivity of this indicator to the factors considered in the 

analysis. We report transparent axial views of the head for each choice of fixed 

dipoles position and inverse method. Only 2 out of 3 estimators are reported 

because the PDC performances are similar to those obtained using the MVGC 

algorithm in all the considered conditions. We report the value assumed by the 

FPR (coded by its color) in the position of the moving dipole associated with that 

measure. Figure 4.6 reports the results obtained for the lowest SNR level, when α 

is equal to 0.5.   
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Figure 4.6 –  Spatial distribution of the FPR in the Moving Non-Interacting Dipole 
condition for low SNR (α = 0.5). Shown are the Sender (red circle) and Receiver (purple 
circle) of the interaction in the Far-Superficial (a), Far-Deep (b), Close-Superficial (c), and 
Close-Deep (d) conditions. The other points represent the mean value of the FPR across 
100 iterations (coded by the colour bar on the right side) when the third active dipole (the 
Non-Interacting one) is moved across the brain. The first two columns refer to the classical 
GC (MVGC algorithm); the last two to the TRGC. For each column, results obtained with 
eLORETA and LCMV are reported next to each other.  
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The percentage of false positives depends on the distance of the Non-Interacting 

dipole from the two fixed ones. The most relevant result is that when the fixed 

dipoles are located deep in the brain and close to each other (panel d), high FPR 

values are spread across the whole brain, and reach 100% in the vicinity of the 

Sender and Receiver. Only TRGC combined with the LCMV algorithm mitigates 

this effect, which is then limited to the configurations in which the Non-Interacting 

dipole is close to the other two. Panels a), b) and c) clearly show a strong increase 

of the FPR when the Non-Interacting dipole is located in the areas close to the 

Receiver or to the Sender. Similar maps displaying the results obtained for α equal 

to 0.7 and 0.9 are reported in the supplementary material. These results confirm 

the trends commented for the previous maps but with globally better 

performances. The FPR considerably increases around the fixed dipoles. This 

phenomenon is focal when LCMV is employed and more spread-out if eLORETA 

combined with the MVGC estimator. Again, when the fixed dipoles are located 

deep in the brain and close each other, high FPR values are spread across the 

whole brain and reach 100% in the vicinity of Receiver and Sender. Maps 

associated with all the others fixed dipoles positions show that when the sources 

included in the model are far one from the other, the best performance is obtained 

with eLORETA. In order to summarize the information contained in these maps, 

fig. 4.7 shows the value of the FPR as function of the distance of the moving dipole 

from the Sender of the interaction for all SNR values, inverse algorithms and 

connectivity estimators. 
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Figure 4.7 - FPR as function of the distance (in cm) of the Non-Interacting Moving Dipole 
from the Sender of the interaction for the two inverse reconstruction algorithms, eLORETA 
and LCMV. The MVGC and TRGC connectivity estimators are drawn in red and blue colours, 
respectively. The circle marker codes for low SNR, the triangle for medium SNR, and the 
cross for high SNR.  



Chapter 4 

 

115 
 

The results suggest that TRGC performs better than MVGC regardless of the 

distance of the moving dipole from the Sender. LCMV source reconstruction is less 

sensitive to the distance between dipoles. For example, in panel a), an increase of 

the FPR 14 cm away from the Sender is noticeable. This point corresponds to the 

position of the second interacting dipole. When the LCMV algorithm is employed 

the increase is much less evident. The trends are similar for all α levels, although 

higher FPRs are observed for lower SNRs. For high SNR, the best performance is 

achieved with eLORETA when the moving dipole is far from the other two.    

Interactive dipole position 

The last analysis was performed using a fixed location for the Non-Interacting and 

Sender dipoles, placing the Receiver dipole at different positions. The results are 

in line with the previous ones. Figure 4.8 depicts topographical maps for the low 

SNR level (in the supplementary material for medium and high SNR levels), while 

figure 4.9 depicts FPR as a function of the distance between Receiver and Sender. 
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Figure 4.8 - Spatial distribution of the FPR in the Moving Receiver Dipole condition for 
low SNR (α = 0.5). Shown are the Sender (red circle) and Receiver (purple circle) of the 
interaction in the Far-Superficial (a), Far-Deep (b), Close-Superficial (c), and Close-Deep 
(d) conditions. The other points represent the mean value of the FPR across 100 iterations 
(coded by the colour bar on the right side) when the third active dipole (the Non-
Interacting one) is moved across the brain. The first two columns refer to the classical GC 
(MVGC algorithm); the last two to the TRGC. For each column, results obtained with 
eLORETA and LCMV are reported next to each other. 
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When the fixed dipoles are close (panels b and d), a high percentage of false 

positives appears throughout the brain, in particular for low and medium level of 

SNR. All others results are in line with the results reported above: 

● the increase of the α value corresponds to a decrease in the number of false 

positives independently of all the other factors; 

● on average, LCMV performed better than eLORETA. This advantage is 

predominantly due to an increased robustness w.r.t. the position of the 

nodes; 

● TRGC provided more accurate connectivity estimates than MVGC and PDC;  

● when the involved dipoles are far away from another, eLORETA leads to 

more accurate connectivity estimation, and the difference between the 

classical MVGC and TRGC is less pronounced than in the other conditions; 

● with the dipoles in the Far/Superficial configuration, and α equal to 0.9, 

the percentage of false positives is less than 10% for all the inverse 

solutions and connectivity algorithms; 

● with the dipoles in the Close/Deep configuration, the percentage of false 

positives reaches 100% regardless of the SNR value. 

Fig. 4.9 shows the FPR as function of the distance between Sender and Receiver 

for all SNR values, inverse algorithms and connectivity estimators. 
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Figure 4.9. FPR as function of the distance (in cm) of the moving Receiver from the Sender 
for the two inverse reconstruction algorithms, eLORETA and LCMV. The MVGC and TRGC 
connectivity estimators are drawn in red and blue colours, respectively. The circle marker 
codes for low SNR, the triangle for medium SNR, and the cross for high SNR. 
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The first result is that the mean value of the FPR is lower than for the Non-

Interacting moving dipole condition. Also, in this case, TRGC performed better 

than MVGC regardless of the distance of the moving Receiver dipole from the 

Sender. In panel a) it is possible to notice an increase of the FPR when the Receiver 

dipole is 14cm away from the Sender dipole (this being the position of the Non-

Interacting dipole). Trends are similar for all the α levels, where, generally, 

decreases in SNR are associated with increases in FPR. For high SNR, the best 

performance is achieved using eLORETA when the moving dipole is far away from 

the other two (FPR around 5%).    

4. Discussion and Conclusion 

It is well established that neuroelectrical measures recorded on the scalp need to 

be projected back into the brain in order to be able to infer at least roughly where 

these signals have been generated. In the same way it is evident that measures of 

statistical dependencies between brain regions cannot be inferred by studying 

dependencies between scalp sensor signals [14], [15], [70].  Unfortunately, even 

with state-of-the-art localization of the brain sources underlying the measured 

signals, directed dynamical influences between these reconstructed sources do 

not always reflect the ground truth. This issue has been anticipated in [14], [15], 

[70] and thoroughly analysed by Palva and colleagues [95] for phase-based 

(undirected) connectivity measures. In the present comprehensive simulation 

study, we focused on directional connectivity measures and quantified the extent 

to which the estimation of influences between reconstructed sources is possible. 

We employed an analysis framework combining source localization approaches 

and brain connectivity estimators with the goal of identifying those analysis 

pipelines that that are least affected by the presence of head volume conduction 

and, therefore, provide the most accurate and reliable connectivity estimates. 

Several realistic conditions of brain activity were simulated, where our goal was 

to simulate both advantageous and disadvantageous conditions for the following 

brain connectivity estimation. To this end, we modulated the depth of the sources, 

the distance between sources, and the SNR. Not surprisingly, a convenient 

condition we identified is the presence of far and superficial dipoles in 
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combination with a high SNR; in contrast, a disadvantageous condition is given by 

the presence of close and deep sources with a low SNR level. Our simulations 

suggest that all considered factors show a significant influence on the estimation 

quality and, consequently, their combination has a considerable impact on the 

connectivity estimation performance. LCMV source reconstruction appears to be 

more sensitive to the SNR value, while eLORETA achieves similar performance 

regardless of the SNR. In general, LCMV showed better performance than 

eLORETA. Only when the simulated sources were assigned to distant locations, 

the eLORETA performance is similar to or better than the performance of LCMV. 

In agreement with the theoretical hypothesis, we demonstrated that the TRGC 

algorithm provides a better estimation of the directed statistical dependencies 

between sources than classical MVGC and PDC. Indeed, the percentage of spurious 

connections decreased significantly and the overall detection of connectivity as 

measured by the AUC increased significantly in all considered experimental 

conditions when TRGC was used instead of MVGC or PDC. At the same time, the 

percentage of missed connections as measured by the FNR increased slightly, but 

still remained close to zero. GC and PDC showed similar performance independent 

of all other factors. As expected, we found that closer and deeper active sources 

decreased the obtained performance. Thus, a dependence between the dipoles 

position and the accuracy of the estimates was found. This is a clear effect of the 

volume conduction, since, when two sources are close to each other, they generate 

a highly mixed signal on the scalp, which compromises the correct estimation even 

after inverse source reconstruction. On the other hand, when the sources are far 

away from each other, they are less affected by volume conduction, leading to a 

better quality of the connectivity estimation. The insights obtained in this study 

may guide the choice of crucial parameters such as selection of regions-of-interest 

(ROI) as well as the selection of source reconstruction and connectivity estimation 

algorithms that promise to provide the most reliable and physiologically 

interpretable description of brain networks based on EEG data. 

We agree with [95], advocating for the application of measures, for which 

promises and pitfalls are known, and which integrate knowledge of how neural 

activity in the whole brain as well as external (physiological or artifactual) activity 
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contribute to the signals that we record on the scalp. In this regard, it should be 

noted that connectivity estimates can only at most be as focal as the reconstructed 

source current densities they are derived from, and we know that common 

inverse methods lead to very blurry results. To distinguish correctly-identified 

connections from connections that are observed in the vicinity of the true 

interacting sources due to blurry inverse solutions, a data-driven clustering in the 

space of brain-wide pairwise connectivities, as recently proposed in [96], may a 

viable option, which may be preferable to a reduction of the source space to the 

level of static ROIs. It has to be kept in mind, however, that – although of 

importance – the main problem in EEG-based brain connectivity analysis is not 

the spatial blur of correctly identified connections but the emergence of spurious 

connectivity as a result of observing mixtures of signals even at the level of 

reconstructed sources. This problem can only be addressed by using appropriate 

connectivity measures that are robust to volume conduction effects by 

construction.  
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7. Supplementary material 

Non-interactive dipole position 

 
Figure 4.1s - Spatial distribution of the FPR in the Moving Non-Interacting Dipole 
condition for medium SNR (α = 0.7). Shown are the Sender (red circle) and Receiver 
(purple circle) of the interaction in the Far-Superficial (a), Far-Deep (b), Close-Superficial 
(c), and Close-Deep (d) conditions. The other points represent the mean value of the FPR 
across 100 iterations (coded by the colour bar on the right side) when the third active 
dipole (the Non-Interacting one) is moved across the brain. The first two columns refer to 
the classical GC (MVGC algorithm); the last two to the TRGC. For each column, results 
obtained with eLORETA and LCMV are reported next to each other.  
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Figure 4.2s - Spatial distribution of the FPR in the Moving Non-Interacting Dipole 
condition for high SNR (α = 0.9). Shown are the Sender (red circle) and Receiver (purple 
circle) of the interaction in the Far-Superficial (a), Far-Deep (b), Close-Superficial (c), and 
Close-Deep (d) conditions. The other points represent the mean value of the FPR across 
100 iterations (coded by the colour bar on the right side) when the third active dipole (the 
Non-Interacting one) is moved across the brain. The first two columns refer to the classical 
GC (MVGC algorithm); the last two to the TRGC. For each column, results obtained with 
eLORETA and LCMV are reported next to each other.  
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Interactive dipole position 

 
Figure 4.3s - Spatial distribution of the FPR in the Moving Receiver Dipole condition for 
medium SNR (α = 0.7). Shown are the Sender (red circle) and Receiver (purple circle) of 
the interaction in the Far-Superficial (a), Far-Deep (b), Close-Superficial (c), and Close-
Deep (d) conditions. The other points represent the mean value of the FPR across 100 
iterations (coded by the colour bar on the right side) when the third active dipole (the 
Non-Interacting one) is moved across the brain. The first two columns refer to the classical 
GC (MVGC algorithm); the last two to the TRGC. For each column, results obtained with 
eLORETA and LCMV are reported next to each other.  
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Figure 4.4s - Spatial distribution of the FPR in the Moving Receiver Dipole condition for 
high SNR (α = 0.7). Shown are the Sender (red circle) and Receiver (purple circle) of the 
interaction in the Far-Superficial (a), Far-Deep (b), Close-Superficial (c), and Close-Deep 
(d) conditions. The other points represent the mean value of the FPR across 100 iterations 
(coded by the colour bar on the right side) when the third active dipole (the Non-
Interacting one) is moved across the brain. The first two columns refer to the classical GC 
(MVGC algorithm); the last two to the TRGC. For each column, results obtained with 
eLORETA and LCMV are reported next to each other.  
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Code and data availability 

The code necessary to reproduce these simulations is available at: 

https://github.com/paolop21/simulation_source_connectivity. 

The results of the simulations and the structures necessary to run the code are 

available at: https://zenodo.org/record/1155857#.WmMVwqjiY2w 
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Chapter 5 

Connectivity in attention processes 

Although extensively studied for decades, attention system remains an interesting 

challenge in neuroscience field. The Attention Network Task (ANT) has been 

developed to provide a measure of the efficiency for the three attention 

components identified in the Posner’s theoretical model: alerting, orienting and 

executive control. Here we propose a study on 15 healthy subjects who performed 

the ANT. Several fMRI studies have already provided evidences on the anatomical 

separability and interdependency of these three networks, and EEG studies have 

also unveiled the related brain rhythms. What is still missing is a characterization 

of the brain circuits subtending the attentional components in terms of directed 

relationships between the brain areas and their frequency content. Here, we want 

to exploit the high temporal resolution of the EEG, improving its spatial resolution 

by means of advanced source localization methods, and to integrate the resulting 

information by a directed connectivity analysis. The results showed in the present 

study demonstrate the possibility to associate a specific directed brain circuit to 

each attention component and to identify synthetic indices able to selectively 

describe their neurophysiological, spatial and spectral properties. In the second 

part of the study, we focused on the scalp EEG signals in order to extract simple 

and reliable measures easily usable as neuro-physiological indices. Combining 

advanced methods for connectivity estimation on EEG signals and graph theory 

we identified some descriptors of the most important features of the three 

networks correlated with behavioral performances. Our results provided a set of 

band-specific connectivity indices able to follow the behavioral task performances 

among subjects for each attention component as defined in the ANT paradigm. 

Extracted EEG-based indices could be employed in future clinical applications to 

support the behavioral assessment or to evaluate the influence of specific 

attention deficits on Brain Computer Interface (BCI) performance and/or the 

effects of BCI training in cognitive rehabilitation applications. 
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1. Introduction 

Attention is fundamental for human cognitive processing. As such, it includes a 

wide class of processes related with the ability of a subject to interact with the 

external environment. According to Posner’s theoretical model [20], this is 

possible through a sustained state of alertness (alerting), the selection of the 

important information in a noisy context (orienting) and the ability to control a 

situation and solve conflicts (executive control). When the complex mechanism at 

the basis of attention is altered, e.g. following a stroke event, consequences may 

affect a wide range of behavioural and social aspects. Several neuroimaging and 

neurophysiological studies have employed the so-called Attention Network Task 

(ANT), a behavioural task which allows to disentangle the three components 

(alerting, orienting and executive control) as described by Fan et al. in [97]. The 

available evidences indicate that the three attention components are independent 

[98], involve different anatomical areas (functional magnetic resonance imaging - 

fMRI- studies) [99] and each of them has a distinct oscillatory activity and time 

course (EEG study) [100]. The available brain connectivity studies on attention 

are based on structural networks (anatomical connectivity) [101] or functional 

networks extracted from fMRI data [102]. EEG-based connectivity studies are still 

missing. Only for the executive functions a connectivity model was extracted 

employing an approach requiring strong a priori hypothesis [103]. In summary, 

despite the advancements in this field, a single approach including at the same 

time i) the spatial information about the involved areas, ii) the relationships 

between such areas and iii) the frequency content of their neuro-electrical activity 

is still missing. Here, we want to combine high density EEG recordings with 

techniques of brain sources localization to increase the spatial resolution of EEG 

and with a spectral, directed connectivity estimation to point out the 

communication between brain areas. In this study, we applied modern 

methodologies for sources reconstruction, effective connectivity estimation and 

graph theory approaches with two specifics aims. The “source-level analysis” has 

the aim to integrate spatial and temporal information into a single neuro-

functional model and to provide indices, based on the properties of the 

connectivity patterns, able to provide new evidences about the circuits at the basis 
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of the different attention processes. On the other side, the “scalp-level analysis” 

aims at the comprehension of the useful information contained in such data with 

an important impact in lots of the clinical applications, where simple but reliable 

measures are required. Thus, the main objective of this second study was to define 

stable descriptors of the dynamic brain circuits underpinning the attentional 

components in terms of directed relationships between the brain areas and their 

frequency content. We were interested in extracting markers of the brain circuits 

elicited by the ANT performed by healthy volunteers while recording high density 

EEG (hdEEG) and thus, exploiting its high temporal resolution, low invasiveness 

and cost-effective. To this purpose we explore whether connectivity-based indices 

would correlate with behavioural data in order to strengthen their relevance as 

measure of attention processing for future applications. [104], [41]. 

2. Materials and methods 

2.1 Experimental Design 

Neuro-electrical data (60  EEG channels + 4 EOG channels, reference at linked 

mastoids and ground at Fpz, Brain Products, sample frequency equal to 250 Hz) 

were recorded from 17 healthy volunteers (10 female, age 27.2 ± 2.5) during the 

execution of the ANT [100]. They had no history of neurological or psychiatric 

disorders. The experimental protocol was approved by the local Ethical 

Committee. Participants were seated in front of a computer screen; a row of 5 

black arrows pointing left or right was presented in the middle part of the screen. 

Subjects were asked to indicate the direction of the central arrow (target 

stimulus) as quickly and accurately as possible with the left/right arrow keyboard 

buttons according to the direction of the target, using their right hand. Trials were 

defined as Congruent if the 4 lateral flankers and the central arrow had the same 

direction, Incongruent if the flankers pointed at the opposite direction. In addition 

there were three cue (an asterisk sign) conditions: No cue, Center cue (in the center 

of the screen for alerting), and Spatial cue (at the target location, above or below 

a fixation cross, for alerting plus orienting) [98]. The timeline of the paradigm is 
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showed in fig.5.1. The contrast between the different experimental conditions (72 

trials each condition) allowed to extract the three attention components: i) Center 

cue and No cue conditions define the alerting, ii) Spatial cue and Center cue the 

orienting, iii) Incongruent and Congruent the executive control. 

 
Figure 5.1 - Timeline of the ANT paradigm. In each trial, a cue (asterisk) may appear for 
200 ms in the center of the screen (center cue condition) or in the semi-space in which the 
target will appear (spatial cue) or not appear (no cue). After a variable duration (300–
1450ms), the target and the flankers (congruent or incongruent) are presented. The 
participant indicates the direction of the central arrow within a time window of 2000 ms. 
The target and flankers disappear after a response is given. 
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2.2 Behavioral data 

As behavioral index for each attention component we used the efficiency measure 

introduced in [97]. Alerting efficiency (EffAl), orienting efficiency (EffOr) and 

executive control efficiency (EffEC) are defined as the difference between the mean 

reaction times (RT) in specific experimental conditions:  

CenterNoAl RTRTEff   (5.1) 

SpatialCenterOr RTRTEff   (5.2) 

CongIncongEC RTRTEff   (5.3) 

In order to confirm the correct implementation of the task and its correct 

execution by the experimental group, we collected their behavioural data in terms 

of efficiency (Eff) and correct answers. Such data were analysed qualitatively at 

single subject level and by means of a statistical group analysis. A two-way ANOVA 

was performed across the experimental group on the two acquired measures to 

repeat and confirm the results in [97]. The main within factors are: 

• Cue Type with 3 levels: No, Center and Spatial; 

• Target type with 2 levels: Congruent, Incongruent. 

The dependent variables are the Reaction Time and the Error Rate (number of 

wrong answers expressed in percentage value). Tukey’s post-hoc test was applied 

in order to investigate differences between the levels of the different considered 

factors. 

2.3 EEG data pre-processing 

EEG scalp data were band-pass filtered in the range [1-45] Hz and ocular artifacts 

were removed through Independent Component Analysis (fast-ICA algorithm). 

EOG channels were also included in the ICA decomposition. Signals were 

segmented in different time windows defined as [0 - 500] ms according to the cue 

onset and [0-400] ms according to the target onset. Residual artifacts were 
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removed by means of a semi-automatic procedure based on a threshold criterion 

(±80 µV). 

2.4 Study 1: Source data analysis 

Source reconstruction and connectivity analysis  

Cortical and subcortical brain signals were reconstructed on 5000 dipoles 

employing the eLORETA algorithm [19]. We selected such approach according to 

the results presented in Chapter 4: considering that all the brain areas involved in 

attention processes elicited by ANT are located in the cortex (thus “Superficial”), 

eLORETA represents the best choice as demixing procedure to be applied before 

the estimate. Then, a set of regions of interest (ROIs) was identified on the basis 

of previous fMRI studies after a spectral analysis performed on the acquired 

dataset in order to confirm the activation of the same areas. The 18 selected ROIs 

are: inferior\superior frontal gyrus, precentral gyrus, inferior\superior parietal 

lobule, fusiform gyrus, inferior fusiform gyrus in the left hemisphere; anterior 

cingulate gyrus, inferior\middle frontal gyrus, post-central gyrus, superior 

temporal gyrus, superior parietal lobule, fusiform gyrus, inferior fusiform gyrus 

in the right hemisphere. Their representation on fMRI slices is reported in fig. 5.2. 
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Figure 5.2 – Position of the 18 ROIs selected for the connectivity analysis. Brain surface is 
segmented in 5-mm slices that are reported from the bottom to the top of the head. Yellow 
point code for the position of the ROIs included in the study. 

Causal connectivity was estimated on these ROIs by means of the time-varying 

Partial Directed Coherence (tvPDC) [78] for each samples and each experimental 

condition. Obtained matrices were averaged in in the  typical four EEG frequency 

bands defined by means of the Individual Alpha Frequency (IAF) value [33]:  

• Theta: [IAF-6; IAF-2] Hz;  

• Alpha: [IAF-2; IAF+2] Hz;   

• Beta [IAF+2; IAF+14] Hz;   

• Gamma: [IAF+15; IAF+30] Hz.  
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The optimal order of the MVAR model used as predictor filter was estimated for 

each subject and experimental condition by means of the Akaike Information 

Criteria (AIC) [105]. In order to isolate the networks at single subject level 

associated with each of the three attention components (filtered PDC matrices), a 

statistical comparison (unpaired t-test, p<0.05, False Discovery Rate, FDR, 

correction) was performed between appropriate experimental conditions 

(according to ANT theory). In particular, we compared: i) center cue vs no cue for 

alerting, ii) spatial cue vs center cue for orienting and iii) incongruent vs congruent 

for executive control. The same conditions were compared also to obtain the 

grand average maps (showed in figure 5.5). Firstly, the single subject PDC 

matrices were averaged in the two time intervals of interest: i) 500 ms after the 

cue stimulus and ii) 400 ms after target stimulus; then, a paired t-test (p<0.05, 

FDR correction) was performed. 

Graph theory 

Graph theory indices were extracted from the networks underlying the five 

experimental conditions with the aim to synthetize and compare their main global 

and local properties. In this study, we adopted the following indices:  

• Density: it is used to quantify the percentage of existing connections with 

respect to the totality of possible links. Here, it has been adapted to 

quantify the percentage of connections relative to a specific subnetwork. 

𝑠𝑢𝑏_𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑛𝑠𝑢𝑏𝑛𝑒𝑡

𝑛𝑇𝑂𝑇
 (5.4) 

Where nsubnet is the number of existing links connecting only the nodes 

(ROIs) belonging to the considered subnetwork and nTOT is the number of 

all the existing connections of the entire circuit. 

• Influence: measure of the difference in the number of inter-connections 

between two spatial regions [106]. 

• Asymmetry: measure of the difference between the number of intra-

connections of two different subnetworks. 
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• Global Efficiency (GE): global measure (considering all the connections in 

the whole-network) of how efficiently a network exchanges information 

internally. It is defined as the average of the inverse of the geodesic length 

(shortest path between two nodes in the network) and it represents the 

efficiency of the communication between all the nodes within the network 

[107]. It can be defined as follows: 





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(5.5) 

where N represents the number of nodes in the graph and the geodesic 

distance between i and j. 

• Local Efficiency (LE): measure of the fault tolerance of a network. It verifies 

whether the communication between nodes is still efficient when a node 

is removed from the network. The higher the LE, the greater the 

robustness of the network at local scale. The LE is the average of the global 

efficiencies computed on each sub-graph  belonging to the network and 

it represents the efficiency of the communication between all the nodes 

around the node i in the network [107]. It can be defined as follows: 
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where N represents the number of nodes in the graph and the sub-

graph obtained deleting the ith row and the ith column from the original 

adjacency matrix. 

For the evaluation of the local indices (all but the global and local efficiencies) we 

considered three couples of subnetworks, derived from previous studies in 

literature: left and right hemispheres, frontal and parietal lobes, cerebral areas 

main involved in Bottom-Up (frontal gyrus and temporal parietal junction) and 

Top-Down processes (pre-frontal cortex, PFC, visual cortex, parietal lobule) [99]. 

ijd
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Top-Down processes are characterized by flows of information from ‘higher’ to 

‘lower’ centres, conveying knowledge derived from previous experience rather 

than sensory stimulation; Bottom-Up processes, instead, proceed in a single 

direction from sensory input, through perceptual analysis, towards motor output, 

and their flows move from ‘higher’ centres to ‘lower’ centres. 

Statistical Analysis 

To describe each attention component, statistical comparisons (paired t-test, 

p<0.05) were performed between connectivity matrices in the appropriate 

conditions (according to ANT theory), obtaining a grand average connectivity 

pattern for each component (alerting, orienting and executive control). Graph 

indices variations were evaluated with the same procedure (paired t-test, p<0.05). 

FDR correction was applied to mitigate the errors due to multiple comparisons. 

Such statistical analysis was performed for all the EEG typical frequency bands: 

theta, alpha, beta and gamma. 

2.5 Study 2: Scalp data analysis 

Connectivity analysis 

After the pre-processing phase described in the previous paragraph, the causal 

connectivity was estimated on the signal recorded at scalp level. As in the previous 

analysis, we employed the Partial Directed Coherence (PDC) [78] for each 

experimental condition, and averaged in the following four frequency bands 

defined by means of the IAF value [33]. The optimal order of the MVAR model was 

estimated for each subject and each experimental condition. We obtained a 

network for each frequency band, each experimental condition and each subject. 

A statistical comparison (unpaired t-test, p<0.05, False Discovery Rate, FDR, 

correction) was performed between appropriate conditions (according to ANT 

theory) in order to isolate the networks associated with each of the three attention 

components. In particular, we compared: i) Center cue vs No cue for alerting, ii) 

Spatial cue vs Center cue for orienting and iii) Congruent vs Incongruent for 

executive control. 
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Graph theory 

Graph theory indices were extracted from the networks underlying the three 

attention components with the aim to synthetize their main global and local 

properties. The global indices considered to describe the general properties of the 

entire network [108] are: 

• Clustering: to measure the tendency of the network to segregate the 

information in subnetworks; 

• Path Length: to measure efficiency of the communication between the 

nodes on the basis of the shortest paths between them. 

Similar to the previous analysis, the local indices were used to quantify the 

involvement of a specific sub-network and/or to investigate the relation between 

different sub-networks. In particular, as sub-networks we considered left (Fp1, 

AF7, AF3, F7, F5, F3, F1, FT7, FC5, FC3, FC1, T7, C5, C3, C1, TP7, CP5, CP3, CP1, P7, 

P5, P3, P1, PO7, PO3, O1) and right (Fp2, AF4, AF8, F2, F4, F6, F8, FC2, FC4, FC6, 

FT8, C2, C4, C6, T8, CP2, CP4, CP6, TP8, P2, P4, P6, P8, PO4, PO8, O2) hemispheres, 

anterior (Fp1, Fp2, AF7, AF3, AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, 

FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8) and posterior (TP7, CP5, CP3, CP1, CPz, 

CP2, CP4, CP6, TP8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1, 

Oz, O2) areas [106]. In addition to the indices described for the previous analysis 

(Density, Asymmetry and Influence) we also computed Divisibility and Modularity 

to measure the level of interaction between subnetworks in terms of inter 

(divisibility) and intra (modularity) connections: strict interconnection or 

isolation [109].  

Statistical Analysis 

Connectivity indices extracted for each attention component were then correlated with 

the relative behavioral parameters (EffAl, EffOr, EffEC) by means of Pearson’s correlation 

(p<0.05). FDR correction was applied to take into account errors due to multiple 

correlations. 
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3. Results 

3.1 Behavioral analysis 

The behavioral data acquired for each subject during the execution of the ANT 

were subjected to statistical analysis to evaluate the effects of the cue (No cue, 

Center cue, Spatial cue) and the target type (Congruent, Incongruent) on 

participants’ performance. Specifically, a two-way ANOVA was performed for the 

reaction time and the error rate. Table 5.1 and figure 5.3 report the obtained 

results.  

 

Table 5.I - Results of the two-way ANOVA (F values) computed considering as dependent 
variables Reaction Time (ms) and Error Rate (%) and as within main factors the type of 
Target (TARGET_TYPE, congruent or incongruent) and Cue (CUE_TYPE, No, Center or 
Spatial). In the column “Factors” are also reported the degrees of freedom.  
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Figure 5.3 -Plot of means associated to the three-way ANOVA performed on the Reaction 
Time (left column) and the Error Rate (right column) acquired during the ANT execution 
on 17 healthy subjects. X-axes report the levels of the factor TARGET_TYPE (panel a and 
b) and CUE_TYPE (all the others). In the lowest row the interaction factor CUE_TYPE x 
TARGET_TYPE is reported. 

Diagrams reported in panels a), b), e) and f) and the Tukey’s test results revealed 

a statistically significant difference between Congruent and Incongruent 

conditions regardless of the cue type for both the performance parameters. As 

expected, subjects encounter greater difficulty in responding correctly and 

quickly when the target (central arrow) point out the opposite direction with 

respect to the other arrows (flankers).  Also the CUE_TYPE factor has a significant 

effect on the error rate and on the reaction time as showed in panels c) and d), 

More in details, the observation of the interaction factor (panel e and f) 

highlighted that, for the Error Rate index, this is a specific effect of the Incongruent 
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condition. Tukey's test showed a significantly higher percentage of wrong 

answers in the Center cue condition with respect to the other cue conditions. If 

the target is congruent, the subjects report a very low percentage of error rate 

(close to zero regardless of the CUE_TYPE). The presented results are perfectly 

consistent with those found in literature [97]. In the following table we reported 

the values of efficiency computed for each subject and each attention component. 

 

Table 5.2 – Efficiency values (in behavioural sense) for each attention component 
evaluated at single subject level. In the first column the ID of the involved participants 
have been reported.  

Because of the negative values of the Efficiency index in the alerting phase, 2 out 

of 17 subjects were considered outliers and not included in the following analysis. 
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3.2 Study 1: Source level analysis  

Spectral Analysis 

In this section we present the results obtained from the analysis of the significant 

activation at cortical level induced by the performed attention task. This study was 

conducted by using advanced source location techniques that allowed to identify 

the regions that are mainly involved in the cognitive functions under 

investigation. Firstly, we computed the Power Spectral Density (PSD) for each of 

the 5 experimental conditions. Then, to determine the significant features of each 

of the three attention components (alerting, orientating and executive control) 

within the frequency bands typical of the neuro-electrical activity a statistical 

comparison between the PSD values obtained for proper couples of experimental 

conditions was performed (t-test, p<0.05, FDR correction). Such proper couples 

derive from the ANT theory mentioned in the previous paragraphs regarding the 

behavioral efficiency measure. In a similar way, No and Center cue conditions 

define the alerting, Center and Spatial Cue conditions define the orienting and 

Congruent and Incongruent conditions define the executive control. For the voxels 

in which such test resulted as significant, we reported on brain maps the 

corresponding t-value (t-Student’s test). Figure 5.4 reported an example for each 

component of the obtained results. sLORETA software was employed for the 

visualization of the head volume. Because of the impossibility to report all the 

obtained maps and all the slices of the head volume, we synthesized the results of 

the spectral analysis in Table 5.3. In the first column, we reported for each 

attention component the brain regions identified by means of fMRI studies as 

proper of the specific function under investigation. After a screening of the single 

band results, the last column was coloured green only if at least in one frequency 

band a significant activation was found.    
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Figure 5.4 – Spectral statistical maps obtained with the LORETA software. As example, 
cortical and subcortical activations related with the alerting in alpha band (panel a), 
orienting in gamma band (panel b) and executive control in beta band (panel c) phases 
were reported. The maps derive from a t-test between proper couple of experimental 
conditions: No Cue and Center Cue in panel a); Center Cue and Spatial Cue in panel b); 
Congruent and Incongruent in panel c). Blue and red areas code for the t value associated 
to significant tests. Black circles highlight, as examples, one of the expected active brain 
area for each component: Right Superior Parietal Lobule for the alerting, Left Superior 
Parietal Lobule for the orienting, Left Precentral Gyrus. 
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Table 5.3 – Spectral activations obtained by the source localization performed employing 
the sLORETA software. Green and red symbols in the first 4 columns code for the 
agreement or not with the previous fMRI studies. The last column is green when at least 
for one frequency band we found an agreement.  

All the expected activations for each attention component have been found by 

means of the source localization approach. The only exception is represented by 

the Right Inferior Frontal Gyrus that was however selected as ROI in the following 

connectivity analysis because of its involvement in the alerting phase. The 

scientific contribution associated with this analysis is: 

• To demonstrate the possibility of reconstructing the activities of the areas 

involved in the experimental task with good spatial resolution; 



Chapter 5 

144 
 

• In providing additional information about frequency bands that the fMRI 

cannot provide; 

• In selecting the ROIs for the following connectivity analysis being sure that 

such areas had an important role for the isolated attention function. 

Connectivity Analysis 

In figure 5.5, we reported the statistical connectivity patterns obtained for the 

three attention components. Alerting networks show strong links mainly located 

in the frontal areas, especially in the lower frequency bands (theta and alpha 

bands). As regard the orienting network, the obtained maps highlight a prevalence 

of significant connection in Gamma band where Inferior and parietal areas appear 

involved in the network in both the hemispheres. The executive control network 

shows a more complex pattern in theta band, involving almost all the ROIs 

included in the model. It is worth of note the specific role of the right hemisphere 

as source of the information flow (Right Superior Parietal Lobule). Alpha and Beta 

bands showed few significant inter-connections linking the two hemispheres and 

directed predominantly from the right to the left one. The network obtained in 

gamma band appears characterized by a prevalent activity in the frontal-left 

regions. The analysis of these results allowed only qualitatively to understand the 

organization of the networks at the basis of the investigated cognitive functions. 

For this reason and to catch other important properties hidden by the strict group 

analysis we performed for extracting the showed maps, we decided to investigate 

the elicited pattern in an “indirect-way”. In other words, we evaluated the 

properties of the networks extracted for each experimental condition and we 

studied the attention components through the changes of the correspondent 

indices. A statistical test was performed between the graph measures evaluated 

in No/Center Cue, Center/Spatial Cue and Congruent/Incongruent conditions. In 

tab. 5.4 we reported the results (p and t output of the paired t-test) only for the 

graph indices with a significance in at least one frequency band. All the other 

results are not statistically significant. 
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Figure 5.5 - Grand average statistical connectivity maps estimated for alerting (a), 
orienting (b) and executive control (c). Each network was reported for all the considered 
frequency bands: theta, alpha, beta and gamma. Nodes represent the 18 considered ROIs. 
The arrows represent the significant causal connections between them (paired t-test, 
p<0.05 FDR corrected); their colour codes for the connection strength. 
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 Table 5.4 – Results of the statistical analysis (paired t-test, α =0.05, FDR correction) 
performed to compare the properties of the network associated to specific couple of 
experimental conditions: No/Center Cue for the alerting, Center/Spatial Cue for the 
orienting, Congruent/Incongruent for the executive control. For each frequency band the p 
value and the Student’s t for the considered indices are reported.  

To better render the obtained results, for each attention component we reported 

the boxplots of the compared distributions. Figure 5.6 shows the diagrams related 

with the alerting component. They showed a significant increase of the graph 

indices Parietal Density (panel a) and Top-Down Density (panel b) and a 

significant decrease of the Bottom-Up Density (panel c). The asymmetry between 

the Top-Down and Bottom-Up subnetwork, moves from a prevalence of the 

Bottom Up in the No Cue condition to a prevalence of the intra-connection of the 

Top-Down in the Center Cue condition (panel d). All the results were obtained in 

Beta band. 
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Figure 5.6 - Bar diagrams reporting the significant statistical comparisons (paired t-test, 
α=0.05, FDR correction) between the experimental conditions No Cue, blue bar, and Center 
Cue, red bar, for the indices Parietal Density (panel a), Top-Down Density (panel b), 
Bottom-Up Density (panel c) and BU/TD Asymmetry (panel d). All the reported results are 
obtained for the beta band. 

Results related with the orienting phase, reported in fig. 5.7, revealed a significant 

increase, in Gamma band, in terms of Global Efficiency. The orienting function, 

elicited by the spatial cue condition, is characterized by a different global 

organization of the network.  
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Figure 5.7 - Bar diagrams reporting the significant statistical comparisons (paired t-test, 
α=0.05, FDR correction) between the experimental conditions Center Cue, blue bar, and 
Spatial Cue, red bar, for the Global Efficiency index in gamma band. 

Analysis related with the executive control showed a significant variation of the 

indices BU/TD Influence in theta band and of the Left/Right Influence in alpha 

band (see fig. 5.8). Such result indicates that during the conflict resolution 

(Incongruent condition) the influence of the Bottom-Up network on the Top-

Down one significantly decreases while the number of inter-connections from the 

left to the right hemisphere increases. 
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Figure 5.8 - Bar diagrams reporting the significant statistical comparisons (paired t-test, 
α=0.05, FDR correction) between the experimental conditions Congruent, blue bar, and 
Incongruent, red bar, for the indices BU/TD Influence in theta band (panel a) and L/R 
Influence in alpha band (panel b). 

3.3 Study 2: Sensors level analysis 

Connectivity Analysis 

In fig. 5.9, we reported the statistical connectivity patterns obtained for the three 

attention components. They are represented on a 2D model seen from above with 

the nose pointing to the top of the page in which nodes are the electrodes on the 

scalp and the edges are the causal significant connections. The high number of 

represented nodes and links does not allow to give a clear interpretation of the 

obtained results. It is evident how the executive control pattern shows the 

strongest connections in all the frequencies bands. To clarify the role of specific 

areas in the investigated attention function, we synthesize this huge amount of 

information by means of graph indices defined to catch the local and global 

properties of the networks.  
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Figure 5.9 - Grand average statistical connectivity maps estimated for alerting (a), 
orienting (b) and executive control (c). Each network was reported for all the considered 
frequency bands: theta, alpha, beta and gamma. Nodes represent the 60 electrodes and 
the arrows represent the significant causal connections between them; their color codes 
for the connection strength. 

Graph Indices 

As in the previous section, results are reported separately for each component 

elicited by the ANT paradigm.  

Alerting: as shown in fig. 5.10, we found significant negative correlations between 

the efficiency EffAl and i) the Path Length index in beta band (panel a) and ii) the 

Left/Right Influence index in theta band (panel b). Such correlations pointed out 

a relation between the behavioral performances and the speed in the exchange of 
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information between network nodes in the alerting phase (low path length) in 

beta band. Moreover, an efficient alerting is associated to a communication 

between the two hemispheres in theta band with a prevalence of the information 

flows directed from right to left (negative values for Left/Right Influence). 

 
Figure 5.10 – Alerting: statistical correlations between the efficiency EffAl (y-axis) and the 
connectivity indices (x-axis): path length in beta band (panel a) and left/right influence in 
theta band (panel b). As in all figures, dots correspond to the values obtained for each of 
the 15 subjects involved in the study. The green line represents the linear fitting computed 
on the data. The associated values of correlation (R) and significance (p) are reported on 
the top of the figure. 

Orienting: as shown in fig. 5.11, a positive correlation was found between the 

efficiency EffOr and i) the Right Density (panel a) and ii) the Left/Right Divisibility 

(panel b) in the theta band. In particular, such results pointed out how an efficient 

orienting process is associated to a strong segregation of the information flows 

within the right hemispheres (high Right Density) and a low integration of the two 

hemispheres (high Left/Right Divisibility) in theta band.  Furthermore, we found 

that the parameter EffOr negatively correlated with the Posterior Density index 

(panel c) and the Anterior/Posterior Influence index (panel d) in the gamma band. 

This indicates that an efficient orienting process is associated to a low 

involvement of the posterior scalp regions (low Posterior Density) and to the 

establishment of a communication between anterior and posterior regions with a 

prevalent direction from posterior to anterior.  
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Figure 5.11 - Orienting: statistical correlations between the efficiency EffOr (y-axis) and 
the connectivity indices (x-axis) right density (panel a) and Left/Right Divisibility (panel 
b) in theta band, posterior density (panel c) and Anterior/Posterior Influence (panel d) in 
gamma band. 

Executive Control: Figure 5.12 shows a significant positive correlation between 

executive control efficiency EffEC and both the Path Length (panel a) and the 

Clustering indices (panel b) in the gamma band. Significant correlations were also 

found between efficiency EffEC and Left/Right Divisibility (panel c), Left/Right 

Modularity (data not shown; R=0.53, p=0.05) and Left/Right influence indices 

(panel d) in the alpha band. In particular, such results indicated how a reduction 

in the time required for solving the conflict (low EffEC) is associated to a high 

communication speed between the electrodes (low Path Length) and to a less 

tendency of the network to create clusters (low Clustering). Moreover, an efficient 

(i.e. correlated with high behavioural performance) executive control is explained 
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by a high integration of the two hemispheres (low Left/Right Divisibility) with 

information flows directed from right to left (negative values of Left/Right 

Influence). 

 
Figure 5.12 - Executive control: statistical correlations between the efficiency EffEC (y-
axis) and the connectivity indices (x-axis) -Path Length (panel a) and Clustering (panel b) 
in gamma band -Left/Right Divisibility (panel c) and Left/Right Influence (panel d) in 
alpha band. 

 

  



Chapter 5 

154 
 

4. Discussion and Conclusion 

4.1 Study 1: Source level analysis 

The integration of source localization methods, connectivity estimation and GT 

indices allowed to provide spatial and temporal information and to extract 

synthetic neurophysiological indices directly related to the cerebral processes 

that underlie the three attentive components. 

Alerting component: The results reported in fig. 5.5a and fig. 5.6 suggest that the 

alerting component is characterized by: i) an important role played by the fronto-

parietal network especially in the low bands theta and alpha and ii) a prevalence 

of the intra-connection of the parietal areas and of the regions involved in Top-

Down processes. Such results are in agreement with the evidence that structures 

involved in Top-Down network are crucial in sensory processing of the stimulus 

[99]. Moreover, according to our findings, the alerting component is related to the 

fronto-parietal network activation that modulates the specific impact of a warning 

cue that precedes a target. The entire network appears to be characterized by a 

prevalence of information exchanged within parietal ROIs confirming that the 

area most consistently activated and modulate by attention to the stimulus 

include the dorsal parietal cortex [99].  

Orienting component: The results reported in fig. 5.5b and fig. 5.4 suggest that the 

orienting function is characterized by a high involvement of the right hemisphere 

in gamma band, in agreement with the evidence that activity in the right areas is 

associated with linking temporal and spatial information and with the specific 

presentation of a warning signals [110] when it is associated to the so-called 

“covert-orienting”. Such interesting results were obtained in gamma band, as 

expected in according with the Fan’s study of the brain oscillations related with 

the attention networks [100]. In addition, the graph theory approach allowed to 

identify in the Spatial Cue condition related with the orienting phase, an increase 

of the Global Efficiency of the whole network.  

Executive Control: Conflict resolution is the most complex phase in the ANT and 

was described by indices referred to the cooperation between Bottom-Up and 

Top-Down networks and between the left and right hemispheres (fig. 5.5c and fig. 
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5.8). Results were obtained specifically for the theta and alpha bands in which a 

significant activity has been already demonstrated. In particular, theta activity has 

been associated with aspects of task monitoring, including error detection, that 

are often associated with executive attention [111] and changes in alpha activity 

have been related to the success  of distracter suppression [112]. Altogether, these 

results reflect the highly integrative nature of the conflict processing, which 

requires more integration between existing sub-networks (Bottom-Up and Top-

Down and the two hemisphere) of the information flows originated from several 

partially overlapping networks [113]. The performed connectivity analysis 

allowed to identify the prevalent directions of such flows. Inter-connections from 

the right to the left hemisphere and a symmetry exchange between Top-Down and 

Bottom-Un networks (BU/TD Influence index tends to zero) characterize the 

investigated attention component.  

In conclusion, the results of this EEG connectivity study in the source domain 

allowed to integrate in a single model spatial, spectral and causal information 

about the brain areas involved in attention processes and to define synthetic 

indices able to give a contribution to the neuro-physiological description of the 

three processes. Future studies could confirm the selectivity of some of these 

indices. Our results showed the possibility to identify the specific cerebral areas 

involved in attention processes from EEG recording, analysed in the source space. 

Furthermore, the integration between source localization methods, connectivity 

estimation and GT indices allowed to provide spatial and temporal information 

and to extract synthetic neurophysiological indices directly related to the cerebral 

processes underlying the attentive functions.  

4.2 Study 2: Sensor level analysis 

In the present study, we used advanced techniques for EEG signals processing to 

extract the cortical connectivity patterns (causal relationship between scalp 

areas) associated with the 3 attention components as elicited by the ANT 

paradigm (i.e. alerting, orienting and executive control) performed by healthy 

subjects. Some indices, derived from the graph theory, allowed the quantitative 

description of the relevant local and global properties of the 3 different causal 
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connectivity networks in specific EEG frequency bands as they correlated with the 

behavioural performance (i.e. correlated with EffAl, EffOr, EffEC). According to our 

findings, the estimated alerting network was described mainly by a negative 

relationship between the behavioural efficiency (EffAl) and Path Length index in 

the beta band, (i.e., the higher efficiency the shorter Path Length) and the left/right 

Influence index in the theta band (i.e., the higher efficiency the higher 

interhemispheric connection from right-to-left; negative values for left-right 

influence index). The phasic alerting improves the speed of target response by 

changing the internal state of preparation for perceiving a (visual) stimulus [100]. 

Our results indicate that an efficient alerting function (higher speed to target 

response) is associated with a global network organization characterized by a 

shorter average Path Length which corresponds to a high efficiency information 

transfer [114]. As yet, the entire network appears to be characterized by a 

prevalent exchange of information directed from right to left hemisphere. Such 

prevalence might reflect the role of the right hemisphere to sustain alertness that 

was already stressed in previous studies in which  lesions of the right frontal and 

parietal areas were associated to reduced ability in maintaining the alert state 

[115]. The above discussed index modulation occurred in beta and theta band, 

respectively. This finding is in line with previous EEG evidence of a relationship 

between these frequency oscillations and the alerting function [100]. The 

efficiency of the orienting function was in our study, described by a set of network 

indices which correlated with behavioural performance (EffOr). First, we found 

that the higher performance efficiency the higher right Density and left-right 

Divisibility in the theta band. In addition, higher orienting efficiency also 

correlated to both lower posterior Density and anterior/posterior Influence 

(prevalence for post-to-ant) in the gamma oscillations. Together, these results 

indicate a prevalent role of the right hemisphere versus the left (higher 

connectivity density) and poor communication between hemispheres (higher 

divisibility). About the frontal and parietal areas, results indicate a prevalence of 

connections from posterior to anterior areas (higher anterior/posterior influence 

and lower posterior density). This is in line with previous evidence of the (right) 

parietal and frontal areas involved in orienting function which enables for the 
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selection of specific information from a number of sensory inputs [3],[16][99]. 

The above discussed index modulation occurred in the theta and gamma 

frequency oscillations that may be in line with the evidence in favour of the 

contribution of the theta oscillation to long-range communications for cognitive 

processing by phase-locking to high gamma power [117]. Finally, an efficient 

conflict resolution (ie, executive control) was described mainly by a positive 

relationship between the behavioural efficiency (EffEC) and both the Clustering 

and Path Length indices in the gamma band, (i.e., the lower time to solve the 

conflict (low EffEC) the lower tendency to clustering and shorter Path Length) and 

both the left/right Divisibility and Influence indices in the alpha band (i.e., the 

higher efficiency the higher interhemispheric connection with a prevalent right-

to-left direction flow; negative values for left-right influence index). Altogether 

these results reflect the highly integrative nature of the conflict processing which 

requires more integration than segregation of information flow which are 

originated from several partially overlapping networks [113]. 

In order to understand the relation existing between source and scalp measure, 

other specific analysis should be performed. The role of the single ROIs, for 

example, could provide a direct explanation of networks obtained from the mixed 

scalp signals. The results obtained in the present work indicate that: 

• the alerting network is characterized by a high involvement of the parietal 

areas and top-down processes at source level, but such local properties 

are not visible in the sensors domain where global properties, like the Path 

Length, showed a correlation with the behavioral responses. 

• The orienting network, is characterized by a high Global Efficiency in 

gamma band; in the same frequency band we found significant 

correlations at scalp level involving local properties regarding the greater 

involvement of the anterior areas; 

• The executive control was described by the index Left/Right Influence in 

alpha band that highlight a prevalence of the flows from the right to the 

left hemisphere. The same index in the same band correlate at scalp level 

with the behavioral measure Efficiency with other global indices like the 

Clustering and the Path Length in gamma band.  
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Advanced EEG signals elaboration based on time-varying connectivity estimation 

and graph theory were applied to extract direct and weighted connectivity 

patterns elicited by the ANT paradigm at scalp level.  Correlation results pointed 

out a set of EEG-based indices able to synthetically describe each of the three 

attention components in the different frequency bands and to follow the 

variations in the corresponding behavioural measures. Such preliminary results 

could be used in the near future to: i) support the neuropsychological assessment 

in healthy subject and people with attention impairments; ii) clarify the role of 

specific attention components in BCI contexts (P300- and SMR-based BCI) and 

eventually improve the design of BCIs targeting attention rehabilitation; iii) 

increase the knowledge on attention brain networks elicited by the ANT 

paradigm. Altogether, our findings at the scalp level might have a strong impact 

on several clinical/non-clinical applications related to the BCI field. 



 

1 The study reported in the chapter has been accepted as research article to the journal Frontiers in 
Human Neuroscience (DOI: 10.3389/fnhum.2017.00637). 

 

Chapter 6 

Connectivity in memory functions 

Several non-invasive imaging methods have contributed to shed light on the brain 

mechanisms underlying working memory (WM) in normal aging humans. The aim 

of the present study was to depict the topology of the relevant EEG derived brain 

networks for distinct operations of WM function elicited by the Sternberg Item 

Recognition Task (SIRT) such as encoding, storage and retrieval in healthy, middle 

age (46 ± 5yrs) adults. Seventeen participants underwent an EEG recording whilst 

performing the visual SIRT. Neural correlates of WM were assessed by means of a 

combination of EEG signal processing methods (i.e., time-varying connectivity 

estimation and graph theory), with the aim to extract synthetic descriptors of the 

encoding, storage and retrieval phases of WM construct as elicited by SIRT, and 

sensitive to different memory workload1. Overall network findings illustrated in 

this study indicate that the use of EEG-derived connectivity measures and their 

related topological indices might offer a valuable approach to support the clinical 

assessment of cognitive functions in presence of WM decline/impairment, as it 

occurs after stroke. A brief preliminary study on a stroke population will be also 

illustrated. 

1. Introduction 

The working memory (WM) is a non-unitary construct that involves the 

temporary maintenance and manipulation of information either recently acquired 

or retrieved from long-term storage [118]. The Baddeley’s model is one of the 

most recognized among the several current models describing the operating 

principles of WM [119]. It encompasses diverse separable but interacting 

subsystems such as: 2 unimodal storage sub-systems (phonological loop for 

verbal material and visuo-spatial sketchpad for visuo-spatial material), a flexible 

system (central executive) which is responsible for the control and regulation of 

the storage sub-systems and a multimodal system with limited capacity storage 
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(episodic buffer) that allows the interaction between the various components of 

WM and the interface with long-term memory [120], [121]. The Sternberg Item 

Recognition Task (SIRT; Sternberg, 1966) has been largely used in cognitive 

neuroscience to assess WM capacity in terms of storage and data retrieval [122], 

[123]. It allows for a segregation of encoding, executive maintenance and retrieval 

processes (not manipulation) regarded as central within the multi-component 

model of WM. The SIRT is also relatively free from practice effects [124]. The SIRT 

was initially introduced to investigate the neurophysiological processes at the 

basis of WM by means of indirect behavioural measures [125], [126]. Its 

application was extended later into the field of neuroimaging techniques, 

functional magnetic resonance imaging (fMRI), electroencephalography (EEG) 

and magnetoencephalography (MEG) aiming at directly measuring the neural 

correlates underpinning WM processes [127]–[130]. Several fMRI studies have 

shown that verbal WM processing in adult humans requires the involvement of a 

large network which includes bilateral dorso-lateral prefrontal, left inferior 

frontal, middle and superior frontal areas, premotor and supplementary motor 

areas as well as inferior parietal and superior temporal areas, the insula and parts 

of the cerebellum [131]–[133]. Further studies using SIRT found specific patterns 

of activation for each of the three phases of WM (encoding, storage and retrieval). 

A modulation of the hemodynamic response as function of different WM load 

levels was also reported [134], [135], [132], [136], [129], [137]. Evidence for 

specific brain oscillatory responses elicited during the different phases of WM 

emerged from EEG and MEG studies using the SIRT.  In particular, the 

maintenance (storage) phase of verbal SIRT was associated with oscillatory 

power in theta (4–8 Hz) predominantly over the frontal midline and left temporal-

parietal sites [138], [139], [128] as well as in alpha (8-13 Hz) power over the 

parietal midline, the parieto-occipital and left tempo-parietal regions [140]–

[143]. The involvement of such frequency bands/areas was also modulated by the 

changes in memory load [144], [145], [139], [128], [146]. In particular, an increase 

of frontal-midline theta and temporo-parietal alpha and a decrease of beta and 

gamma activities in frontal areas were observed as function of WM load. An 

involvement of frontal and occipital regions was also found in beta and gamma 
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frequency bands [139], [147]–[149]. To fully understand brain functions 

involving distributed neural networks, it has recently become attractive to apply 

functional neuroimaging methods that allow to describe the dynamics within a 

network of areas sustaining a specific cognitive process (such as WM), and how 

the brain damage-induced disruption of circuits can account for the behavioural 

impairment [150]–[153]. A functional-connectivity based approach has been 

recently applied to track age-related changes in brain connectivity in a group of 

children and adolescents performing a modified version of the SIRT [154]. Task 

related networks were identified for encoding and recognition phases and their 

load-induced modulation was also correlated with age [154], [155]. In this study, 

we applied a combined approach based on EEG-derived connectivity patterns and 

graph theory [156], [104], [41] to isolate synthetic descriptors of the encoding, 

storage and retrieval phases of WM construct as elicited by SIRT, in healthy 

condition. We expected such combined approach to return quantitative 

measurements specific for the 3 different WM phases and sensitive to different 

memory workload. The relationship between extracted neurophysiological 

indices and subject memory performance was also assessed to explore to what 

extent the estimated EEG networks topology would account for memory 

behaviour. A preliminary study proved the feasibility of this approach to capture 

the WM processes in different phases of the SIRT [157]. Life span studies have 

indicated that changes in memory task-related neural activity may emerge from 

middle age onward [158]–[160]. Moreover, Aine and colleagues (2006-2011) 

have recently suggested that a middle age group could be another critical 

comparison group with respect to young and old adult, since there is evidence that 

brain maturation continues into the fourth decade of life [161], [162]. Hence, we 

targeted middle-age population (i.e. between 40 and 50 years) to limit possible 

confounding effects on the stability of measures as due to age-related differences 

occurring in young and old population sample. 
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2. Materials and methods 

2.1 Experimental group 

Seventeen healthy subjects (age: 46 ± 5 years old; 8 males; education: 14.8 ± 3 

years) were enrolled in the study. All participants except one were right-handed 

with normal or corrected-to-normal vision. No participant reported a history of 

neurological or psychiatric diseases; in addition, they were all screened for intake 

medications and none was receiving any pharmacological treatment affecting 

cognitive functions. Participants underwent some subtests (Similarities, 

Information, Coding, Picture Completion, Mosaic Test) from the German 

adaptation of the Wechsler Adult Intelligence Scale (WAIS III, von Aster, Neubauer 

& Horn, 2006), for a general screening of the cognitive function and also a deep 

evaluation of the memory functions. In particular, for the evaluation of the verbal 

and visuo-spatial memory, subjects performed the Corsi Block Tapping Test 

(CBTT) [163], the Visual and Verbal Memory Test (VVM 2) [164], the Digit Span 

[165], the Verbal Learning Memory Test (VLMT), the Nonverbal Learning Test 

(NVLT), the Verbal Learning Test (VLT) [166]. All the subjects achieved normal 

scores in all the investigated cognitive domains. All participants provided written 

informed consent according to the convention of Helsinki. The ethics committee 

of the University of Graz approved the study. All participants received monetary 

reward for their participation to the study.  

2.2 Experimental Design 

The EEG potentials were recorded from 60 scalp electrodes embedded in a lycra 

cap, with a left mastoid reference and ground at Fpz. Horizontal and vertical 

electro-oculogram (EOG) signals were recorded from 3 electrodes in total, two 

placed on the outer canthi of the eyes and one below the right eye, respectively. 

EEG signals were amplified (BrainAmp; Brain Products GmbH, Munich, Germany) 

and filtered by means of a [0.01 – 100] Hz band-pass filter prior to digitization at 

500 Hz. Electrode impedances were kept below 5 kOhms and 10 kOhms for the 

EEG and EOG recording, respectively. After 2 minutes of resting EEG acquisition 

http://wechslertest.com/
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(of eyes open and close), each subject performed the Sternberg task [126]. 

Accordingly, the experimental procedure to deliver the paradigm was as follows: 

first, a series of numeric digits was visually presented to the participants who had 

to memorize it (encoding phase); then, the participants had to retain the 

memorized information for a fixed period (storage phase) and finally, participants 

had to retrieve such memorized content in a brief time interval (retrieval phase). 

In particular, participants were asked to remember a set of unique digits (between 

1 and 9), and then a probe stimulus in the form of a digit was presented. Subjects 

were instructed to answer, as quickly as possible, whether the probe was in the 

previously presented set of digits or not. The size of the initial set of digits 

determined the WM load required to the subject to execute the task (4 digits → 

easy, low workload; 6 digits → difficult, high workload). Details about the timeline 

of the experiment can be found in figure 5.1. 

 
Figure 5.1 - Timing of the Sternberg experiment. Each trial started with a 2 sec 
presentation of a fixation cross in the middle of the screen. Afterwards, a “memory set” of 
4 (e.g. 5682) or 6 digits (e.g. 146372) was presented (1 sec) to allow for memorization 
(encoding phase). The presentation of the digit series was then followed by a fixation cross, 
displayed for 2 sec (storage period). A single probe digit was then presented for 250 ms 
(retrieval phase) followed by a fixation cross presented for 1250 ms. Afterwards, the 
question “yes or no?” appeared on the screen (maximum duration of 1500 ms) and the 
participant had to answer 
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2.3 Behavioral data 

We collected reaction times (RT) and the percentage of correct answers for each 

subject and each condition (Target/no-Target and 4-6 digits). To examine any 

effect of task-related complexity and task-related trials on the subject behavioural 

performances, two separate two-way repeated measures ANOVAs with digits 

number (DIGITS; 4 or 6) and target type (TYPE; Target/No Target) as within main 

factors were performed considering the percentage of correct answers and 

reaction times (RTs) parameters as dependent variables. 

2.4 EEG data pre-processing 

EEG signals were down sampled to 100 Hz (with anti-aliasing low-pass filter) to 

optimize the following connectivity analysis and then band-pass filtered in the 

range [1 45] Hz. in order to isolate the EEG spectral content of interest. 

Independent Component Analysis (ICA) was used to remove ocular artifacts. EEG 

traces were segmented in relation with the specific timing of the paradigm, [0 

4500] ms (period of interest) according to the onset of the first screen containing 

the digits series and classified according to different conditions (Target_4digits, 

No Target_4digits, Target_6digits, No Target_6digits). Only trials correctly 

executed were included in the analysis. Residual artifacts were then removed by 

means of a semi-automatic procedure based on a threshold criterion (±80 µV). 

Only the artifacts-free trials were used for further analysis. 

2.5 Time-varying Connectivity estimation  

Pre-processed EEG signals were subjected to a time-varying connectivity 

estimation process for each subject and each experimental condition (4/6 digits, 

target/no-target). Here, we employed the time-varying adaptation of Partial 

Directed Coherence (PDC) based on the General Linear Kalman Filter (GLKF) 

which is able to follow temporal dynamics of brain networks with high temporal 

resolution in high density EEG data (see results of the Chapter 3). We used it to 

estimate the relationships between signals for all frequency samples in the range 

[1 45] Hz and for all the samples in the time interval [0 4500] ms.  Any relevant 
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changes in the time-varying connectivity matrices related to the different 

experimental conditions were evaluated by means of statistical comparison 

(independent samples t-test) performed between each experimental condition 

(Encoding, Storage, Retrieval phases, 4/6 digits; correct answer trials) and the 

corresponding baseline. The baseline period was the time interval [-1000-0] ms 

preceding the appearance of the digits series (subjects fixing a cross on the 

screen). Time samples were used as observations for statistical test. The test was 

repeated for each frequency band and each subject. The significance level was set 

at 5%. A False Discovery Rate (FDR) was conducted for multiple comparison 

correction [167]. The PDC values contrasted with the baseline period were 

estimated for each time sample and averaged in the 4 frequency bands-of-interest 

and in 3-time intervals (periods-of-interest). As in the previous chapter, the 

frequency bands were individually defined according to the IAF. The three 

periods-of-interest correspond to: [0 1000] ms (encoding phase); [1000 3000] ms 

(storage phase) and [3000 4500] ms (retrieval phase). The analysis was 

conducted only on Target condition. 

2.6 Graph indices 

General properties of the network: the human brain can be viewed as a large-

scale complex network that is simultaneously segregated and integrated via 

specific connectivity patterns [168]. We selected the 3 indices - local and global 

efficiency and small-worldness - that are widely utilized to describe the general 

topological properties of a network, thus reflecting the integration and 

segregation of the information flow between areas [169]. 

Global Efficiency (GE) and Local Efficiency (LE) were described in Chapter 5. 

Small-Worldness (SW). It has been suggested that the human networks are 

organized to optimize efficiency, due to a small-world topology allowing 

simultaneous global and local parallel information processing [170]. SW is a 

measure of a network global organization in terms of its integration and 

segregation properties. Small-world topology is typical of networks highly 

segregated (nodes organized according to clusters) and highly integrated (high 

communication speed between electrodes). A network G is defined as small-world 
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network if and where  and  represent the 

characteristic path length [171] and the clustering coefficient of a generic graph 

and and  represent the correspondent quantities for a random graph 

[172]. On the basis of this definition, a measure of small-worldness of a network 

can be introduced as follows: 

• 

rand

G

rand

G

L
L

C
C

SW   (5.1) 

being a small-world network if S > 1 [173]. 

Local properties of the network: the topology of the networks was further 

investigated by computing the degree index for each scalp electrode to 

characterize the (local) level of in- and out- information flows exchanged within 

the network. 

Degree. The degree of a node is the number of connections directly to it. As such 

the degree is the simplest index identifying hubs in graphs. In directed networks, 

the indegree is the number of inward links and the outdegree is the number of 

outward links [171]. It can be defined as follows: 


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       (5.2) 

where kf is the degree of node f and gij represents the entry ij of the adjacency 

matrix G. The degree of a specific electrode was normalized with respect to the 

network density, in order to capture local changes and not a general 

increase/decrease of the network density. 

2.7 Statistical Analysis 

All the extracted global and local indices were subjected to a two-way ANOVA with 

memory phases (PHASES: Encoding, Storage, Retrieval) and digits number 

(DIGITS: 4, 6) as main within-subject factors. Duncan’s post-hoc test was used to 

verify differences between the ANOVA levels. FDR was further applied to correct 

randG LL  randG CC  GL GC

randL randC
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for multiple ANOVAs. Furthermore, to explore the relationship between the 

indices extracted for each memory phase and the relative behavioural data 

(correct answers rate, reaction time) a Pearson correlation analysis was 

performed. FDR was applied to reduce type I errors due to multiple correlations. 

2.8 Preliminary study on stroke patients 

Several times in the context of this thesis, we mentioned the possibility to employ 

the introduced connectivity-base indices as clinical measure. In the follows we 

present a first preliminary study in which they were used in the description of 

cortical re-organization induced by neurofeedback training in a population of 16 

stroke patients with memory deficits (age: 41.1 ± 14.1 years; 7 males). To this 

purpose, the proposed indices quantifying the properties of brain connectivity 

networks were estimated during a high-density EEG preceding (PRE) and 

following (POST) one month of cognitive rehabilitation treatment, as possible 

indicators of the changes in cortical organization induced by the intervention. 

These indices were defined on the basis of a thorough revision of the literature 

about connectivity in cognitive functions and of the results obtained in the study 

performed on the healthy elderly volunteers. The task, the experimental design of 

the EEG sessions and the pre-processing of the acquired signals were described in 

detail in the previous paragraph of the chapter, being the same employed for the 

healthy group. Also in this case, brain networks associated to each of the targeted 

cognitive functions (Encoding, Storage and Retrieval) were obtained by means the 

time-varying adaptation of the PDC based on the Kalman filter (see Chapter 3). 

The global indices introduced in the previous section were computed. As local 

measure, we used the Density index evaluated for macro-areas (right and left 

hemispheres, anterior and parietal electrodes) instead of the degree of the single 

sensors because of the lesions presence. The following step was to test whether 

specific brain indices could be suitable to quantify the effects induced by a 

cognitive training in terms of changes in the brain organization. To overcome the 

limitations due to patients’ different conditions and outcome, we evaluated the 

significant changes in the connectivity networks and indices at the single subject 

level. The main steps of the data analysis are summarized in the follows: 
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1. PRE and POST EEG data pre-processing;  

2. Time-varying effective connectivity networks estimation for each memory 

phase and frequency band and graph theory indices evaluation; 

3. Statistical comparisons between PRE and POST measurements (clinical 

data, graph indices) in order to describe modifies in memory processes 

induced by the rehabilitative treatment: single subject analysis 

(independent samples t-test, p<0.05, FDR correction); 

4. Statistical correlations (Pearson, p<0,05, FDR correction) between the 

relative increase of neuro-physiological indices and behavioral scores; 

5. Logistic binary regression to validate the connectivity indices as outcome 

measures for the memory training. i) internal validation: agreement 

between neuro-physiological indices and behavioral improvements; ii) 

external validation: agreement between neuro-physiological indices and 

clinical scales.  

3. Results 

3.1 Behavioral analysis  

The overall behavioural data obtained from each subject is reported in table 6.1. 

All the participants showed a percentage of correct answers above 80% (except 

for subject 5 in 6 Digits who was removed from the analysis) and reaction times 

(RTs) comprised between 250 and 700 ms for the 4 SIRT conditions. The 

variability ranges observed for the 2 behavioural parameters are in agreement 

with literature and comparable with those reported in other studies [174], [175], 

[126].  
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Table 6.1 – Mean values of the percentage of correct answers and relative reaction time 
(RTs) obtained from each participant. Missing answers (RT=0) were excluded. 

The two-way ANOVA revealed a significant influence of the main factor DIGITS 

(p=0.00007, F(1,15) = 28.15, MSE = 672.8) on the percentage of correct answers 

and of the main factors TYPE (p = 0.013, F(1, 15) = 7.83, MSE =12269) and DIGITS 

(p = 0.021, F(1, 15) = 6.54, MSE =13336)) on the RTs. In particular, the 

percentages of correct answers significantly decreased (94±3% to 87±5%) when 

the subjects were challenged with the condition of 6 digits with respect to 4. The 

RTs were also significantly longer in the condition 6 digits with respect to 4. 

Furthermore, the No Target condition was associated to significantly longer RTs 

 
Correct Answers (%) Reaction Time (ms) 

Subj #  
Target No Target Target No Target 

4 digits 6 digits 4 digits 6 digits 4 digits 6 digits 4 digits 6 digits 

1 94 81 94 94 356.91 346.97 422.76 469.35 

2 94 78 97 92 373.97 386.68 382.66 444.73 

3 100 81 97 86 548.39 468.03 502.80 521.00 

4 97 100 94 89 306.37 321.53 305.26 382.34 

5 92 72 97 97 411.48 498.77 405.94 511.97 

6 94 81 97 89 619.24 632.31 597.43 620.78 

7 86 86 94 83 425.81 458.03 483.50 499.70 

8 94 86 89 83 473.76 460.26 607.34 554.80 

9 83 89 86 78 430.63 509.16 433.10 504.71 

10 97 81 92 89 778.11 785.28 704.91 722.66 

11 97 97 97 97 319.51 331.20 295.80 371.71 

12 97 92 86 94 413.97 347.45 381.87 398.74 

13 94 94 92 94 282.38 250.29 265.58 285.88 

14 92 81 92 81 444.70 573.41 608.03 595.31 

15 97 94 97 89 460.71 474.68 559.97 516.81 

16 92 83 94 89 616.64 626.97 580.24 705.78 

17 92 83 94 89 616.64 626.97 580.24 705.78 

MEAN 94 86 94 89 463.48 476.35 477.50 518.36 

STD 4,2 7,6 3,8 5,6 133.01 140.16 128.55 124.12 

 1 
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as compared to those obtained during the Target condition (470±126 vs 500±130 

ms) in the 6 digits case. Subject 5 was excluded from the EEG analysis for his/her 

low accuracy in the task execution (30% error rate). 

3.2 Healthy subjects 

Global properties of the networks 

The results of the two-way ANOVA for the Local Efficiency (LE), Global efficiency 

(GE) and Small-Worldness (SW) indices with respect to memory phases and WM 

load are reported in table 6.2 for the four frequency bands.  

 
Table 6.2 – Results of two-way repeated measures ANOVA on global indices (F values, ** 
p<0.001, * p<0.05). FDR correction for multiple ANOVAs was applied 

We found a significant effect of the main factor PHASES on LE index in all 

frequency bands and of the main factor DIGITS in alpha and gamma bands. The 

interaction factor DIGITS x PHASES had a significant effect in both alpha and 

gamma bands. Similarly, a significant effect of the main factor PHASES was found 

on the SW index in all bands of frequency; the main factor DIGITS and the 

interaction factor DIGITS x PHASES were also significant for SW in alpha band. 

Finally, the main factor PHASES has a significant effect on GE index in all frequency 

bands. As shown in fig. 6.2, the LE index mean value (n = 16) relative to alpha band 

was significantly higher in the Encoding with respect to both Storage and Retrieval 

phases (fig. 6.2, panel a). An opposite trend was observed for the GE index (fig. 6.2, 
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panel b) that was significantly higher in the Retrieval as compared to both 

Encoding and Storage (fig. 6.2, panel b). Finally, the SW index (fig. 6.2, panel c) was 

significantly higher in the Encoding as compare with Storage and Retrieval. Similar 

significant results were found for the three indices in the other frequency bands. 

 
Figure 6.2 – Plot of means (± SD) values of Local Efficiency (panel a), Global Efficiency 
(panel b) and Small-Worldness (panel c) indices estimated in alpha band, and relative to 
Encoding, Storage and Retrieval phases. The asterisks indicate significant differences 
(Duncan’s post-hoc; p<0.05). 
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We found significant differences between 4 and 6 digits conditions for the LE and 

the SW indices (fig. 6.2a and fig. 6.2c). In particular, the LE and SW showed 

significantly higher values for the 6 with respect to 4 digits only during Encoding 

in alpha (fig. 6.2, panels a and c). Similar results were found in gamma band. No 

significant differences between 4 and 6 digits were found for the GE. Furthermore, 

the LE index computed for alpha band and relative to the Encoding phase 

negatively correlated with RTs obtained from both 4 (r=-0.7026, p=0.0024) and 6 

(r=-0.7048, p=0.0023) digits cases.  

Local properties of the networks 

The degree index was computed for each electrode and each subject and then 

averaged within the experimental group for the three PHASES and the two DIGIT 

conditions (Grand Average (GA) Degree Maps). A spatial representation of such 

index is reported in the topographical maps of fig. 6.3 for 4 digits (panel a) and 6 

digits (panel b) cases. 
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Figure 6.3 –Grand Average Degree –inward and outward- maps relative to the 3 different 
phases of WM process as elicited by the SIRT (Encoding, Storage, an Retrieval) for 4 digits 
(panel a) and 6 digits (panel b) condition and for 4 EEG frequency bands. Degree maps 
are represented on a 2D scalp model and seen from above. The color of each pixel codes 
for the corresponding degree magnitude. 
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The visual inspection of the GA Degree Maps relative to the 4 digits condition 

revealed that the 3 WM phases were associated with distinct connectivity 

networks for each frequency band oscillation (fig. 6.3a). During the Encoding, we 

observed a connectivity pattern which mainly included (high degree index) the 

central midline, the bilateral frontal areas and the bilateral posterior areas in the 

theta frequency band. In the alpha band, such patterns were mainly represented 

over the frontal midline, the left frontal areas and the right hemisphere from 

frontal to parietal areas. In beta and gamma oscillation ranges, the patterns were 

prevalent over the bilateral fronto-temporal areas. Storage was consistently 

associated with a high involvement (high degree) of the bilateral fronto-temporal 

areas, the frontal midline and the right posterior areas in the theta and alpha 

bands. Bilateral fronto-temporal areas, left tempo-parietal areas and right central 

areas have an important role in the beta band. In gamma band, we found an 

involvement of bilateral fronto-temporal areas and frontal midline. The Retrieval 

of digits showed a connectivity pattern mainly involving (high degree) frontal-

central midline, left fronto-tempo-parietal areas, right frontal areas and occipital 

areas in the theta and alpha band. In beta band, we found a high involvement of 

bilateral fronto-tempo-parietal areas and parieto-occipital midline. An important 

role of bilateral fronto-temporal areas and central areas resulted in gamma band.   

The averaged patterns obtained for the 6 digits condition are illustrated in figure 

6.3b. The qualitative (visual inspection) analysis of 6 digits condition revealed a 

general superimposition with the areas mainly involved in the 4 digits condition. 

On the basis of these findings (fig. 6.3), we selected eight scalp areas (macro-

areas) symmetrically distributed over the left and right sides and computed the 

respective average degree index. The following macro-areas were considered: 

Left Frontal (Fp1, AF7, F7), Frontal Midline (AFz, Fz, FCz), Right Frontal (Fp2, AF8, 

F8), Left Temporal (FT7, T7, TP7), Right Temporal (FT8, T8, TP8), Left Parietal 

(PO7, O1), Right Parietal (PO8, O2), Occipital (Oz). The results of the two-way 

ANOVA on degree index with respect to the memory phases and WM load are 

reported in table 6.3 for each macro-area and frequency band. The ANOVA 

revealed a significant effect of the main factor PHASES on Left Frontal Degree, 

Right Temporal Degree, Left Parietal Degree in beta and gamma bands, on Frontal 
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Midline Degree in gamma band, on Right Frontal Degree in theta, beta and gamma 

bands, on Occipital Degree in alpha, beta and gamma bands and on Right Parietal 

Degree in theta and alpha bands. The main factor DIGITS has a significant effect 

only in alpha band for Left Temporal Degree and in gamma band for Right Frontal 

and Left Parietal Degree. No significant effect was found for the interaction 

PHASESxDIGITS except for Occipital Degree in gamma band. 

 
Table 6.3 – Results of two-way repeated measures ANOVA on local indices (F values, ** 
p<0.001, * p<0.01). FDR correction for multiple ANOVAs was applied. 

The schematic representation of fig. 6.4 summarizes the trends obtained for the 

macro-areas degree across the 3 memory phases in the 4 frequency bands. In 

particular, the areas distinctive for the Encoding were the right frontal and right 

parietal areas in theta band, right parietal area in alpha band, left and right frontal 
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and right temporal areas in beta and gamma bands. The Storage was instead 

characterized by right frontal area in theta band and frontal midline in gamma 

band. The retrieval involved occipital area in alpha, left parietal and occipital areas 

in beta band and frontal midline, left parietal and occipital areas in gamma band. 

 
Figure 6.4 - Prevalent network involvement in each WM phase as schematically 
represented by 8 scalp macro-areas for each frequency band. Such schematic 
representation was derived by the results of the ANOVA obtained for the factor PHASES 
on macro-areas Degree index (see tab. 6.3). We assigned an area to a specific phase if its 
Degree was significantly higher with respect to the other macro-areas. 
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3.3 Stroke patients  

Figures 6.5 and 6.6 report the results obtained at single subject level for two 

stroke patients. Patient A (fig. 6.5) showed a positive outcome and Patient B 

(fig. 6.6) a negative outcome (no improvement). 

 
Figure 6.5 - a) Bar diagrams reporting the equivalent scores achieved for RAVLT and 
CBTT neuropsychological tests administered to patient A before (PRE, red bars) and after 
(POST, blue bars) the rehabilitation period. Equivalent scores below 2 (in yellow) highlight 
a pathological condition for the specific cognitive function investigated by the test. b,c) 
Anterior Density and Left Temporal Degree indexes achieved in Alpha band during 
Sternberg task in PRE (red bars) and POST (blue bars) sessions for the representative 
stroke patient A. The symbol (*) reported above the bars highlights a statistical 
significance between PRE and POST sessions (paired t-test; p<0.05, FDR correction). 
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Results for Patient A 

Memory Assessment: as reported in fig. 6.5a, the neuropsychological tests 

revealed a significant improvement of the tested memory function after the 

rehabilitation period. Equivalent scores for both CBTT and RAVLT tests 

increased from 1 to 3 and 4 respectively, thus indicating a transition from a 

pathological (PRE) to a physiological (POST) condition.  

Behavioural Data: analysis of the behavioural performance obtained at the 

Sternberg task revealed a significant increase of correct answers and a 

significant decrease of the reaction time after training.  

EEG derived Brain Network: analysis of the connectivity patterns revealed a 

significant POST training increase of the Anterior Density index (fig. 6.5b) 

estimated in the alpha band only for Storage and Retrieval phases of the 

Sternberg task associated with an increase of Left Temporal Degree index (fig. 

6.5c) in alpha band for all the three memory phases (Encoding, Storage and 

Retrieval). 

Results for Patient B 

Memory Assessment: in this patient we did not find significant changes in the 

memory functions as evaluated by means of neuropsychological assessment 

(fig. 6.6a). Equivalent scores for both RAVLT and CBTT tests remained around 

1 and 2 respectively, indicating a persistency of the pathological profile. 

Behavioural Data: similar negative outcome was found for the behavioural 

assessment. Data analysis revealed a decrease of the percentage of correct 

answers and no significant difference in reaction time between PRE and POST 

sessions of Sternberg task. 

EEG derived Brain Network: connectivity pattern analysis revealed in Patient B an 

opposite profile of changes in the POST training analysis with respect to what 

observed in Patient A. In fact, a significant decrease in the Anterior Density index 

(fig. 6.2b) for Storage and Retrieval phases and of Left Temporal Degree index (fig. 

6.2c) for the Retrieval memory phase both estimated in the alpha band, were 

observed. 
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Figure 6.6 - a) Bar diagrams reporting the equivalent scores achieved for RAVLT and 
CBTT neuropsychological tests administered to patient B before (PRE, red bars) and after 
(POST, blue bars) the rehabilitation period. Equivalent scores below 2 (in yellow) highlight 
a pathological condition for the specific cognitive function investigated by the test. b,c) 
Anterior Density and Left Temporal Degree indexes achieved in Alpha band during 
Sternberg task in PRE (red bars) and POST (blue bars) sessions for the representative 
stroke patient A. The symbol (*) reported above the bars highlights a statistical 
significance between PRE and POST sessions (paired t-test; p<0.05) 
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Correlation Study 

After the first evaluation of the single patient conditions, we selected three 

measure that mainly change their value in the positive outcomes: Anterior 

Density, Left Temporal Degree (showed also in Patient A) and the Local Efficiency. 

The correlation study (Pearson correlation, p<0.05, FDR correction) performed 

between the variation of such three indices in theta and alpha bands and the 

variation of the behavioural measure provided the results showed in tab 6.4. Such 

correlation was performed separately for the indices computed during each 

memory phase.  

 
Table 6.4 - Correlation coefficients between the PRE-POST variation of connectivity 
indices in theta and alpha bands and behavioural scores. The indices were computed for 
each of the three memory phases. The symbol (**) was used to indicate significant 
correlations, while the symbol (*) indicates correlations associated to a p value between 
0.1 and 0.05. 

In theta, the Anterior density showed a strong negative correlation with the 

reaction time (correlation significant in the storage phase, and close to the 

significance in the other two phases), while the Left temporal degree showed a 

significant positive correlation with the number of correct answers and a negative 

correlation with reaction time, during the encoding phase. In alpha, the Local 

Efficiency showed a significant negative correlation with reaction time during the 

retrieval phase while the negative correlation of Anterior density with the same 

behavioural data was close to significance in the storage phase. 

 

ENC STO RET ENC STO RET

Anterior Density 0,44 0,29 0,15 -0,41(*) -0,61(**) -0,51(*)

Left Temporal Degree 0,54(**) 0,34 0,3 -0,72(**) 0,35 0,04

Local Efficiency Norm 0,13 -0,08 -0,01 -0,14 -0,09 -0,2

Anterior Density 0,31 0,36 0,07 -0,35 -0,51(*) -0,39

Left Temporal Degree 0,13 0,14 0,32 -0,31 0,1 0,01

Local Efficiency Norm 0,11 0,1 0,13 0,14 -0,22 -0,59(**)

Behavioral Data
Correct Answers Reaction Time
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Internal Validation 

To prove the capability of the connectivity indices to be a measure of the function 

elicited by the task, we performed a binary logistic regression considering each of 

the selected index in the three different memory phases of the Sternberg paradigm 

(encoding, storage, retrieval) as independent variables, and the behavioural 

outcome (1= improvement in behavioural performances, 0 = no improvement) as 

a dichotomous dependent variable. The logistic regression was repeated for each 

of the three indices and separately for the two frequency bands of interest (theta 

and alpha). It describes how we can correctly classify patients who showed 

behavioural improvements in the task from those who didn’t on the basis of 

variations in their connectivity indices. In tab. 6.5 we reported the results of the 

regression performed separately for the three indices and the two frequency 

bands.  

 
Table 6.5 – Results of the binary logistic regression computed considering the values of 
the index in the three different memory phases of Sternberg paradigm (encoding, storage, 
retrieval) as independent variables, and the behavioural outcome (1 improvement in 
behavioural performances, 0  no improvement) as dichotomous dependent variable. 
The results were reported separately for the three indices and the two frequency bands. In 
red, the significant regressions. 

The results show that we can correctly classify the patients who improved their 

behavioural performances after the training on the basis of the Anterior Density 

and the Left Temporal degree in theta band. The classification accuracies were 

92.9% (Anterior Density  Nagelkerke R-square = 0.68, p<0.05; Left Temporal 

Degree  Nagelkerke R-square = 0.78, p<0.05) for both indices. Similar results, 
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with a significant (even if smaller) accuracy were found for the Left Temporal 

Degree in alpha band (85.7%, Nagelkerke R-square = 0.63, p<0.05). 

4. Conclusion and discussion 

This study applied a graph theory- driven approach to complex causality patterns 

derived from EEG recordings, with the aim to identify network topological 

properties, which describe the encoding, storage, retrieval phases of WM as 

elicited during visual SIRT performed by healthy, middle age adults. During the 

encoding phase, the global network exhibited a small-world topology (in all 

frequency bands), a network configuration known as optimal for global 

information transfer and local processing (see below). The requirement of such 

optimal configuration during item encoding appears further corroborated by the 

negative correlation between local efficiency and behavioural task performance. 

The small-world configuration of the whole network persisted across 

maintenance and rehearsal of encoded items, but it showed a descendent trend. 

At the local scale, the degree of information flow between scalp regions was 

specific to each one of the 3 different WM phases, according to the different role 

of regions in different WM phases. 

Behavioural Results 

The behavioural results obtained from our sample of healthy, middle age adults 

are in line with what was reported by previous studies conducted in healthy adults 

and wherein, the SIRT was applied to investigate working memory (WM) 

processes [174], [175], [126]. As expected, WM loads (4, 6 digits condition) had a 

significant effect on the response time and accuracy for both target and no-target 

probe, in our sampled population. These WM load-related behavioral changes 

have been previously ascribed to a serial scanning of memorized elements 

required in order to recall the memorized material [176]. 

Global organization of the WM network 

The complex human brain networks have been found to have a “small-world” 

topology  (fig. 6.2c) which is characterized by a high local specialization and a high 

global integration, to sustain a high efficiency at a low wiring cost [177]. As 
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pointed out by Toppi and colleagues in 2012, SW properties (SW index above 1) 

of real EEG-derived networks could be induced by the spatial localization of EEG 

electrodes and by the position of the reference [178]. Thus, only significant 

variations in SW index between one experimental condition and another one are 

worth of note and representative of a modification in the network configuration. 

For this reason, in the present work, we statistically compared SW values of EEG-

derived networks across the three different WM phases. Only variations in SW 

index have been described. 

The significant effect of phase factor on global indices (global and local efficiency, 

small-worldness; tab. 6.2) indicated that a small-word topology of the networks 

was present in all 3 WM phases (small-worldness >1 for the three phases). We 

found however, that such topological organization was not equally represented 

across the 3 WM phases. Accordingly, the highest small-worldness values were 

associated with encoding (between 10 and 20 in alpha band; fig. 6.2) whereas 

storage and retrieval showed a trend toward a small-worldness decrease (fig. 6.2). 

This trend was also paralleled by that observed for the local and global efficiency 

indices: the highest values of local efficiency together with the lowest values of 

global efficiency were observed for encoding with respect to storage and retrieval 

phases. Such descendent trend was evident in lower to higher frequency 

oscillations (tab. 6.2). Our findings indicate that such descendent trend in the 

network small-worldness topology may reflect a general network tendency to 

reduce local segregation in favor of global integration of the information exchange 

between/within the different brain regions as cognitive processing evolve from 

encoding to retrieval.  Such topological re-arrangement, underscored by the 

modulation of global indices across the 3 WM phases, is in line with the recently 

released global workspace theory [179], [180] postulating that the networks' 

structure reorganizes across the temporal evolution of WM cognitive processing 

[181]. As such, this dynamics observed for the topology networks might reflect 

the operational mode of the “episodic buffer” component of the Baddeley model 

(Baddeley 2010). This “buffer” serves as an intermediary between the storage 

subsystems with different codes (i.e., phonological loop and visuo-spatial 

sketchpad) whose content is bounded by the buffer into unitary multi-
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dimensional representations. Thus, one can speculate that a tendency towards a 

more global versus local integration network topology (ie, the decrease of small-

worldness across WM phases) would “optimally” serve the function of the episodic 

buffer by favoring the information flow between WM networks (ie, 2 storage 

subsystems, central executive).      

The encoding process directly influences the precision and accuracy of 

subsequent WM representations [182], [183]. The well-known limitation in the 

capacity to simultaneously encode objects requires efficient mechanisms in the 

encoding phase to select only the most relevant objects from the immediate 

environment to be represented in memory and to restrict irrelevant items from 

consuming capacity [184]. Several studies have shown how the encoding phase is 

characterized by a strong interplay between brain circuits underlying WM and 

selective attention [185]–[187]. Successful working memory performance is, in 

fact, associated to selective attention mechanisms allowing to focus on a limited 

number of visual objects and events important for the ongoing cognition and 

action [188]. A small-world topology, which supports both specialized and 

integrated information processing in the brain, could well account for complex 

network interplay. It comprises both high segregated or modular processing (high 

clustering) and distributed or integrated processing (short path length) [189], 

[170]. Small-world properties allow networks to operate dynamically in a critical 

state, facilitating rapid adaptive reconfiguration of neuronal assemblies in 

support of changing cognitive states. The small-world behavior of encoding 

networks might be associated to the necessity of the brain to combine the 

functioning of specialized (segregated) modules with a number of inter-modular 

links integrating those modules. In line with this interpretation, several evidence 

indicate a topological disruption of an optimal small-world network in 

schizophrenic patients [190] who exhibit WM performance deficits that have been 

related to a decreased efficiency in item encoding [191], [192]. In addition, altered 

oscillatory dynamics during encoding of information have been reported in 

normal and pathological aging associated with cognitive decline conditions [161], 

[193], [194]. We found that the encoding-related network displayed a higher 

optimal topology (higher local efficiency and small-worldness) with WM load 
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increase (4 vs 6 digits), both in alpha and gamma frequency band. This WM load-

induced modulation of network topology reinforce the above interpretation of an 

high network modularity required during encoding, since a correct memorization 

of increasing number of items would be best achieved by enhanced selective 

attention to focus exclusively on target objects [195]. From a behavioral 

viewpoint, this in line with the set size effect theory according to which the ability 

to successfully report items in WM is inversely proportional to the number of 

items to be memorize [196]. Recent neurophysiological evidence support the idea 

that visual WM capacity limitation (i.e., the set size effect) begins with neural 

resource allocation at encoding [197]. The observed WM load-induced 

modulation of network topology was prominent in alpha and gamma bands. Alpha 

oscillations have been hypothesized to play an active role in protecting WM items 

from non-relevant information [198] for instance, by suppressing distracting 

sensory information [199]. The increase of WM load is also associated to an 

increase of alpha-band coherence between midline parietal and left 

temporal/parietal sites during encoding [128]. Moreover, amplitude of gamma 

bands directly correlates with the number of items to be memorized (WM load) 

[149], [200], [201]. In line with the aforementioned reasoning, the network local 

efficiency estimated in alpha band and relative to encoding varied as function of 

the RTs (negative correlation; fig. 6.3). Similarly, [202]) reported a significant 

correlation between small-worldness index and memory performances [202]. We 

further elucidated the relationship between network topology dynamics and WM 

performance unveiling the role of encoding in determining the WM behavioural 

performance. The existence of such correlation exclusively in alpha band is in 

accordance with previous evidence of a correlation between changes in α-power 

and behavioural performance during encoding [203], [204]. 

Local organization of the Working Memory networks 

As illustrated in figure 6.4, the GA degree maps allowed the isolation of scalp areas 

common to the 3 WM phases. The encoding, storage and retrieval WM phases 

elicited by the visual SIRT were consistently characterized by an involvement of 

bilateral fronto-temporal regions in all frequency oscillations while an anterior-
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to-posterior midline pattern was prevalent in theta/alpha oscillations. In addition, 

a bilateral parieto-occipital connectivity pattern was observed mainly in theta 

oscillations during the encoding, while storage/retrieval phase were 

characterized by a prevalent left temporo-parietal and right fronto-parietal 

connectivity patterns in alpha/beta bands. These patterns were sensitive to WM 

load increase. The observed common engagement of bilateral dorsolateral frontal, 

temporal cortices and midline reflects the typical pattern of activity during WM 

tasks that includes prefrontal cortex, bilateral premotor areas, supplementary 

motor areas and the dorsal anterior cingulate cortex [205]. All these areas are 

frequently associated with the “central executive” system [128], [206], which is 

active during all the phases of the memory process. In fact, the pre-frontal cortex 

is associated to the capacity to continuously modify the content of working 

memory according to newer external sensory input, to allocate resources during 

the simultaneous execution of different tasks and to switch relevant strategies of 

retrieval [207]. The supplementary motor area is engaged in the repetition of the 

stimuli to be maintained in memory and in the planning of the motor actions for 

the inner speech [208], one of the most used memorization strategies. The 

interplay between rhythmic activity at low (alpha/theta) and high (beta/gamma) 

frequency has been suggested to enable WM item encoding and maintenance in 

humans. Particularly, the gamma band would be relevant for active maintenance 

of WM information, whereas theta band would be involved in the temporal 

organization of WM items. The relevance of alpha oscillation would reside in 

filtering task non-relevant information [149]. As expected, the local network 

organization expressed as (local) degree index was differently modulated across 

the 3 WM phases, and thus it well describes the distinct processing related to 

encoding, maintenance and rehearsal of memory information (see tab. 6.3). As 

schematically illustrated in figure 6.5, Encoding is mainly described by a bilateral 

involvement of frontal scalp areas (encoding –related degree contrasted against 

that related to storage and retrieval time series) and right fronto-temporal scalp 

area in the high frequency oscillation range (beta/gamma). At lower range of 

frequency, encoding was described by a right frontal and parietal area 

involvement. As mentioned above, gamma band activity plays a role in 
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maintenance of visual (and others sensory) WM items [209], [210]. In addition, 

EEG/MEG source localization studies pointed out that gamma oscillatory activity 

changes (increased power) is mainly localized over frontal (and parietal) regions 

[211]. We hypothesized that our findings in encoding phase likely reflect the 

correspondence in neural activity between encoding and maintenance of WM 

information - that would be the active role of the episodic buffer component of 

WM construct (Baddeley 2010). Although the functional relevance of 

correspondence in neural activity between encoding and maintenance still 

remains matter of debate [212]–[214], recent work by Cohen and colleagues [215] 

provides empirical evidence for an overlap between encoding and maintenance 

processes as a critical element of WM [216], [217]. The observed theta/alpha-

related higher magnitude of local degree indices during encoding (with respect to 

storage and retrieval) over right fronto-parietal regions may be ascribed to spatial 

attentional demand needed to cope with the sensory processing during WM item 

encoding. These areas has been previously reported as fundamental for the 

recruitment of sustained, and selective component of attention during a visual 

working memory task in theta and alpha band [204], [218], [219]. The storage 

phase was characterized by a partial overlap with encoding as it involved right 

frontal area in theta band. The interplay between theta/gamma oscillatory 

activities had been previously mentioned as pivotal in tasks that require 

sequential coding and maintenance of multiple WM items such as during 

Sternberg paradigm ([126] fig. 6.2). Storage was also described by a gamma-

related frontal midline degree index that also well reflects the high oscillations 

modulation localized over the core nodes of WM maintenance processing 

[95][114]. Finally, during retrieval we observed a selective involvement of 

occipital area in alpha, beta and gamma bands as well as left parietal region in high 

frequency oscillations (beta/gamma band). Such parieto-occipital engagement 

could account for visual stimulus presentation and visual information processing 

during retrieval [221]. Moreover, neuronal synchronization in the gamma band 

over occipital areas has been associated to subject ability during encoding and 

retrieval memory phases [222]. As for the WM load modulation, we found that 

right frontal degree was sensitive to WM load as well as the left parietal degree in 
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gamma oscillations. The left temporal degree was also modulated in alpha band 

as function of WM load (tab. 6.3). WM load-related gamma activity has been found 

to spatially localize to core nodes of WM network which includes parietal and pre-

frontal cortices [223], [224]. Moreover, evidence from ECoG data further support 

the modulation of gamma band activity occurring in frontal and hippocampal 

regions as function of WM load [225], [226]. The alpha- related left temporal 

degree is consistent with a role of (left) temporal region in sub-lexical 

phonological processing of visual material [227], [228]. During Sternberg tasks 

sequential encoding would activate the phonological loop to support the 

maintenance of sequenced WM items by means of subvocal rehearsal (silent 

speech) [206], [229]. Overall network findings illustrated in this study well 

describe the multi-facetted nature of the WM processing as elicited by the SIRT, 

which is without manipulation of memory traces. As such, the use of connectivity 

measures as derived from EEG might offer a valuable approach to support the 

clinical assessment of cognitive function, providing that the accuracy of EEG-

derived connectivity networks and their related topological indices is 

demonstrated in presence of WM decline/impairment, as it occurs after stroke.  

Application to stroke patients  

In this application to the clinical environment, we proposed a single subject 

approach based on the use of advanced methodologies for time varying 

connectivity estimation and graph theory for defining a set of neurophysiological 

indexes able to describe the modifies related to the plasticity induced by 

rehabilitative interventions. In particular, we selected as descriptors of memory 

processes at the basis of Sternberg task, the Anterior Density, the Left Temporal 

Degree and the Local Efficiency indices in theta and alpha band. The importance 

of fronto-central and left frontotemporal areas in Sternberg task has been already 

demonstrated in a preliminary study conducted on healthy subjects performing 

the task [157]. The central executive, located in frontal areas of the brain, is in fact 

responsible for coordinating the other working memory subsystems, for 

recruiting and allocating attentive resources to inhibit the irrelevant processes 

and for decoding the information associated with the material to keep in memory 

[121]. The left temporal areas are instead responsible for the strategy planning, 



Chapter 6 

 

189 
 

the recoding of the visual material into phonological code, the rehearsal of the 

stimuli by inner speech and the provisional storage of the material [137]. The 

results showed in this paper confirmed the role of such indexes as valid 

descriptors of modifies in networks elicited during Sternberg task. In particular 

for two representative subjects the variations of such indexes between PRE and 

POST sessions were in agreement with behavioural results and above all with the 

outcome of neuropsychological tests on memory functions. Finally, the 

subsequent correlation study and validation phase allowed to confirm the ability 

of the selected indices to describe some of the neurophysiological phenomena 

elicited by the Sternberg task at the basis of the memory recovery. Other 

important analysis and validation tests will be performed in future studies before 

the employment of such indices in the clinical environment, but such promising 

result could open the way to a wide range of important applications.  
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General conclusion 

Understanding brain functions requires not only information about the spatial 

localization of neural activity, but also about the dynamic functional links between 

the involved groups of neurons, which do not work in an isolated way, but rather 

interact together through ingoing and outgoing connections. The work carried on 

during the three years of PhD course returns a methodological framework for the 

estimation of the causal brain connectivity and its validation on simulated and real 

datasets at scalp and source level. Important open issues like the selection of the 

best algorithms for the source reconstruction and for time-varying estimates were 

addressed. Moreover, after the application of such approaches on real dataset 

recorded from healthy subjects and post-stroke patients, we extracted 

neurophysiological indices describing in a stable and reliable way the properties 

of the brain circuits underlying different cognitive states in humans (attention, 

memory). More in detail: 

• I defined and implemented the SEED-G toolbox able to provide a useful 

validation instrument addressed to researchers that conduct their activity 

in the field of brain connectivity estimation. It allows to test the ability of 

different estimators in increasingly less ideal conditions: low number of 

available samples and trials, high inter-trial variability (very realistic 

situations when patients are involved in protocols) or, again, time varying 

connectivity patterns to be estimate (where stationary hypothesis in wide 

sense failed). Such tool will be available online for all the scientific 

community interested in this topic. 

• A first simulation study demonstrated the robustness and the accuracy of 

the PDC with respect to the inter-trials variability under a large range of 

conditions usually encountered in practice. 

• I identified a tool combining source localization approaches and brain 

connectivity estimation able to provide accurate and reliable estimates as 

less as possible affected to the presence of spurious links due to the head 

volume conduction. 
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• The simulations carried on the time-varying algorithms allowed to 

highlight the performance of the existing methodologies in different 

conditions of signals amount and number of available trials. Moreover, the 

adaptation of the GLKF based algorithm I implemented, with the 

introduction of the preliminary estimation of the initial conditions for the 

algorithm, lead to significantly better performance. 

• The developed and tested methodologies were successfully applied on 

three real datasets. The first one was recorded from a group of healthy 

subjects performing an attention task that allowed to describe the brain 

circuit at scalp and source level related with three important attention 

functions: alerting, orienting and executive control. The second EEG 

dataset come from a group of healthy subjects performing a memory task. 

Also in this case, the approaches under investigation allowed to identify 

synthetic connectivity-based descriptors able to characterize the three 

main memory phases (encoding, storage and retrieval). For the last 

analysis I recorded EEG data from a group of stroke patients performing 

the same memory task before and after one month of cognitive 

rehabilitation. The promising results of this preliminary study showed the 

possibility to follow the changes observed at behavioural level by means 

of the introduced neurophysiological indices.  
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