
Noname manuscript No.
(will be inserted by the editor)

An Efficient Cost-Sharing Mechanism for the

Prize-Collecting Steiner Forest Problem

Anupam Gupta · Jochen Könemann ·

Stefano Leonardi · R. Ravi · Guido
Schäfer

the date of receipt and acceptance should be inserted later

Abstract In an instance of the prize-collecting Steiner forest problem (PCSF)
we are given an undirected graph G = (V, E), non-negative edge-costs c(e) for
all e ∈ E, terminal pairs R = {(si, ti)}1≤i≤k, and penalties π1, . . . , πk. A
feasible solution (F, Q) consists of a forest F and a subset Q of terminal pairs
such that for all (si, ti) ∈ R either si, ti are connected by F or (si, ti) ∈ Q.
The objective is to compute a feasible solution of minimum cost c(F) + π(Q).

A game-theoretic version of the above problem has k players, one for each
terminal-pair in R. Player i’s ultimate goal is to connect si and ti, and the
player derives a privately held utility ui ≥ 0 from being connected. A service
provider can connect the terminals si and ti of player i in two ways: (1) by

Anupam Gupta
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA. E-
mail: anupamg@andrew.cmu.edu.

Jochen Könemann
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON N2L
3G1, Canada. E-mail: jochen@math.uwaterloo.ca. Research supported by NSERC grant no.
288340-2004 and by an IBM Faculty Award.

Stefano Leonardi
Dipartimento di Informatica e Sistemistica, University of Rome “La Sapienza”, Via Salaria
113, 00198 Rome, Italy. E-mail: leon@dis.uniroma1.it. Part of this work was done while the
author was visiting the School of Computer Science at Carnegie Mellon University.

R. Ravi
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, USA. E-mail:
ravi@cmu.edu.

Guido Schäfer
Center for Mathematics and Computer Science (CWI), Algorithms, Combinatorics and Op-
timization, Science Park 123, 1098 XG Amsterdam, The Netherlands, and VU University
Amsterdam, Department of Econometrics and Operations Research, De Boelelaan 1105,
1081 HV Amsterdam, The Netherlands. E-mail: g.schaefer@cwi.nl. Part of this work was
done while the author was visiting the School of Computer Science at Carnegie Mellon
University.

2 A. Gupta, J. Könemann, S. Leonardi, R. Ravi and G. Schäfer

buying the edges of an si, ti-path in G, or (2) by buying an alternate connection
between si and ti (maybe from some other provider) at a cost of πi.

In this paper, we present a simple 3-budget-balanced and group-strategyproof
mechanism for the above problem. We also show that our mechanism com-
putes client sets whose social cost is at most O(log2 k) times the minimum
social cost of any player set. This matches a lower-bound that was recently
given by Roughgarden and Sundararajan (STOC ’06).

1 Introduction

In an instance of the prize-collecting Steiner forest problem (PCSF) we are
given an undirected graph G = (V, E) with edge costs c : E → R

+, a set of
k terminal pairs R = {(si, ti)}1≤i≤k, and penalties π : R → R

+. A feasible
solution (F, Q) consists of a forest F and a subset Q of terminal pairs such
that for all (si, ti) ∈ R either si, ti are connected by F or (si, ti) ∈ Q. The
objective is to compute a feasible solution of minimum cost c(F) + π(Q).

A game-theoretic version of the above problem has k players, one for each
terminal-pair in R. We use U to denote the set of all players. Player i’s ultimate
goal is to connect si and ti, and the player derives a privately held utility ui ≥ 0
from being connected. A service provider can connect the terminals si and ti
of player i in two ways: (1) by buying the edges of an si, ti-path in G, or (2)
by buying an alternate connection between si and ti (maybe from some other
provider) at a cost of πi.

Formally, we are interested in finding a cost-sharing mechanism that first
solicits bids {bi}i∈U from all players. The mechanism then determines a set
S ⊆ U of players to service and computes a prize-collecting Steiner forest for
the terminal set of these players. Finally, the mechanism needs to determine
a payment xi(S) ≤ bi for each of the players in S.

There are several desirable properties of a cost-sharing mechanism: a mech-
anism is called strategyproof, if bidding truthfully (i.e., announcing bi = ui) is
a dominant strategy for all players. If this is true even if players are permit-
ted to collude, then we call a mechanism group-strategyproof. A mechanism is
budget balanced if the total cost C(S) of servicing the players in S is at most
the sum of the costs charged to the players in S, and it is competitive if the
sum of all costs charged to the players in S does not exceed the cost of an
optimal PCSF solution for S. A mechanism is called efficient if it selects a set
S of players that maximizes u(S) − C(S).

Classical results in economics [12,26] state that budget balance and ef-
ficiency cannot be simultaneously achieved by any mechanism. Moreover,
Feigenbaum et al. [10] recently showed that there is no strategyproof mecha-
nism that always recovers a constant fraction of the maximum efficiency and a
constant fraction of the incurred cost even for the simple fixed-tree multicast
problem.

In light of these hardness results, most of the previous work on mech-
anism design concentrated on proper subsets of the above design goals. One

Cost-Sharing Mechanism for Prize-Collecting Steiner Forest 3

notable class of such mechanisms are based on a framework due to Moulin and
Shenker [24]. The authors showed that, given a budget balanced and cross-
monotonic cost sharing method for the underlying problem, the well known
Moulin mechanism [23] satisfies budget balance and group-strategyproofness.
Moulin and Shenker’s framework has recently been applied to game-theoretic
variants of classical optimization problems such as fixed-tree multicast [2,9,10],
submodular cost-sharing [24], Steiner trees [17,18], facility location, single-
source rent-or-buy network design [25,22,14] and Steiner forests [21]. Lower
bounds on the budget balance factor that is achievable by a cross-monotonic
cost sharing mechanism are given in [16,20,21].

Recently, Roughgarden and Sundararajan [29] introduced an alternative
measure of efficiency that circumvents the intractability results in [10,12,26]
at least partially. Let U be a universe of players and let C be a cost function
on U that assigns to each subset S ⊆ U a non-negative service cost C(S). The
authors define the social cost Π(S) of a set S ⊆ U as Π(S) = u(U \S)+C(S).
A mechanism is said to be α-approximate if the set it outputs has social cost
at most α times the minimum over all sets S ⊆ U . The intuition for this
definition loosely comes from the fact that u(U)−Π(S) = u(S)−C(S), which
is the traditional definition of efficiency; since u(U) is a constant, a set S has
minimum social cost iff it has maximum efficiency.

Roughgarden and Sundararajan then developed a framework to quantify
the extent to which a Moulin mechanism minimizes the social cost, and apply
this framework to show that the Shapley mechanism is O(log k)-approximate
for submodular functions, and that the Steiner tree cost-shares of Jain and
Vazirani [17] give a mechanism that is O(log2 k)-approximate. In a later result
Chawla, Roughgarden and Sundararajan [7] applied the framework to show
that the cost-shares of [21] are O(log2 k)-approximate for Steiner forests. In a
following paper, Roughgarden and Sundararajan [28] proved polylogarithmic
upper an lower bounds for uniform facility location, Steiner tree problems and
rent-or-buy network design problems.

1.1 Prize-Collecting Steiner Problems

Computing minimum-cost prize-collecting Steiner trees or forests is APX-
complete [3,5], and hence neither of the two problems admits a PTAS un-
less P = NP. The first constant-factor approximation for the prize-collecting
Steiner tree problem was a LP-rounding based 3-approximation by Bienstock
et al. [6], and this was improved to 2−1/k by Goemans and Williamson [11] us-
ing the primal-dual schema. One can easily modify the algorithm of Bienstock
et al. to give a 3-approximation for the PCSF problem as well; in [15], Haji-
aghayi and Jain refine Bienstock’s LP rounding idea and obtain an LP-based
2.54 approximation for the problem. The authors also present a primal-dual
combinatorial 3-approximation for the problem. This algorithm substantially
deviates from the classical framework of Goemans and Williamson, requiring

4 A. Gupta, J. Könemann, S. Leonardi, R. Ravi and G. Schäfer

crucial use of Farkas’ Lemma, wherein the dual variables are both increased
and decreased along the execution of the algorithm.

1.2 Our Results and Techniques

The first contribution of this paper is the following:

Theorem 1 There is an efficiently computable cross-monotonic cost sharing
method ξGKLRS for the prize-collecting Steiner forest problem that is 3-budget
balanced.

Our algorithm GKLRS is a natural extension of the primal-dual algorithm of
Goemans and Williamson [11] for prize-collecting Steiner trees and the cross-
monotonic cost sharing method KLS for Steiner forests presented in [21]. De-
spite its simplicity, our algorithm achieves the same approximation guarantee
as [15].

Our second result bounds the social cost of the mechanism associated with
the cost-sharing method.

Theorem 2 The Moulin mechanism M(ξGKLRS) driven by the cross-
monotonic cost sharing method ξGKLRS is Θ(log2 k)-approximate.

This result is achieved in two steps. The first step is to show that
if the Moulin mechanism M(ξKLS) is α-approximate then the mechanism
M(ξGKLRS) given by our cross-monotonic cost-sharing method ξGKLRS is
3(1 + α)-approximate for the prize-collecting Steiner forest game. As the sec-
ond step, we show that the KLS mechanism is O(log3 k)-approximate for the
Steiner Forest game. This is achieved by adding a novel methodological contri-
bution to the framework proposed in [29]: we show that such a result can also
be proved by embedding the graph distances into random HSTs [4,8] rather
than using the construction proposed by Roughgarden and Sundararajan. In-
dependently, Chawla, Roughgarden and Sundararajan [7] have shown (using
a more involved analysis) that KLS is O(log2 k)-approximate. We are opti-
mistic that the general idea of reductions between cost-sharing mechanisms
that we use in our proof will extend to the prize-collecting versions of other
optimization problems.

1.3 Organization of the Paper

In Section 2 we introduce some notations used in the paper. In Section 3 we
present the linear programming formulation for PCSF. Section 4 presents the
cross-monotonic cost-sharing scheme GKLRS for PCSF. In Section 5 we prove
the bound on the social cost for the GKLRS mechanism, whereas in Section 6
we prove the bound on the social cost for the Steiner forest mechanism KLS.

Cost-Sharing Mechanism for Prize-Collecting Steiner Forest 5

2 Preliminaries

Let U be a universe of players and let C be a cost function on U that assigns
to each subset S ⊆ U a non-negative cost C(S). We assume that C is non-
decreasing, i.e., for all S ⊆ T , C(S) ≤ C(T), and C(∅) = 0.

2.1 Moulin Mechanisms

A cost sharing method ξ is an algorithm that, given any subset S ⊆ U of
players, computes a solution to service S and for each i ∈ S determines a
non-negative cost share ξi(S). We say that ξ is β-budget balance if for every
subset S ⊆ U ,

1

β
· C(S) ≤

∑

i∈S

ξi(S) ≤ C(S).

A cost sharing method ξ is cross-monotonic if for any two sets S and T such
that S ⊆ T and any player i ∈ S we have ξi(S) ≥ ξi(T).

Moulin and Shenker [24] showed that, given a budget balanced and
cross-monotonic cost sharing method ξ for the underlying problem, the fol-
lowing cost sharing mechanism M(ξ) satisfies budget-balance and group-
strategyproofness: Initially, let S = U . If for each player i ∈ S the cost share
ξi(S) is at most her bid bi, we stop. Otherwise, remove from S all players
whose cost shares are larger than their bids, and repeat. Eventually, let ξi(S)
be the costs that are charged to players in the final set S.

2.2 Approximating Social Cost

Roughgarden and Sundararajan [29] recently introduced an alternative notion
of efficiency for cost sharing mechanisms: Every player i ∈ U has a private
utility ui. For a set S ⊆ U , define u(S) =

∑

i∈S ui. Define the social cost
Π(S) of a set S ⊆ U as

Π(S) = u(U \ S) + C(S).

Definition 1 Suppose SM is the final set of players computed by the Moulin
mechanism M(ξ) on U . Then M(ξ) is said to be α-approximate if

Π(SM) ≤ α · Π(S) ∀S ⊆ U.

Roughgarden and Sundararajan [29] proved that the Moulin mechanism
M(ξ) is (α + β)-approximate and β-budget balanced if ξ is α-summable and
β-budget balanced. The summability of a cost sharing method is defined as
follows: Assume we are given an arbitrary permutation σ on the players in U
and a subset S ⊆ U of players. We assume that the players in S are ordered
according to σ, i.e., S = {i1, . . . , i|S|} where ij ≺σ ik if and only if 1 ≤ j < k ≤
|S|. We define Sj ⊆ S as the (ordered) set of the first j players of S according
to the order σ.

6 A. Gupta, J. Könemann, S. Leonardi, R. Ravi and G. Schäfer

Definition 2 A cost sharing method ξ is α-summable if for every ordering σ
and every subset S ⊆ U

|S|
∑

j=1

ξij
(Sj) ≤ α · C(S). (1)

where Sj is the set of the first j players, and ij is the jth player according to
the ordering σ.

3 LP Formulation

Subsequently, we slightly abuse notation by using R to refer to the set of
terminal pairs and the set of terminals. For a terminal u ∈ R, let ū be the
mate of u, i.e., (u, ū) ∈ R. For a terminal pair (u, ū) ∈ R, define the death time
as d(u, ū) = 1

2dG(u, ū), where dG(u, ū) is the cost of a shortest u, ū-path (with
respect to c) in G.

Consider a cut S ⊆ V . We say S separates a terminal pair (u, ū) ∈ R iff
|{u, ū} ∩ S| = 1. We also write (u, ū) ⊙ S iff (u, ū) is separated by S. A cut S
that separates at least one terminal pair is called a Steiner cut. Let S denote
the set of all Steiner cuts. For a cut S ⊆ V , we use δ(S) to refer to the set of
all edges (u, v) ∈ E that cross S, i.e., δ(S) = {(u, v) ∈ E : |{u, v} ∩ S| = 1}.

A natural integer programming formulation for PCSF has a 0/1-variable
xe for all edges e ∈ E and a 0/1-variable xuū for all terminal pairs (u, ū) ∈ R.
Variable xe = 1 iff e ∈ F and xuū = 1 iff (u, ū) ∈ Q. The following is an integer
programming formulation for PCSF:

min
∑

e∈E

c(e) · xe +
∑

(u,ū)∈R

π(u, ū) · xuū (ILP)

s.t.
∑

e∈δ(S)

xe + xuū ≥ 1 ∀S ∈ S, ∀(u, ū) ⊙ S (2)

xe, xuū ∈ {0, 1} ∀e ∈ E, ∀(u, ū) ∈ R.

We use OPTR to refer to the cost of an optimal solution to this LP. Constraint
(2) ensures that each Steiner cut S ∈ S is either crossed by an edge of F , or
all separated terminal pairs (u, ū) ⊙ S are part of Q.

The dual of the linear programming relaxation (LP) of (ILP) is as follows.
We have a non-negative dual variable ξS,uū for all Steiner cuts S ∈ S and all

Cost-Sharing Mechanism for Prize-Collecting Steiner Forest 7

pairs (u, ū) ∈ R such that (u, ū) ⊙ S:

max
∑

S∈S

∑

(u,ū)⊙S

ξS,uū (D)

s.t.
∑

S∈S:e∈δ(S)

∑

(u,ū)⊙S

ξS,uū ≤ c(e) ∀e ∈ E (3)

∑

S∈S:S⊙(u,ū)

ξS,uū ≤ π(u, ū) ∀(u, ū) ∈ R (4)

ξS,uū ≥ 0 ∀S ∈ S, (u, ū) ⊙ S.

It is convenient to associate a dual solution {ξS,uū}S∈S,(u,ū)⊙S with a set
of dual values {yS}S∈S for all Steiner cuts S ∈ S. To this aim, we define the
dual yS of a Steiner cut S ∈ S simply as the total cost share of all its separated
terminal pairs:

yS =
∑

(u,ū)⊙S

ξS,uū.

We can think of ξS,uū, (u, ū) ⊙ S, as a cost share that terminal pair (u, ū)
receives from dual yS of S. Define the total cost share of (u, ū) as

ξuū =
∑

S∈S:S⊙(u,ū)

ξS,uū.

Clearly, with these definitions
∑

S∈S

yS =
∑

(u,ū)∈R

ξuū.

Constraint (3) of LP (D) requires that for every edge e ∈ E, the total dual
of all Steiner cuts S ∈ S that cross e is at most the cost c(e) of this edge.
Constraint (4) states that the total cost share ξuū of terminal pair (u, ū) is at
most its penalty π(u, ū).

4 A Cross-Monotonic Algorithm for the PCSF Problem

Our algorithm GKLRS for the prize-collecting Steiner forest problem
is a primal-dual algorithm, that is, it maintains a primal solution
{xe, xuū}e∈E,(u,ū)∈R together with a set of dual values {yS}S∈U (the defi-
nition of the set U is given below). The primal solution is a 0/1-solution that
is infeasible for (LP) initially. Throughout the execution of GKLRS, the degree
of infeasibility of this solution is decreased successively until eventually, we
obtain a feasible solution for (LP).

A subtle point of our algorithm is that it does not produce a set of dual
values {yS}S∈U that corresponds to a feasible solution for (D). There are two
reasons for this. First, we also raise dual values yS of cuts S that do not
correspond to Steiner cuts. We use U to refer to the set of all cuts that are

8 A. Gupta, J. Könemann, S. Leonardi, R. Ravi and G. Schäfer

raised throughout the execution of GKLRS. As a consequence, a terminal pair
(u, ū) may receive cost share ξS,uū from a non-Steiner cut S ∈ U \ S. Second,
a terminal pair (u, ū) may also receive cost share ξS,uū from a cut S that does
not separate (u, ū). However, GKLRS maintains the invariant that a terminal
pair (u, ū) only receives cost share from cuts S ∈ U that either separate or
entirely contain (u, ū), i.e., (u, ū) ⊙ S or {u, ū} ⊆ S.

We can view the execution of GKLRS as a process over time. Initially, at
time τ = 0, xτ

e = 0 for all e ∈ E, xτ
uū = 0 for all (u, ū) ∈ R and yτ

S = 0 for all
S ∈ U . Let F τ be the forest that corresponds to {xτ

e}e∈E, i.e., F τ = {e ∈ E :
xτ

e = 1}. Similarly, let Qτ be the set of all terminal pairs (u, ū) ∈ R such that
xτ

uū = 1.

We define F̄ τ as the set of all edges that are tight at time τ , i.e.,

F̄ τ = {e ∈ E :
∑

S∈U

yτ
S = c(e)}.

We use the term moat to refer to a connected component M τ in F̄ τ . A moat
M τ defines a cut S which is simply the set of vertices spanned by M τ . At
time τ , we increase the duals of all cuts defined by moats M τ ∈ F̄ τ that are
active at time τ . The notion of activity will be defined shortly. These duals
are increased simultaneously and by the same amount. Subsequently, we also
say that we grow all active moats in F̄ τ at time τ . Moreover, it is convenient
to regard the growing of moats as being identical to increasing the duals.

4.1 Activity Notion

We call a terminal pair (u, ū) ∈ R active at time τ if

ξτ
uū < π(u, ū) and τ < d(u, ū). (5)

If the above conditions do not hold, we say that (u, ū) is inactive at time τ . Let
τuū be the first time when (u, ū) becomes inactive. Observe that by definition
(5), a terminal pair (u, ū) remains inactive at all times τ > τuū. A terminal
u ∈ R is active at time τ if its pair (u, ū) is active at this time. Let Aτ be the
set of all terminals that are active at time τ .

We say that a moat M τ ∈ F̄ τ is active at time τ if it contains at least one
active terminal, i.e., M τ ∩Aτ 6= ∅. The growth of an active moat M τ is shared
evenly among all active terminals in M τ . Let M τ (u) denote the moat in F̄ τ

that contains terminal u ∈ R. More formally, we define the cost share ξτ ′

u of a
terminal u ∈ R at time τ ′ ≤ τuū as follows:

ξτ ′

u =

∫ τ ′

0

1

|M τ (u) ∩ Aτ |
dτ. (6)

Let ξτ ′

u = ξτuū
u for all τ ′ > τuū. Moreover, we define ξτ

uū = ξτ
u + ξτ

ū.

Cost-Sharing Mechanism for Prize-Collecting Steiner Forest 9

Observe that the total contribution to the cost share of a terminal pair
(u, ū) within ǫ time units is at most 2ǫ. Also, note that (u, ū) may receive cost
share from a moat M τ that contains u and ū.

The following fact follows immediately from definitions (5) and (6).

Fact 3 For all terminal pairs (u, ū) ∈ R, ξuū ≤ min{π(u, ū), 2d(u, ū)}.

Since at any point of time, the growth of all active moats is shared among
active terminals, the following must hold true.

Fact 4 For every time τ ≥ 0,

∑

S∈U

yτ
S =

∑

(u,ū)∈R

ξτ
uū.

We say that two active moats M1 and M2 collide at time τ if their vertices
are contained in the same connected component of F̄ τ ′

iff τ ′ ≥ τ . In this case,
we add a cheapest collection of edges to F τ s.t. all active vertices of M1 and
M2 are in the same connected component of F τ ′

for all τ ′ ≥ τ .

Suppose a terminal pair (u, ū) ∈ R becomes inactive at time τ = τuū

because it reaches its penalty, i.e., ξτ
uū = π(u, ū). We then add (u, ū) to Qτ .

Since (u, ū) remains inactive after time τuū, the following fact holds true.

Fact 5 Let Q be the final set of terminal pairs computed by GKLRS. Then

∑

(u,ū)∈Q

π(u, ū) =
∑

(u,ū)∈Q

ξuū

Suppose a terminal pair (u, ū) becomes inactive at time d(u, ū). The next
fact shows that (u, ū) must then be connected in F .

Fact 6 Let terminal pair (u, ū) become inactive just after time d(u, ū). Then
u and ū are connected in F .

Proof Let Puū be a shortest u, ū-path in G. Path Puū becomes tight at time
τ ≤ d(u, ū) and both u and ū are active at this time. Thus either u and ū are
already connected in F τ or Puū is added to F τ . ⊓⊔

Observe that the last fact also establishes correctness of GKLRS: The final
solution (F, Q) computed by GKLRS is a feasible solution for the given prize-
collecting Steiner forest instance.

Subsequently, we use ξGKLRS(S) to refer to final cost shares computed by
GKLRS when run on terminal set S ⊆ R. We also identify the player set U
with the terminal-pair set R.

10 A. Gupta, J. Könemann, S. Leonardi, R. Ravi and G. Schäfer

4.2 Cross-Monotonicity

We compare the execution of GKLRS on terminal set R with the one on terminal
set R−st = R \ {(s, t)} for any (s, t) ∈ R. We use G−st (G = GKLRS, F , F̄ , M ,
etc.) to refer to G in the run of GKLRS on R−st. For notational convenience,
let ξ−st(u, ū) refer to the cost share of (u, ū) in the run of GKLRS on R−st and
let ξ(u, ū) refer to the respective cost share in GKLRS on R.

Lemma 1 Consider the execution of GKLRS on R and R−st, respectively. The
following holds for every time τ ≥ 0:

1. F̄ τ
−st is a refinement of F̄ τ , i.e., F̄ τ

−st ⊆ F̄ τ .
2. For all (u, ū) ∈ R−st, ξτ

−st(u, ū) ≥ ξτ (u, ū).

Proof We prove the lemma by induction over time τ . Clearly, the lemma holds
at time τ = 0. Suppose the lemma holds at time τ .

The only moats that may potentially violate the claim F̄ τ+ǫ
−st ⊆ F̄ τ+ǫ at

time τ + ǫ for some ǫ > 0, are those that are active at time τ in GKLRS−st. Let
M−st ∈ F̄ τ

−st be a moat that is active at time τ . By the induction hypothesis,
there exists a moat M ∈ F̄ τ such that M−st ⊆ M . We argue that M must be
active at time τ in GKLRS.

Since M−st is active at time τ , there must exist a terminal u ∈ M−st such
that π(u, ū) − ξτ

−st(u, ū) > 0 and τ < d(u, ū). By our induction hypothesis,

π(u, ū) − ξτ (u, ū) ≥ π(u, ū) − ξτ
−st(u, ū) > 0.

Therefore, M must be active at time τ too. This proves the first part of the
lemma.

It remains to be shown that ξτ+ǫ
−st (u, ū) ≥ ξτ+ǫ(u, ū) for all (u, ū) ∈ R−st.

Observe that all terminal pairs that are inactive at time τ do not receive any
further cost share. Consider a terminal pair (u, ū) ∈ R−st that is active at time
τ in GKLRS−st and let M τ

−st(u) be the moat of u at time τ . From the discussion
above, we know that every terminal pair (v, v̄) ∈ R−st that is active at time
τ in GKLRS−st must be active at time τ in GKLRS, i.e., Aτ

−st ⊆ Aτ . By our
induction hypothesis, moat M τ

−st(u) is contained in the moat M τ (u) ∈ F̄ τ of
u in GKLRS. Therefore, |M τ

−st(u)∩Aτ
−st| ≤ |M τ (u)∩Aτ |. Thus, the additional

cost share that (u, ū) receives in the time interval (τ, τ + ǫ] in GKLRS−st is at
least as large as the one it receives in GKLRS. ⊓⊔

4.3 Competitiveness

We next show that the total cost share of all terminal pairs is at most the
cost of an optimal solution to the prize-collecting Steiner forest instance. The
following proof is similar to the one presented in [21].

Cost-Sharing Mechanism for Prize-Collecting Steiner Forest 11

Lemma 2 Let (F ∗, Q∗) be an optimal solution to the prize-collecting Steiner
forest instance with terminal pair set R. The cost shares ξ computed by GKLRS

for R satisfy
∑

(u,ū)∈R

ξuū ≤ c(F ∗) + π(Q∗).

Proof Consider a separated terminal pair (u, ū) ∈ Q∗. By Fact 3, we have
∑

(u,ū)∈Q∗

ξuū ≤ π(Q∗).

It remains to be shown that the total cost share of all terminal pairs (u, ū) ∈
R \ Q∗ is bounded by c(F ∗).

Consider a connected component T ∈ F ∗ and let R(T) be the set of ter-
minal pairs that are connected by T . We prove that

∑

(u,ū)∈R(T)

ξuū ≤ c(T). (7)

The lemma follows by summing over all connected components T ∈ F ∗.
We define Mτ (T) ⊆ F̄ τ as the set of moats at time τ that contain at least

one active terminal of R(T), i.e.,

Mτ (T) = {M τ(u) : u ∈ R(T) ∩ Aτ}.

Among all terminal pairs in R(T), let (w, w̄) be a pair that is active longest.
By our definition of activity in (5), all terminal pairs in R(T) are inactive after
time d(w, w̄). We show that the total growth of Mτ (T) for all τ ∈ [0, d(w, w̄)]
is at most c(T). This implies (7).

At any time τ , the moats in Mτ (T) are disjoint. Moreover, T connects all
terminals in R(T). Thus, if there exists a moat M τ ∈ Mτ (T) that intersects
an edge of T then each moat in Mτ (T) must intersect an edge of T ; we say
that the moats in Mτ (T) load T . Moreover, each moat M τ loads a different
part of T . Thus, the total growth of moats in Mτ (T) for all τ at which Mτ (T)
loads T is at most c(T).

Let τ0 ≤ d(w, w̄) be the first time such that Mτ0(T) does not load T . If
Mτ0(T) = ∅, we are done. Otherwise, we must have that Mτ0(T) = {M τ0}
and T ⊆ M τ0 . The additional growth of M τ for all times τ ∈ [τ0, d(w, w̄)] is at
most d(w, w̄) − τ0. Since w and w̄ are connected by T , this additional growth
is at most d(w, w̄) ≤ c(T)/2. This gives an upper bound of 3

2c(T) on the total
cost shares of pairs in R(T).

The following refined argument proves (7). Let Pww̄ be the unique w, w̄-
path in T . Define Mτ

ww̄ ⊆ Mτ (T) as the set of active moats different from
M τ (w) and M τ (w̄) that load Pww̄ at time τ < τ0, i.e.,

Mτ
ww̄ = {M τ ∈ Mτ (T) \ {M τ(w), M τ (w̄)} :

δ(M τ) ∩ Pww̄ 6= ∅}.

Define the degree deg(M τ) of a moat M τ ∈ Mτ
ww̄ as

deg(M τ) = |δ(M τ) ∩ Pww̄|.

12 A. Gupta, J. Könemann, S. Leonardi, R. Ravi and G. Schäfer

Proposition 1 Consider a time τ < τ0 and a moat M τ ∈ Mτ
ww̄. Then

deg(M τ) ≥ 2.

Proof Both M τ (w) and M τ (w̄) are active at time τ < τ0 and thus
{M τ (w), M τ (w̄)} ⊆ Mτ (T) (possibly M τ (w) = M τ (w̄)). By definition of
Mτ

ww̄, M τ ∈ Mτ (T) and M τ /∈ {M τ(w), M τ (w̄)}. Furthermore, M τ is dis-
joint from all other moats in Mτ (T). Suppose |M τ ∩ Pww̄| = 1. But then,
moat M τ must contain w or w̄. This contradicts the disjointness of M τ and
{M τ (w), M τ (w̄)}. ⊓⊔

By our choice of (w, w̄) ∈ R(T) as the terminal pair with largest activity
time and by our assumption that Mτ0(T) 6= ∅ it follows that both, M τ (w)
and M τ (w̄) are active for all 0 ≤ τ ≤ τ0. We define lww̄ as the total dual
growth of the moats containing w and w̄ up to time τ0. Formally, let

δτ
ww̄ =

{

2 : M τ (w) 6= M τ (w̄)
1 : otherwise

and

lww̄ =

∫ τ0

0

δτ
ww̄dτ.

It follows that the cost of path Pww̄ is at least

lww̄ +

∫ τ0

0

∑

Mτ∈Mτ
ww̄

deg(M τ)dτ.

We let slackww̄ be the difference between c(Pww̄) and the above term and
obtain

c(Pww̄) = lww̄ + slackww̄ +

∫ τ0

0

∑

Mτ∈Mτ
ww̄

deg(M τ)dτ. (8)

We define the total growth yτ0(T) produced by terminal pairs in R(T) until
time τ0 as follows:

yτ0(T) =

∫ τ0

0

|Mτ (T)|dτ.

At all times τ ≤ τ0, each moat in Mτ (T) loads at least one distinct edge of
T ; those in Mτ

ww̄ load at least two edges of T . Thus, we have

c(T) ≥ yτ0(T) + slackww̄ +

∫ τ0

0

∑

Mτ∈Mτ
ww̄

(deg(M τ) − 1)dτ. (9)

The additional growth between time τ0 and d(w, w̄) is at most d(w, w̄)−τ0.
Using (8), we obtain

d(w, w̄) − τ0 ≤
lww̄

2
− τ0 +

slackww̄

2

+

∫ τ0

0

∑

Mτ∈Mτ
ww̄

deg(M τ)

2
dτ

≤
slackww̄

2
+

∫ τ0

0

∑

Mτ∈Mτ
ww̄

(deg(M τ) − 1)dτ,

Cost-Sharing Mechanism for Prize-Collecting Steiner Forest 13

where we exploit that deg(M τ) ≥ 2 for all M τ ∈ Mτ
ww̄ and the fact that

lww̄ ≤ 2τ0. The last inequality together with (9) proves that the total growth
is at most c(T). ⊓⊔

4.4 Cost Recovery

Lemma 3 Let (F, Q) be the solution and ξ be the cost shares computed by
GKLRS on terminal pair set R, respectively. Then

c(F) + π(Q) ≤ 3
∑

(u,ū)∈R

ξuū.

Proof Following the proof of Agrawal, Klein and Ravi [1], the cost of the
constructed forest F satisfies

c(F) ≤ 2
∑

(u,ū)∈R

ξuū.

Moreover, by Fact 5

π(Q) =
∑

(u,ū)∈Q

ξuū

and hence c(F) + π(Q) ≤ 3
∑

(u,ū)∈R ξuū. ⊓⊔

5 Efficiency of GKLRS

In [7], Chawla et al. showed that the cost shares computed by KLS are also
O(log2 k)-approximate. (A simple proof that they are O(log3 k)-approximate
is given in Section 6.) In this paper, we extend this result to the prize-collecting
Steiner forest (PCSF) game. We show that the approximability of GKLRS can
be reduced to the one of KLS.

Theorem 7 If the mechanism M(ξKLS) is α-approximate then the mecha-
nism M(ξGKLRS) is 3(1 + α)-approximate.

We will prove this theorem in the rest of this section. The following fact
will be useful, and is easily proved.

Fact 8 Given a cross-monotonic cost-sharing method ξ, the final set of players
output by the Moulin mechanism M(ξ) is independent of the order of eviction.

The following lemma will allow us to partition the universe of players into two
groups and to argue about each of them separately.

Lemma 4 Consider a universe U of players, along with a non-decreasing cost
function C and a β-budget balanced and cross-monotonic cost-sharing method
ξ. Given a partition of U into two parts U1 and U2, if the Moulin mechanism
on sub-universe Ui is αi-approximate for all i ∈ {1, 2} with respect to the
induced cost-sharing method ξ|Ui

and the cost function C|Ui
, then the Moulin

mechanism is (α1 + α2)β-approximate for the entire set U with respect to ξ
and C.

14 A. Gupta, J. Könemann, S. Leonardi, R. Ravi and G. Schäfer

Proof Let A be the final set of players returned by the Moulin mechanism
when run on U . Define Ai = A ∩ Ui. Since ξ is β-budget balanced we have
C(A)/β ≤

∑

i∈A ξi(A) ≤ C(A) and hence,

Π(A) = C(A) + u(U \ A) ≤
∑

i∈A

β ξi(A) +
∑

i∈U\A

ui (10)

Consider a run of the Moulin mechanism on Uj and let Bj be the final set
of players for j ∈ {1, 2}.

Claim Bj ⊆ Aj for all j ∈ {1, 2}.

Proof Let e1, . . . , ep be the elements of Uj in the order in which they are
dropped by the Moulin mechanism when run on U . Assume for the sake of
contradiction that Bj 6⊆ Aj . In this case there must exist 1 ≤ i ≤ p s.t. ei ∈ Bj .
Choose i smallest with this property and let S be the set of players that are
still part of the game in the Moulin run on U just before ei is dropped. We
have

ui < ξi(S) ≤ ξi({ei, . . . , ep} ∪ Aj) ≤ ξi(Bj)

where the last two inequalities use the cross-monotonicity of ξ. This contradicts
the fact that ei is part of the final set of the Moulin run on Uj. ⊓⊔

Notice that the cost-share ξi(A) of players i ∈ Aj \Bj is at most the utility
ui of player i by the termination condition of the Moulin mechanism. For a
set Sj ⊆ Uj , define Πj(Sj) = C(Sj) + u(Uj \ Sj). As Bj is an αj-approximate
set of players, we then have

Πj(Bj) ≤ αjΠj(Sj)

for any set Sj ⊆ Uj .

We can now upper bound Π(A):

Π(A) = C(A) + u(U \ A) ≤
∑

i∈A

β ξi(A) +
∑

i∈U\A

ui

=

∑

i∈A1

β ξi(A) +
∑

i∈U1\A1

ui

 +

∑

i∈A2

β ξi(A) +
∑

i∈U2\A2

ui

 (11)

We upper-bound the first of the two parentheses on the right-hand side of
the above inequality. An upper bound for the second parentheses is obtained

Cost-Sharing Mechanism for Prize-Collecting Steiner Forest 15

analogously.
∑

i∈A1

β ξi(A) +
∑

i∈U1\A1

ui =
∑

i∈B1

β ξi(A) +
∑

i∈A1\B1

β ξi(A) +
∑

i∈U1\A1

ui (12)

≤
∑

i∈B1

β ξi(A) +
∑

i∈A1\B1

β ui +
∑

i∈U1\A1

ui (13)

≤
∑

i∈B1

β ξi(B1) +
∑

i∈U1\B1

β ui (14)

≤ β C(B1) +
∑

i∈U1\B1

β ui (15)

= β Π1(B1). (16)

Inequality (13) uses the fact that player i ∈ A1 \ B1 is part of the final set of
players returned by the Moulin mechanism when run on U1, and hence must
have utility at least its cost-share. We then use cross-monotonicity of ξ and
the fact that β ≥ 1 to get (14). Inequality (15) uses the competitiveness of ξ,
and the final inequality follows from the definition of Π1. Using the resulting
inequality together with (11) yields

Π(A) ≤ β (Π1(B1) + Π2(B2)) ≤ β(α1Π1(S1) + α2Π2(S2)) (17)

for any S1 ⊆ U1, S2 ⊆ U2 where we use the fact that the Moulin mechanism
when run on Uj is αj-approximate for j ∈ {1, 2}.

Finally, for any set S ⊆ U and for i = 1, 2, define Si = S ∩ Ui. Note that
since C is non-decreasing, Πj(Sj) = C(Sj) + u(Uj \ Sj) ≤ C(S) + u(U \ S) =
Π(S). Putting these together with (17), we get that Π(A) ≤ (α1 + α2)βΠ(S)
for any S ⊆ U , and hence the Moulin mechanism is (α1 + α2)β-approximate.

⊓⊔

Armed with the above lemma, let us consider the universe of players U for
the GKLRS instance, and divide them into two parts thus:

– The “high-utility” set U1 are those players i ∈ U with utility ui ≥ πi.
– The “low-utility” set U2 are the remaining players i ∈ U with ui < πi.

We now show that ξGKLRS on the sub-universes U1 and U2 is 1-
approximate and α-approximate, respectively. This together with Lemma 4
and the fact that GKLRS is 3-budget balanced (Lemma 3) proves that GKLRS

is 3(1 + α)-approximate.
We first prove the following High-Utility-Lemma:

Lemma 5 The mechanism M(ξGKLRS) is 1-approximate when restricted to
the players in the high-utility set U1.

Proof By Fact 3, ξGKLRS
i (S) ≤ πi for every set S ⊆ U and every i ∈ S. Since

ui ≥ πi ≥ ξGKLRS
i (S) for any S ⊆ U1 and i ∈ S, the players in U1 will never

be rejected by the mechanism M(ξGKLRS) when run on U1. Moreover, the set
achieving the optimal social cost is also U1, and hence the Moulin mechanism
gives the social optimum on the high-utility set. ⊓⊔

16 A. Gupta, J. Könemann, S. Leonardi, R. Ravi and G. Schäfer

We show that for low-utility players S ⊆ U2 the two runs of GKLRS(S) and
KLS(S) are identical up to a certain point of time.

Lemma 6 Let S ⊆ U2. Define τ0 as the first point of time τ at which

ξτ,GKLRS

i (S) = πi for some player i ∈ S; let τ0 = ∞ if no such time ex-
ists. Then for all τ ∈ [0, τ0) and every player j ∈ S it holds that j is active
at time τ in GKLRS(S) iff j is active at time τ in KLS(S); in particular, this
implies

ξτ,GKLRS

j (S) = ξτ,KLS

j (S) ∀τ ∈ [0, τ0), ∀j ∈ S.

Proof A necessary condition for j being active at time τ in GKLRS(S) is that
τ ≤ d(sj , tj). Thus, j is active at time τ in KLS(S) if j is active at this time in
GKLRS(S). Next, suppose j is active at time τ in KLS(S) and thus τ ≤ d(sj , tj).

Since τ < τ0, we have ξτ,GKLRS

i (S) < πi for all i ∈ S; in particular this also
holds for player j. Thus, j is active at time τ in GKLRS(S). ⊓⊔

Suppose we compare the runs of the Moulin mechanism corresponding to
the two different cost-sharing mechanisms ξGKLRS and ξKLS with the same
set of low-utility players S ⊆ U2. An immediate consequence of Lemma 6 is
that as long as some player is eliminated in either of the runs of the Moulin
mechanisms, there must be a player that the mechanisms could eliminate in
both the runs.

Corollary 1 Fix some S ⊆ U2. Suppose there is a player j ∈ S with
ξGKLRS
j (S) > uj or ξKLS

j (S) > uj. Then there is a player i such that

ξGKLRS
i (S) > ui and ξKLS

i (S) > ui.

Proof Let τ0 be as defined in Lemma 6. The claim clearly holds if τ0 = ∞ as
all cost shares in GKLRS(S) and KLS(S) are the same. Otherwise, there exists

some player i ∈ S and some τ0 = τ such that ξτ,GKLRS

i (S) = πi. Lemma 6

then implies that ξτ,GKLRS

i (S) = ξτ,KLS

i (S) = πi > ui. ⊓⊔

The next lemma essentially shows that the prizes πi play no role for the
low-utility players U2.

Lemma 7 When starting with a set of low-utility players U2, the final output
SM,GKLRS ⊆ U2 of the Moulin mechanism M(ξGKLRS) is identical to the
output SM,KLS ⊆ U2 of the Moulin mechanism M(ξKLS).

Proof Corollary 1 states that we can always identify a player i ∈ S that we
may evict in both runs of M(ξGKLRS) and M(ξKLS) as long as some player
is eliminated in either of the runs of the Moulin mechanism. We can then
eliminate player i in both the runs and use induction to show that both runs
end with the same players if we make the right choices. However, Fact 8 implies
that any choices would lead to the same outputs, as we claim. ⊓⊔

We can now prove the following Low-Utility Lemma:

Cost-Sharing Mechanism for Prize-Collecting Steiner Forest 17

Lemma 8 Restricting our attention to the low-utility set U2, the mechanism
M(ξGKLRS) is α-approximate if the mechanism M(ξKLS) is α-approximate.

Proof On the low-utility players, the solution with the optimal social cost for
PCSF would never service a player i by paying her penalty πi, since it would
be better to reject the player and pay ui < πi. This implies that the optimal
social cost Π∗

PCSF for PCSF and and the optimal social cost Π∗
SF for SF are

the same on U2. Also note that for every player set S the cost OPTPCSF (S) of
an optimal PCSF solution for S is at most the cost OPTSF (S) of an optimal SF
solution. Let ΠPCSF and ΠSF denote the social cost with respect to PCSF and
SF, respectively. Given these facts together with the fact that M(ξGKLRS) and
M(ξKLS) output the same set SM on the low-utility instances, we conclude
that

ΠPCSF (SM) = u(U2 \ SM) + OPTPCSF (SM)

≤ u(U2 \ SM) + OPTSF (SM)

= ΠSF (SM) ≤ α · Π∗
SF = α · Π∗

PCSF .

⊓⊔

6 Efficiency of KLS

We prove the following theorem:

Theorem 9 The cost shares ξKLS computed by KLS are O(log3 k)-summable.

We drop the superscript KLS in the discussion below. Suppose we are given
an arbitrary subset S ⊆ U and an ordering σ. Recall that we assume that the
terminal pairs in S are ordered according to σ. Without loss of generality, we
assume that the terminal pairs are labeled such that

S = {(s1, t1), . . . , (sl, tl)}, where l = |S|.

As before, let Si ⊆ S be the set of the first i terminal pairs of S. We use ξi(Si)
to refer to the cost share of terminal pair (si, ti), 1 ≤ i ≤ l, computed by KLS

when run on terminal pair set Si. We need to prove that

l
∑

i=1

ξi(Si) = O(log3 k · OPT(S)), (18)

where OPT(S) is the minimum Steiner forest cost for terminal set S.
We assume that the distance between every two vertices in G is at least 1,

i.e., dG(u, v) ≥ 1 for all u, v ∈ U . This assumption is without loss of generality
as we may scale the edge costs appropriately. Recall that in KLS each terminal
pair (si, ti) ∈ U has a death time d(si, ti) which is defined as half the distance
between si and ti in G. We partition terminal pairs in S into classes, depending
on their death times: A terminal pair (si, ti) ∈ S is of class r ≥ 0 if d(si, ti) ∈

18 A. Gupta, J. Könemann, S. Leonardi, R. Ravi and G. Schäfer

(2r−1, 2r]. Let r(i) be the class to which terminal pair (si, ti) belongs. We use
Sr to refer to the (ordered) set of terminal pairs in S that belong to class r.
Moreover, we define Sr

i ⊆ Si to be the set of class r terminal pairs in Si, i.e.,
Sr

i = Si ∩ Sr for every 1 ≤ i ≤ l. Let ∆S be the maximum death time among
all terminal pairs in S. Clearly, there are at most log(∆S) + 1 classes.

Since ξ is cross-monotonic, we have for every (si, ti), 1 ≤ i ≤ l,

ξi(Si) ≤ ξi(S
r(i)
i).

Thus,

l
∑

i=1

ξi(Si) ≤
l

∑

i=1

ξi(S
r(i)
i) =

log(∆S)+1
∑

r=0

∑

(si,ti)∈Sr

ξi(S
r
i). (19)

We first consider all terminal pairs of classes 0, 1, . . . , log(∆S/k) + 1. Note
that every such terminal pair has death time at most 2∆S/k. The cost share
of a terminal pair is at most twice its death time and thus

log(∆S/k)+1
∑

r=0

∑

(si,ti)∈Sr

ξi(S
r
i) ≤ k ·

4∆S

k
≤ 4∆S ≤ 2OPT(S). (20)

That is, all terminal pairs of class at most log(∆S/k) + 1 contribute at most
2OPT(S) to the left-hand side of (18). We can therefore concentrate on terminal
pairs in classes log(∆S/k) + 2, . . . , log(∆S) + 1. Note that these are at most
log k different classes. For each class r > log(∆S/k) + 1, we prove

∑

(si,ti)∈Sr

ξi(S
r
i) = O(log2(|Sr|) · OPT(S)) = O(log2 k · OPT(S)).

This together with (19) and (20) proves (18). The next lemma states that for
each class, we can assume that all death times are rounded up to the nearest
power of 2.

Lemma 9 (Rounding Lemma) Fix some r and suppose we set all death
times of terminal pairs in Sr to 2r. Let ξ̃ be the cost shares computed by KLS

with these modified death times. Then

∑

(si,ti)∈Sr

ξi(S
r
i) ≤ 3

∑

(si,ti)∈Sr

ξ̃i(S
r
i)

The proof of Lemma 9 is deferred to the end of this section.

Cost-Sharing Mechanism for Prize-Collecting Steiner Forest 19

Summability of KLS with identical death times. We next show that the cost
shares of KLS are O(log2 k)-summable if all death times are equal. Eventu-
ally, we apply the result presented in this section together with the Rounding
Lemma to each class r > log(∆S/k)+1 separately. For notational convenience,
we use S instead of Sr here.

Suppose that the death time of all terminal pairs in S is D, i.e., d(si, ti) = D
for all 1 ≤ i ≤ l; as before, we define l = |S|. Let F ∗ be a minimum cost Steiner
forest for terminal pair set S. For a tree T ∈ F ∗, let S(T) be the set of terminal
pairs in S that are spanned by T . Consider a terminal pair (si, ti), 1 ≤ i ≤ l,
of S and let T ∈ F ∗ be the tree that contains si, ti, i.e., (si, ti) ∈ S(T). Define
Si(T) as the set of terminal pairs in S that precede (si, ti) (with respect to σ)
and are also part of T ; more precisely Si(T) = Si ∩ S(T). Run KLS on Si(T)
and let ξi(Si(T)) be the respective cost share of (si, ti). As Si(T) ⊆ Si and
the cost shares computed by KLS are cross-monotonic, we have

ξi(Si(T)) ≥ ξi(Si). (21)

We prove that for each tree T ∈ F ∗, we have
∑

(si,ti)∈S(T)

ξi(Si(T)) = O(log2(|S(T)|) · c(T)). (22)

Summing over all trees T ∈ F ∗ together with (21) then shows that

l
∑

i=1

ξi(Si) = O(log2 k · OPT(S)).

Given tree T , we construct a rooted tree T ′ = (V ′, E′), also called Shapley
tree in the following, and a non-negative length function ℓ : E′ → R

+ on the
edges of T ′. We use T ′(e) to refer to the subtree of T ′ below edge e ∈ E′.
Moreover, for a vertex u ∈ V ′ let Pur be the unique u, r-path from u to the
root r of T ′. We construct T ′ such that the following conditions hold:

1. The leaves of T ′ are the terminals in S(T).
2. For every two terminals that are contained in the subtree T ′(e) for some

e ∈ E′, their distance in G is at most ℓ(e), i.e., dG(u, v) ≤ ℓ(e) for all
u, v ∈ S(T) ∩ T ′(e).

3. For every path Pur = (e1, . . . , em) from terminal u ∈ S(T) to the root r of
T ′, we have
(a) ℓ(e1) = 1,
(b) ℓ(ej) = 2ℓ(ej−1) for all 1 < j ≤ m, and
(c) ℓ(em) ≥ D.

4. The total length of T ′ is at most O(log |S(T)|) times the total cost of T ,
i.e., ℓ(T ′) = O(log(|S(T)|) · c(T)).

We use tree T ′ to define Shapley cost shares for all terminals in S(T):
Let T ′[Si(T)] be the induced subtree of T ′ on terminals pair set Si(T). For a
terminal pair (si, ti) ∈ S(T), we define ξ′i(Si(T)) to be the sum of the respective
Shapley cost shares of terminals si and ti in T ′[Si(T)].

20 A. Gupta, J. Könemann, S. Leonardi, R. Ravi and G. Schäfer

Lemma 10 Let T ′ be the Shapley tree of T and let ξ′ be the respective Shapley
cost shares. Then

∑

(si,ti)∈S(T)

ξ′i(Si(T)) ≤ H|S(T)| · ℓ(T
′).

Proof As T ′[S1(T)] ⊆ T ′[S2(T)] ⊆ · · · ⊆ T ′[Sl(T)], the cost share contribution
of an edge e ∈ E′ to the left-hand side of the inequality is at most H|S(T)| ·ℓ(e).
Summing over all edges e ∈ E′ of tree T ′ proves the lemma. ⊓⊔

We next show that the cost share ξi(Si(T)) of terminal pair (si, ti) is upper
bounded by its corresponding Shapley cost share ξ′i(Si(T)) in T ′[Si(T)]. This
together with Lemma 10 and Property 4 establishes (22).

Lemma 11 The cost share ξi(Si(T)) of terminal pair (si, ti) ∈ S(T) is at
most its Shapley cost share ξ′i(Si(T)).

Proof All terminals in S(T) are active until time D. The cost share ξu(Si(T))
of a terminal u ∈ {si, ti} in KLS is then defined as

ξu(Si(T)) =

∫ D

τ=0

dτ

aτ
i (u)

where aτ
i (u) is the number of active terminals in u’s moat at time τ in the run

of KLS(Si(T)). We bound the cost share that u = si receives in KLS(Si(T)) by
its Shapley cost share. An analogous argument holds for u = ti.

Consider the induced subtree T ′
i = T ′[Si(T)] on Si(T). Let Pur =

(e1, . . . , em) be the unique u, r-path in T ′
i . Consider an edge ej , 1 < j ≤ m

and let T ′
i (ej) be the subtree of T ′

i below edge ej. We use mi(ej) to refer to
the number of terminals in T ′

i (ej); define mi(e1) = 1. The Shapley cost share
that u received for edge ej is ℓ(ej)/mi(ej). Thus,

ξ′u(Si(T)) =

m
∑

j=1

ℓ(ej)

mi(ej)
.

Let x be any terminal in T ′
i (ej). By Property 2, we have dG(u, x) ≤ ℓ(ej). Since

both x and u are active until time D, their respective moats in KLS(Si(T))
must have met by time at most dG(u, x)/2 ≤ ℓ(ej)/2 = ℓ(ej−1). Thus, aτ

i (u) ≥
mi(ej) for all τ ≥ ℓ(ej−1) for all 1 < j ≤ m.

Note that the cost share that u receives up to time 1 is at most 1. As
ℓ(e1) = 1 and ℓ(em) ≥ D, we can write

ξu(Si(T)) =

∫ D

τ=0

dτ

aτ
i (u)

≤ 1 +

m
∑

j=2

∫ ℓ(ej)

τ=ℓ(ej−1)

dτ

aτ
i (u)

≤ 1 +

m
∑

j=2

∫ ℓ(ej)

τ=ℓ(ej−1)

dτ

mi(ej)

= 1 +

m
∑

j=2

ℓ(ej−1)

mi(ej)
≤ ξ′u(Si(T)).

⊓⊔

Cost-Sharing Mechanism for Prize-Collecting Steiner Forest 21

Tree construction: There are several ways to obtain a tree T ′ that satisfies
Properties 1–4. For example, the HSTs construction given by Fakcharoenphol
et al. [8] satisfies all Properties 1–3 and Property 4 on expectation.

Alternatively, using ideas similar to the one presented in [29], we may insert
terminals one-by-one and obtain a tree T ′ whose vertices are terminals in S(T)
and that satisfies Properties 2, 3(b), 3(c) and 4. In order to achieve Property
1 and 3(a), we simply replace each non-leaf terminal u with parent edge e in
T ′ by a path (e1, . . . , em) with ℓ(em) = ℓ(e)/2 and ℓ(e1) = 1. Clearly, this
construction will add an additional cost of at most ℓ(T ′).

Rounding Lemma. Consider the set S = Sr of class r terminals and let l = |S|.
As before we assume that S is ordered according to σ and Si refers to the set
of the first i terminal pairs of S. For a terminal u ∈ {si, ti}, we also use Su

to refer to the corresponding set of terminal pairs Si. Define µ = 2r−1, i.e.,
d(si, ti) ∈ (µ, 2µ] for all 1 ≤ i ≤ l.

Recall that in KLS a terminal u ∈ {si, ti} is called active at time τ if
τ ≤ d(si, ti); it is said to be inactive otherwise. A terminal receives cost share
only if it is active. For a terminal u that is active at time τ in KLS(S), define
aτ

u(S) as the number of active terminals in u’s moat. The cost share that an
active terminal u receives at time τ is defined as ξτ

u(S) = 1/aτ
u(S). The cost

share ξτ
siti

(S) of terminal pair (si, ti) at time τ is defined as ξτ
si

(S) + ξτ
ti

(S).
Fix a point of time τ ∈ (µ, 2µ]. Without loss of generality, let ξτ

si
(Si) ≥

ξτ
ti

(Si) for every terminal pair (si, ti), 1 ≤ i ≤ l. We say si is the dominating
terminal of (si, ti). Note that ξτ

siti
(Si) ≤ 2ξτ

si
(Si). Let Dτ be the set of all

dominating terminals that are active at time τ . The following technical lemma
is the key to proving Lemma 9. It shows that for every terminal si ∈ Dτ the
cost share ξτ

si
(Si) that si receives at time τ can be charged to the cost share

that some terminal f τ (si) in Si received at time τ −µ. Moreover, the mapping
f τ is injective. This will enable us to charge the total cost share collected by
terminals in Dτ at time τ in KLS(Si) to the total cost share of terminals in Si

at time τ − µ.

Lemma 12 Let Dτ be the set of all dominating terminals that are active at
time τ ∈ (µ, 2µ]. There exists a mapping f τ : Dτ → S such that the following
conditions hold:

1. For each si ∈ Dτ we have ξτ
si

(Si) ≤ ξτ−µ
fτ (si)

(Sfτ (si)).

2. For all si, sj ∈ Dτ , i 6= j, we have f τ (si) 6= f τ (sj).

Proof We use M τ
u (S) to refer to the moat of u at time τ in the run of KLS on

terminal set S ⊆ R. Subsequently, we exploit the following two properties of
KLS (see [19,21] for the proofs of these facts).

Fact 10 Let S ⊆ R and consider a terminal u ∈ S. For every τ ′ ≤ τ we have
M τ ′

u (S) ⊆ M τ
u (S).

Fact 11 Let S′ ⊆ S ⊆ R and consider a terminal u ∈ S′. For every τ we have
M τ

u (S′) ⊆ M τ
u (S).

22 A. Gupta, J. Könemann, S. Leonardi, R. Ravi and G. Schäfer

We assume that the set of dominating terminals Dτ is ordered according
to σ. We define f τ inductively. Suppose f τ satisfies Conditions 1 and 2 of the
lemma for the first n − 1 terminals in Dτ . (Let f τ be the empty mapping
for n = 0.) We define f τ (si) of the n-th terminal si of Dτ while maintaining
Conditions 1 and 2.

Assume ξτ
si

(Si) = 1/x. Let Csi
= M τ

si
(Si) be the set of all terminals that

are contained in si’s moat at time τ . Note that |Csi
| ≥ x. Order the set Csi

according to σ and delete all terminals except the first x ones. We call the
resulting terminal set Csi

the candidate set of si. Note that Csi
⊆ M τ

si
(Si).

We will eventually define f(si) = û for some û ∈ Csi
.

Consider the m-th terminal u of Csi
, 1 ≤ m ≤ x. Note that all terminals

in M τ−µ
u (Su) are active at time τ − µ because all terminal death times are

larger than µ. By Facts 10 and 11 we have M τ−µ
u (Su) ⊆ M τ

u (Su) ⊆ M τ
u (Si) =

M τ
si

(Si). Therefore, the moat M τ−µ
u (Su) contains at most m terminals. Since

m ≤ x, we have ξτ−µ
u (Su) ≥ 1/x for all u ∈ Csi

.
Next we show that there always exists a choice of a terminal û ∈ Csi

such
that f τ (sj) 6= û for all sj ∈ Dτ , j < i. The proof is by contradiction. Suppose
that for each terminal u ∈ Csi

there exists a terminal sj ∈ Dτ , j < i, with
f τ (sj) = u. Note that by our induction hypothesis, f τ (sj) 6= f τ (sk) for all j 6=
k and j, k < i. Consider some u ∈ Csi

and let sj ∈ Dτ , j < i, with f τ (sj) = u.
By our construction of the candidate set, we have u = f τ (sj) ∈ Csj

⊆ M τ
sj

(Sj).
Moreover, M τ

sj
(Sj) ⊆ M τ

sj
(Si) by Fact 11. This implies that both M τ

sj
(Si) and

M τ
si

(Si) contain u and therefore must be identical. As a consequence, sj is an
active terminal of M τ

si
(Si) (recall that sj is active because sj ∈ Dτ). Because

this holds for every u ∈ Csi
, this leads to a contradiction to the assumption

that ξτ
si

(Si) = 1/x since we have identified |Csi
| ≥ x active terminals in

M τ
si

(Si) that are different from si. ⊓⊔

We can then proof Lemma 9:

Proof (Proof of Lemma 9) First observe that the executions of KLS with and
without rounded death times are identical until time µ. Thus

l
∑

i=1

∫ µ

τ=0

ξτ
siti

(Si)dτ =

l
∑

i=1

∫ µ

τ=0

ξ̃τ
siti

(Si)dτ ≤
l

∑

i=1

ξ̃siti
(Si). (23)

For time τ ∈ (µ, 2µ] let f τ be a mapping as constructed in Lemma 12. Since
si is the dominating terminal of (si, ti), we have

l
∑

i=1

ξτ
siti

(Si)dτ ≤ 2

l
∑

i=1

ξτ
si

(Si)dτ ≤ 2

l
∑

i=1

ξτ−µ
fτ (si)

(Sfτ (si))dτ ≤ 2

l
∑

i=1

ξτ−µ
siti

(Si)dτ,

where we used Condition 1 and 2 of Lemma 12 for the second and last in-
equality, respectively. Integrating over all time instants in (µ, 2µ], we obtain

l
∑

i=1

∫ 2µ

τ=µ

ξτ
siti

(Si)dτ ≤ 2

l
∑

i=1

∫ µ

τ=0

ξτ
siti

(Si)dτ
(23)

≤ 2

l
∑

i=1

ξ̃siti
(Si).

⊓⊔

Cost-Sharing Mechanism for Prize-Collecting Steiner Forest 23

7 Conclusions

In this paper we presented a first cross-monotonic cost sharing mechanism
for the price-collecting Steiner forest problem that is 3-budget balanced and
O(log2 k)-approximate with respect to social cost. This result is obtained by
developing a much simpler primal-dual approach than the one suggested in
[15] while achieving the same approximation ratio and cross-monotonicity. We
also present a general method that turns a mechanism that approximates
social cost for an optimization problem into a mechanism that approximates
social cost for the corresponding prize-collecting version. We hope that both
techniques will help in achieving similar results for a wider class of network
design problems.

References

1. Agrawal, A., Klein, P., Ravi, R.: When trees collide: an approximation algorithm for
the generalized Steiner problem on networks. SIAM J. Comput. 24(3), 440–456 (1995).
(Preliminary version in 23rd STOC, 1991)

2. Archer, A., Feigenbaum, J., Krishnamurthy, A., Sami, R., Shenker, S.: Approximation
and collusion in multicast cost sharing. Games and Economic Behavior 47(1), 36–71
(2004)

3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the
hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

4. Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic applica-
tions. In: Proceedings of the 37th Symposium on the Foundations of Computer Science
(FOCS), pp. 184–193 (1996)

5. Bern, M., Plassman, P.: The Steiner problem with edge lengths 1 and 2. Information
Processing Letters 32, 171–176 (1989)

6. Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.P.: A note on the prize
collecting traveling salesman problem. Math. Program. 59, 413–420 (1993)

7. Chawla, S., Roughgarden, T., Sundararajan, M.: Optimal cost-sharing mechanisms for
steiner forest problems. In: Pooc. of the Second International Workshop on Internet
and Network Economics, WINE 2006, pp. 112–123 (2006)

8. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. System Sci. 69(3), 485–497 (2004)

9. Feigenbaum, J., Krishnamurthy, A., Sami, R., Shenker, S.: Hardness results for multicast
cost-sharing. Theoretical Computer Science 304, 215–236 (2003)

10. Feigenbaum, J., Papadimitriou, C.H., Shenker, S.: Sharing the cost of multicast trans-
missions. J. Comput. System Sci. 63(1), 21–41 (2001). Special issue on internet algo-
rithms

11. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained
forest problems. SIAM J. Comput. 24(2), 296–317 (1995). (Preliminary version in 5th

SODA, 1994)
12. Green, J., Kohlberg, E., Laffont, J.J.: Partial equilibrium approach to the free rider

problem. Journal of Public Economics 6, 375–394 (1976)

13. Gupta, A., Srinivasan, A., Tardos, É.: Cost-sharing mechanisms for network design. In:
Proceedings of the Seventh International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (2004)

14. Gupta, A., Srinivasan, A., Tardos, É.: Cost-sharing mechanisms for network design.
Algorithmica 50(1), 98–119 (2008)

15. Hajiaghayi, M.T., Jain, K.: The prize-collecting generalized steiner tree problem via
a new approach of primal-dual schema. In: Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), pp. 631–640 (2006)

24 A. Gupta, J. Könemann, S. Leonardi, R. Ravi and G. Schäfer

16. Immorlica, N., Mahdian, M., Mirrokni, V.S.: Limitations of cross-monotonic cost sharing
schemes. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 602–611. ACM Press (2005)

17. Jain, K., Vazirani, V.: Applications of approximation algorithms to cooperative games.
In: Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing
(STOC), pp. 364–372 (2001)

18. Kent, K.J., Skorin-Kapov, D.: Population monotonic cost allocations on MSTs. In:
Proceedings of the 6th International Conference on Operational Research (Rovinj, 1996),
pp. 43–48. Croatian Oper. Res. Soc., Zagreb (1996)

19. Könemann, J., Leonardi, S., Schäfer, G.: A group-strategyproof mechanism for Steiner
forests. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 612–619. ACM Press (2005)

20. Könemann, J., Leonardi, S., Schäfer, G., van Zwam, S.: From primal-dual to cost shares
and back: a stronger LP relaxation for the Steiner forest problem. In: Automata,
languages and programming, Lecture Notes in Comput. Sci., vol. 3580, pp. 930–942.
Springer, Berlin (2005)

21. Könemann, J., Leonardi, S., Schäfer, G., van Zwam, S.H.M.: A group-strategyproof
cost sharing mechanism for the Steiner forest game. SIAM J. Comput. 37(5), 1319–
1341 (2008)

22. Leonardi, S., Schäfer, G.: Cross-monotonic cost sharing methods for connected facility
location games. Theor. Comput. Sci. 326(1-3), 431–442 (2004)

23. Moulin, H.: Incremental cost sharing: Characterization by coalition strategy-proofness.
Social Choice and Welfare 16, 279–320 (1999)

24. Moulin, H., Shenker, S.: Strategyproof sharing of submodular costs: budget balance
versus efficiency. Econom. Theory 18(3), 511–533 (2001)

25. Pál, M., Tardos, E.: Group strategyproof mechanisms via primal-dual algorithms. In:
Proceedings of the 44th Symposium on the Foundations of Computer Science (FOCS),
pp. 584–593 (2003)

26. Roberts, K.: The characterization of implementable choice rules. In: J.J. Laffont (ed.)
Aggregation and Revelation of Preferences. North-Holland (1979)

27. Roughgarden, T., Sundararajan, M.: New trade-offs in cost-sharing mechanisms. In:
Proceedings of the 38th Annual ACM Symposium on Theory of Computing, STOC06,
pp. 79–88 (2006)

28. Roughgarden, T., Sundararajan, M.: Optimal efficiency guarantees for network design
mechanisms. In: Proceedings of the 12th International Conference on Integer Program-
ming and Combinatorial Optimization, IPCO’07, pp. 469–483 (2007)

29. Roughgarden, T., Sundararajan, M.: Quantifying inefficiency in cost-sharing mecha-
nisms. J. ACM 56(4) (2009)

