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Introduction to the thesis 

 

Space navigation deals with the determination of the kinematic 

state (position, velocity, attitude) of a spacecraft. The kinematic 

state can be obtained based on the output of suitable sensors and 

by means of appropriate computation. As far as it concerns the 

sensors, the optoelectronic ones – already present – are facing 

increasing interest and applications. The success of these sensors 

depends on the improved performance, the reduced cost (also as a 

result of a strong commercial growth for parent terrestrial 

products) as well as on the availability of computation resources 

required to efficiently process the images. It clearly appears that 

the interest for these sensing technologies will continue in the 

future, and their application will spread to all classes of space 

platforms, including the small cubesats. 

 

The thesis is devoted to investigate some aspects related to the use 

of the optoelectronic sensors – indeed the word techniques – on-

board spacecraft.  
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First, the focus is on the star tracker, deemed as the most accurate 

(and the most expensive) of the attitude sensors, and considered to 

be the flagship of the space optoelectronic instrument, with 

complex hardware and strong computational requirements. The 

two initial chapters are devoted to resume star tracker basics and 

to recall the attitude determination techniques. 

Then, the  following part of the thesis deals with some more 

original contribution considering the calibration of the star 

trackers.  This is a topic of high current interest as it greatly affects 

the cost of the hardware. Instead of carrying on long expensive 

test campaign at the facility, a simpler and faster two steps process 

with a “raw”, preparatory phase at the production site and a final, 

possibly autonomous, accurate calibration once in orbit can 

produce valuable results. The third chapter reports the 

simulations and the findings for this proposed technique. 

Some more general discussion is required to introduce the last 

part of this dissertation. Space probes increasingly explore the 

solar system, up to faraway planets. Orbit determination of these 

probes, based on radio tracking from Earth, becomes clearly less 

accurate as the distance from Earth increases. Above all, the time 

required for telemetry/navigation data downlink and tele-

command uplink also increases with distance from Earth and 

therefore real-time manoeuvres and operations become 

impossible. When a spacecraft is close to a planetary target (or 

celestial body, including comets and asteroids), optical navigation 
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– in use since the experiments with Mariner 6 and 7 missions to 

Mars (1969) – can nowadays ensures accurate estimates of the 

relative kinematics and allows to conceive manoeuvres computed 

on-board, autonomously and in real time. This technique, based 

on imaging and on the comparison with already known data as 

previously captured images, celestial catalogues or ephemerides, 

helps with the determination of the complete kinematic state of 

the spacecraft, relative to the target. Indeed, it is similar to attitude 

determination traditionally carried out by means of star trackers, 

where the spacecraft’s orientation is computed thanks to a priori 

information included in the star catalogue. The similarity in 

concept, with imaging process and comparison to stored 

information, introduces the question if star tracker’s and 

proximity cameras’ functions can be exploited by the same on-

board hardware. The availability of a universal optical navigation 

sensor, sharing a large part of its expensive components, could 

really be an enabling technology for a more effective space 

exploration. 

 

The aim of this study is to investigate and analyse this possibility, 

which is collecting more and more interest. The main issue is the 

identification of the sensor’s configuration – as an example 

beginning with multi-head star trackers with different optics and 

focal lengths – and algorithms allowing to improving star trackers 

performances and to exploit this twin use. This identification 
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moves through a correct modelling of the sensor behaviour. The 

combination between star trackers and proximity cameras as 

position/attitude sensors could obviously allow a reduction in 

costs, and – probably more important at the current, preliminary 

status of this approach – provide a back-up solution in case of 

failures thanks a possible, even non-optimal redundancy. 

Furthermore, the interest of this study is not limited to deep space 

missions, and may be extended to other vehicles currently using 

star trackers and cameras as the planetary rovers. 
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Star Tracker 

 
1.1. Overview 
 

Star Trackers are optoelectronic instruments providing the 

attitude of the satellites through star observations and are 

considered among the most accurate attitude sensors. The 

estimate of spacecraft attitude is obtained starting from the 

measurements of star coordinates in the body reference frame and  

comparing these “observed” coordinates with the “known” star 

directions stored in the on-board star catalogue [1]. 

 

A CCD detector reveals the observed stars in the field of view 

(FOV) of the sensor. On the basis of the classical pinhole scheme 

[1] [2] the data processing section of the Star Tracker is capable to 

associate a unit vector (or a line of sight) to each captured star (see 

Fig. 2). 
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Fig. 1  – Example of Star Tracker HW [1] 

 

 

 

Fig. 2 – Model of Star Tracker: projection of stars on CCD detector [3] 

 

 

An example of the image captured by the star tracker is 

represented in Fig. 3, produced with the simulator prepared and 

used for this research work. 
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Fig. 3 – Observed stars on Star Tracker detector (CCD) 

 

 

The Star Tracker can identify the stars in the image with the 

corresponding ones in a catalogue available on-board based on the 

measurements of the angles between them in the two frames, i.e. 

the angles among the measured lines of sight in the Star Tracker 

reference frame and the ones reported by the catalogue in an 

inertial reference frame. In fact, the inter-star angles are invariant 

with respect to the rotation transformation operated on the point 

of view. Let  ̂  and  ̂  the i-th and j-th star catalogued unit vectors 
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in the inertial reference frame          ,  ̂  and  ̂  the i-th and 

j-th measured star vectors in the sensor reference frame       , 

(see Fig. 2), then: 

 

 ̂ 
  ̂   ̂ 

  ̂                                            (2-1) 

 

 

Once the stars have been identified, the rotation transforming the 

body-frame observation vectors to the inertial frame catalogue 

vectors offers the attitude matrix. 

 

This attitude estimate clearly depends on the performance of the 

overall sensors’ chain, in terms of imaging, signal processing, 

computation algorithm, catalogue accuracy. Considering the 

imaging part, a significant contribution is given by a precise 

knowledge of the optical characteristics, as focal length ( ), offset 

of the bore-sight (     ) and possible focal plane optical 

distortions [4] [5]. Indeed, from Fig. 2 the module of measured star 

unit vectors  ̂, in the case the sensor is not affected by focal plane 

optical distortion, is: 

 

| ̂|  
 

√(    )  (    )    
[

 (    )

 (    )

 
]                    (2-2) 
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1.2. Characteristics 
 

A typical architecture of a star tracker is represented in the 

following figure [1]: 

 

 

Fig. 4 – Star Tracker HW architecture [1] 

 

 

The main HW components are:  

 Optical System, composed by two main elements: 

1. Lens system, that converges the stars’ light into the 

focus of the optical head and filters the desired 

wavelength of the stars’ light; 

 

2. Stray-light shield, that protects the detector from 

undesired light sources (e.g. Sun light, Earth albedo, 

moonlight, light reflections, …). Without this shield, 

the Star Sensor can become inoperable. 
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 Detectors for Starlight, that detects the presence of stellar 

images and their coordinates in matrix board. Nowadays 

are generally used two types of detectors:  

1. CCD (Charge Coupled Device), that is a solid-state 

integrated circuit, built as a matrix of photosensitive 

semiconductor elements called pixels. The standard 

CCD size is 512 x 512 pixels, providing a good 

angular resolution. The CCD detector has a scanning 

mechanism that records any illuminated cell.  The 

charge collected by the cell is stored in horizontal 

and vertical sliding registers and transfer to the 

electrics without any treatment (see Fig. 5).  

 

 

Fig. 5 – CCD detector 
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There is an amplification of the signal for each read-

out channel; in the scheme reported in Fig. 5 there is 

only one channel. The output of the CCD detector is 

an analogic signal. 

 

2. CMOS (Complementary Metal-Oxide-Semiconductor), 

type APS (Active-Pixel Sensor), that is an integrated 

circuit containing a matrix of pixel sensors, each 

pixel containing a photo-detector and an active 

amplifier. The standard APS size is 1024x1024 pixels. 

 

 

Fig. 6 – APS detector 

 

 

 



 

 

 

Star Tracker 

 
 

 

 

16 

 

 

\r 

Differently from the CCD detector, there is an 

amplification of the signal for each single pixel, for 

each column and read-out channel (see Fig. 6). The 

output of the APS detector is a digital signal. 

 

 Electronics and Signal Processing HW. The Electronics 

allows to properly operate to the HW, the CPU and the 

Memory Units. The Signal Processing HW elaborates the 

signal coming from the detector, calculates the star 

coordinates, comparing with the information stored in the 

on-board catalogue, and provides the estimate of attitude.  
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Attitude determination 

 
2.1. Attitude determination 
 

The problem to determine the orientation, pointing or attitude of a 

spacecraft can be solved in different ways. The simplest one is to 

specify the relative orientation of a triad with respect to some 

reference coordinate frame.  

 

 

2.1.1. Reference frames 
 

In this paragraph are introduced the reference frames that will be 

used in the following for the attitude determination of the 

spacecraft. In particular, the basic types of coordinate systems are 

four: 
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 Fixed relative to the body of the spacecraft; 

 Fixed in inertial space; 

 Relative to the orbit and not fixed to either the spacecraft or 

inertial space. 

 Fixed relative to the target 

 

 

Body reference frame 

 

The body reference frame, defined by orthogonal, right-handed 

triad  ̂  ̂  ̂, such as: 

 

 ̂   ̂   ̂                                               (3-1) 

 

 

is the reference frame fixed to the spacecraft bus. As the sensors 

are rigidly mounted to the bus, the measurements coming from 

the star trackers are taken in this reference frame.  

 

 

Inertial reference frame 

 

The commonly accepted inertial reference frame is defined as a 

non-rotating frame, with origin in the centre of Earth and axes X, 

Y, Z defined with respect to the fixed stars [1] [6]. The X-axis, also 
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called vernal axis,  is oriented towards the Aries point (or vernal 

point)1; the Z-axis is coincident to the Earth rotation axis and 

oriented towards the North pole; the Y-axis completes a right-

hand orthogonal axis frame. The unit vectors triad individuating 

the Inertial Reference Frame is  ̂ ,  ̂ ,  ̂ , respectively directed 

towards X, Y and Z axes. Due to the precession of the equinoxes, 

an apparent movement of the star (star motion) occurs in this 

system at the rate of approximately 50 arcsec per year. For this 

reason, it is necessary to associate a date to this kind of system. 

The most commonly used systems are 1950 coordinates, 2000 

coordinates (J2000) and true of date [1]. 

 

 

Orbit reference frame 

 

The Orbit-Defined reference frame, defined by orthogonal, right-

handed triad  ̂  ̂  ̂, such as: 

 

 ̂   ̂   ̂                                               (3-2) 

 

 

The  ̂ axis is parallel to the orbital radius of the spacecraft, positive 

outward from the centre the Earth. The  ̂ axis is normal to the 

                                                 
1
 The Aries point is the intersection point between the celestial equator and the ecliptic, 

also called equinox, and corresponding to the spring equinox (March 21
st
). 
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orbit plane.The  ̂ axis lies on the orbit plane, orthogonal to the two 

ones previously defined, and positively oriented towards the 

direction of motion [1] [6]. 

 

 

Target reference frame 

 

The target reference frame, defined by orthogonal, right-handed 

triad  ̂   ̂   ̂ , such as: 

 

 ̂   ̂   ̂                                             (3-3) 

 

 

is the reference frame representing the desired pointing [1] [6]. 

 

 

2.1.2. Attitude matrix 
 

Let us consider a spacecraft as a rigid body identified by the body 

reference frame  ̂  ̂  ̂. The angular position relative to the Inertial 

Reference Frame  ̂   ̂   ̂  can be defined by the attitude matrix A 

[1] [7].  
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Fig. 7 – Body and Inertial Reference Frames 

 

 

Consider a vector  ⃗ , e.g. the spacecraft velocity vector. If  ⃗  and  ⃗   

are the Cartesian representation of the same vector in two 

different reference frames, then: 

 

 ⃗     ⃗                                           (3-4) 

 

 

where the vector    represents the translation of the origin from the 

first reference frame to the second one, and A is the 

transformation matrix indicating the rotation of the axes between 

the two frames (called Attitude Matrix or Direction Cosine Matrix).  
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Considering the two frames centred in the same point (translation 

    ⃗⃗ ), the vector  ⃗  can be written in the two reference frames: 

 

 ⃗    ̂    ̂    ̂    ̂    ̂    ̂                  (3-5) 

 

 

then, from calculus: 

 

[
 
 
 
]  [

 ̂   ̂  ̂   ̂  ̂   ̂ 

 ̂   ̂  ̂   ̂  ̂   ̂ 

 ̂   ̂  ̂   ̂  ̂   ̂ 

] [
 
 
 
]   [

 
 
 
]            (3-6) 

 

 

Therefore, the attitude matrix A is composed by the directional 

cosines between the two reference frames, i.e. the 9 scalar 

quantities: 

 

   [

 ̂   ̂  ̂   ̂  ̂   ̂ 

 ̂   ̂  ̂   ̂  ̂   ̂ 

 ̂   ̂  ̂   ̂  ̂   ̂ 

]                             (3-7) 

 

 

Because the matrix components derive from the unit vectors, A is 

an orthonormal matrix and has the following properties: 
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 Its inverse transformation matrix is equal to its transposed 

matrix: 

 

                                            (3-8) 

 

 

 Its determinant is equal to 1: 

 

   ( )                                       (3-9) 

 

 

 Its eigenvalues have unit norm: 

 

                                          (3-10) 

 

 

where   ,    are respectively the eigenvalues and the 

eigenvectors. 
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2.2. Attitude determination methods 
 

A recurrent problem in spacecraft attitude determination is to 

determine the attitude, in other worlds the attitude matrix A, from 

a set of vector measurements.  

Given a set of observation (or measured) unit vectors  ̂      ̂  

and relative reference unit vectors  ̂      ̂ , which are n known 

directions in the reference coordinate systems, the problem of 

attitude determination is to solve:  

 

  ̂    ̂                    (       )       (3-11) 

 

 

Because both measured and relative reference unit vectors are 

affected by errors, the solution of the attitude matrix A does not 

exist in general, even for    . 

 

A lot of studies have been done in order to improve the attitude 

estimate accuracy and to define faster algorithms capable to be 

implemented on-board of satellite. In this paragraph three 

different methods will be presented: TRIAD, q-method and 

QUEST. 

 



 

 

 

Attitude Determination 

 
 

 

 

25 

 

 

\r 

2.2.1. TRIAD method 
 

The TRIAD algorithm [1] [8] [9] is a deterministic method, based 

on the rotation matrix representation of the attitude. Given two 

non-parallel observation vectors  ̂  and  ̂ , with their relative 

reference vectors  ̂  and  ̂ , the solution of eq. (3-11) is the attitude 

matrix A that satisfies: 

 

{
  ̂    ̂ 

  ̂    ̂ 

                                          (3-12) 

 

 

Because the solution is over determined by the above equations, 

any two unit vectors we can define an orthogonal coordinate 

system with basic vectors  ̂,  ̂,  ̂ given by: 

 

(for  ̂  and  ̂ ) 

 ̂    ̂                                               (3-13a) 

 ̂    ̂   ̂  | ̂   ̂ |                      (3-13b) 

 ̂    ̂   ̂                                         (3-13c) 

 

 

(for  ̂  and  ̂ ) 

 ̂    ̂                                             (3-14a) 

 ̂    ̂   ̂  | ̂   ̂ |                (3-14b) 
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 ̂    ̂   ̂                                        (3-14c) 

 

 

where the subscript B denote the measured vectors in the 

spacecraft body coordinates and the subscript R the observation 

vectors in the reference frame (e.g. the inertial reference frame). At 

given time, two measured vectors determine the body matrix   : 

 

    [ ̂     ̂     ̂ ]                                 (3-15) 

 

 

and relative reference vectors in the reference frame,   : 

 

    [ ̂     ̂     ̂ ]                                 (3-16) 

 

 

The attitude matrix A is given by eq. (3-11): 

 

                                                  (3-17) 

 

 

that can be solved for A to give: 

 

       
                                           (3-18) 
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Because    is orthogonal, then: 

 

  
      

                                          (3-19) 

 

 

and hence there exists a unique orthogonal matrix A which satisfy: 

 

       
                                         (3-20) 

 

 

The eq. (3-20) defines the TRIAD solution. 

 

Note that inverse trigonometric functions are not required: a 

unique, unambiguous attitude is obtained and computation 

requirements are minimal. The simplicity of eq. (3-20) made it 

attractive for on-board processing. There are no requirements in 

the choice of the coordinate system for measured and observed 

vectors, but the only two requirements are: 

 

1)    possess an inverse, which follows because for  ̂  and 

 ̂  are nonparallel, i.e.: 

 

| ̂     ̂ |                                      (3-21) 

 



 

 

 

Attitude Determination 

 
 

 

 

28 

 

 

\r 

hence the unit vectors  ̂ ,  ̂  and  ̂  are linearly 

independent. 

 

2)                                 ̂     ̂    ̂     ̂                              (3-22)  

 

 

that is the necessary and sufficient condition for which the 

attitude matrix given by eq. (3-20) also satisfy eq. (3-12). 

 

The TRIAD solution is not symmetric in indices 1 and 2. The 

preferential treatment of the vectors  ̂  and  ̂  in eq. (3-13a) and 

eq. (3-14a) over the vectors  ̂  and  ̂  suggest that  ̂  and  ̂  

should be the more accurate measurements: this ensures that the 

attitude matrix A transforms  ̂  from the reference frame to the 

body frame exactly and vector  ̂  is used only to determine the 

phase angle about  ̂ . This method identifies the attitude by first 

discarding part of measurements so that a solution exists. It is 

clear that a part of the information contained in the second vector 

is discarded. The discarded quantity is the measured component 

of  ̂  parallel to  ̂ , i.e.  ̂     ̂ . This measurement is coordinate 

independent, equals the known scalar  ̂     ̂   and is therefore 

useful for data validation (see eq. (3-22)). All of the error in 

 ̂     ̂  is assigned to the less accurate measurement  ̂ , which 

accounts for the lost information.  



 

 

 

Attitude Determination 

 
 

 

 

29 

 

 

\r 

TRIAD covariance matrix 

 

The attitude covariance matrix is conventionally defined in terms 

of Euler angles. This computation is generally cumbersome and 

leads to have less information than the attitude covariance matrix 

referred to the body coordinate system. For this reason, the body-

referenced covariance matrix will be first developed and then 

reported in terms of the Euler angles covariance matrix. 

 

 

We first define the error angle vector, i.e. the set of small rotation 

angles carrying the true attitude matrix into the measured attitude 

matrix, as: 

 

    (         )
                             (3-23) 

 

 

Thus, the body-referenced attitude covariance matrix is defined 

as: 

 

     〈      〉                                     (3-24) 
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If we consider    unbiased, then, for small errors, the true attitude 

matrix is: 

 

   [

        

        

        
] 〈 〉                       (3-25) 

 

 

where 〈 〉 is the expected value of A, and the relative attitude 

covariance matrix is: 

 

   〈      〉                                     (3-26) 

where       〈 〉.  

 

From eq. (3-25) and eq. (3-26),     can be rewrote: 

 

     (  ⁄     ( ))                                 (3-27) 

 

 

where    ( ) denote the trace of P and I the identity matrix. The P 

matrix can be put in terms of observations and reference matrix 

   and   . From eq. (3-20) [1]: 

 

   〈       
 〉   〈       

 〉                        (3-28) 
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or: 

 

                
                                   (3-29) 

 

 

Similarly,      and      can be rewritten as the sum of two terms, 

each generated by the variation of a single observation or 

reference vector.  

 

 

2.2.2. q-method 
 

The greatest drawback of the TRIAD method is that can 

accommodate only two observations. When more than two 

measurements are available, such as for the star trackers, these can 

be used only by cumbersomely combining the attitude solutions 

for the various observation vectors pairs. In addition, the TRIAD 

method is basically ad hoc, i.e. the measurements are combined to 

provide the attitude estimate, but this combination is not optimal 

in any statistical sense. Indeed, some accuracy is lost because part 

of measurement is discarded. 
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The q-method is an optimal algorithm derived by Davenport 

algorithm [10] [11]. 

 

Given a set of      measurement vectors    (     ) in the 

body coordinate system and relative reference vectors    (  

   ) in the reference coordinate system, an optimal attitude 

matrix A is offered by the minimization of the loss function: 

 

 ( )   ∑   | ̂    ̂ |
  

                         (3-30) 

 

 

where    is the weight of the i-th measurement vector.  

If we consider the un-normalised vectors  ⃗⃗⃗ 
  and  ⃗  , defined as: 

 

 ⃗⃗⃗⃗ 
   √   ̂                                       (3-31) 

 ⃗⃗    √   ̂                                        (3-32) 

 

 

the loss function can be rewritten as: 

 

 ( )     ∑  ⃗⃗⃗⃗ 
 

 
      ⃗⃗                           (3-33) 
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The loss function  ( ) is minimum when: 

 

  ( )     ∑  ⃗⃗⃗⃗ 
 

 
      ⃗⃗      (    )              (3-34) 

 

 

is maximum, i.e. the gain function  ( ) is equal to: 

 

 ( )    (    )                                   (3-35) 

 

 

where   and   are (   ) matrices defined by: 

 

    [ ⃗⃗⃗⃗ 
     ⃗⃗⃗⃗ 

        ⃗⃗⃗⃗ 
 ]                      (3-35a) 

    [ ⃗⃗      ⃗⃗         ⃗⃗  ]                          (3-35b) 

 

 

A way to find A, which maximizes the eq. (3-34), is to introduce 

the quaternion q and parameterize the attitude matrix as:  

 

 ( )   (  
     )                                (3-36) 

 

 

where the quaternion   has been written in terms of its vector part 

q and scalar part   : 
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   (
 
  

)                                         (3-37) 

 

 

I is the (   ) identity matrix and Q is the skew-symmetric 

matrix: 

 

   [

      

      

      
]                                (3-38) 

 

 

 

 

Substituting the eq. (3-36) in eq. (3-35): 

 

 ( )                                             (3-39) 

 

 

where K is the (   ) matrix: 

 

  (
     

   
)                                     (3-40) 

 

 



 

 

 

Attitude Determination 

 
 

 

 

35 

 

 

\r 

with the components defined by: 

 

                                                                 (3-41a) 

                                                               (3-41b) 

  (                     )
                  (3-41c) 

    ( )                                                            (3-41d) 

 

 

The maximum of the eq. (3-39), subjected to the constraint     

 , can be found by means the Lagrange multipliers method. To 

proceed with this method, we have to define a new function: 

 

 ( )                                            (3-42) 

 

where  ( ) is maximized without constraints and   is the 

Lagrange multiplier, chosen to satisfy the normalization 

constraint. 

 

Differentiating the eq. (3-42) respect to    and setting the result 

equal to zero, the eigenvector equation is obtained: 

 

                                           (3-43) 
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Thus, the quaternion which parameterizes the optimal attitude 

matrix, in the sense of eq. (3-30), is an eigenvector of K. 

Substituting the eq. (3-43) in eq. (3-39), we obtain: 

 

 ( )                                    (3-44) 

 

 

Hence,  ( ) is the maximum, if the eigenvector corresponds to the 

largest eigenvalue. It can be demonstrated that if at least two of 

the measured vectors    are not collinear, the eigenvalues of K are 

distinct and this method yields an unambiguous quaternion, i.e. 

the attitude. The q-method provides an optimal least-squares 

estimate of the attitude, given vector measurements in the body 

frame and information on those same vectors in the inertial 

reference frame. The key of this method is to solve for eigenvalues 

and eigenvectors of the K matrix. The major drawback of q-

method is that requires to construct measurement vectors, not 

always possible, and weight the entire vector. An alternative 

method, based on q-method, which avoid the necessity for 

computing eigenvectors is the QUEST algorithm. 
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2.2.3. QUEST method 
 

The QUEST (QUaternion ESTimator) algorithm is an alternative 

method, based on q-method, that provides a “cheaper” way to 

estimate the solution to the eigenproblem defined in eq. 3-43. 

Recalling that the least squares optimal attitude minimizes the loss 

function in q-method (see eq. (3-30)): 

 

 ( )   ∑   | ̂    ̂ |
  

                               (3-45) 

 

 

when maximizing the gain function (see eq. (3-35) and eq. (3-44)): 

 

 ( )    (    )                                  (3-46) 

 

 ( )                                          (3-47) 

 

 

we can obtain, rearranging the last two equations: 

 

     ∑   
 
                                         (3-48) 
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Since  ( ) is small for the optimal eigenvalue, the eq. (3-48) can be 

approximated: 

 

     ∑   
 
                                         (3-49) 

 

 

From eq. (3-49), the value of corresponding eigenvector can be 

calculated. 
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Calibration Process 

 
3.1. Introduction 
 

Star Trackers are considered among the most accurate attitude 

sensors, and have been traditionally part of the avionics of 

expensive, high level spacecraft. Such a trend is currently 

changing, with the availability of a generation of not so expensive 

products devoted to middle class platforms. There is even some 

research effort aimed to obtain very low cost COTS (component-

off-the-shelf) based devices suitable for nanosatellites and cubesat 

([12] [13] [14]). The limitation in the final device cost involves a 

significant reduction in the production process, especially 

involving the test and calibration phase. Traditionally, high-end 

sensors devoted to important scientific missions go through a 

time-consuming, sophisticated calibration campaign which used 

specific test benches. This approach changes for the newly 

introduces class of devices, both for the costs involved as well as 

for the far shorter time-to-market required for batches of several 
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tens of sensors. Moved from commercial reasons, designers 

reconsidered the motivation for the test campaigns, and attempted 

to obtain a basic accuracy from the batch of instruments, leaving 

for in-flight operations the final validation of the single sensor. 

Basically there is a shift from the idea of crafting a state-of-art, as-

perfect-as-possible instrument, to the concept of a device which is 

in some way tuneable during its operational lifetime, in order to 

accommodate minor issues deriving from a simpler 

manufacturing process. In such a way it is possible to reduce the 

calibration at the factory and to directly evaluate the performance 

once in orbit. Indeed, small deviations in the equipment occurring 

during the most critical condition, i.e. the launch phase, can be still 

corrected before real measurements campaign will begin. Clearly 

this approach becomes extremely interesting for the new 

instruments built in large batches for huge Low Earth Orbit 

formations’ satellites. 

 

On the other hand, it is difficult to argue that optoelectronics had 

dramatic advances in recent years. CCD-based sensors met a 

significant evolution, also fed by huge terrestrial, consumer 

electronics commercial markets. As a result, instruments based on 

CCD miniature cameras have been proposed for a host of space-

related applications, including lab hardware close to star trackers 

[15]. Additional uses encompassed on-board monitoring of 
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structural deformations (an application with heavy requirements 

in terms of refresh rate and data flow, [16], as well as short 

distance kinematic state determination (i.e. relative navigation) 

between spacecraft flying in formation [17]. To be noticed that 

navigation can be also performed by optoelectronic combined 

sensors having a significant portion of components in common 

with a star tracker [18]. Clearly all these applications, presenting 

the same calibration issues as per previous discussion, should 

have a benefit from the studies and the possible advances in the 

field. The advent of C-MOS based sensors as the APS resulted in 

an increase of the performance (not only in terms of accuracy, but 

also in terms of robustness to radiation) and paved the way to 

adoption of imaging sensors in many more missions, and also in 

multiple spacecraft formations, with further interest to effective 

calibration procedures [19]. 

 

The in-orbit calibration was first introduced in scientific mission 

requiring an extremely high accuracy, so that the pre-launch 

calibration was not deemed enough (as in the case of Herschel 

Space Observatory telescope, 2009). On the other hand, the in orbit 

calibration can be considered also a complement to an initial, 

simplified and coarse calibration performed on ground in order to 

limit or reduce the cost of that expensive (in terms of time and 

cost) operation. Nowadays, on-board calibration becomes 
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extremely appealing while dealing with large batches of medium 

quality sensors, as the ones accommodated on large formations 

and constellations, which numbers clearly do not fit extended test 

campaigns at the manufacturing sites. A clear interest to make 

available a re-calibration process arises and, as a result, 

autonomous calibration techniques - to be directly carried on 

during the flight - are an active field of research. 

 

The topic of the following paragraphs is the on-orbit calibration of 

the star trackers. The approach, implemented through numerical 

simulations, follows the path already assessed in literature for a 

two-steps star tracker calibration [20] [21], also supported by 

analyses carried out with real space mission data [22].  

 

 

3.2. Calibration Process 
 

The proposed calibration method is used to estimate the main 

parameters influencing the performances of the star tracker: 

 Focal length ( ) 

 Principal point offset (     ) (or bore sight error) 

 Focal plane distortions 
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This method can be applied both on-ground and on-orbit and the 

calibration parameters will be estimated through the star tracker 

image frames, where the stars have been identified manually or by 

means of dedicated algorithms robust to the calibration errors.  

 

The optics of the camera has been modelled using the modelling 

of the pin-hole. 

 

 

Fig. 8 – Star Tracker modelling [1] [6] 

 

The method is composed by three main parts: 

 A “raw” calibration on-ground of the focal length and 

principal point offset, that will be used as input for the on-

orbit calibration; 

 A “fine” calibration on-orbit of focal length and bore sight 

error, taking into account the previous ones; 

 A “fine” calibration on-orbit of the focal plane distortion. 
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For what concerns the on-ground calibration, it is not foreseen any 

laboratory or dedicated optical tools for the calibration activities, 

but only night sky tests or the use of simulated (i.e. computer-

generated) images of a portion of the sky. In this way it is possible 

to save costs and time.  

 

The idea is to have a “raw” calibration of the star tracker on-

ground, because the night sky tests are affected by the errors due 

to the presence of the atmosphere and no calibration of focal plane 

distortions or mechanical misalignments is done, and then, to 

perform a “fine” calibration once the spacecraft is in its orbit. 

Indeed, the main stresses on the star tracker, that can affect its 

calibration, are during the launch and, in addition, the effect on 

the focal length of the in-orbit change of temperature has to be 

considered. For this reason, we can consider the star tracker in this 

phase as in its operative “final” configuration and we can calibrate 

it, taking into account all effects (misalignments of the detector 

and the optical elements, distortions of the lens, defeats, …) that 

affect the performance of the sensor. 
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The calibration process is composed by: 

 On-ground calibration: 

The standard non-linear least square optimal estimation 

(LS). This method is optimal in statistics sense, but required 

no limitation in computing and all of the measurements 

must first be collected before an estimate can be made [23]. 

This method is generally not used in real-time operations. 

Indeed, a batch of measurements is collected and used to 

estimate the parameters. 

 

 On-orbit calibration:  

A combination of Least-Squares (LS) and Kalman filter 

(KF). This method may fulfill real-time computation 

constraints. For each set of measurements, LS provides the 

“raw” estimate of focal length and bore sight error as input 

of the KF, that provides a “fine” calibration taking into 

account the previous estimates. In parallel an estimation of 

focal plane distortions is done.  

 

The method is based on the use of residuals between the 

directional cosines of the measured stars and corresponding stars 

in the on-board catalogue.  
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In other words, if the star tracker is not affected by errors: 

 

 ̂ 
  ̂   ̂ 

  ̂                                         (4-1) 

 

 

where  ̂  is the unit vector that identified the i-th star measured 

(i.e. detected) by the sensor and  ̂  the relative catalogued star.  

 

Otherwise: 

  ̂ 
  ̂   ̂ 

  ̂                                      (4-2) 

 

 

where R is the vector including the residuals. 

 

Because the inter-star angles are invariant of the rotational 

transformation, the eq. (4-1) is valid for any reference frame. 

Therefore, the knowledge of the spacecraft attitude is not 

necessary. 

 

 

3.3. On-ground calibration 
 

The aim of the on-ground calibration is to estimate the focal length 

( ) and the bore sight error (     ) in order to have an initial 
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“raw” calibration of the sensor’s focal plane. Otherwise, the star 

tracker could not identify the detected stars, and hence, not 

estimate the attitude for the spacecraft. In other words, the 

(positions of the) “imaged” stars have to be modified considering 

the principal point offset and the correction on  . These calibration 

parameters will be used as input for the on-orbit calibration.  

 

The initial on-ground calibration mimics the sensor’s functioning 

like in space and is done using images of a portion of the sky 

coming from a simulation or night sky test. The information 

coming from the images are related to the components of the 

measured stars unit vector  ̂.   

 

 

Fig. 9 – Star projection on the focal plane [1] [6] 
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In detail, the pinhole mode can be adopted, with the input data 

given by the bi-dimensional location of the image-point 

corresponding to the star in image of the detector (see Fig. 9).  

Indeed, the components in the body reference frame of unit vector 

which is parallel to the line-of-sight of a given star can be obtained 

by: 

 

 ̂  
 

√(    )  (    )    
[

 (    )

 (    )

 
]                      (4-3) 

 

 

where   is the focal length and (     ) is the optical centre of the 

image, i.e. the position (in pixels or in millimetres) where a star 

which is exactly located on the optical axis would be represented. 

The parameters  ,    and    should be a priori known with a great 

accuracy, while their actual value depend on slight modifications 

occurred in the manufacturing process and on the effects of the 

environment (thermal and vibration induced stress) before, during 

and after the launch. 

 

The measured unit vector can be compared with its relative 

inertial catalogued star unit vector  ̂, defined by: 
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 ̂  [
         
         

    
]                                     (4-4) 

 

 

where   is the right ascension and   the declination as indicated in 

the catalogue. 

While the  ̂ and  ̂ are referred two different coordinates systems 

(the body and inertial frame respectively), their inter-star angles 

are invariant and can be compared, as in the following: 

 

 ̂ 
  ̂   ̂ 

  ̂                                         (4-5) 

 

 

where the subscripts   and   indicate the i-th and j-th stars. 

Substituting the relation (4-3) for the sensor’s measurements, the 

eq. (4-5) becomes: 

 

 ̂ 
  ̂  

 

    
  ( ̂   ̂   ̂)                         (4-6) 

 

where:  

 

{
 
 

 
   (     )(     )  (     )(     )    

   √(     )  (     )    

   √(     )
 
 (     )

 
   

        (4-7) 
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The idea is to identify the values for the unknowns which 

minimize the residuals, as per the classical Least Squares 

estimator. Therefore, defining the estimates for (       ) as: 

 

( ̂   ̂   ̂)                                         (4-8) 

 

 

and the errors relevant to these estimates as: 

 

(          )                                   (4-9) 

 

 

the parameter will be represented as: 

 

{

    ̂     

    ̂     

   ̂    

                                 (4-10) 

 

 

The substitution of eq. (4-10) in eq. (4-6) yields: 

 

 ̂ 
  ̂     ( ̂   ̂   ̂)  [

    

   

    

   

    

  
] [

   

   

  
]          (4-11) 
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so that the residuals will read as: 

 

     ̂ 
  ̂     ( ̂   ̂   ̂)  [

    

   

    

   

    

  
] [

   

   

  
]      (4-12) 

 

 

where: 

 

    [
    

   

    

   

    

  
]                             (4-13) 

 

 

Iterating for n angular measurements: 

 

{ }  [ ]{  }                                      (4-14) 

 

where: 

 

{ }  {

   

   

 
      

}                                      (4-14a) 

 

 



 

 

 

Calibration Process 

 
 

 

 

53 

 

 

\r 

[ ]  

[
 
 
 
 
 

    

   

    

   

    

  

    

   

    

   

    

  

   
       

   

       

   

       

  ]
 
 
 
 
 

                        (4-14b) 

 

 

{  }  {

   

   

  
}                                        (4-14c) 

 

 

for (         ) and (         ), to identify a solution for 

the errors on the parameters: 

 

{  }  [  
   ]

    
 { }                          (4-15) 

 

 

where (         ) and N  number of iterations, with the overall 

flowchart of the on-ground calibration algorithm reported in the 

following figure. 
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Fig. 10 – Flowchart of the on-ground calibration algorithm. 
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3.4. On-orbit calibration 
 

Once the star tracker is in orbit the calibration problem is not 

anymore a static one, and – at least in theory – an ever improving 

calibration could be found by adding new measurements relevant 

to new stars. The dynamic nature can be exploited by the use of 

estimators like Kalman filters, largely adopted in the aerospace 

field [24], [25] and specifically in the attitude determination using 

star tracker [26] and even in the star-trackers algorithms 

themselves [27]. The use of recursive estimators, as opposed to 

batch Least Squares methods, provides significant advantages in 

terms of the data storage and computational resources required 

on-board the spacecraft. 

 

This specific application of the Kalman filter leads to some 

interesting implementation issue. Notice that the number of 

measurements available at each step can vary, due to the number 

of stars recognized in each image. Such an issue is usually well 

managed by Kalman algorithm with its multi-input structure, by 

just voiding some observation matrix line. In the specific case 

however this change in size can be significant, leading to an 

unnecessary over-sizing of the variables. Not to say that large size 

of the observation matrix makes the Kalman loop expensive from 

the computational point of view and prone to ill-conditioning 
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issues in the repetitive operations with matrices. There is also an 

issue which has been represented in literature due to the 

linearization process of the observation matrix (equivalent to the J 

matrix in eq. (4-14). According to Samaan et al. [22] the application 

of an extended Kalman filter to images captured by the sensor can 

lead to divergence. 

 

To this aim, following the approach outlined in [22], a two steps 

technique can be envisaged to process on-orbit measurements. A 

Least Square (LS) method is first applied to each single image 

including n stars above the threshold, working on the n!/2/(n-2)! 

inter stellar angles as inputs and providing as output the values 

for the offset of the principal point and the error on the focal 

length best fitting that specific image. Then a linear Kalman Filter 

works on the sequence in time of the calibration parameters 

gathered from the series of images, in order to reconstruct the 

behaviour of the sensor. 

 

The dynamic process in the Kalman algorithm can be assumed as 

a static one, so that the state: 

 

{ }  {

   

   

  
}                                        (4-16) 
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is predicted to be constant in time. The associated covariance 

matrix is fed by the noise assumed for the process. The Kalman 

gain can be computed as: 

 

       
 [      

    ]
                      (4-17) 

 

 

The observation equation is fed by the output of the Least Square 

method, and ends up to be the identity matrix: 

 

   [
   

   

   

   

   

  
]                         (4-18) 

 

 

(in such a way, the risk of false identification in the single image is 

limited and the process itself becomes more robust).  

The final estimate results from the blending of prediction and 

measurements, as: 

 

          [       ]                         (4-19) 

 

 

The filter computes an improved evaluation of the calibration 

parameters as the time goes on and new images are acquired and 

processed by the star tracker. The convergence of the filter is 
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expected to be fast due to the usual extremely limited magnitude 

of the errors. Notice that in such a way it could be possible to 

investigate the behaviour in time of the sensor and evaluate the 

shift of calibration parameters in presence of perturbations, such 

as temperature changes. 

 

Following Fig. 11 reports the flowchart of the algorithm to be 

applied for the in-orbit calibration. These algorithms are built in 

such a way to take into account the limitations in the on-board 

computational capabilities, as “batch” computation performed by 

Least Squares method is limited to the single image. Instead 

Kalman Filter, as every recursive filter, moves on from a step to 

the next one by storing only the more recent value for the 

estimates and the associated covariance matrix (which in the 

present case is a 3x3 matrix). 
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Fig. 11 – Flowchart of principal point and focal length estimation carried on during the in-orbit 

calibration phase. 
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3.4.1. Cases study 
 

The study of the calibration algorithms has been performed using 

a simulated star tracker in MatLab, with the following (nominal) 

characteristics: 

 CCD size = (1024x1024) pixels 

 pixel size = 0.018 mm 

 focal length (f) = 51.7 mm 

 offset (                     ) 

 maximum number of tracked stars (    ) = 15 

 

In the real application, the instrument’s nominal characteristics 

will end up to be different from the actual ones, due to slight 

misalignments or manufacturing issues (therefore the need for 

calibration). For this reason we consider that, after the 

manufacturing, the star tracker has a slight error on principal 

point offset and focal length computed by the on-ground 

calibration algorithm: 

 focal length (f) = 51.8 mm 

 offset (                      ) 

 

Moreover we consider that the measurements are affected by 

Gaussian white noise. 
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In the following are reported the analyses performed on different 

in-flight cases, i.e. with different errors on offset and focal length, 

where the on-orbit calibration algorithm has been applied. For all 

cases we consider the same on-ground calibration parameters 

previously reported. 

 

CASE STUDY #1 

The simulation has been performed considering a slight error in 

principal point offset and focal length and no distortions affecting 

the focal plane. The values of that parameters, after the in-flight 

phases, are: 

 focal length (f) = 51.9 mm 

 offset (                    ) 

 

For the simulation the parameters used as input for the on-orbit 

calibration algorithm are: 

 focal length (f) = 51.8 mm 

 offset (                      ) 

 number of tracked stars N = 15 

 duration of the simulation t = 10 s (100 photograms) 

 

where f and (     ) values come from the on-ground calibration. 
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Results CASE STUDY #1 

In the following figures are reported the results of the simulation 

in a realistic noise perturbed case.  

 

 

Fig. 12 – Filter results in a realistic noise perturbed case: x0 [pix]. 
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Fig. 13 – Filter results in a realistic noise perturbed case: y0 [pix] 

 

 

Fig. 14 – Filter results in a realistic noise perturbed case: f [mm] 
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The above graphs show as the algorithm is able to recover to the 

actual values of offset and focal length after few cycles.  

 

 

CASE STUDY #2 

This simulation takes into account heavy errors in the offset and 

focal length. The actual values, after the in-flight operations are: 

 focal length (f) = 53.0 mm 

 offset (                       ) 

 

The initial conditions and the simulation duration for that case 

study is the same of the previous one.  

 

Results of CASE STUDY #2 

In the following are shown the results of the on-orbit calibration 

parameter.  
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Fig. 15 – Filter in a realistic noise perturbed case: x0 [pix]. 

 

 

Fig. 16 – Filter results in a realistic noise perturbed case: y0 [pix]. 
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Fig. 17 – Filter results in a realistic noise perturbed case: f [mm] 

 

Also in this case, where the measurements are affected heavy 

errors on initial calibration parameters, the algorithm is able to 

compute the actual offset and focal length values.  

 

 

CASE STUDY #3 

In this simulation we consider a portion of sky populated by few 

stars. The star tracker is affected by slight errors on focal length 

and offset (as for case study #1). The number of tracked stars is N = 

5. Also for that case study, the on-ground parameters have been 
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used as input for the on-orbit calibration algorithm and duration 

of simulation is 60 s. 

 

Results of the CASE STUDY #3 

In the following are reported the results of the simulation. 

 

 

Fig. 18 – Filter results in a realistic noise perturbed case: x0 [pix] 
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Fig. 19 – Filter results in a realistic noise perturbed case: y0 [pix] 

 

 

Fig. 20 – Filter results in a realistic noise perturbed case: f [mm] 
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The figures shown that the filter is able to compute the calibration 

parameters, but the standard deviation on the offset and focal 

length values increases due to the reduction of tracked stars, i.e. of 

the available measurements. 

 

 

CASE STUDY #4 

In the case, we consider the same conditions of CASE STUDY #2 

with only exception that there are few tracked stars (N = 5) and the 

duration of the simulation is t = 60 s. 

 

Results of the CASE STUDY #4 

The results of case study #4 are reported in the following graphs. 

 

Fig. 21 – Filter results in a realistic noise perturbed case: x0 [pix]. 
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Fig. 22 – Filter results in a realistic noise perturbed case: y0 [pix]. 

 

 

Fig. 23 – Filter results in a realistic noise perturbed case: f [mm] 
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Also in this case, the filter is able to compute the calibration 

parameters. The figures show that the standard deviation 

increases due to the low number of tracked stars, especially for the 

focal length value. 

 

 

CASE STUDY #5 

In that case study, it has been considered a case where the star 

tracker has affected by slight errors and detects false stars during 

the calibration. The initial conditions are: 

 focal length (f) = 53.0 mm 

 offset (                     ) 

 number of tracked stars N = 15 

 

The simulation has been performed in the ideal case (without 

noise on the measurements) and the “actual” case (with 

measurements affected by noise). 

 

Results of CASE STUDY #5 

 

Starting from the parameters computed during the on-ground 

calibration, Fig. 24 shows that the application of the on-orbit 

calibration algorithm in the ideal case of noiseless measurements.  
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Fig. 24 – Filter results in an ideal (without noise) case. 

 

The results are x0 = 1 pixel, y0 = -1 pixel for the principal point 

offset, and f0 = 52.0 mm for the focal length. These values perfectly 

agree with the inaccuracies that have been purposely included in 

the simulation. 

Notice that the in orbit calibration phase has been simulated by 

considering a slowly moving point of view and a slow rotation of 

the spacecraft, resulting in a slight change of the image of the 

portion of the sky. These parameters affect the generation of the 

images and their identification with catalogue data, and do not 

enter directly in the calibration algorithm. 
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Real world sensors obviously add some noise to the 

measurements. Fig. 25 represents this scenario, showing that the 

algorithms is still perfectly managing this case, when the noise 

added has a standard deviation in the order of 0.1 pixels for the 

principal point offset and 0.01 mm for the focal length (i.e. 1/10 of 

the error). 

 

 
 

Fig. 25 – Filter results in a realistic noise perturbed case. 

 

In order to assess the robustness of the algorithms, it has also to be 

considered the possibility of an erroneous identification of the 

imaged stars. This possibility has been investigated and the 

relevant findings are depicted in Fig. 26.  
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Fig. 26 – Results in case of some false star identification. 

 

A clear divergence in the estimates of all the three unknowns 

appear at about the 120th iteration, to suddenly recovery the 

original value after 150th iteration. In order to explain this 

behaviour, Fig. 27 reports a zoom of the interval of interest.  
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Fig. 27 – Detail of Fig. 26 case. 

 

Looking at the image of stars captured by CCD, it is possible to 

appreciate that the catalogued stars (yellow line), differ from the 

measured stars (black line). Such a strong difference has been 

investigated, and it has been discovered that the difference 

depends on a false identification: indeed, black line and the yellow 

do not represent the same stars in this interval. As soon the correct 

identification comes back, the filter is able to promptly recover in a 

few iterations the right estimate, showing its robustness. 
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Conclusion 

 

The trend in avionics to extend the use of star trackers to a wider 

class of spacecraft necessarily involves use of less expensive and 

simpler devices. A part of the cost reduction can be obtained by 

shortening long ground-based calibration campaign, and to 

directly estimate part of the important devices’ parameters once in 

space. A possible two steps path (one at ground, the second in 

space) to tackle this issue has been presented in the paper. 

Specifically, results from the implementation of a Kalman filter to 

a realistic flow of images captured by the star tracker, together 

with their corresponding catalogue counterpart, are considered. 

The accurate evaluation of three parameters, namely the focal 

length and the coordinates of centre point, or better of their 

differences form ground-based estimates, follow. 
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3.5. High order contributors 
 

3.5.1. Lens optical distortion effect 
 

A high order contributor that affects the calibration parameters is 

the lens distortion. Distortion is an aberration arising not from a 

lack of sharpness of the image, but from a variation of a 

magnification with axial distance. If the magnification increases 

with increasing the axial distance, the outer parts of the fields are 

disproportionately magnified (see Fig. 28, Fig. 29). 

 

 

Fig. 28 – Square network NOT distorted 
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Fig. 29 – Pincushion distortion 

 

This effect is called “pincushion” distortion. The opposite effect, 

when the magnification decreases with increasing axial distance, is 

called “barrel” distortion (see Fig. 30). 

 

 

 

Fig. 30 – Barrel distortion 
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The effects of these aberrations are reported in the following 

figure (see Fig. 31). 

 

 

Fig. 31 – Effects of barrel (a) and pincushion (b) distortion. 

 

Considering the projection of a unit vector  ̂ individuating a 

tracked star on CCD / APS plane: 
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Fig. 32 – Projection of a star on CCD / APS plane 

 

 

Fig. 33 – CCD / APS plane 



 

 

 

Calibration Process 

 
 

 

 

81 

 

 

\r 

The Cartesian components of the star (x, y) are: 

 

{
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 )        (  

    
 )
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 )        (  
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(4-20) 

 

where: 

     is the component along x-axis not affected by the 

distortion; 

     is the component along y-axis not affected by the 

distortion; 

    is the component along x-axis affected by the distortion; 

    is the component along y-axis affected by the distortion; 

    (       ) are the calibration parameters for the 

component along x-axis; 

    (       ) are the calibration parameters for the 

component along y-axis. 

 

 

In order to take into account also the lens optical distortion in the 

estimate of calibration parameters, the following model has been 

used: 
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 Radial optical distortion, described by the following 

equation [28]: 

 

     
     

                          (4-21) 

 

 Misalignments along x and y axes (rotation along bore-

sight, i.e. z-axis) 

 Offset 

 

 

 

Fig. 34 – Equation modelling the not distorted components along x and y axes 
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3.5.2. Temperature effects on the focal length 
 

The optics variation of temperature yields a variation on focal 

length. This behaviour is described by the following equation: 

 

        
         [    (                )] 

 

 

where: 

         
 is the focal length at optics temperature         after 

its variation                    ; 

          is the focal length at         . 
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Space Optical Navigation 

 

4.1. Introduction 
 

The exploration of the solar system is quickly advancing and more 

and more missions are bound to deep space, up to faraway 

planets, asteroids and comets. 

Orbit determination of space probes and satellites is generally 

based on radio tracking from Earth and becomes clearly less 

accurate when the distance between Earth and S/C increases. 

Furthermore, also the time needed for telemetry uplink and 

telecommands downlink considerably increases distancing from 

Earth, making unattainable real-time manoeuvers and operations. 

As an example, the time needed to send a telecommand or receive 

telemetries in the Rosetta mission was about 20 minutes once the 

probe reached the target [29] [30]. 
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When a more precise target-relative navigation is required, the 

optical navigation provide cross line-of-sight information to de-

correlate estimates of spacecraft state from the target body 

ephemeris.  

 

This technique was pioneered in the 1960s [31] and enabled 

successful navigation of the six Voyager flybys of the outer planets 

[32] and Cassini’s orbital operations at Saturn [33]. Recently it was 

successfully used in the Rosetta [29] [30] and New Horizon [34] 

missions.  

 

The increasing interest in this kind of missions has led to a lot of 

studies focused on the optical navigation improvement, both in 

the architecture and in the method. Cameras in the visible portion 

of the spectrum are routinely investigated and used in proximity 

operations, where they proved to be more accurate than any other 

technique [35] [36]. While they intrinsically provide angles-only 

information [37], they can be used together with an information 

about the size of the target to operate a complete 3D relative 

navigation manoeuvre [38]. 

 

The information about real size of the target can be known a priori 

or derived – as a distance measurement -  from a sequence of 

observation from different point of view as in stereoscopic 
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imaging. These concepts can be exploited in different ways with 

different optical instruments: as an example, it has been explored 

the ability of earth-imaging sensors (part of the payload) to 

determine the orbital state using landmark tracking. Locations of 

these landmark in the images together with the information about 

payload camera pointing by gyros, star and sun sensors provide 

enough data to improve orbit determination [39]. An additional 

step could be the use, in some specific mission phase, of the same 

optical sensor to measure attitude and position. Due to the fact 

that star trackers are intrinsically really accurate, they are the best 

candidates for this universal sensor. Notice that the use of star 

tracker to capture celestial bodies’ surface landmarks to improve 

orbital determination has been already proposed in [40]. A recent 

contribution [41] moves farther in investigating possible detailed 

technical solution in order to operate the star tracker with an 

obviously different light threshold, so to observe the surface 

instead of the stars in the black sky. Notice also that the twofold 

use of optical sensors for attitude and position determination has 

been explored in some experiment to overcome limitations of 

ground-based lab in reproducing space scenarios [42]. 

 

The aim of this study is to investigate and analyse the possible 

hardware configurations and software algorithms in order to use a 

star tracker as navigation camera. The availability of a universal 
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optical navigation sensor, sharing a large part of its expensive 

components, could really be an enabling technology for a more 

effective space exploration. 

 

In the first part of the chapter will be presented a typical optical 

navigation system and the method used for the estimates of 

kinematics parameters. Then the discussion will be focused on the 

use of the star tracker as backup or in place of the navigation 

camera during the main phases of the mission: cruise, approach 

and fly-by or descend to the target. In the next part a simple case 

of study will be reported and its results will be presented and 

discussed. 
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4.2. Optical Navigation System 
 

This section investigates a possible optical navigation system 

capable to provide – with a limited number of hardware 

components - both attitude and position determination. 

 

4.2.1. Architecture 
 

A complete optical navigation system should be composed by: 

 Star Tracker, that estimates the attitude of the spacecraft 

w.r.t. the inertial reference frame; 

 

 LIDAR system, intended as a distance measurement 

sensor, to returns very accurate ranging measurements 

w.r.t. the target. Notice that this LIDAR is intrinsically 

different from typical FLASH LIDARs, aimed instead to 

capture a 3D image of the full scenario. 

 

Navigation Camera, that obtains, through a sufficient wide 

field of view, the complete representation of the scenario 

and indeed helps in defining the relative position of the 

spacecraft with respect to the target. 
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4.2.2. Methods 
 

Two types of optical navigation can be considered, namely star-

based and landmark-based.  

The star-based navigation is generally used during the cruise 

phase of the mission, in order to have a more accurate information 

of the target position. In this case the high accuracy is guaranteed 

by the knowledge of the stars in the background, accurate enough 

from catalogues.  

The landmark-based navigation is generally related to the fly-by 

or descent to the targeted celestial body. In this case the estimate 

of the kinematics parameters by the landmark-based navigation 

can be done by: 

• absolute navigation, that provides the absolute orbit 

information for the system, comparing the absolute measurements 

(recognized mapped landmarks, such as well-known craters and 

landforms, stored in an on-board catalogue) and measured 

landmarks (see Fig. 35). 
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Fig. 35 – The comparison between « map » (images captured by the orbiter) and images captured 

during the descent leads to position / orientation estimation [43] 

 

• relative navigation, that provides the relative position, 

attitude and velocity. In this case the landmarks coming from 

image features for which the location information is not known 

(such as cloud, shadows). The estimate can be computed by 

tracking these landmarks in consecutive images (see Fig. 36) and 

then fusing this information with on-board inertial measurements 

units (IMU) data [44]. 
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Fig. 36 – Relative landmarks tracked in consecutive images[43] 

 

 

4.3. Star Tracker as Navigation Camera 
 

The star tracker utilization as a universal optical navigation sensor 

or in redundancy of the navigation camera is generally not 

possible because the irradiance difference between the celestial 

body and the stars well-exposed is large. The problem can be 

solved by a robust algorithm or using a multi-head star tracker, 

i.e. a star tracker with different optics. This paragraph presents a 

brief description of how the start tracker can be used as navigation 

camera in the various phases of the mission. 
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4.3.1. Cruise and approach phases 
 

During the cruise phase, at increasing of distance from Earth, the 

star tracker can evaluate a more accurate kinematics parameters of 

the target than the estimates coming from the radio tracking. A 

such approach has already studied for the OSIRIS-Rex and New 

Horizon mission, simulating a dedicated camera (see Fig. 37). 

 

 

Fig. 37 – A simulated OSIRIS-REx PolyCam image of asteroid 1999 RQ36 on September 24th, 

2018. The asteroid is in the centre of the magenta box, surrounded by field stars [47]. 
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In order to study this method, a star tracker simulator has been 

prepared in a MatLab environment. An example is reported in the 

following figure (see Fig. 38). 

 

 

Fig. 38 – A simulated image of target surrounded by field stars. 

 

In this phase the sensor manage the celestial body (target of the 

mission) as a Large Object, as shown in the figure. In this way, the 

star tracker is able to compute the position of the centroid of the 

target w.r.t. the optical centre of the image and the estimate of 

attitude and position and, then, we have all information to 

compute the best estimate of target kinematics. 
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4.3.2. Fly-by or landing phases 
 

The use of star tracker as navigation camera changes when the 

space probe approaches the target and prepares the fly-by or 

landing phase. In this phase, in fact, the celestial body cannot be 

managed as a Large Object by the star tracker, because the target 

is too near to the sensor and blinds it. In this phase, the problem of 

insufficient dynamic range of the sensor has to be solved by 

software or by hardware, e.g. a multi-head star tracker with the 

two FOVs combined on the detector through a beam-slitter able to 

reduce the target brightness.  

 

In that study, we consider the star tracker capable to enlarge its 

dynamic range. Therefore, the sensor can compute the estimate of 

the position w.r.t. the target according the method  presented in 

the following flowchart (see Fig. 39): 
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Fig. 39 – Flowchart of principal point to use the star tracker as navigation camera 

 

 

The first phase of the method is focused on the collecting and 

storage of landmarks in an on-board catalogue (structured as the 

on-board star catalogue). For this reason the space probe will orbit 

around the celestial body till the landmarks catalogue is 

completed. During the second phase it will be exploited the 

functionality of star tracker to match the measured stars with 

catalogued stars (see section 2). In other words, the sensor uses the 

stored catalogued landmarks (collected during the first phase) to 

match the measured landmarks with the catalogued ones and to 

estimate the position w.r.t. the target. 
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In order to better explain the method, we consider the case in 

which the target is a planet and the landmarks are represented by 

craters (see Fig. 40), that are seen as circles (or ellipses) with their 

radius and orientation. The detection of the craters in the image 

can be easily tackled by algorithms based on Hough transform 

[49], that are especially effective in identifying simple geometric 

primitives. 

 

 

Fig. 40 – An example of land-marking of craters (NEAR mission) [48] 

 

We identified the landmarks stored in the catalogue by: 

• Identification number ID; 

• Position (        ) w.r.t. the Inertial Reference Frame 

located at centre of mass of planet and axes conveniently chosen; 

• Radius of circle 

 

As far as it concerns the differences between star catalogue and 

landmark catalogue, the first four parameters are similar (ID and 
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position w.r.t. a dedicated inertial reference frame), while the last 

is different as physical quantity, but similar in functionality. 

Indeed, it represents the star magnitude in the first case, and the 

radius of the circles in the second case. 

Once the absolute landmarks are stored in an on-board catalogue, 

the star tracker works as for the stars and it is possible to evaluate 

the relative position w.r.t. the planet. 

 

 

4.3.3. A case study 
 

In the proposed case study, we consider a mission where the 

target is the moon and the landmarks have been stored on-board 

the spacecraft in a catalogue. An example on how the star tracker 

identifies and collect the landmarks is reported in the following 

figure (see Fig. 41). 
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Fig. 41 – An example of land-marking of Moon craters by the sensor 

 

The figure shows three craters on the Moon (marked by yellow 

circles) identified by the optical sensor. This craters will be stored 

in the catalogue following the scheme previously described: ID 

(landmark), position of the circle (        ) and its radius. 

 

The inertial reference frame   [        ] is located at centre of 

mass of the Moon. I3 axis is aligned with the Moon spin axis and 

the plane containing I1, I2 axes is parallel to the Moon equatorial 

plan. The spacecraft reference frame is coincident with the star 

tracker reference frame. For this simulation it is considered a 

multi-head star tracker, able to enlarge its dynamic range, the 

initial position known and the landmark already stored.  
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The optical head, used for the simulation, has been characterized 

as reported in the following: 

• f = 152.5 mm 

• FOV = 5° x 5° 

• APS size = 1024 x 1024 

• Pixel size = 13 m 

 

The results obtained by a MATLAB simulation are reported in the 

following figures (see Fig. 42): 

 

 

Fig. 42 – Results of the simulation measured (in red) vs. catalogued (in blue) landmarks. 

 

The graph shows as the star tracker is able to estimate the position 

of the spacecraft, matching the measured landmarks (in red) with 

the catalogued ones (in blue). The estimate of the S/C position 
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(Right Ascension, Declination and Tilt) is reported in the 

following figures (see Fig. 43, Fig. 44, Fig. 45)  

 

Fig. 43 – Estimate of S/C right ascension w.r.t. the inertial reference frame located at centre of 

mass of planet. 

 

 

Fig. 44 – Estimate of S/C declination w.r.t. the inertial reference frame located at centre of mass 

of planet. 
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Fig. 45 – Estimate of S/C tilt w.r.t. the inertial reference frame located at centre of mass of planet. 

 

The results are coherent with the simulation. Indeed, it has been 

performed for 1 second (with                   ) with initial 

position (        )  (     ) and angular rate  ⃗⃗  (       )     . 

 

Conclusion 

For this simple simulation, the star tracker has been able to 

compute the position of the spacecraft with respect to the planet 

inertial reference frame using the landmarks catalogue, as for the 

estimate of attitude. 

 

The capability of a multi-head star tracker to estimate the relative 

position of the spacecraft with respect to a target, therefore acting 

as a navigation camera, opens the path to a universal optical 

sensor. The use of this sensor will be for sure limited to specific 

mission phases, due to the lenses’ limitations and to the threshold 
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associated to the detector. As an example, the approach to deep 

space celestial bodies (asteroids, far planets) can be considered as 

a possible application regime. At least in these specific phases, the 

proposed solution has the potential to reduce the costs and/or 

offer a redundancy in case of failure of part of the instruments. 

Indeed, the analysis of this extended application of the star tracker 

is quite interesting for future deep space missions 

 

Furthermore, the interest of the study is not limited to 

interplanetary navigation, and can be extended – by means of 

using multiple heads or specific filters - to other vehicles currently 

using star trackers and cameras as the planetary rovers. 
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